LT8672HDDB#TRPBF [ADI]

Active Rectifier Controller with Reverse Protection;
LT8672HDDB#TRPBF
型号: LT8672HDDB#TRPBF
厂家: ADI    ADI
描述:

Active Rectifier Controller with Reverse Protection

文件: 总24页 (文件大小:1837K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT8672  
Active Rectifier Controller  
with Reverse Protection  
FEATURES  
DESCRIPTION  
The LT®8672 is an active rectifier controller for reverse  
input protection. It drives an external N-channel MOSFET  
to replace a power Schottky diode. Its very low quiescent  
currentandfasttransientresponsemeetthetoughrequire-  
ments in automotive applications where AC input signals  
of up to 100kHz are present. These signals are rectified  
with minimum power dissipation on the external FET,  
simplifying thermal management on the PCB.  
n
AEC-Q100 Qualified for Automotive Applications  
n
Reverse Input Protection to –40V  
n
Improved Performance Compared to a  
Schottky Diode  
n
Reduce Power Dissipation by >90%  
n
Reduce Drop to 20mV  
n
Ultrafast Transient Response  
n
Rectifies 6V Up to 50kHz  
Rectifies 2V Up to 100kHz  
P-P  
P-P  
n
With a drop of only 20mV, the LT8672 solution eases the  
minimum input voltage requirement during cold crank  
and start-stop, allowing simpler and more efficient cir-  
cuits. If the input power source fails or is shorted, a fast  
turn-offminimizesreversecurrenttransients.Anavailable  
shutdown mode reduces the quiescent current to 3.5μA.  
n
n
n
n
n
Wide Operating Voltage Range: 3V to 42V  
Low 20µA Quiescent Current in Operation  
Low 3.5µA Shutdown Current  
Accurate 1.21V Enable Pin Threshold  
Small 10-Lead MSOP Package, 10-Lead 3mm ×  
2mm DFN Package and 3mm × 2mm Side-Wettable  
DFN Package  
An integrated auxiliary boost regulator provides the re-  
quired boost voltage to turn the external FET fully on. A  
power good pin signals when the external FET is ready to  
take load current.  
APPLICATIONS  
n
Automotive Battery Protection  
All registered trademarks and trademarks are the property of their respective owners.  
n
Industrial Supplies  
n
Portable Instrumentation  
TYPICAL APPLICATION  
Rectification of Input Ripple  
12V, 5A Automotive Reverse Battery Protection  
ꢄꢊ ꢒꢓꢒꢄꢔꢕ ꢖꢊꢅDꢒ  
ꢀꢁDꢂꢃꢃꢄꢃꢅꢆꢇꢈꢃꢉ  
ꢍꢅꢄꢄ  
ꢇꢃꢉ  
ꢊꢋꢄ  
ꢌꢅ  
ꢎ.ꢂꢏꢐ  
ꢀꢁꢂꢃꢄꢅꢅꢆ  
ꢅꢅꢇ  
ꢎꢂꢆꢏꢐ  
1μF  
100μH  
ꢁꢂꢃ  
ꢄꢀꢅDꢆꢀ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢅꢆꢈ  
ꢀꢁꢂRꢃꢄ ꢀꢁꢂꢃ DRꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂꢃꢄ  
ꢁꢂꢃꢃ  
ꢄꢀꢅDꢆꢀ  
ꢀꢁꢂꢃ  
ꢊꢗ ꢊꢐꢐ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁD  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈ  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
Rev. D  
1
Document Feedback  
For more information www.analog.com  
LT8672  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1 and 2)  
Operating Junction Temperature Range (Notes 3, 4)  
E-, I-Grades ..................................... −40°C to 125°C  
J-, H-Grades .................................... −40°C to 150°C  
Storage Temperature Range ................ −65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
DRAIN ...................................................... –0.3V to 42V  
SOURCE, EN/UVLO ................................... –40V to 42V  
DRAIN–SOURCE ......................................... –5V to 54V  
AUX .......................................................... V  
+ 13V  
+ 17V  
+ 0.3V  
DRAIN  
SOURCE  
GATE .........................V  
– 0.3V to V  
AUX  
SOURCE  
MS Package .................................................... 300°C  
GATE ................................... V  
– 67V to V  
AUX  
PG .............................................................. –0.3V to 5V  
PIN CONFIGURATION  
ꢀꢁꢂ ꢃꢄꢅꢆ  
ꢕꢋꢍ ꢉꢗꢅꢙ  
ꢇꢏ  
ꢅꢙꢉꢢꢃꢑꢁ  
ꢎꢙD  
ꢂꢎ  
ꢎꢋꢀꢅ  
ꢅꢆꢇꢈꢉꢊꢋ  
ꢌꢆD  
ꢍꢌ  
ꢀꢏ ꢌꢔꢕꢅ  
ꢗꢁꢢRꢌꢅ  
DRꢋꢄꢙ  
ꢋꢢꢡ  
ꢖꢋꢈRꢎꢅ  
ꢇꢇ  
DRꢔꢗꢆ  
ꢔꢈꢘ  
ꢔꢈꢘꢖꢙ  
ꢌꢆD  
ꢆꢎ  
ꢎꢙD  
ꢙꢌ  
ꢋꢢꢡꢗꢆ  
ꢚꢖ ꢍꢔꢎꢛꢔꢌꢅ  
ꢀꢏꢜꢊꢅꢔD ꢍꢊꢔꢖꢕꢗꢎ ꢚꢖꢋꢍ  
DDꢈꢉDDꢈꢊ ꢂꢋꢌꢍꢋꢎꢅ  
ꢇꢏꢐꢑꢅꢋD ꢒꢓꢔꢔ × ꢕꢔꢔꢖ ꢂꢑꢋꢗꢀꢄꢌ Dꢘꢙ  
θ
ꢞ ꢀꢓꢏꢟꢎꢇꢙ  
ꢝꢔ  
θ
ꢛ ꢜꢝꢞꢌꢉꢆꢟ θ ꢛ ꢇꢓ.ꢠꢞꢌꢉꢆ  
ꢚꢌ  
ꢚꢋ  
ꢅꢡꢂꢁꢗꢅD ꢂꢋD ꢒꢂꢄꢙ ꢇꢇꢖ ꢊꢢꢗꢀ ꢈꢅ ꢗꢣꢁRꢀꢅD ꢀꢁ ꢎꢙD ꢁR ꢑꢅꢘꢀ ꢘꢑꢁꢋꢀꢄꢙ  
Rev. D  
2
For more information www.analog.com  
LT8672  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTGYT  
PACKAGE DESCRIPTION  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 150°C  
LT8672EMS#PBF  
LT8672EMS#TRPBF  
LT8672IMS#TRPBF  
LT8672JMS#TRPBF  
LT8672HMS#TRPBF  
LT8672IMS#PBF  
LTGYT  
LT8672JMS#PBF  
LTGYT  
LT8672HMS#PBF  
LTGYT  
MINI REEL  
LT8672EDDB#TRMPBF  
LT8672IDDB#TRMPBF  
LT8672JDDB#TRMPBF  
LT8672HDDB#TRMPBF  
AUTOMOTIVE PRODUCTS**  
LT8672EMS#WPBF  
LT8672IMS#WPBF  
LT8672JMS#WPBF  
LT8672HMS#WPBF  
LT8672EDDB#TRPBF  
LT8672IDDB#TRPBF  
LT8672JDDB#TRPBF  
LT8672HDDB#TRPBF  
LGYS  
LGYS  
LGYS  
LGYS  
10-Lead (3mm × 2mm) Plastic DFN  
10-Lead (3mm × 2mm) Plastic DFN  
10-Lead (3mm × 2mm) Plastic DFN  
10-Lead (3mm × 2mm) Plastic DFN  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 150°C  
LT8672EMS#WTRPBF  
LT8672IMS#WTRPBF  
LT8672JMS#WTRPBF  
LT8672HMS#WTRPBF  
LTGYT  
LTGYT  
LTGYT  
LTGYT  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 150°C  
–40°C to 125°C  
LT8672EDDBM#WTRMPBF LT8672EDDBM#WTRPBF LHJR  
LT8672IDDBM#WTRMPBF LT8672IDDBM#WTRPBF LHJR  
LT8672JDDBM#WTRMPBF LT8672JDDBM#WTRPBF LHJR  
10-Lead (3mm × 2mm) Plastic Side-  
Wettable DFN Package  
10-Lead (3mm × 2mm) Plastic Side-  
Wettable DFN Package  
–40°C to 125°C  
–40°C to 150°C  
10-Lead (3mm × 2mm) Plastic Side-  
Wettable DFN Package  
Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
**Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These  
models are designated with a #W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your local  
Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.  
Rev. D  
3
For more information www.analog.com  
LT8672  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VSOURCE = VDRAIN = 12V, unless otherwise noted. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.85  
3.5  
MAX  
UNITS  
l
l
Minimum Drain Voltage  
Total System Quiescent Current  
3
V
V
V
= 0V  
5
15  
µA  
µA  
EN/UVLO  
EN/UVLO  
= 2V, Active Rectifier Controller  
20  
20  
26  
39  
µA  
µA  
l
l
l
In Regulation (Note 4)  
Pin Voltage Rising  
Pin Voltage Falling  
EN/UVLO Pin Threshold High  
EN/UVLO Pin Threshold Low  
EN/UVLO Pin Hysteresis  
EN/UVLO Pin Current  
1.22  
1.16  
1.28  
1.21  
70  
1.34  
1.26  
V
V
mV  
µA  
µA  
Ω
V
V
V
= 2V  
–0.1  
–0.1  
0.1  
0.1  
EN/UVLO  
PG Pin Leakage  
= 3.3V  
PG  
PG  
l
PG Pull-Down Resistance  
Auxiliary Boost Regulator  
= 0.1V  
650  
2000  
l
l
Regulation Voltage V  
– V  
10.2  
75  
11  
100  
2
11.8  
120  
V
mA  
Ω
AUX  
DRAIN  
Power NMOS Current Limit  
Power NMOS On-Resistance  
Catch Diode Forward Voltage  
AUXSW Pin Leakage  
I
= 100mA  
0.8  
V
DIODE  
V
= 12V  
–0.2  
0.2  
µA  
AUXSW  
Active Rectifier Controller  
SOURCE–DRAIN Regulation Voltage  
SOURCE–DRAIN Fast Pull-Up Threshold  
DRAIN Current  
l
l
10  
60  
20  
75  
12  
5
25  
90  
mV  
mV  
µA  
With Gate Driver in Regulation  
With Gate Driver in Regulation  
SOURCE Current  
µA  
mA  
Fault Condition, V  
= –40V  
–1  
SOURCE  
l
Maximum Gate Drive (GATE–SOURCE)  
Gate Pull-Up Current  
10.2  
–26  
170  
11  
11.8  
V
mA  
mA  
–50  
300  
Gate Pull-Down Current  
l
l
Gate-Source Off Voltage for Reverse SOURCE  
Fault Condition, V  
Fault Condition, V  
= –5V, I  
= 1mA  
GATE  
GATE  
0.01  
0.01  
0.3  
0.3  
V
V
SOURCE  
SOURCE  
= –40V, I  
= 1mA  
l
Gate Turn-Off Delay Time  
Gate Turn-On Delay Time  
Step (V  
GATE SOURCE  
–V  
) from 130mV to −70mV  
0.6  
1.1  
µs  
SOURCE DRAIN  
V
–V  
< 1V, C  
= 10nF  
GATE–SOURCE  
l
Step (V  
GATE SOURCE  
–V  
> 5V , C  
) from −70mV to 130mV  
1.7  
3.1  
µs  
SOURCE DRAIN  
V
–V  
= 10nF  
GATE–SOURCE  
l
l
Maximum Frequency of AC Input Signal to Be  
Rectified  
AC Input Ripple < 6V , C  
= 10nF  
= 10nF  
50  
100  
kHz  
kHz  
P-P GATE–SOURCE  
AC Input Ripple < 2V , C  
P-P GATE–SOURCE  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect the device  
reliability and lifetime.  
Note 2: Positive currents flow into pins, negative currents flow out of pins.  
Minimum and Maximum values refer to absolute values.  
Note 3: The LT8672E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the −40°C  
to 125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LT8672I is guaranteed over the full −40°C to 125°C operating junction  
temperature range. The LT8672J and the LT8672H are guaranteed over  
the full −40°C to 150°C operating junction temperature range. Operating  
lifetime is derated at junction temperatures greater than 125°C.  
Note 4: Total system current with active rectifier controller in regulation.  
Rev. D  
4
For more information www.analog.com  
LT8672  
TYPICAL PERFORMANCE CHARACTERISTICS  
GATE Current vs  
Forward Voltage Drop  
Total Input Current in Regulation  
Total Input Current in Shutdown  
ꢀꢁ  
ꢀꢁ  
100μ  
10μ  
1μ  
ꢀꢁ  
−5  
−10  
−15  
−20  
−25  
−30  
Rꢄꢅꢄꢆꢇ  
ꢄꢂꢅꢅꢆꢇꢈ  
ꢁꢂꢃꢃ  
ꢁꢂꢃꢃ  
ꢀꢁꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
−10  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
 
 
R
DR  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢃ  
Fast Pull-Down Current  
Fast Pull-Up Current  
Forward Regulation Voltage  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
−30  
−40  
−50  
−60  
−70  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
R
R
−50 −25  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
−50 −25  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
−50 −25  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢁ  
GATE Turn-Off Time vs  
GATE Capacitance  
GATE Turn-On Time vs  
GATE Capacitance  
Fast Pull-Down Threshold  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
−4  
−5  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
−6  
R
−7  
−8  
−9  
R
−10  
−11  
−12  
ꢀꢁ  
−50 −25  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
R  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
R  
ꢀꢁꢂꢃ ꢄꢅꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢀ  
Rev. D  
5
For more information www.analog.com  
LT8672  
TYPICAL PERFORMANCE CHARACTERISTICS  
Auxiliary Boost Regulator  
Current Limit  
Fast Pull-Up Threshold  
AUX–DRAIN Regulation Voltage  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ.ꢀꢁ  
ꢀꢀ.ꢁꢂ  
ꢀꢀ.ꢁꢁ  
ꢀꢁ.ꢂꢃ  
ꢀꢁ.ꢂꢁ  
ꢀꢁꢂ  
ꢀꢀꢁ  
ꢀꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
 
 
 
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
−50 −25  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
−50 −25  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
DR  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢅ  
ꢀꢁꢂꢃ ꢄꢅꢃ  
EN/UVLO Pin Thresholds  
Fast Pull-Up to PG Low Delay  
Dropout Performance  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢂ  
RD Ω  
 
 
Rꢀꢁꢀꢂꢃ  
ꢀꢁꢂꢂꢃꢄꢅ  
ꢀꢁꢂꢃDꢄꢅ  
−50 −25  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
−50 −25  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
Auxiliary Boost Regulator  
Switching Waveforms  
Auxiliary Boost Regulator  
Response to Fast Pull-Up  
 
ꢀꢁꢂꢃDꢄꢂ  
D  
ꢀꢁꢂDꢃꢄ  
ꢀꢁRꢂꢃꢄDRꢅꢆꢇ  
ꢀꢁꢁꢂꢃꢄDꢅꢃ  
ꢀ  
 
ꢀꢁꢂDꢃꢁ  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
DR  
ꢀꢁꢁꢂꢃꢄDꢅꢃ  
 
ꢀꢁꢂꢃDꢄꢂ  
ꢀꢁꢅꢆꢇꢈꢉRꢊꢋꢌꢍꢁ  
ꢀꢁꢂꢃDꢄꢅ  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢁ  
ꢀꢁꢂꢃ ꢄꢅꢂ  
Rev. D  
6
For more information www.analog.com  
LT8672  
PIN FUNCTIONS  
EN/UVLO (Pin 1): The LT8672’s active rectifier controller  
and the auxiliary boost regulator are shut down when this  
pin is below 1.21V. Tie to DRAIN if this shutdown feature  
is not used.  
AUX (Pin 7): Auxiliary Boost Regulator Output. This pin  
is used to provide a drive voltage, higher than the input  
voltage, to the gate driver of the active rectifier controller.  
Connect a 1µF capacitor between this pin and the DRAIN  
pin as close as possible to the IC. Do not place a capacitor  
to any other node than DRAIN on this pin.  
GND (Pin 2): This pin has no function in the application  
and should be connected to ground.  
DRAIN (Pin 8): Drain Voltage Sense and Supply Voltage.  
Thevoltagesensedatthispinisusedtocontroltheexternal  
MOSFET gate. It also provides current to the LT8672’s  
internal circuitry. Connect this pin as close as possible  
to the drain of the external N-channel MOSFET. This pin  
must be locally bypassed with at least 4.7µF.  
PG (Pin 3): The PG pin is the open drain output of an in-  
ternalmonitorcircuitry. PGpullslowifanyofthefollowing  
criteria is met: the part is in shutdown, the AUX voltage  
has not reached its regulation value during start-up or  
the gate driver’s fast pull-up path is active for more than  
17µs. If the PG pin is used to control the output load, it can  
protect the MOSFET from being overloaded under these  
conditions. PG output is valid when DRAIN is above the  
minimum input voltage.  
SOURCE(Pin9):SourceConnection.SOURCEisthereturn  
path of the gate fast pull-down. The voltage sensed at this  
pin is also used to control the MOSFET gate. Connect  
this pin as close as possible to the source of the external  
N-channel MOSFET.  
GND (Pin 4): This is the ground of all the internal circuitry.  
Tie directly to the local GND plane.  
GATE (Pin 10): Gate Drive Output. This pin drives the gate  
of the external N-channel MOSFET. Connect this pin to the  
gate of the MOSFET.  
NC (Pin 5): This pin is not connected internally. Connect  
it to ground or leave it floating.  
AUXSW(Pin6):OutputoftheInternalPowerSwitchofthe  
Auxiliary Boost Regulator. This node should be kept small  
on the PCB for good performance and low EMI. Connect  
the boost inductor between this pin and the DRAIN pin.  
Exposed Pad (Pin 11, DFN Only): The exposed pad must  
either be left floating or be connected to the GND pin.  
Rev. D  
7
For more information www.analog.com  
LT8672  
BLOCK DIAGRAM  
ꢋꢐ  
ꢌꢓꢄ  
ꢎꢃꢄꢄ  
ꢌꢓꢄ  
ꢎꢙꢊ  
ꢃꢓꢔ  
ꢃꢓꢔ  
ꢀꢁ  
ꢀꢁꢂRꢃꢄ  
ꢀꢁꢂꢃ  
DRꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢈꢉ  
ꢂꢃꢄꢅ  
DRꢆꢇꢅR  
ꢐ.ꢑꢐꢇ ꢇ  
Rꢅꢒ  
ꢂꢅꢈꢅRꢃꢄꢆꢌꢈ  
ꢂꢈD  
ꢀꢁꢂ  
ꢎꢌꢌꢏꢄ  
ꢂꢈD  
ꢊꢂ  
ꢉꢌꢈꢄRꢌꢍ  
ꢃꢓꢔꢌꢕ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢋꢌꢈꢆꢄꢌR  
ꢍꢌꢂꢆꢉ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢅꢈꢃꢎꢍꢅ  
ꢐ.ꢑꢐꢇ  
ꢚꢛꢜꢑ ꢎD  
Rev. D  
8
For more information www.analog.com  
LT8672  
OPERATION  
The LT8672 is an active rectifier controller including an  
integrated auxiliary boost regulator for fast turn on of the  
externalN-channelMOSFET. Operationisbestunderstood  
by referring to the Block Diagram.  
The EN/UVLO pin can be used to shut down the active  
rectifiercontroller andauxiliary boost regulator. By setting  
EN/UVLOlow, totalsysteminputcurrentisreducedtoless  
than 3.5µA. The conduction path on the external MOSFET  
would only be through its body diode.  
Active Rectifier Controller  
Note that it typically takes 7ms for the internal supply  
voltages to stabilize once the DRAIN voltage exceeds the  
minimum voltage of 2.85V.  
TheactiverectifiercontrollercontrolsanexternalN-channel  
MOSFET (M1) to form an ideal diode. The GATE amplifier  
senses across DRAIN and SOURCE and drives the gate of  
the MOSFET to regulate the forward voltage to 20mV. As  
the load current increases, GATE is driven higher until a  
point is reached where the MOSFET is fully on. If the load  
current is reduced, the GATE amplifier drives the MOSFET  
Auxiliary Boost Regulator  
The auxiliary boost regulator uses a hysteretic control  
scheme in conjunction with a constant low side current  
limit of 100mA. When the AUX–DRAIN voltage is below  
its nominal value of typically 11V, the low side power  
gate lower to maintain a 20mV drop. If the voltage V  
DRAIN  
isreducedtoapointwhereaforwarddropof20mVcannot  
switch is turned on. The L  
inductor current rises, until  
AUX  
be supported, the GATE amplifier drives the MOSFET off.  
it reaches the low side current limit of 100mA, at which  
point the low side switch is turned off and the inductor  
DuringfastSOURCE–DRAINtransientssuchasfastvarying  
input (SOURCE) signals where the regulating 20mV loop  
is too slow, fast pull-up (FPU) and fast pull-down (FPD)  
currentpathsturnonandofftheexternalMOSFETquickly.  
This rectifies the input signal the same way a diode would  
do but with much less power dissipation.  
discharges into C  
until its current falls to zero. Then,  
AUX  
thelowsideswitchturnsonagain, unlesstheAUX–DRAIN  
voltage has risen above its nominal value. In this case,  
all high power circuitry is shut off in order to reduce the  
quiescent current.  
The SOURCE and GATE pins are protected against reverse  
input voltages of up to –40V. GATE is pulled to SOURCE  
whenSOURCEgoesnegative, turningofftheMOSFETand  
isolating DRAIN from the negative input.  
Thiscontrolschemeresultsinaswitchingfrequencywhich  
depends on inductor value and DRAIN voltage.  
Power Good Pin (PG)  
The open drain power good pin PG goes high impedance  
whennofaultispresent.ThisindicatestheexternalMOSFET  
is operating properly.  
The gate voltage for the external MOSFET is provided by  
the auxiliary boost regulator, which regulates its output  
AUX to 11V above DRAIN.  
Rev. D  
9
For more information www.analog.com  
LT8672  
APPLICATIONS INFORMATION  
Active Rectifier Controller  
The LT8672 operates from 3V to 42V and withstands an  
absolutemaximumrangeof40Vto42Vwithoutdamage.  
In automotive applications the LT8672 operates through  
load dump, cold crank and two-battery jumps, and it  
survivesreversebatteryconnectionswhilealsoprotecting  
the load. Furthermore, due to its fast response to changes  
in the external MOSFET’s forward voltage, it can rectify  
Blocking diodes are commonly placed in series with sup-  
ply inputs to protect against supply reversal. The LT8672  
replaces diodes in these applications with a MOSFET to  
reduce both the voltage drop and power loss associated  
with a passive solution. The curve shown in Figure 1 illus-  
tratesthedramaticimprovementinpowerlossachievedin  
a practical application. This represents significant savings  
in board area by greatly reducing power dissipation in the  
pass device. At low input voltages, the improvement in  
forwardvoltagelossisreadilyappreciatedwhereheadroom  
is tight, as shown in Figure 2.  
input ripple with amplitudes as high as 6V up to 50kHz.  
P-P  
Rectification up to 100kHz is possible with amplitudes as  
high as 2V . The fast gate drive capability of the LT8672  
P-P  
prevents the external MOSFET from overheating during  
thesedemandingconditionssinceitsbodydiodeconducts  
current only for a very small portion of the ripple period.  
ꢀꢁ  
The LT8672 does not require any bypass capacitor at the  
SOURCE pin (C  
in the Block Diagram). Should such  
BYP  
ꢀꢁꢂꢃꢄꢄꢅꢆ DꢇꢃDꢈ ꢉꢀꢊꢋꢌꢍꢎꢍꢁꢄꢏ  
a capacitor be needed for other reasons, for example as  
part of an up-front EMI filter, its capacitance must not  
exceed 60nF; otherwise, the gate driver’s stability may be  
impaired. This applies to the total capacitance connected  
to SOURCE on the PCB.  
ꢀꢁꢂꢃR  
ꢀꢁꢂꢃD  
It is important to note that the EN/UVLO pin, while dis-  
ablingtheLT8672andreducingitscurrentconsumptionto  
3.5μA, does not disconnect the load from the input since  
the MOSFET’s body diode is ever-present.  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢂꢈꢉꢊꢋꢌꢉꢍꢌꢂꢎ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁRRꢂꢃꢄ ꢅꢆꢇ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
Figure 1. Power Dissipation Comparison Between  
MOSFET and Schottky Diode  
Shutdown Mode/Undervoltage Lockout  
In shutdown, the LT8672 pulls GATE low to SOURCE,  
turning off the MOSFET and reducing current consump-  
tion to 3.5μA. Shutdown does not interrupt forward  
current flow; a path is still present through M1’s body  
diode. When enabled, the LT8672 operates as an active  
rectifier. If shutdown is not needed, connect EN/UVLO to  
DRAIN. EN/UVLO may be driven with a 3.3V or 5V logic  
signal. To disable the part, EN/UVLO must be pulled down  
below 1.21V.  
ꢀ.ꢁ  
ꢀꢁꢂꢃꢄꢅꢆꢅꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢄꢅꢆ DꢇꢃDꢈ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢄꢈꢇꢂꢉ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁRRꢂꢃꢄ ꢅꢆꢇ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢃ  
Figure 2. Forward Voltage Drop Comparison  
Between MOSFET and Schottky Diode  
Rev. D  
10  
For more information www.analog.com  
LT8672  
APPLICATIONS INFORMATION  
Adding a resistive divider from SOURCE to EN/UVLO, as  
shown in Figure 3, programs the LT8672 to disable itself  
Input Short-Circuit Faults and Negative Transients  
For fast negative input transients, the LT8672 relies on  
its fast pull-down (FPD) comparator. But since the FPD  
threshold is negative, reverse current is built up in the  
external MOSFET prior to an FPD turn-off. This process  
resembles the reverse recovery of a diode, although  
cause and timing differ. Since there is always a parasitic  
or, in case of an up front EMI filter, intended inductance  
in front of SOURCE, the reverse current stores energy  
in this inductance. This energy pulls the SOURCE node  
negative, once the external MOSFET is finally turned off.  
A zero impedance short-circuit directly across the input  
and ground is especially troublesome because it permits  
the highest possible reverse current to build up.  
when V  
is below a threshold voltage V  
,
BATT  
given by:  
BATT(EN/UVLO)  
VBATT EN/UVLO  
(
)
R1=R2  
–1  
1.21V  
ꢂꢃꢄꢅ  
ꢀꢁꢂRꢃꢄ  
ꢅꢆꢇꢇ  
Rꢀ  
Rꢃ  
ꢀ.ꢃꢀꢄ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢍꢎꢆꢅꢏꢍ  
ꢀꢁꢂ  
ꢈꢉꢊꢃ ꢂꢋꢌ  
Figure 3. EN/UVLO Pin Allows Programmable  
Undervoltage Lockout  
This negative transient on SOURCE may potentially  
be destructive to the LT8672, since the voltage on the  
SOURCE pin is limited to –40V. To prevent damage to the  
LT8672, protect the SOURCE pin as shown in Figure 4  
by clamping to the ground node with two TVS diodes.  
Negative spikes, seen after the MOSFET turns off during  
an FPD event, are clamped by D2. The example, an 18V  
TVS, is a good choice for automotive applications, where  
a reversed battery could produce a reverse voltage of up  
to 14.4V, at which D2 should not conduct any current. D2  
is not required if reverse-input protection is not needed.  
Note that due to the comparator’s hysteresis, the LT8672  
will not be enabled until V rises slightly above  
BATT  
V
. If EN/UVLO is connected using a high  
BATT(EN/UVLO)  
ohmic resistor, it is subject to capacitive coupling from  
nearby clock lines or traces exhibiting high dV/dt. Bypass  
EN/UVLO to GND with 1nF to eliminate injection.  
This capacitor, if sized accordingly, will also prevent  
negative voltage transients on V  
disabling the LT8672.  
from inadvertently  
BATT  
ꢑꢒꢓꢉꢊ ꢓꢌRꢌꢔꢑꢊꢑꢏ  
ꢑꢒDꢉꢏꢊꢌꢒꢏꢖ ꢈR  
ꢖꢗꢑ ꢄꢑꢖR  
RꢖꢇꢖRꢔꢖ RꢖꢏꢈꢇꢖRꢘ ꢏꢉRRꢖꢒꢊ  
ꢋꢌꢊꢊ  
ꢈꢉꢊ  
Dꢀ  
DDꢁꢂꢃꢄꢄꢅ  
ꢆꢀꢇ  
Dꢀ  
ꢆ.ꢂꢍꢄ  
ꢐꢈꢌD  
ꢑꢒꢓꢉꢊ  
ꢔꢕꢈRꢊ  
ꢁꢂꢃꢄꢅꢆꢆꢇ  
ꢆꢆꢈ  
1μF  
100μH  
Dꢀ  
ꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢆꢇꢉ  
ꢀꢁꢂRꢃꢄ  
ꢀꢁꢂꢃ DRꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂꢃꢄ  
ꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁ  
ꢀꢁD  
ꢀꢁꢂꢃ ꢄꢅꢆ  
Figure 4. Reverse Recovery Produces an Inductive Spike at the SOURCE Pin. The Polarity of Step Recovery  
Is Shown Across the Parasitic Inductance (See Text for D3)  
Rev. D  
11  
For more information www.analog.com  
LT8672  
APPLICATIONS INFORMATION  
D1 protects SOURCE in the positive direction during load  
steps and overvoltage conditions. The example, a 33V  
TVS, is a good choice for automotive applications, where  
a load dump could produce an overvoltage at which D1  
should not conduct any current.  
 
ꢀꢁꢂDꢃꢁ  
 
ꢀꢁꢂDꢃꢁ  
If neither D1 nor any reverse current protection (D2) is  
needed, a diode is still required at SOURCE to protect the  
LT8672 from negative inductive spikes caused by any  
parasitic input inductance.  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
For input voltages4V greater than V  
of the external  
ꢀꢁꢂꢃ ꢄꢅꢆ  
GS(MAX)  
MOSFET, a direct short (minimal inductance of less than  
Figure 5. Rectification of Input Ripple Waveform  
(f = 1kHz, 5A Load Current)  
a few nH) at the SOURCE node on the PCB could tempo-  
rarily increase the V of the external MOSFET above its  
GS  
V
. If such a short is to be expected, D3 is needed  
to protect the external MOSFET.  
GS(MAX)  
 
ꢀꢁꢂDꢃꢁ  
Any leakage current in D3 will increase the total quiescent  
current accordingly. In addition, D3’s leakage current  
should not exceed 5µA, as it would otherwise create an  
offset at the gate driver’s input, increasing the SOURCE–  
DRAIN regulation voltage.  
 
ꢀꢁꢂDꢃꢁ  
Rectification of Fast Input Ripple  
ꢀꢁꢂꢃꢄDꢅꢆ  
The LT8672 is specifically designed to address the chal-  
lenging specifications for battery connected automotive  
electronic control units (ECUs). For example, according  
to automotive norms ISO16750 or LV124 an ECU may be  
subjectedtoanACripplesuperimposedonitssupply, with  
ꢀꢁꢂꢃ ꢄꢅꢁ  
Figure 6. Rectification of Input Ripple Waveform  
(f = 30kHz, 5A Load Current)  
frequencies of up to 30kHz and amplitudes of up to 6V  
.
P-P  
 
ꢀꢁꢂDꢃꢁ  
Due to its gate driver’s high output current and short delay  
times, the LT8672 is able to control the external MOSFET  
rapidly enough even at these frequencies to keep power  
dissipationandreversecurrentconductiontoaminimum.  
In addition, this significantly reduces the ripple current in  
the output capacitor.  
 
ꢀꢁꢂDꢃꢁ  
Figure 5, Figure 6 and Figure 7 show input and output  
waveforms for various input ripple frequencies.  
ꢀꢁꢂꢃDꢄꢅ  
ꢀꢁꢂꢃ ꢄꢅꢂ  
Figure 7. Rectification of Input Ripple Waveform  
(f = 100kHz, 5A Load Current)  
Rev. D  
12  
For more information www.analog.com  
LT8672  
APPLICATIONS INFORMATION  
MOSFET Selection  
For fast gate drive operation choose a MOSFET with the  
smallest total gate charge Q  
that also satisfies the  
GTOT  
All load current passes through an external MOSFET, M1.  
The important characteristics of the MOSFET are on-  
B
and R  
requirements. A MOSFET with smaller  
notonlyreducesreversecurrentduringtheturn-off  
VDSS  
DS(ON)  
Q
GTOT  
resistance, R  
VDSS  
gate charge Q  
, the maximum drain-source voltage,  
DS(ON)  
phase but also stays cooler during rectification of high  
amplitude ripple on the input.  
B
, the gate threshold voltage V  
and the total  
GS(TH)  
.
GTOT  
If the MOSFET has an integrated gate protection, its  
leakage should not exceed 5µA, as this would otherwise  
create an offset at the gate driver’s input, increasing the  
SOURCE–DRAIN regulation voltage.  
Gate drive is compatible with standard threshold and  
logic-level MOSFETs over the entire operating range of  
3V to 42V. For logic-level MOSFETs, V  
15V or higher.  
should be  
GS(MAX)  
When the LT8672 rectifies an AC ripple voltage, the aver-  
age current through the external MOSFET still equals the  
load current, but the peak current is much higher. Since  
the MOSFET’s power dissipation is proportional to the  
square of this current as described above, the average  
power dissipation during rectification exceeds the power  
dissipationinsteadystate.Theactualpeakcurrentdepends  
on the external components and their parasitics. Figure 8  
shows a simple model which can be used to estimate the  
Themaximumallowabledrain-sourcevoltage,B  
,must  
VDSS  
be higher than the power supply voltage. If the input is  
grounded, the full supply voltage will appear across the  
MOSFET. If the input is reversed and the output is held up  
by a charged capacitor, battery or power supply, the sum  
of the input and output voltages will appear across the  
MOSFET and require a B  
> V  
+ |V  
|.  
VDSS  
OUT  
BATT  
The MOSFET’s on-resistance, R , directly affects  
DS(ON)  
the forward voltage drop and power dissipation. Desired  
forward voltage drop should be less than that of a diode  
for reduced power dissipation; 60mV is a good starting  
point. Choose a MOSFET which has:  
peak current by computer simulation. R  
represents  
BATT  
the impedance of the voltage source V  
, the inductor  
BATT  
models the combined inductance of the cable and, if  
present, the EMI filter inductor. The ideal diode has no  
resistanceandaforwardvoltageof0V.R  
represents  
LOAD  
DS(ON)  
Forward Voltage Drop  
RDS(ON)  
<
theon-resistanceoftheexternalMOSFET, whileC  
and  
ILOAD  
R
ESR  
representtheelectrolyticcapacitoranditsequivalent  
series resistance.  
The resulting power dissipation is  
2
P =I  
•R  
DS ON  
d
LOAD  
(
)
ꢍDꢅꢉꢈ  
DꢍꢂDꢅ  
ꢀ ꢈ  
ꢅꢏꢍ  
ꢇꢉꢎꢈꢅ  
R
Dꢆꢊꢂꢋꢌ  
R
ꢎꢉꢄꢄ  
ꢂꢃꢄ  
ꢎꢉꢄꢄ  
ꢈꢂꢉD  
R
ꢅꢆR  
ꢀꢁꢂꢃ ꢄꢅꢀ  
Figure 8. Simplified Application Model Including All Relevant Parasitics  
Rev. D  
13  
For more information www.analog.com  
LT8672  
APPLICATIONS INFORMATION  
= 470µF,  
whereV istherippleamplitudeinV,ftheripplefrequency  
AC  
LOAD  
= 16mΩ, R  
= 5mΩ, L  
+ L = 1µH, and  
in Hz, C  
the capacitance of the electrolytic capacitor  
EMI  
LOAD  
in F, and I  
the load current in A. Note that any ripple  
LOAD  
with a load current of 10A. But this power increases to  
1.13Wwhena6V AC-ripplewithafrequencyof10kHzis  
caused by the equivalent series resistance of C  
will  
LOAD  
increase V accordingly, in particular at high frequencies.  
P-P  
R
superimposed on V  
. Removing any inductance raises  
BATT  
Since the power supply rejection of the load usually de-  
this power even further to 1.3W, while the RMS current  
in C reaches 12.6A.  
grades with frequency, it is often desirable to limit V at  
R
LOAD  
a given frequency f. Using the above equation, the neces-  
This model can also be used to select an electrolytic ca-  
pacitor which can handle the corresponding RMS current  
for the duration of the AC-ripple.  
sary minimum capacitance C  
can be calculated from:  
LOAD  
4VAC – VR  
CLOAD  
=
• ILOAD  
4VAC • VR • f  
Electrolytic Capacitor and Ripple Voltage  
For example, if the ripple voltage V is to be kept below  
R
During rectification, the electrolytic capacitor C  
re-  
LOAD  
2V at f = 5kHz, V = 3V (6V ), and a load current of  
AC  
P-P  
= 417µF.  
duces the ripple voltage seen by the load. Figure 9 shows  
the corresponding waveforms for the rectification of a  
sinusoidal SOURCE ripple voltage.  
I
= 5A, then C  
LOAD  
LOAD  
When selecting an electrolytic capacitor also keep in mind  
the high peak currents at high frequencies as discussed  
in the previous section.  
R  
Automotive Cold Crank  
 
Duringtheso-calledcoldcrank(e.g.LV124E-11)acar’s  
battery voltage may drop to 3.2V. As a result, the high  
voltage drop of traditional reverse protection schemes  
using passive rectifiers like Schottky diodes require the  
supplied circuitry to work at minimum input voltages as  
low as 2.5V. Buck-boost regulators may then be needed  
instead of simpler and more efficient buck regulators in  
ordertoprovideastable3Vsupplyoftenrequiredbymany  
microcontrollers.  
DR  
R  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ  
Figure 9. Waveforms For Rectification Of a  
Sinusoidal SOURCE Ripple Voltage  
The LT8672’s minimum input operating voltage of 3V al-  
lows the active rectifier to operate through the cold crank  
pulse with minimum drop between input and output. This  
allows use of a buck regulator with a minimum operating  
voltage of 3V and low dropout characteristics like the  
LT8650S to generate a 3V supply.  
The load is exposed to the remaining ripple voltage V ,  
which depends on C  
tude, and load current. This ripple voltage decreases with  
frequency and is approximately:  
R
, ripple frequency, ripple ampli-  
LOAD  
Figure 10 shows input and output waveforms during a  
cold crank pulse, comparing the LT8672 active rectifier  
controller to a Schottky diode.  
4V • I  
AC LOAD  
V =  
R
4V • f • C  
+ I  
LOAD LOAD  
AC  
Rev. D  
14  
For more information www.analog.com  
LT8672  
APPLICATIONS INFORMATION  
This maximum available AUX current is achieved at the  
boost regulator’s maximum switching frequency which  
can be approximated by following equation:  
ꢀꢁ  
D  
ꢀꢁꢂꢃꢄꢄꢅꢆ DꢇꢃDꢈ ꢉꢆꢄꢊꢋꢌꢍꢎꢋꢋ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
 
 
1180 •(V  
– 0.2)  
DRAIN  
f
=
AUXSW(MAX)  
(V  
+11.6)•(10L  
+3V  
– 0.6)  
DRAIN  
AUX  
DRAIN  
where f  
is the maximum switching frequency  
AUXSW(MAX)  
in MHz, V  
is the DRAIN pin voltage in volts and L  
AUX  
DRAIN  
ꢀꢁꢂꢃꢄꢄꢅꢆꢇ  
is the boost regulator inductor in μH.  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
However, depending on the total average current required  
by the gate driver on the AUX pin to switch the external  
MOSFET on and off periodically, the boost regulator might  
enterdiscontinuousmodeandswitchatalowerfrequency  
given by the following equation:  
Figure 10. Automotive Cold Crank Waveforms  
Auxiliary Boost Regulator  
The auxiliary boost regulator provides a boosted voltage  
to the gate driver to enhance the external MOSFET fully  
with at least 10V of gate drive.  
2.9 •I  
AUX  
f
=
AUXSW  
L
AUX  
It uses a hysteretic control scheme in conjunction with  
a constant low side current limit of 100mA. This control  
scheme results in a switching frequency with a maximum  
valuewhichdependsoninductorvalueandDRAINvoltage.  
where f  
is the switching frequency in MHz, I  
is  
AUX  
AUXSW  
the average current required by the gate driver in mA and  
is the boost regulator inductor in μH.  
L
AUX  
During rectification of input ripple, fully charging and  
discharging the gate capacitance of the external MOSFET  
requires an average AUX current  
Recommended boost regulator external passive compo-  
nentsarea1μF/16V ceramiccapacitoranda47μH to100μH  
inductor. The inductor’s saturation current should be at  
least120mA anditsESRshouldnotexceed1,therefore  
smallchipinductorslikeCBC2518T470KorCBC2518T101K  
from Taiyo Yuden or those from the XPL2010 series from  
Coilcraft are good options.  
f QG  
IAUX  
=
1000  
where f is the ripple frequency in kHz, Q is the total gate  
G
charge of the external MOSFET in nC, and I  
is the AUX  
AUX  
The boost regulator maximum output current available to  
the gate driver on the AUX pin can be approximated by  
the following equation:  
current in mA drawn by the gate driver. For example, recti-  
ficationofa6V –50kHzinputripplesuperimposedonthe  
P-P  
12Vbatteryvoltage,usinganexternalMOSFETwith100nC  
of total gate charge under full load conditions, requires an  
average turn on gate current of 5mA which the gate driver  
takes from the AUX pin. Under these conditions, the boost  
regulatorrunswithaswitchingfrequencyof145kHzusing  
a 100μH inductor. The maximum available AUX current is  
approximately 23mA with the boost regulator switching  
at about 595kHz.  
V
– 1  
DRAIN  
I
= 50 •  
AUX MAX  
(
)
V
+11.8  
DRAIN  
where I  
is the maximum boost regulator output  
DRAIN  
AUX(MAX)  
currentinmAandV  
istheDRAINpinvoltageinvolts.  
When the active rectifier is in steady state conditions, the  
AUXpincurrentrequiredbythegatedriverisapproximately  
1μA and the boost regulator is most of the time in sleep  
Rev. D  
15  
For more information www.analog.com  
LT8672  
APPLICATIONS INFORMATION  
mode waking up only from time to time to maintain the  
AUX pin voltage 11V above DRAIN.  
Power Good Pin  
The power good pin is the output of internal monitoring  
circuitry, which signals when the external MOSFET is able  
to pass the full load current with a voltage of less than  
75mV between its source and drain. PG only goes high if  
the LT8672 is enabled, and the AUX voltage has reached  
its regulation value during start-up, and if the gate driver’s  
fast pull-up path is not engaged for more than 17µs. This  
allows detection of a number of system faults.  
Figure11,Figure12andFigure13showtypicalwaveforms  
with 1µA, 5mA, and 10mA of AUX load current.  
 
ꢀꢁꢂꢃDꢄꢂ  
ꢀ  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
For example, the gate of the external MOSFET may be  
shorted to ground or source. It would then be impossible  
to turn it on, which would keep the gate driver’s fast pull-  
up path active indefinitely, thereby pulling PG low. The  
fast pull-up path would never be active for so long in a  
correctly working system, because charging the external  
MOSFET’s gate requires much less time.  
 
ꢀꢁꢁꢂꢃꢄDꢅꢃ  
ꢀꢁꢂꢃꢄDꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢅ  
Figure 11. Auxiliary Boost Regulator Waveforms for  
1µA Load on AUX (Steady State in Regulation)  
An insufficient AUX voltage (for example during start-up  
or due to a system fault) may be able to deliver sufficient  
gate-source voltage to the external MOSFET for small load  
currents, but not for high load currents. Therefore PG is  
pulled low if AUX remains too low during start-up.  
 
ꢀꢁꢂꢃDꢄꢂ  
ꢀ  
PG is valid (and pulls low) even in shutdown. Although  
this may increase the overall shutdown current through  
the external pull-up resistor on PG, it keeps the system  
correctly informed about the shutdown status of the  
LT8672 and that it cannot enhance the external MOSFET.  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
 
ꢀꢁꢁꢂꢃꢄDꢅꢃ  
ꢀꢁꢂꢃDꢄꢅ  
ꢀꢁꢂꢃ ꢄꢅꢃ  
Thus, if PG is used to control the load current in the  
external MOSFET, its body diode can be prevented from  
conducting large currents for a prolonged period of time.  
This significantly reduces the amount of heat generated  
by the external MOSFET even in fault conditions.  
Figure 12. Auxiliary Boost Regulator Waveforms for  
5mA Load on AUX  
 
ꢀꢁꢂꢃDꢄꢂ  
Thefastpull-uppathisactivewhentheexternalMOSFET’s  
forward voltage exceeds 75mV, therefore it is recom-  
mended to choose a MOSFET large enough not to exceed  
this threshold with maximum load current. If the PG flag  
is ignored in the application, the MOSFET can be pushed  
to higher forward voltages provided that its power dis-  
sipation is kept within safe levels.  
ꢀ  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
 
ꢀꢁꢁꢂꢃꢄDꢅꢃ  
ꢀꢁꢂꢃDꢄꢅ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
Figure 13. Auxiliary Boost Regulator Waveforms for  
10mA Load on AUX  
Rev. D  
16  
For more information www.analog.com  
LT8672  
APPLICATIONS INFORMATION  
The PG output is valid when DRAIN is above the minimum  
inputvoltage.Figure14andFigure15showpowergoodpin  
waveformsunderseveralMOSFETNotReadyconditions.  
Layout Considerations  
ConnecttheSOURCEandDRAINpinsascloseaspossible  
to the MOSFET source and drain pins. Keep the traces to  
the MOSFET wide and short to minimize resistive losses  
as shown in Figure 16 and Figure 17. Place surge sup-  
pressors and necessary transient protection components  
close to the LT8672 using short lead lengths. Keep more  
than minimum distance from GATE traces to other nodes  
to prevent leakage that could turn the MOSFET on. Only  
SOURCEandDRAINtracesareallowedtorunbesideGATE  
traces. Use no-clean flux to minimize PCB contamination.  
D  
ꢀꢁꢂꢃDꢄꢅ  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢅꢄ  
ꢀꢁRꢂꢃꢄDRꢅꢆꢇ  
ꢀꢁꢂꢃꢄDꢅꢃ  
ꢀꢁꢂꢃ  
Note that the integrated boost regulator causes switched  
 
ꢀꢁꢂDꢃꢁ  
currents to flow in C  
and C  
and in the pins AUX,  
AUX  
OUT  
AUXSW, and GND. The loops formed by C  
and C  
OUT  
AUX  
ꢀꢁꢂꢃꢄDꢅꢆ  
should be minimized by placing these capacitors as close  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉꢊꢅꢃꢉꢁꢂ  
as possible to the LT8672 as shown in Figure 16 and Fig-  
ure 17. C  
can be split into two capacitors C  
(close  
OUT  
OUT1  
Figure 14. PG Waveform Showing How PG Responds  
to a Very Long Fast Pull-Up Condition  
to the LT8672) and C  
(further away), provided that  
OUT2  
C
has a capacitance of at least 1µF.  
OUT1  
ꢀꢁꢂ  
 
ꢀꢁꢂDꢃꢁ  
ꢁꢂꢃ  
ꢁꢂꢃꢃ  
DR  
ꢀꢁꢂDꢃꢁ  
ꢁꢂꢃꢄ  
 
ꢀꢁꢂDꢃꢁ  
ꢀꢁꢂꢃꢄ  
ꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄDꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀRꢁꢂꢃ ꢄꢅꢆꢇ ꢅꢄꢄꢈꢉꢊꢅꢃꢉꢁꢂ  
ꢂꢃꢄꢅ  
ꢁꢂꢃ  
ꢀꢁꢂ  
Figure 15. PG Waveform Showing How PG Behaves  
During Start-Up and How It Depends on EN/UVLO  
ꢁꢂꢃꢄ  
ꢀꢁD  
ꢀꢁꢂꢃ ꢄꢅꢁ  
ꢀꢁꢂꢃ  
Figure 16. Recommended PCB Layout for the LT8672 (MSOP)  
Rev. D  
17  
For more information www.analog.com  
LT8672  
APPLICATIONS INFORMATION  
ꢀꢁꢂ  
ꢁꢂꢃ  
ꢁꢂꢃꢃ  
ꢁꢂꢃꢄ  
ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢁꢂꢃ  
ꢁꢂꢃꢄ  
ꢂꢃꢄꢅ  
ꢀꢁD  
ꢀꢁꢂꢃ ꢄꢅꢂ  
ꢀꢁꢂꢃ  
Figure 17. Recommended PCB Layout for the LT8672 (DFN)  
Rev. D  
18  
For more information www.analog.com  
LT8672  
TYPICAL APPLICATIONS  
Active Rectifier for 12V Automotive Applications  
ꢀꢁ ꢂꢃꢂꢀꢄꢅ ꢆꢁꢇDꢂ  
ꢀꢁDꢂꢃꢃꢄꢃꢅꢆꢇꢈꢃꢉ  
ꢁꢂꢃ  
ꢄꢅ  
ꢆꢅꢃꢃ  
ꢇꢈꢀ  
Dꢀ  
C
ꢁꢂꢃ  
ꢎꢁꢅD  
ꢊꢋꢏꢌꢍ  
ꢁꢂꢃꢄꢅꢆꢆꢇ  
ꢆꢆꢈ  
AUX  
L
AUX  
ꢊ.ꢋꢌꢍ  
1μF  
100μH  
Dꢀ  
ꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢆꢇꢉ  
ꢀꢁꢂRꢃꢄ ꢀꢁꢂꢃ DRꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂꢃꢄ  
ꢂꢃꢄꢅ  
ꢁꢐ ꢁꢍꢍ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢒ ꢑꢋRꢓ ꢄꢏ ꢓ ꢏꢔꢏꢄ  
ꢒ ꢑꢋRꢓ ꢄꢏ ꢓ ꢇꢈꢇꢏ  
ꢒ ꢑꢕꢎꢈꢏꢇꢏꢖꢇꢏꢊꢗꢎ  
ꢅꢂꢑ  
ꢁꢂꢃ  
ꢅꢂꢑ  
ꢀꢁD  
ꢔꢛꢋꢈ ꢃꢅꢏꢜ  
ꢒ ꢘꢘꢘꢍꢙꢇꢀꢊꢋꢇꢅꢚ  
ꢎꢁꢅD  
Active Rectifier for 12V Automotive Applications with EMI Filter at DRAIN  
ꢀꢁ ꢂꢃꢂꢀꢄꢅ  
ꢆꢁꢇDꢂ  
ꢋꢎꢛ  
ꢖꢗꢘ  
ꢀꢁꢂꢃꢄꢅRꢆꢇꢈꢉꢊ  
ꢌꢅꢄꢄ  
ꢋꢃꢈ  
ꢉꢊꢄ  
ꢋꢆꢅ  
Dꢀ  
ꢉꢊꢄ  
ꢐꢉꢅD  
C
ꢁꢂꢃꢄꢅꢆꢆꢇ  
ꢆꢆꢈ  
ꢖꢗꢘ  
ꢇ.ꢂꢎꢏ  
L
ꢋꢎꢏ  
AUX  
AUX  
ꢑꢆꢆꢆꢎꢏ  
1μF  
100μH  
Dꢀ  
ꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢆꢇꢉ  
ꢀꢁꢂRꢃꢄ ꢀꢁꢂꢃ DRꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ ꢃꢂꢀR  
ꢂꢃꢄꢅ  
ꢉꢡ ꢉꢏꢏ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁ  
ꢓ ꢍ ꢔ ꢒꢂRꢓ ꢕꢆ ꢓ ꢆꢀꢆꢕ  
ꢅꢊꢒ ꢉꢊꢄ  
ꢖꢗꢘ  
ꢔ ꢒꢂRꢓ ꢕꢆ ꢓ ꢋꢃꢋꢆ  
ꢀꢁD  
ꢔ ꢒꢙꢐꢃꢆꢋꢆꢚꢋꢆꢇꢗꢐ  
ꢅꢊꢒ  
ꢖꢗꢘ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇ  
ꢔ ꢘꢛꢐꢙꢁꢂꢁꢂꢜꢝꢖRꢋRꢆꢗꢕꢋ  
ꢔ ꢃꢞ ꢖꢖꢖꢏꢟꢋꢈꢋꢕꢃꢅꢗ  
ꢐꢉꢅD  
Active Rectifier for 12V Automotive Applications with High Load  
ꢀꢁ ꢂꢃꢂꢀꢄꢅ ꢆꢁꢇDꢂ  
ꢀꢁꢂꢃꢄꢄꢅꢄꢆꢇ  
ꢇꢈ  
ꢁꢂꢃ  
ꢉꢄꢀ  
ꢄꢅꢆ  
Dꢀ  
ꢁꢂꢃ  
ꢏꢁꢆDꢐ  
C
L
AUX  
100μH  
ꢁꢂꢃꢄꢅꢆꢆꢇ  
ꢆꢆꢈ  
ꢋ.ꢌꢍꢎ  
AUX  
ꢉꢅꢅꢅꢅꢍꢎ  
1μF  
Dꢀ  
ꢀꢁꢂRꢃꢄ ꢀꢁꢂꢃ DRꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂꢃꢄ  
ꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢆꢇꢉ  
ꢂꢃꢄꢅ  
ꢒ ꢑꢌRꢓ ꢔꢅ ꢓ ꢅꢕꢅꢔ  
ꢒ ꢑꢌRꢓ ꢔꢅ ꢓ ꢉꢄꢉꢅ  
ꢒ ꢑꢖꢏꢄꢅꢉꢅꢗꢉꢅꢋꢘꢏ  
ꢆꢂꢑ  
ꢁꢂꢃ  
ꢁꢈ ꢁꢎꢎ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁD  
ꢆꢂꢑ  
ꢒ ꢔꢙ ꢘꢆꢏꢄꢄꢔꢅꢚꢚꢅꢉꢌꢛꢜ  
ꢕꢝꢌꢄ ꢃꢆꢅꢔ  
ꢏꢁꢆD  
Rev. D  
19  
For more information www.analog.com  
LT8672  
PACKAGE DESCRIPTION  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1ꢀꢀ1 Rev F)  
0.889 0.127  
(.035 .005)  
5.10  
(.201)  
MIN  
3.20 – 3.45  
(.12ꢀ – .13ꢀ)  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
(.0197)  
0.497 0.07ꢀ  
(.019ꢀ .003)  
REF  
0.50  
0.305 0.038  
(.0120 .0015)  
TYP  
10 9  
8
7 ꢀ  
BSC  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .00ꢀ)  
DETAIL “A”  
0.254  
(.010)  
0° – ꢀ° TYP  
GAUGE PLANE  
1
2
3
4 5  
0.53 0.152  
(.021 .00ꢀ)  
0.8ꢀ  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.101ꢀ 0.0508  
(.004 .002)  
0.50  
(.0197)  
BSC  
MSOP (MS) 0213 REV F  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
Rev. D  
20  
For more information www.analog.com  
LT8672  
PACKAGE DESCRIPTION  
DDB Package  
10-Lead Plastic DFN (3mm × 2mm) COL  
ꢃReꢪeꢫeꢬꢭe ꢘꢊꢏ Dꢍꢎ ꢮ ꢁꢠꢓꢁꢩꢓꢂꢠꢚꢂ Rev ꢨꢇ  
ꢁ.ꢀꢠ ±ꢁ.ꢁꢠ  
ꢃꢀ ꢄꢅDꢆꢄꢇ  
ꢁ.ꢩꢁ ±ꢁ.ꢁꢠ  
ꢀ.ꢠꢠ ±ꢁ.ꢁꢠ  
ꢁ.ꢙꢠ ±ꢁ.ꢁꢠ  
ꢕꢌꢏꢖꢌꢎꢆ  
ꢉꢗꢊꢘꢅꢈꢆ  
ꢁ.ꢀꢠ ±ꢁ.ꢁꢠ  
ꢁ.ꢠꢁ ꢝꢄꢏ  
ꢀ.ꢠ ±ꢁ.ꢁꢠ  
ꢃꢀ ꢄꢅDꢆꢄꢇ  
RꢆꢏꢉꢑꢑꢆꢈDꢆD ꢄꢉꢘDꢆR ꢕꢌD ꢕꢅꢊꢏꢞ ꢌꢈD Dꢅꢑꢆꢈꢄꢅꢉꢈꢄ  
R ꢦ ꢁ.ꢂꢂꢠ  
ꢁ.ꢠꢁ ±ꢁ.ꢁꢠ  
ꢚ.ꢁꢁ ±ꢁ.ꢂꢁ  
ꢃꢀ ꢄꢅDꢆꢄꢇ  
ꢊꢢꢕ  
R ꢦ ꢁ.ꢁꢠ  
ꢊꢢꢕ  
ꢂꢁ  
ꢀ.ꢁꢁ ±ꢁ.ꢂꢁ  
ꢕꢅꢈ ꢂ ꢝꢌR  
ꢃꢀ ꢄꢅDꢆꢄꢇ  
ꢊꢉꢕ ꢑꢌRꢖ  
ꢕꢅꢈ ꢂ  
R ꢦ ꢁ.ꢀꢁ ꢉR  
ꢃꢄꢆꢆ ꢈꢉꢊꢆ ꢣꢇ  
ꢁ.ꢂꢀꢠ × ꢛꢠ°  
ꢁ.ꢀꢠ ±ꢁ.ꢁꢠ  
ꢃꢀ ꢄꢅDꢆꢄꢇ  
ꢁ.ꢀꢠ ±ꢁ.ꢁꢠ  
ꢏꢞꢌꢑꢐꢆR  
ꢃDDꢝꢂꢁꢇ Dꢐꢈ ꢁꢀꢂꢣ Rꢆꢒ ꢨ  
ꢁ.ꢥꢠ ±ꢁ.ꢁꢠ  
ꢁ.ꢀꢁꢁ Rꢆꢐ  
ꢁ.ꢠꢁ ꢝꢄꢏ  
ꢀ.ꢠ ±ꢁ.ꢁꢠ  
ꢃꢀ ꢄꢅDꢆꢄꢇ  
ꢁ ꢧ ꢁ.ꢁꢠ  
ꢝꢉꢊꢊꢉꢑ ꢒꢅꢆꢍꢤꢆꢜꢕꢉꢄꢆD ꢕꢌD  
ꢈꢉꢊꢆꢋ  
ꢂ. DRꢌꢍꢅꢈꢎ ꢏꢉꢈꢐꢉRꢑꢄ ꢊꢉ ꢒꢆRꢄꢅꢉꢈ ꢃꢍꢆꢏDꢓꢂꢇ ꢅꢈ ꢔꢆDꢆꢏ ꢕꢌꢏꢖꢌꢎꢆ ꢉꢗꢊꢘꢅꢈꢆ ꢑꢁꢓꢀꢀꢙ  
ꢀ. DRꢌꢍꢅꢈꢎ ꢈꢉꢊ ꢊꢉ ꢄꢏꢌꢘꢆ  
ꢚ. ꢌꢘꢘ Dꢅꢑꢆꢈꢄꢅꢉꢈꢄ ꢌRꢆ ꢅꢈ ꢑꢅꢘꢘꢅꢑꢆꢊꢆRꢄ  
ꢛ. Dꢅꢑꢆꢈꢄꢅꢉꢈꢄ ꢉꢐ ꢆꢜꢕꢉꢄꢆD ꢕꢌD ꢉꢈ ꢝꢉꢊꢊꢉꢑ ꢉꢐ ꢕꢌꢏꢖꢌꢎꢆ Dꢉ ꢈꢉꢊ ꢅꢈꢏꢘꢗDꢆ  
ꢑꢉꢘD ꢐꢘꢌꢄꢞ. ꢑꢉꢘD ꢐꢘꢌꢄꢞꢟ ꢅꢐ ꢕRꢆꢄꢆꢈꢊꢟ ꢄꢞꢌꢘꢘ ꢈꢉꢊ ꢆꢜꢏꢆꢆD ꢁ.ꢂꢠꢡꢡ ꢉꢈ ꢌꢈꢢ ꢄꢅDꢆ  
ꢠ. ꢆꢜꢕꢉꢄꢆD ꢕꢌD ꢄꢞꢌꢘꢘ ꢝꢆ ꢄꢉꢘDꢆR ꢕꢘꢌꢊꢆD  
ꢣ. ꢄꢞꢌDꢆD ꢌRꢆꢌ ꢅꢄ ꢉꢈꢘꢢ ꢌ RꢆꢐꢆRꢆꢈꢏꢆ ꢐꢉR ꢕꢅꢈ ꢂ ꢘꢉꢏꢌꢊꢅꢉꢈ ꢉꢈ ꢊꢞꢆ ꢊꢉꢕ ꢌꢈD ꢝꢉꢊꢊꢉꢑ ꢉꢐ ꢕꢌꢏꢖꢌꢎꢆ  
Rev. D  
21  
For more information www.analog.com  
LT8672  
PACKAGE DESCRIPTION  
DDBM Package  
10-Lead Plastic SIDE WETTABLE DFN (3mm × 2mm)  
ꢃReꢩeꢪeꢫꢬe ꢘꢊꢏ Dꢍꢎ ꢭ ꢁꢠꢓꢁꢨꢓꢂꢣꢠꢠ Rev ꢌꢇ  
R ꢦ ꢁ.ꢂꢂꢠ  
ꢁ.ꢠꢁ ±ꢁ.ꢂꢁ  
ꢚ.ꢁꢁ ±ꢁ.ꢂꢁ  
ꢃꢀ ꢄꢅDꢆꢄꢇ  
ꢊꢢꢕ  
ꢂꢁ  
ꢀ.ꢁꢁ ±ꢁ.ꢂꢁ  
ꢕꢅꢈ ꢂ ꢝꢌR  
ꢊꢉꢕ ꢑꢌRꢖ  
ꢕꢅꢈ ꢂ  
ꢃꢀ ꢄꢅDꢆꢄꢇ  
R ꢦ ꢁ.ꢀꢁ ꢉR  
ꢃꢄꢆꢆ ꢈꢉꢊꢆ ꢣꢇ  
ꢁ.ꢀꢠ × ꢛꢠ°  
ꢁ.ꢀꢠ ±ꢁ.ꢂꢁ  
ꢏꢞꢌꢑꢐꢆR  
ꢃꢀ ꢄꢅDꢆꢄꢇ  
ꢃDDꢝꢑꢂꢁꢇ Dꢐꢈ ꢂꢀꢂꢨ Rꢆꢒ ꢌ  
ꢁ.ꢀꢠ ±ꢁ.ꢁꢠ  
ꢁ.ꢥꢠ ±ꢁ.ꢁꢠ  
ꢁ.ꢀꢁꢁ Rꢆꢐ  
ꢁ.ꢠꢁ ꢝꢄꢏ  
Dꢆꢊꢌꢅꢘ ꢌ  
ꢀ.ꢠꢁ ±ꢁ.ꢂꢁ  
ꢃꢀ ꢄꢅDꢆꢄꢇ  
ꢁ ꢧ ꢁ.ꢁꢠ  
ꢝꢉꢊꢊꢉꢑ ꢒꢅꢆꢍꢤꢆꢜꢕꢉꢄꢆD ꢕꢌD  
Dꢆꢊꢌꢅꢘ ꢌ  
ꢈꢉꢊꢆꢋ  
ꢂ. DRꢌꢍꢅꢈꢎ ꢏꢉꢈꢐꢉRꢑꢄ ꢊꢉ ꢒꢆRꢄꢅꢉꢈ ꢃꢍꢆꢏDꢓꢂꢇ ꢅꢈ ꢔꢆDꢆꢏ ꢕꢌꢏꢖꢌꢎꢆ ꢉꢗꢊꢘꢅꢈꢆ ꢑꢁꢓꢀꢀꢙ  
ꢀ. DRꢌꢍꢅꢈꢎ ꢈꢉꢊ ꢊꢉ ꢄꢏꢌꢘꢆ  
ꢚ. ꢌꢘꢘ Dꢅꢑꢆꢈꢄꢅꢉꢈꢄ ꢌRꢆ ꢅꢈ ꢑꢅꢘꢘꢅꢑꢆꢊꢆRꢄ  
ꢊꢆRꢑꢅꢈꢌꢘ ꢘꢆꢈꢎꢊꢞ  
ꢁ.ꢠꢁ ꢁ.ꢂꢁ  
ꢁ.ꢀꢁꢚ Rꢆꢐ  
ꢊꢆRꢑꢅꢈꢌꢘ ꢊꢞꢅꢏꢖꢈꢆꢄꢄ  
ꢛ. Dꢅꢑꢆꢈꢄꢅꢉꢈꢄ ꢉꢐ ꢆꢜꢕꢉꢄꢆD ꢕꢌD ꢉꢈ ꢝꢉꢊꢊꢉꢑ ꢉꢐ ꢕꢌꢏꢖꢌꢎꢆ Dꢉ ꢈꢉꢊ ꢅꢈꢏꢘꢗDꢆ  
ꢑꢉꢘD ꢐꢘꢌꢄꢞ. ꢑꢉꢘD ꢐꢘꢌꢄꢞꢟ ꢅꢐ ꢕRꢆꢄꢆꢈꢊꢟ ꢄꢞꢌꢘꢘ ꢈꢉꢊ ꢆꢜꢏꢆꢆD ꢁ.ꢂꢠꢡꢡ ꢉꢈ ꢌꢈꢢ ꢄꢅDꢆ  
ꢠ. ꢆꢜꢕꢉꢄꢆD ꢕꢌD ꢄꢞꢌꢘꢘ ꢝꢆ ꢄꢉꢘDꢆR ꢕꢘꢌꢊꢆD  
ꢁ.ꢂꢁ Rꢆꢐ  
ꢁ.ꢁꢠ Rꢆꢐ  
ꢕꢘꢌꢊꢆD ꢌRꢆꢌ  
ꢣ. ꢄꢞꢌDꢆD ꢌRꢆꢌ ꢅꢄ ꢉꢈꢘꢢ ꢌ RꢆꢐꢆRꢆꢈꢏꢆ ꢐꢉR ꢕꢅꢈ ꢂ ꢘꢉꢏꢌꢊꢅꢉꢈ ꢉꢈ ꢊꢞꢆ ꢊꢉꢕ ꢌꢈD ꢝꢉꢊꢊꢉꢑ ꢉꢐ ꢕꢌꢏꢖꢌꢎꢆ  
ꢁ.ꢀꢠ ±ꢁ.ꢁꢠ  
ꢃꢀ ꢄꢅDꢆꢄꢇ  
ꢁ.ꢥꢁ ±ꢁ.ꢁꢠ  
ꢀ.ꢠꢠ ±ꢁ.ꢁꢠ  
ꢂ.ꢂꢠ ±ꢁ.ꢁꢠ  
ꢕꢌꢏꢖꢌꢎꢆ  
ꢉꢗꢊꢘꢅꢈꢆ  
ꢁ.ꢀꢠ ±ꢁ.ꢁꢠ  
ꢁ.ꢠꢁ ꢝꢄꢏ  
ꢀ.ꢠꢁ ±ꢁ.ꢁꢠ  
ꢃꢀ ꢄꢅDꢆꢄꢇ  
RꢆꢏꢉꢑꢑꢆꢈDꢆD ꢄꢉꢘDꢆR ꢕꢌD ꢕꢅꢊꢏꢞ ꢌꢈD Dꢅꢑꢆꢈꢄꢅꢉꢈꢄ  
Rev. D  
22  
For more information www.analog.com  
LT8672  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
04/18 Added DFN package option  
Clarified Figure 16 and Figure 17  
Added Figure 17  
1, 2, 6  
16  
17  
Added DFN package drawing  
20  
B
C
09/18 Clarified Gate Turn-On and Turn-Off Delay Time  
3
10/18 Added J-Grade temperature option  
2, 3  
2
Clarified θ  
JC  
D
04/19 Added J-Grade side-wettable plank option DFN package with W Flow (LT8672JDDBM#WTRPBF)  
Added side-wettable flank DFN package drawing  
2
20  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
subject to change without notice. No license isgrantedbyimplicationor otherwiseunderany patent or patent rights of Analog Devices.  
23  
LT8672  
TYPICAL APPLICATION  
Active Rectifier for 12V Automotive Applications with EMI Filter at SOURCE  
ꢁꢂꢃ  
ꢄꢅꢆ  
ꢀꢁ ꢂꢃꢂꢀꢄꢅ ꢆꢁꢇDꢂ  
ꢀꢁDꢂꢃꢃꢄꢃꢅꢆꢇꢈꢃꢉ  
ꢍꢌꢊꢊ  
ꢄꢎꢇ  
ꢈꢉꢊ  
ꢋꢌ  
Dꢀ  
ꢈꢉꢊ  
ꢁꢂꢃꢄ  
ꢅꢆꢇꢈ  
C
ꢀꢈꢌD  
ꢁꢂꢃꢄ  
L
ꢁꢂꢃꢄꢅꢆꢆꢇ  
ꢆꢆꢈ  
AUX  
ꢐ.ꢑꢅꢒ  
AUX  
ꢐꢑꢓꢅꢒ  
ꢄꢅꢆ  
1μF  
100μH  
Dꢀ  
ꢀꢁꢂRꢃꢄ ꢀꢁꢂꢃ DRꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂꢃꢄ  
ꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢆꢇꢉ  
ꢀꢁꢂ ꢃꢂꢀR  
ꢂꢃꢄꢅ  
ꢕ ꢏ  
ꢕ ꢏ  
ꢖ ꢔꢑRꢕ ꢋꢓ ꢕ ꢓꢗꢓꢋ  
ꢌꢉꢔ ꢁꢂꢃꢄ ꢁꢂꢃꢎ  
ꢈꢉꢊ  
ꢈꢟ ꢈꢒꢒ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢖ ꢔꢑRꢕ ꢋꢓ ꢕ ꢄꢎꢄꢓ  
ꢖ ꢔꢘꢀꢎꢓꢄꢓꢙꢄꢓꢐꢂꢀ  
ꢖ ꢃꢆꢀꢘꢎꢋꢎꢋꢍDꢁRꢚRꢚꢂꢌꢄ  
ꢀꢁD  
ꢌꢉꢔ  
ꢗꢝꢑꢎ ꢊꢌꢓꢎ  
ꢁꢂꢃ  
ꢖ ꢁꢁꢁꢒꢛꢄꢇꢐꢑꢄꢌꢜ  
ꢀꢈꢌD  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT3667/LT3668  
40V (60V  
), 400mA Step-Down Switching Regulator with  
4.3V  
, 40V  
(60V MAX), 0.8V  
, I = 50µA, I  
MAX  
IN(MIN)  
IN(MAX)  
OUT(MIN) Q SD  
Dual Fault Protected LDOs  
= <1µA, MSOP-16E and 3mm × 5mm QFN-24 Packages  
LTC®4359  
LT8609S  
LT8650S  
LT8640S  
LT8645S  
Ideal Diode Controller with Reverse Input Protection  
4V  
, 80V  
SD  
, –40V  
Reverse Protection, I =  
OUT(MIN) Q  
IN(MIN)  
IN(MAX)  
150µA, I = <9µA, MSOP-8 and 2mm × 3mm DFN-6 Packages  
42V, 2A, 94% Efficiency, 2.2MHz Synchronous Micropower  
3V  
, 42V  
IN(MIN)  
, 0.8V  
, I = 2.5µA, I = <1µA,  
IN(MAX)  
OUT(MIN) Q SD  
Step-Down DC/DC Converter with I = 2.5μA  
3mm × 3mm LQFN-16 Package  
Q
42V, Dual 4A, 95% Efficiency, 2.2MHz Synchronous Silent  
3V , 42V , 0.8V  
4mm × 6mm LQFN-32 Package  
, I = 6.2µA, I = <1µA,  
IN(MIN)  
IN(MAX)  
OUT(MIN)  
Q
SD  
Switcher 2 Step-Down DC/DC Converter with I = 6.2μA  
Q
42V, 6A, 95% Efficiency, 2.2MHz Synchronous Silent  
3.4V  
, 42V  
IN(MIN)  
, 0.97V  
IN(MAX)  
, I = 2.5µA, I = <1µA,  
OUT(MIN) Q SD  
Switcher®2 Step-Down DC/DC Converter with I = 2.5μA  
4mm × 4mm LQFN-24 Package  
Q
65V, 8A, 95% Efficiency, 2.2MHz Synchronous Silent Switcher 2 3.4V  
, 65V , 0.8V  
IN(MIN)  
, I = 2.5µA, I = <1µA,  
OUT(MIN) Q SD  
IN(MAX)  
Step-Down DC/DC Converter with I = 2.5μA  
4mm × 6mm LQFN-32 Package  
Q
LT8609/LT8609A/  
LT8609B  
42V, 2A, 94% Efficiency, 2.2MHz Synchronous Micropower  
3V , 42V , 0.8V  
, I = 2.5µA, I = <1µA,  
OUT(MIN) Q SD  
IN(MIN)  
IN(MAX)  
Step-Down DC/DC Converter with I = 2.5μA  
MSOP-10E Package  
Q
LT8640  
LT8612  
LT8602  
42V, 5A, 95% Efficiency, 2.2MHz Synchronous Silent Switcher 2 3.4V  
,42V  
, 0.97V  
, I = 2.5µA, I = <1µA,  
IN(MIN)  
IN(MAX)  
OUT(MIN) Q SD  
Step-Down DC/DC Converter with I = 2.5μA  
3mm × 4mm QFN-16 Package  
Q
42V, 6A, 96% Efficiency, 2.2MHz Synchronous Micropower  
3.4V , 42V , 0.97V  
, I = 3.0µA, I = <1µA,  
OUT(MIN) Q SD  
IN(MIN)  
IN(MAX)  
Step-Down DC/DC Converter with I = 2.5μA  
3mm × 6mm QFN-28 Package  
Q
42V, Quad Output (2.5A + 1.5A + 1.5A + 1.5A) 95% Efficiency,  
3V , 42V , 0.8V  
, I = 25µA, I = <1µA,  
Q SD  
IN(MIN)  
IN(MAX)  
OUT(MIN)  
2.2MHz Synchronous Micropower Step-Down DC/DC Converter 6mm × 6mm QFN-40 Package  
with I = 25μA  
Q
Rev. D  
D16853-0-04/19  
www.analog.com  
ANALOG DEVICES, INC. 2017-2019  
24  

相关型号:

LT8672HMS#PBF

LT8672 - Active Rectifier Controller with Reverse Protection; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT8672JMS#WTRPBF

Active Rectifier Controller with Reverse Protection
ADI

LT8673-41

Optoelectronic
ETC

LT8673-41UR

Optoelectronic
ETC

LT8697

USB 5V 2.5A Output, 42V Input Synchronous Buck with Cable Drop Compensation
LINEAR_DIMENS

LT8697

5V 3A Output, 42V Input USB Charger with Cable Drop Compensation and Dataline Protection
ADI

LT8697EUDD

USB 5V 2.5A Output, 42V Input Synchronous Buck with Cable Drop Compensation
LINEAR_DIMENS

LT8697IUDD

USB 5V 2.5A Output, 42V Input Synchronous Buck with Cable Drop Compensation
LINEAR_DIMENS

LT8698S

5V 3A Output, 42V Input USB Charger with Cable Drop Compensation and Dataline Protection
ADI

LT8698S-1

5V 3A Output, 42V Input USB Charger with Cable Drop Compensation and Dataline Protection
ADI

LT8698SEV

5V 3A Output, 42V Input USB Charger with Cable Drop Compensation and Dataline Protection
ADI

LT8698SEV-1

5V 3A Output, 42V Input USB Charger with Cable Drop Compensation and Dataline Protection
ADI