LTC2220IUP#PBF [ADI]

12-Bit, 170Msps ADCs;
LTC2220IUP#PBF
型号: LTC2220IUP#PBF
厂家: ADI    ADI
描述:

12-Bit, 170Msps ADCs

转换器
文件: 总32页 (文件大小:797K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2220/LTC2221  
12-Bit,170Msps/  
135Msps ADCs  
U
FEATURES  
DESCRIPTIO  
TheLTC®2220andLTC2221are170Msps/135Msps,sam-  
pling 12-bit A/D converters designed for digitizing high  
frequency, wide dynamic range signals. The LTC2220/  
LTC2221 are perfect for demanding communications  
applications with AC performance that includes 67.5dB  
SNR and 80dB spurious free dynamic range for signals  
up to 170MHz. Ultralow jitter of 0.15psRMS allows  
undersampling of IF frequencies with excellent noise  
performance.  
Sample Rate: 170Msps/135Msps  
67.5dB SNR up to 140MHz Input  
80dB SFDR up to 170MHz Input  
775MHz Full Power Bandwidth S/H  
Single 3.3V Supply  
Low Power Dissipation: 890mW/660mW  
LVDS, CMOS, or Demultiplexed CMOS Outputs  
Selectable Input Ranges: ±0.5V or ±1V  
No Missing Codes  
Optional Clock Duty Cycle Stabilizer  
DC specs include ±0.4LSB INL (typ), ±0.3LSB DNL (typ)  
Shutdown and Nap Modes  
and no missing codes over temperature. The transition  
Data Ready Output Clock  
noise is a low 0.5LSBRMS  
.
Pin Compatible Family  
The digital outputs can be either differential LVDS, or  
single-ended CMOS. There are three format options for  
theCMOSoutputs:asinglebusrunningatthefulldatarate  
or two demultiplexed buses running at half data rate with  
either interleaved or simultaneous update. A separate  
output power supply allows the CMOS output swing to  
range from 0.5V to 3.6V.  
The ENC+ and ENCinputs may be driven differentially or  
singleendedwithasinewave, PECL, LVDS, TTL, orCMOS  
inputs. An optional clock duty cycle stabilizer allows high  
performance at full speed for a wide range of clock duty  
cycles.  
185Msps: LTC2220-1 (12-Bit)  
170Msps: LTC2220 (12-Bit), LTC2230 (10-Bit)  
135Msps: LTC2221 (12-Bit), LTC2231 (10-Bit)  
64-Pin 9mm × 9mm QFN Package  
U
APPLICATIO S  
Wireless and Wired Broadband Communication  
Cable Head-End Systems  
Power Amplifier Linearization  
Communications Test Equipment  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
SFDR vs Input Frequency  
3.3V  
V
DD  
100  
90  
0.5V  
TO 3.6V  
REFH  
REFL  
FLEXIBLE  
REFERENCE  
OV  
DD  
4th OR HIGHER  
80  
70  
60  
50  
40  
D11  
+
12-BIT  
PIPELINED  
ADC CORE  
CMOS  
OR  
CORRECTION  
LOGIC  
ANALOG  
INPUT  
OUTPUT  
DRIVERS  
INPUT  
S/H  
LVDS  
D0  
2nd OR 3rd  
OGND  
CLOCK/DUTY  
CYCLE  
CONTROL  
22201 TA01  
200  
300  
0
100  
400  
500  
600  
ENCODE  
INPUT  
INPUT FREQUENCY (MHz)  
22201 TA01b  
22201fa  
1
LTC2220/LTC2221  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
OV = V (Notes 1, 2)  
DD  
DD  
TOP VIEW  
Supply Voltage (VDD)................................................. 4V  
Digital Output Ground Voltage (OGND) .......0.3V to 1V  
Analog Input Voltage (Note 3) ..... –0.3V to (VDD + 0.3V)  
Digital Input Voltage .................... –0.3V to (VDD + 0.3V)  
Digital Output Voltage............... –0.3V to (OVDD + 0.3V)  
Power Dissipation............................................ 1500mW  
Operating Temperature Range  
LTC2220C, LTC2221C ............................. 0°C to 70°C  
LTC2220I, LTC2221I ...........................–40°C to 85°C  
Storage Temperature Range ..................–65°C to 125°C  
+
+
A
1
2
3
4
48 D9 /DA6  
IN  
+
A
IN  
A
IN  
A
IN  
47 D9 /DA5  
+
46 D8 /DA4  
45 D8 /DA3  
+
REFHA 5  
REFHA 6  
REFLB 7  
REFLB 8  
REFHB 9  
REFHB 10  
REFLA 11  
REFLA 12  
44 D7 /DA2  
43 D7 /DA1  
42 OV  
DD  
41 OGND  
65  
+
40 D6 /DA0  
39 D6 /CLOCKOUTA  
+
38 D5 /CLOCKOUTB  
37 D5 /OFB  
36 CLOCKOUT /DB11  
35 CLOCKOUT /DB10  
+
V
DD  
V
DD  
V
DD  
13  
14  
15  
34 OV  
DD  
33 OGND  
GND 16  
UP PACKAGE  
64-LEAD (9mm × 9mm) PLASTIC QFN  
TJMAX = 125°C, θJA = 20°C/W  
EXPOSED PAD (PIN 65) IS GND, MUST BE SOLDERED TO PCB  
UP PART MARKING*  
LTC2220UP  
ORDER PART NUMBER  
LTC2220CUP  
LTC2220IUP  
LTC2221CUP  
LTC2221IUP  
LTC2220UP  
LTC2221UP  
LTC2221UP  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
The temperature grade is identified by a label on the shipping container.  
U
CO VERTER CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. (Note 4)  
A
LTC2220  
TYP  
LTC2221  
TYP  
PARAMETER  
CONDITIONS  
MIN  
12  
MAX  
MIN  
12  
MAX  
UNITS  
Bits  
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
Differential Analog Input (Note 5)  
Differential Analog Input  
Single-Ended Analog Input (Note 5)  
Single-Ended Analog Input  
(Note 6)  
–1.5  
–1  
±0.4  
±0.3  
±1  
1.5  
1
–1  
±0.4  
±0.2  
±1  
1
1
LSB  
LSB  
LSB  
LSB  
mV  
–1  
±0.3  
±3  
±0.2  
±3  
–35  
35  
–35  
35  
Gain Error  
External Reference  
–2.5  
±0.5  
±10  
2.5  
–2.5  
±0.5  
±10  
2.5  
%FS  
µV/C  
Offset Drift  
Full-Scale Drift  
Internal Reference  
External Reference  
±30  
±15  
±30  
±15  
ppm/C  
ppm/C  
Transition Noise  
SENSE = 1V  
0.5  
0.5  
LSB  
RMS  
22201fa  
2
LTC2220/LTC2221  
U
U
A ALOG I PUT  
The  
denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at T = 25°C. (Note 4)  
A
SYMBOL  
PARAMETER  
Analog Input Range (A – A  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
V
V
)
3.1V < V < 3.5V (Note 7)  
±0.5 to ±1  
V
IN  
IN  
IN  
DD  
+
Analog Input Common Mode (A + A )/2  
Differential Input (Note 7)  
Single Ended Input (Note 7)  
1
0.5  
1.6  
1.6  
1.9  
2.1  
V
V
IN, CM  
IN  
IN  
+
I
I
I
I
t
t
Analog Input Leakage Current  
SENSE Input Leakage  
0 < A , A < V  
DD  
–1  
–1  
1
1
µA  
µA  
µA  
µA  
ns  
IN  
IN  
IN  
0V < SENSE < 1V  
SENSE  
MODE  
LVDS  
AP  
MODE Pin Pull-Down Current to GND  
LVDS Pin Pull-Down Current to GND  
10  
10  
Sample and Hold Acquisition Delay Time  
Sample and Hold Acquisition Delay Time Jitter  
Analog Input Common Mode Rejection Ratio  
Full Power Bandwidth  
0
0.15  
80  
ps  
RMS  
JITTER  
CMRR  
dB  
Figure 8 Test Circuit  
775  
MHz  
U W  
DY A IC ACCURACY  
The  
IN  
denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at T = 25°C. A = –1dBFS. (Note 4)  
A
LTC2220  
TYP  
LTC2221  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
SNR  
Signal-to-Noise Ratio  
(Note 10)  
5MHz Input (1V Range)  
5MHz Input (2V Range)  
62.7  
67.7  
62.8  
67.8  
dB  
dB  
70MHz Input (1V Range)  
70MHz Input (2V Range)  
62.7  
67.6  
62.8  
67.8  
dB  
dB  
65.8  
65.8  
140MHz Input (1V Range)  
140MHz Input (2V Range)  
62.4  
67.5  
62.5  
67.5  
dB  
dB  
250MHz Input (1V Range)  
250MHz Input (2V Range)  
61.8  
66.1  
61.8  
66.1  
dB  
dB  
SFDR  
Spurious Free Dynamic Range 5MHz Input (1V Range)  
84  
84  
84  
84  
dB  
dB  
2nd or 3rd Harmonic  
(Note 11)  
5MHz Input (2V Range)  
70MHz Input (1V Range)  
70MHz Input (2V Range)  
84  
84  
84  
84  
dB  
dB  
70  
75  
65  
70  
75  
65  
140MHz Input (1V Range)  
140MHz Input (2V Range)  
84  
84  
84  
84  
dB  
dB  
250MHz Input (1V Range)  
250MHz Input (2V Range)  
74  
73  
77  
77  
dB  
dB  
SFDR  
Spurious Free Dynamic Range 5MHz Input (1V Range)  
90  
90  
90  
90  
dB  
dB  
4th Harmonic or Higher  
(Note 11)  
5MHz Input (2V Range)  
70MHz Input (1V Range)  
70MHz Input (2V Range)  
90  
90  
90  
90  
dB  
dB  
140MHz Input (1V Range)  
140MHz Input (2V Range)  
87  
87  
90  
90  
dB  
dB  
250MHz Input (1V Range)  
250MHz Input (2V Range)  
85  
85  
90  
90  
dB  
dB  
S/(N+D)  
IMD  
Signal-to-Noise Plus  
Distortion Ratio (Note 12)  
5MHz Input (1V Range)  
5MHz Input (2V Range)  
62.7  
67.5  
62.8  
67.6  
dB  
dB  
70MHz Input (1V Range)  
70MHz Input (2V Range)  
62.7  
67.3  
62.8  
67.4  
dB  
dB  
Intermodulation Distortion  
f
= 138MHz, f = 140MHz  
81  
81  
dBc  
IN1  
IN2  
22201fa  
3
LTC2220/LTC2221  
U U  
U
(Note 4)  
I TER AL REFERE CE CHARACTERISTICS  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
1.600  
±25  
3
MAX  
UNITS  
V
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
I
1.570  
1.630  
CM  
CM  
CM  
CM  
OUT  
ppm/°C  
mV/V  
3.1V < V < 3.5V  
DD  
–1mA < I  
< 1mA  
4
OUT  
U
U
DIGITAL I PUTS A D DIGITAL OUTPUTS  
The  
denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at T = 25°C. (Note 4)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
ENCODE INPUTS (ENC , ENC )  
V
V
Differential Input Voltage  
0.2  
1.1  
V
ID  
Common Mode Input Voltage  
Internally Set  
Externally Set (Note 7)  
1.6  
1.6  
V
V
ICM  
2.5  
R
Input Resistance  
Input Capacitance  
6
3
k  
IN  
C
(Note 7)  
pF  
IN  
LOGIC INPUTS (OE, SHDN)  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
V
V
= 3.3V  
= 3.3V  
2
V
V
IH  
IL  
DD  
DD  
IN  
0.8  
10  
I
= 0V to V  
–10  
µA  
pF  
IN  
DD  
C
Input Capacitance  
(Note 7)  
3
IN  
LOGIC OUTPUTS (CMOS MODE)  
OV = 3.3V  
DD  
C
Hi-Z Output Capacitance  
Output Source Current  
Output Sink Current  
OE = High (Note 7)  
3
pF  
mA  
mA  
OZ  
I
I
V
V
= 0V  
50  
50  
SOURCE  
SINK  
OUT  
OUT  
= 3.3V  
V
High Level Output Voltage  
I = –10µA  
O
3.295  
3.29  
V
V
OH  
O
I = –200µA  
3.1  
V
Low Level Output Voltage  
I = 10µA  
0.005  
0.09  
V
V
OL  
O
I = 1.6mA  
0.4  
O
OV = 2.5V  
DD  
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –200µA  
2.49  
0.09  
V
V
OH  
OL  
O
I = 1.6mA  
O
OV = 1.8V  
DD  
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –200µA  
1.79  
0.09  
V
V
OH  
OL  
O
I = 1.6mA  
O
LOGIC OUTPUTS (LVDS MODE)  
V
V
Differential Output Voltage  
100Differential Load  
100Differential Load  
247  
350  
454  
mV  
V
OD  
OS  
Output Common Mode Voltage  
1.125  
1.250  
1.375  
22201fa  
4
LTC2220/LTC2221  
W U  
POWER REQUIRE E TS  
The  
denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. (Note 9)  
A
LTC2220  
TYP  
LTC2221  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
V
V
P
P
Analog Supply Voltage  
Shutdown Power  
Nap Mode Power  
(Note 8)  
3.1  
3.3  
2
3.5  
3.1  
3.3  
2
3.5  
DD  
SHDN = High, OE = High, No CLK  
SHDN = High, OE = Low, No CLK  
mW  
mW  
SHDN  
NAP  
35  
35  
LVDS OUTPUT MODE  
OV  
Output Supply Voltage  
Analog Supply Current  
Output Supply Current  
Power Dissipation  
(Note 8)  
(Note 8)  
3
3.3  
264  
55  
3.6  
288  
70  
3
3.3  
196  
55  
3.6  
212  
70  
V
mA  
DD  
I
I
VDD  
OVDD  
mA  
P
1050  
1182  
828  
931  
mW  
DISS  
CMOS OUTPUT MODE  
OV  
Output Supply Voltage  
Analog Supply Current  
Power Dissipation  
0.5  
3.3  
264  
890  
3.6  
0.5  
3.3  
196  
660  
3.6  
V
mA  
DD  
I
288  
212  
VDD  
P
mW  
DISS  
W U  
TI I G CHARACTERISTICS The  
denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. (Note 4)  
A
LTC2220  
TYP  
LTC2221  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
f
t
Sampling Frequency  
ENC Low Time (Note 7)  
(Note 8)  
1
170  
1
135  
MHz  
S
L
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
2.8  
2
2.94  
2.94  
500  
500  
3.5  
2
3.7  
3.7  
500  
500  
ns  
ns  
t
ENC High Time (Note 7)  
Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
2.8  
2
2.94  
2.94  
500  
500  
3.5  
2
3.7  
3.7  
500  
500  
ns  
ns  
H
t
t
Sample-and-Hold Aperture Delay  
Output Enable Delay  
0
5
0
5
ns  
ns  
AP  
OE  
(Note 7)  
10  
10  
LVDS OUTPUT MODE  
t
t
ENC to DATA Delay  
ENC to CLOCKOUT Delay  
DATA to CLOCKOUT Skew  
Rise Time  
(Note 7)  
(Note 7)  
1.3  
1.3  
2.2  
2.2  
0
3.5  
3.5  
0.6  
1.3  
1.3  
2.2  
2.2  
0
3.5  
3.5  
0.6  
ns  
ns  
D
C
(t - t ) (Note 7)  
–0.6  
–0.6  
ns  
C
D
0.5  
0.5  
5
0.5  
0.5  
5
ns  
Fall Time  
ns  
Pipeline Latency  
Cycles  
CMOS OUTPUT MODE  
t
t
ENC to DATA Delay  
(Note 7)  
(Note 7)  
1.3  
1.3  
2.1  
3.5  
3.5  
0.6  
1.3  
1.3  
2.1  
3.5  
3.5  
0.6  
ns  
ns  
D
C
ENC to CLOCKOUT Delay  
DATA to CLOCKOUT Skew  
2.1  
2.1  
(t - t ) (Note 7)  
–0.6  
0
–0.6  
0
ns  
C
D
Pipeline Latency Full Rate CMOS  
Demuxed Interleaved  
Demuxed Simultaneous  
5
5
5
5
Cycles  
Cycles  
Cycles  
5 and 6  
5 and 6  
22201fa  
5
LTC2220/LTC2221  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: Offset error is the offset voltage measured from –0.5 LSB when the  
output code flickers between 0000 0000 0000 and 1111 1111 1111 in 2’s  
complement output mode.  
Note 7: Guaranteed by design, not subject to test.  
Note 8: Recommended operating conditions.  
Note 2: All voltage values are with respect to ground with GND and OGND  
wired together (unless otherwise noted).  
Note 9: V = 3.3V, f  
differentialENC /ENC =2V sinewave, inputrange=1V withdifferential  
= 170MHz (LTC2220) or 135MHz (LTC2221),  
P-P P-P  
DD  
SAMPLE  
+
Note 3: When these pin voltages are taken below GND or above V , they will  
DD  
be clamped by internal diodes. This product can handle input currents of  
drive, output C  
= 5pF.  
LOAD  
greater than 100mA below GND or above V without latchup.  
DD  
Note 10: SNR minimum and typical values are for LVDS mode. Typical values  
for CMOS mode are typically 0.3dB lower.  
Note 11: SFDR minimum values are for LVDS mode. Typical values are for  
both LVDS and CMOS modes.  
Note 12: SINAD minimum and typical values are for LVDS mode. Typical  
values for CMOS mode are typically 0.3dB lower.  
Note 4: V = 3.3V, f  
LVDS outputs, differential ENC /ENC = 2V  
= 170MHz (LTC2220) or 135MHz (LTC2221),  
DD  
SAMPLE  
+
sine wave, input range =  
P-P  
2V with differential drive, unless otherwise noted.  
P-P  
Note 5: Integral nonlinearity is defined as the deviation of a code from a “best  
straight line” fit to the transfer curve. The deviation is measured from the  
center of the quantization band.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(T = 25°C unless otherwise noted, Note 4)  
A
LTC2220: Shorted Input Noise  
Histogram  
LTC2220: INL, 2V Range  
LTC2220: DNL, 2V Range  
1.0  
0.8  
1.0  
0.8  
100000  
93571  
0.6  
0.6  
80000  
60000  
0.4  
0.4  
0.2  
0.2  
0
0
– 0.2  
– 0.4  
– 0.6  
– 0.8  
– 1.0  
– 0.2  
– 0.4  
– 0.6  
– 0.8  
– 1.0  
40000  
24266  
20000  
12866  
229  
140  
2060  
–0  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
2056  
2057  
2058  
2059  
OUTPUT CODE  
OUTPUT CODE  
CODE  
2220 G01  
2220 G02  
2220 G03  
LTC2220: SNR vs Input  
Frequency, –1dB, 2V Range,  
LVDS Mode  
LTC2220: SNR vs Input  
Frequency, –1dB, 1V Range,  
LVDS Mode  
LTC2220: SFDR (HD2 and HD3)  
vs Input Frequency, –1dB, 2V  
Range, LVDS Mode  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
100  
90  
80  
70  
60  
50  
40  
200  
300  
200  
300  
200  
300  
0
100  
400  
500  
600  
0
100  
400  
500  
600  
0
100  
400  
500  
600  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
2220 G04  
2220 G05  
2220 G06  
22201fa  
6
LTC2220/LTC2221  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2220: SFDR (HD2 and HD3)  
vs Input Frequency, –1dB, 1V  
Range, LVDS Mode  
LTC2220: SFDR (HD4+) vs Input  
Frequency, –1dB, 2V Range,  
LVDS Mode  
LTC2220: SFDR (HD4+) vs Input  
Frequency, –1dB, 1V Range,  
LVDS Mode  
100  
90  
100  
90  
100  
90  
80  
70  
60  
50  
40  
80  
70  
60  
50  
40  
80  
70  
60  
50  
40  
200  
300  
200  
300  
200  
300  
0
100  
400  
500  
600  
0
100  
400  
500  
600  
0
100  
400  
500  
600  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
2220 G07  
2220 G08  
2220 G09  
LTC2220: SFDR and SNR  
LTC2220: SFDR and SNR  
vs Sample Rate, 2V Range,  
= 30MHz, –1dB, LVDS Mode  
vs Sample Rate, 1V Range,  
LTC2220: I  
vs Sample Rate,  
VDD  
f
IN  
= 30MHz, –1dB, LVDS Mode  
f
IN  
5MHz Sine Wave Input, –1dB  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
290  
280  
270  
260  
250  
240  
230  
220  
210  
SFDR  
SFDR  
2V RANGE  
1V RANGE  
SNR  
SNR  
80  
SAMPLE RATE (Msps)  
80  
80  
SAMPLE RATE (Msps)  
0
40  
120  
160  
200  
0
40  
120  
160  
200  
0
40  
120  
160  
200  
SAMPLE RATE (Msps)  
2220 G10  
2220 G11  
2220 G12  
LTC2220: SFDR vs Input Level,  
fIN = 70MHz, 2V Range  
LTC2220: I  
vs Sample Rate,  
OVDD  
5MHz Sine Wave Input, –1dB  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
LVDS OUTPUTS, 0V = 3.3V  
DD  
dBFS  
dBc  
CMOS OUTPUTS, 0V = 1.8V  
DD  
80  
SAMPLE RATE (Msps)  
0
40  
120  
160  
200  
–60  
–50  
–30  
–20  
–10  
0
–40  
INPUT LEVEL (dBFS)  
2220 G13  
2220 G14  
22201fa  
7
LTC2220/LTC2221  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2220: 8192 Point FFT,  
= 30MHz, –1dB, 2V Range,  
LTC2220: 8192 Point FFT,  
f = 30MHz, –1dB, 1V Range,  
IN  
LVDS Mode  
LTC2220: 8192 Point FFT,  
= 70MHz, –1dB, 2V Range,  
f
f
IN  
IN  
LVDS Mode  
LVDS Mode  
0
–20  
0
–20  
0
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
50  
FREQUENCY (MHz)  
70  
50  
70  
70  
70  
50  
70  
70  
70  
0
10 20 30  
80  
2220 • G15  
0
10 20 30  
80  
2220 • G16  
0
10 20 30  
80  
2220 • G17  
40  
60  
40  
60  
40  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
LTC2220: 8192 Point FFT,  
= 70MHz, –1dB, 1V Range,  
LVDS Mode  
LTC2220: 8192 Point FFT,  
LTC2220: 8192 Point FFT,  
f
f
= 140MHz, –1dB, 2V  
f = 140MHz, –1dB, 1V  
IN  
IN  
IN  
Range, LVDS Mode  
Range, LVDS Mode  
0
–20  
0
–20  
0
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
50  
70  
50  
FREQUENCY (MHz)  
50  
FREQUENCY (MHz)  
0
10 20 30  
80  
0
10 20 30  
80  
0
10 20 30  
80  
40  
60  
40  
60  
40  
60  
FREQUENCY (MHz)  
2220 • G18  
2220 • G19  
2220 • G20  
LTC2220: 8192 Point FFT,  
LTC2220: 8192 Point FFT,  
= 250MHz, –1dB, 1V  
Range, LVDS Mode  
LTC2220: 8192 Point FFT,  
f = 500MHz, –6dB, 1V  
IN  
Range, LVDS Mode  
f
= 250MHz, –1dB, 2V  
f
IN  
IN  
Range, LVDS Mode  
0
–20  
0
–20  
0
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
50  
FREQUENCY (MHz)  
70  
50  
FREQUENCY (MHz)  
50  
FREQUENCY (MHz)  
0
10 20 30  
80  
0
10 20 30  
80  
0
10 20 30  
80  
40  
60  
40  
60  
40  
60  
2220 • G21  
2220 • G22  
2220 • G23  
22201fa  
8
LTC2220/LTC2221  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2221: Shorted Input Noise  
Histogram  
LTC2221: INL, 2V Range  
LTC2221: DNL, 2V Range  
100000  
1.0  
0.8  
1.0  
0.8  
79331  
80000  
0.6  
0.6  
0.4  
0.4  
60000  
0.2  
0.2  
0
0
40000  
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
29529  
21767  
20000  
322  
123  
0
2048  
3072  
2048  
3072  
2057  
2058  
2059  
2060  
2061  
0
4096  
0
4096  
1024  
1024  
OUTPUT CODE  
OUTPUT CODE  
CODE  
2221 G01  
2221 G02  
2221 G03  
LTC2221: SNR vs Input  
Frequency, –1dB, 2V Range,  
LVDS Mode  
LTC2221: SNR vs Input  
Frequency, –1dB, 1V Range,  
LVDS Mode  
LTC2221: SFDR (HD2 and HD3)  
vs Input Frequency, –1dB, 2V  
Range, LVDS Mode  
95  
69  
67  
65  
63  
61  
59  
57  
55  
69  
67  
65  
63  
61  
59  
57  
55  
90  
85  
80  
75  
70  
65  
60  
55  
50  
200  
300  
200  
300  
200  
300  
0
100  
400  
500  
600  
0
100  
400  
500  
600  
0
100  
400  
500  
600  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
2221 G04  
2221 G05  
2221 G06  
LTC2221: SFDR (HD2 and HD3)  
vs Input Frequency, –1dB, 1V  
Range, LVDS Mode  
LTC2221: SFDR (HD4+) vs Input  
Frequency, –1dB, 2V Range,  
LVDS Mode  
LTC2221: SFDR (HD4+) vs Input  
Frequency, –1dB, 1V Range,  
LVDS Mode  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
200  
300  
200  
300  
200  
300  
0
100  
400  
500  
600  
0
100  
400  
500  
600  
0
100  
400  
500  
600  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
2221 G07  
2221 G08  
2221 G09  
22201fa  
9
LTC2220/LTC2221  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2221: SFDR and SNR  
LTC2221: SFDR and SNR  
vs Sample Rate, 2V Range,  
vs Sample Rate, 1V Range,  
LTC2221: I  
vs Sample Rate,  
VDD  
f
IN  
= 30MHz, –1dB, LVDS Mode  
f
IN  
= 30MHz, –1dB, LVDS Mode  
5MHz Sine Wave Input, –1dB  
220  
210  
200  
190  
180  
170  
160  
150  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
SFDR  
SFDR  
2V RANGE  
1V RANGE  
SNR  
SNR  
0
20 40 60 80 100 120 140 160  
SAMPLE RATE (Msps)  
2221 G10  
0
20 40 60 80 100 120 140 160  
SAMPLE RATE (Msps)  
2221 G11  
0
20 40 60  
120 140 160 180  
80 100  
SAMPLE RATE (Msps)  
2221 G12  
LTC2221: SFDR vs Input Level,  
fIN = 70MHz, 2V Range  
LTC2221: I  
vs Sample Rate,  
OVDD  
5MHz Sine Wave Input, –1dB  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LVDS OUTPUTS, OV = 3.3V  
DD  
dBFS  
dBc  
CMOS OUTPUTS, OV = 1.8V  
DD  
0
20 40 60 80 100 120 140 160 180  
SAMPLE RATE (Msps)  
60 50  
–30  
–20  
–10  
0
–40  
INPUT LEVELS (dBFS)  
2221 G13  
2221 G14  
22201fa  
10  
LTC2220/LTC2221  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2221: 8192 Point FFT,  
= 30MHz, –1dB, 2V Range,  
LTC2221: 8192 Point FFT,  
f = 30MHz, –1dB, 1V Range,  
IN  
LVDS Mode  
LTC2221: 8192 Point FFT,  
f
f
= 70MHz, –1dB, 2V Range,  
IN  
IN  
LVDS Mode  
LVDS Mode  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
FREQUENCY (MHz)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
FREQUENCY (MHz)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
FREQUENCY (MHz)  
2221 G15  
2221 G16  
2221 G17  
LTC2221: 8192 Point FFT,  
= 70MHz, –1dB, 1V Range,  
LTC2221: 8192 Point FFT,  
= 140MHz, –1dB, 2V  
LTC2221: 8192 Point FFT,  
f = 140MHz, –1dB, 1V  
IN  
Range, LVDS Mode  
f
f
IN  
IN  
LVDS Mode  
Range, LVDS Mode  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2221 G19  
2221 G20  
2221 G18  
LTC2221: 8192 Point FFT,  
= 250MHz, –1dB, 2V  
LTC2221: 8192 Point FFT,  
= 250MHz, –1dB, 1V  
LTC2221: 8192 Point FFT,  
f = 500MHz, –6dB, 1V  
IN  
Range, LVDS Mode  
f
f
IN  
IN  
Range, LVDS Mode  
Range, LVDS Mode  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2221 G21  
2221 G22  
2221 G23  
22201fa  
11  
LTC2220/LTC2221  
U
U
U
PI FU CTIO S  
DB0 - DB11 (Pins 21, 22, 23, 24, 27, 28, 29, 30, 31, 32,  
35, 36): Digital Outputs, B Bus. DB11 is the MSB. At high  
impedance in full rate CMOS mode.  
(CMOS Mode)  
AIN+ (Pins 1, 2): Positive Differential Analog Input.  
AIN(Pins 3, 4): Negative Differential Analog Input.  
OGND (Pins 25, 33, 41, 50): Output Driver Ground.  
REFHA (Pins 5, 6): ADC High Reference. Bypass to  
Pins 7, 8 with 0.1µF ceramic chip capacitor, to Pins 11, 12  
with a 2.2µF ceramic capacitor and to ground with 1µF  
ceramic capacitor.  
REFLB (Pins 7, 8): ADC Low Reference. Bypass to Pins 5,  
6 with 0.1µF ceramic chip capacitor. Do not connect to  
Pins 11, 12.  
OVDD (Pins 26, 34, 42, 49): Positive Supply for the  
Output Drivers. Bypass to ground with 0.1µF ceramic chip  
capacitor.  
OFB (Pin 37): Over/Under Flow Output for B Bus. High  
when an over or under flow has occurred. At high imped-  
ance in full rate CMOS mode.  
CLKOUTB (Pin 38): Data Valid Output for B Bus. In demux  
mode with interleaved update, latch B bus data on the  
falling edge of CLKOUTB. In demux mode with simulta-  
neous update, latch B bus data on the rising edge of  
CLKOUTB. This pin does not become high impedance in  
full rate CMOS mode.  
CLKOUTA (Pin 39): Data Valid Output for A Bus. Latch A  
bus data on the falling edge of CLKOUTA.  
DA0 - DA11 (Pins 40, 43, 44, 45, 46, 47, 48, 51, 52, 53,  
54, 55): Digital Outputs, A Bus. DA11 is the MSB.  
REFHB (Pins 9, 10): ADC High Reference. Bypass to  
Pins 11, 12 with 0.1µF ceramic chip capacitor. Do not  
connect to Pins 5, 6.  
REFLA (Pins 11, 12): ADC Low Reference. Bypass to  
Pins 9, 10 with 0.1µF ceramic chip capacitor, to Pins 5, 6  
with a 2.2µF ceramic capacitor and to ground with 1µF  
ceramic capacitor.  
VDD (Pins 13, 14, 15, 62, 63): 3.3V Supply. Bypass to  
GND with 0.1µF ceramic chip capacitors.  
GND (Pins 16, 61, 64): ADC Power Ground.  
OFA (Pin 56): Over/Under Flow Output for A Bus. High  
when an over or under flow has occurred.  
ENC+ (Pin 17): Encode Input. Conversion starts on the  
positive edge.  
LVDS (Pin 57): Output Mode Selection Pin. Connecting  
LVDS to 0V selects full rate CMOS mode. Connecting  
LVDS to 1/3VDD selects demux CMOS mode with simulta-  
neous update. Connecting LVDS to 2/3VDD selects demux  
CMOS mode with interleaved update. Connecting LVDS to  
VDD selects LVDS mode.  
MODE (Pin 58): Output Format and Clock Duty Cycle  
Stabilizer Selection Pin. Connecting MODE to 0V selects  
offset binary output format and turns the clock duty cycle  
stabilizer off. Connecting MODE to 1/3VDD selects offset  
binary output format and turns the clock duty cycle stabi-  
lizer on. Connecting MODE to 2/3VDD selects 2’s comple-  
ment output format and turns the clock duty cycle stabi-  
lizer on. Connecting MODE to VDD selects 2’s complement  
output format and turns the clock duty cycle stabilizer off.  
ENC(Pin 18): Encode Complement Input. Conversion  
starts on the negative edge. Bypass to ground with 0.1µF  
ceramic for single-ended ENCODE signal.  
SHDN (Pin 19): Shutdown Mode Selection Pin. Connect-  
ing SHDN to GND and OE to GND results in normal  
operation with the outputs enabled. Connecting SHDN to  
GND and OE to VDD results in normal operation with the  
outputs at high impedance. Connecting SHDN to VDD and  
OE to GND results in nap mode with the outputs at high  
impedance. Connecting SHDN to VDD and OE to VDD  
results in sleep mode with the outputs at high impedance.  
OE (Pin 20): Output Enable Pin. Refer to SHDN pin  
function.  
22201fa  
12  
LTC2220/LTC2221  
U
U
U
PI FU CTIO S  
ENC+ (Pin 17): Encode Input. Conversion starts on the  
SENSE(Pin59):ReferenceProgrammingPin.Connecting  
SENSE to VCM selects the internal reference and a ±0.5V  
input range. Connecting SENSE to VDD selects the internal  
reference and a ±1V input range. An external reference  
greater than 0.5V and less than 1V applied to SENSE  
selects an input range of ±VSENSE. ±1V is the largest valid  
input range.  
VCM (Pin 60): 1.6V Output and Input Common Mode Bias.  
Bypass to ground with 2.2µF ceramic chip capacitor.  
GND (Exposed Pad) (Pin 65): ADC Power Ground. The  
exposed pad on the bottom of the package needs to be  
soldered to ground.  
positive edge.  
ENC(Pin 18): Encode Complement Input. Conversion  
starts on the negative edge. Bypass to ground with 0.1µF  
ceramic for single-ended ENCODE signal.  
SHDN (Pin 19): Shutdown Mode Selection Pin. Connect-  
ing SHDN to GND and OE to GND results in normal  
operation with the outputs enabled. Connecting SHDN to  
GND and OE to VDD results in normal operation with the  
outputs at high impedance. Connecting SHDN to VDD and  
OE to GND results in nap mode with the outputs at high  
impedance. Connecting SHDN to VDD and OE to VDD  
results in sleep mode with the outputs at high impedance.  
(LVDS Mode)  
OE (Pin 20): Output Enable Pin. Refer to SHDN pin  
AIN+ (Pins 1, 2): Positive Differential Analog Input.  
AIN(Pins 3, 4): Negative Differential Analog Input.  
function.  
D0/D0+ to D11/D11+ (Pins 21, 22, 23, 24, 27, 28, 29,  
30, 31, 32, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 51, 52,  
53, 54): LVDS Digital Outputs. All LVDS outputs require  
differential 100termination resistors at the LVDS re-  
ceiver. D11/D11+ is the MSB.  
REFHA (Pins 5, 6): ADC High Reference. Bypass to  
Pins 7, 8 with 0.1µF ceramic chip capacitor, to Pins 11, 12  
with a 2.2µF ceramic capacitor and to ground with 1µF  
ceramic capacitor.  
REFLB (Pins 7, 8): ADC Low Reference. Bypass to Pins 5,  
6 with 0.1µF ceramic chip capacitor. Do not connect to  
Pins 11, 12.  
OGND (Pins 25, 33, 41, 50): Output Driver Ground.  
OVDD (Pins26, 34, 42, 49):PositiveSupplyfortheOutput  
Drivers. Bypass to ground with 0.1µF ceramic chip  
capacitor.  
CLKOUT/CLKOUT+ (Pins 35 to 36): LVDS Data Valid  
Output.LatchdataonrisingedgeofCLKOUT,fallingedge  
of CLKOUT+.  
REFHB (Pins 9, 10): ADC High Reference. Bypass to  
Pins 11, 12 with 0.1µF ceramic chip capacitor. Do not  
connect to Pins 5, 6.  
REFLA (Pins 11, 12): ADC Low Reference. Bypass to  
Pins 9, 10 with 0.1µF ceramic chip capacitor, to Pins 5, 6  
with a 2.2µF ceramic capacitor and to ground with 1µF  
ceramic capacitor.  
OF/OF+ (Pins 55 to 56): LVDS Over/Under Flow Output.  
High when an over or under flow has occurred.  
LVDS (Pin 57): Output Mode Selection Pin. Connecting  
LVDS to 0V selects full rate CMOS mode. Connecting  
LVDS to 1/3VDD selects demux CMOS mode with simulta-  
neous update. Connecting LVDS to 2/3VDD selects demux  
CMOS mode with interleaved update. Connecting LVDS to  
VDD selects LVDS mode.  
VDD (Pins 13, 14, 15, 62, 63): 3.3V Supply. Bypass to  
GND with 0.1µF ceramic chip capacitors.  
GND (Pins 16, 61, 64): ADC Power Ground.  
22201fa  
13  
LTC2220/LTC2221  
U
U
U
PI FU CTIO S  
MODE (Pin 58): Output Format and Clock Duty Cycle  
Stabilizer Selection Pin. Connecting MODE to 0V selects  
offset binary output format and turns the clock duty cycle  
stabilizer off. Connecting MODE to 1/3VDD selects offset  
binary output format and turns the clock duty cycle stabi-  
lizer on. Connecting MODE to 2/3VDD selects 2’s comple-  
ment output format and turns the clock duty cycle stabi-  
lizer on. Connecting MODE to VDD selects 2’s complement  
output format and turns the clock duty cycle stabilizer off.  
input range. Connecting SENSE to VDD selects the internal  
reference and a ±1V input range. An external reference  
greater than 0.5V and less than 1V applied to SENSE  
selects an input range of ±VSENSE. ±1V is the largest valid  
input range.  
VCM (Pin 60): 1.6V Output and Input Common Mode Bias.  
Bypass to ground with 2.2µF ceramic chip capacitor.  
GND (Exposed Pad) (Pin 65): ADC Power Ground. The  
exposed pad on the bottom of the package needs to be  
soldered to ground.  
SENSE(Pin59):ReferenceProgrammingPin.Connecting  
SENSE to VCM selects the internal reference and a ±0.5V  
22201fa  
14  
LTC2220/LTC2221  
U
U
W
FUNCTIONAL BLOCK DIAGRA  
+
A
IN  
V
DD  
INPUT  
S/H  
FIRST PIPELINED  
ADC STAGE  
SECOND PIPELINED  
ADC STAGE  
THIRD PIPELINED  
ADC STAGE  
FOURTH PIPELINED  
ADC STAGE  
FIFTH PIPELINED  
ADC STAGE  
A
IN  
GND  
V
CM  
1.6V  
REFERENCE  
2.2µF  
SHIFT REGISTER  
AND CORRECTION  
RANGE  
SELECT  
REFH  
REFL  
INTERNAL CLOCK SIGNALS  
REF  
BUF  
OV  
DD  
SENSE  
+
OF  
+
DIFFERENTIAL  
INPUT  
LOW JITTER  
CLOCK  
DRIVER  
D11  
+
DIFF  
CONTROL  
LOGIC  
OUTPUT  
DRIVERS  
REF  
AMP  
D0  
+
CLKOUT  
22201 F01  
REFLB REFHA  
REFLA REFHB  
OGND  
2.2µF  
+
LVDS SHDN  
ENC  
ENC  
M0DE  
OE  
0.1µF  
1µF  
0.1µF  
1µF  
Figure 1. Functional Block Diagram  
22201fa  
15  
LTC2220/LTC2221  
W U  
W
TI I G DIAGRA S  
LVDS Output Mode Timing  
All Outputs Are Differential and Have LVDS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
D
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
D0-D11, OF  
t
C
CLOCKOUT  
22201 TD01  
+
CLOCKOUT  
Full-Rate CMOS Output Mode Timing  
All Outputs Are Single-Ended and Have CMOS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
t
D
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
DA0-DA11, OFA  
C
CLOCKOUTB  
CLOCKOUTA  
HIGH IMPEDANCE  
DB0-DB11, OFB  
22201 TD02  
22201fa  
16  
LTC2220/LTC2221  
W U  
W
TI I G DIAGRA S  
Demultiplexed CMOS Outputs with Interleaved Update  
All Outputs Are Single-Ended and Have CMOS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
D
N – 5  
N – 3  
N – 1  
DA0-DA11, OFA  
DB0-DB11, OFB  
t
t
D
C
N – 6  
N – 4  
N – 2  
t
C
CLOCKOUTB  
CLOCKOUTA  
22201 TD03  
Demultiplexed CMOS Outputs with Simultaneous Update  
All Outputs Are Single-Ended and Have CMOS Levels  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
ENC  
+
ENC  
t
t
t
D
D
C
N – 6  
N – 4  
N – 2  
N – 1  
DA0-DA11, OFA  
DB0-DB11, OFB  
N – 5  
N – 3  
CLOCKOUTB  
CLOCKOUTA  
22201 TD04  
22201fa  
17  
LTC2220/LTC2221  
U
W
U U  
APPLICATIO S I FOR ATIO  
DYNAMIC PERFORMANCE  
input tone to the RMS value of the largest 3rd order  
intermodulation product.  
Signal-to-Noise Plus Distortion Ratio  
Spurious Free Dynamic Range (SFDR)  
The signal-to-noise plus distortion ratio [S/(N + D)] is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the ADC output. The output is band limited  
to frequencies above DC to below half the sampling  
frequency.  
Spurious free dynamic range is the peak harmonic or  
spurious noise that is the largest spectral component  
excluding the input signal and DC. This value is expressed  
in decibels relative to the RMS value of a full scale input  
signal.  
Signal-to-Noise Ratio  
Full Power Bandwidth  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC.  
The full power bandwidth is that input frequency at which  
the amplitude of the reconstructed fundamental is re-  
duced by 3dB for a full scale input signal.  
Aperture Delay Time  
Total Harmonic Distortion  
The time from when a rising ENC+ equals the ENCvoltage  
totheinstantthattheinputsignalisheldbythesampleand  
hold circuit.  
Total harmonic distortion is the ratio of the RMS sum of all  
harmonicsoftheinputsignaltothefundamentalitself.The  
out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency. THD is  
expressed as:  
Aperture Delay Jitter  
Thevariationintheaperturedelaytimefromconversionto  
conversion. This random variation will result in noise  
when sampling an AC input. The signal to noise ratio due  
to the jitter alone will be:  
THD = 20Log ((V22 + V32 + V42 + . . . Vn2)/V1)  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through Vn are the amplitudes of the  
secondthroughnthharmonics. TheTHDcalculatedinthis  
data sheet uses all the harmonics up to the fifth.  
SNRJITTER = –20log (2π • fIN • tJITTER  
)
CONVERTER OPERATION  
Intermodulation Distortion  
As shown in Figure 1, the LTC2220/LTC2221 is a CMOS  
pipelined multistep converter. The converter has five  
pipelined ADC stages; a sampled analog input will result in  
a digitized value five cycles later (see the Timing Diagram  
section). For optimal AC performance the analog inputs  
should be driven differentially. For cost sensitive applica-  
tions, the analog inputs can be driven single-ended with  
slightly worse harmonic distortion. The encode input is  
differential for improved common mode noise immunity.  
The LTC2220/LTC2221 has two phases of operation,  
determinedbythestateofthedifferentialENC+/ENCinput  
pins. For brevity, the text will refer to ENC+ greater than  
ENCas ENC high and ENC+ less than ENCas ENC low.  
If the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion (IMD) in addition to  
THD. IMD is the change in one sinusoidal input caused by  
the presence of another sinusoidal input at a different  
frequency.  
If two pure sine waves of frequencies fa and fb are applied  
to the ADC input, nonlinearities in the ADC transfer func-  
tion can create distortion products at the sum and differ-  
ence frequencies of mfa ± nfb, where m and n = 0, 1, 2, 3,  
etc. The 3rd order intermodulation products are 2fa + fb,  
2fb + fa, 2fa – fb and 2fb – fa. The intermodulation  
distortion is defined as the ratio of the RMS value of either  
22201fa  
18  
LTC2220/LTC2221  
W U U  
APPLICATIO S I FOR ATIO  
U
Each pipelined stage shown in Figure 1 contains an ADC,  
a reconstruction DAC and an interstage residue amplifier.  
In operation, the ADC quantizes the input to the stage and  
the quantized value is subtracted from the input by the  
DAC to produce a residue. The residue is amplified and  
outputbytheresidueamplifier.Successivestagesoperate  
out of phase so that when the odd stages are outputting  
their residue, the even stages are acquiring that residue  
and vice versa.  
When ENC transitions from low to high, the sampled input  
voltageisheldonthesamplingcapacitors.Duringthehold  
phase when ENC is high, the sampling capacitors are  
disconnectedfromtheinputandtheheldvoltageispassed  
to the ADC core for processing. As ENC transitions from  
high to low, the inputs are reconnected to the sampling  
capacitors to acquire a new sample. Since the sampling  
capacitors still hold the previous sample, a charging glitch  
proportionaltothechangeinvoltagebetweensampleswill  
be seen at this time. If the change between the last sample  
and the new sample is small, the charging glitch seen at  
the input will be small. If the input change is large, such as  
the change seen with input frequencies near Nyquist, then  
a larger charging glitch will be seen.  
WhenENCislow,theanaloginputissampleddifferentially  
directly onto the input sample-and-hold capacitors, inside  
the “Input S/H” shown in the block diagram. At the instant  
that ENC transitions from low to high, the sampled input  
is held. While ENC is high, the held input voltage is  
bufferedbytheS/Hamplifierwhichdrivesthefirstpipelined  
ADC stage. The first stage acquires the output of the S/H  
during this high phase of ENC. When ENC goes back low,  
the first stage produces its residue which is acquired by  
the second stage. At the same time, the input S/H goes  
back to acquiring the analog input. When ENC goes back  
high, the second stage produces its residue which is  
acquired by the third stage. An identical process is re-  
peated for the third and fourth stages, resulting in a fourth  
stage residue that is sent to the fifth stage ADC for final  
evaluation.  
LTC2220/LTC2221  
V
DD  
C
SAMPLE  
1.6pF  
15  
15Ω  
+
A
IN  
IN  
C
PARASITIC  
1pF  
V
DD  
C
SAMPLE  
1.6pF  
A
C
PARASITIC  
1pF  
V
DD  
1.6V  
6k  
Each ADC stage following the first has additional range to  
accommodate flash and amplifier offset errors. Results  
from all of the ADC stages are digitally synchronized such  
thattheresultscanbeproperlycombinedinthecorrection  
logic before being sent to the output buffer.  
+
ENC  
ENC  
6k  
1.6V  
22201 F02  
Figure 2. Equivalent Input Circuit  
SAMPLE/HOLD OPERATION AND INPUT DRIVE  
Sample/Hold Operation  
Single-Ended Input  
For cost sensitive applications, the analog inputs can be  
driven single-ended. With a single-ended input the har-  
monic distortion and INL will degrade, but the SNR and  
Figure 2 shows an equivalent circuit for the LTC2220/  
LTC2221 CMOS differential sample-and-hold. The analog  
inputsareconnectedtothesamplingcapacitors(CSAMPLE  
through NMOS transistors. The capacitors shown at-  
tached to each input (CPARASITIC) are the summation of all  
other capacitance associated with each input.  
+
)
DNLwillremainunchanged.Forasingle-endedinput,AIN  
should be driven with the input signal and AINshould be  
connected to 1.6V or VCM  
.
Common Mode Bias  
During the sample phase when ENC is low, the transistors  
connect the analog inputs to the sampling capacitors and  
they charge to, and track the differential input voltage.  
For optimal performance the analog inputs should be  
driven differentially. Each input should swing ±0.5V for  
22201fa  
19  
LTC2220/LTC2221  
W U U  
U
APPLICATIO S I FOR ATIO  
Figure 4 demonstrates the use of a differential amplifier to  
convert a single ended input signal into a differential input  
signal. The advantage of this method is that it provides low  
frequencyinputresponse;however,thelimitedgainbandwidth  
of most op amps will limit the SFDR at high input frequencies.  
the 2V range or ±0.25V for the 1V range, around a  
common mode voltage of 1.6V. The VCM output pin (Pin  
60) may be used to provide the common mode bias level.  
V
CM can be tied directly to the center tap of a transformer  
tosettheDCinputlevelorasareferenceleveltoanopamp  
differentialdrivercircuit. TheVCM pinmustbebypassedto  
ground close to the ADC with a 2.2µF or greater capacitor.  
Figure 5 shows a single-ended input circuit. The imped-  
ance seen by the analog inputs should be matched. This  
circuit is not recommended if low distortion is required.  
Input Drive Impedance  
The25resistorsand12pFcapacitorontheanaloginputs  
serve two purposes: isolating the drive circuitry from the  
sample-and-hold charging glitches and limiting the  
wideband noise at the converter input. For input frequen-  
cies higher than 100MHz, the capacitor may need to be  
decreased to prevent excessive signal loss.  
As with all high performance, high speed ADCs, the  
dynamic performance of the LTC2220/LTC2221 can be  
influenced by the input drive circuitry, particularly the  
second and third harmonics. Source impedance and input  
reactance can influence SFDR. At the falling edge of ENC,  
the sample-and-hold circuit will connect the 1.6pF sam-  
pling capacitor to the input pin and start the sampling  
period.ThesamplingperiodendswhenENCrises,holding  
the sampled input on the sampling capacitor. Ideally the  
input circuitry should be fast enough to fully charge  
the sampling capacitor during the sampling period  
1/(2FENCODE);however, thisisnotalwayspossibleandthe  
incomplete settling may degrade the SFDR. The sampling  
glitch has been designed to be as linear as possible to  
minimize the effects of incomplete settling.  
V
CM  
2.2µF  
0.1µF T1  
+
+
25  
A
A
IN  
1:1  
ANALOG  
INPUT  
LTC2220/  
LTC2221  
0.1µF  
IN  
25Ω  
25Ω  
12pF  
A
IN  
IN  
25Ω  
A
T1 = MA/COM ETC1-1T  
22201 F03  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
Figure 3. Single-Ended to Differential  
Conversion Using a Transformer  
For the best performance, it is recommended to have a  
source impedance of 100or less for each input. The  
source impedance should be matched for the differential  
inputs. Poor matching will result in higher even order  
harmonics, especially the second.  
V
CM  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
2.2µF  
+
+
25  
A
A
IN  
IN  
LTC2220/  
LTC2221  
ANALOG  
INPUT  
+
+
3pF  
12pF  
A
CM  
IN  
IN  
Input Drive Circuits  
25Ω  
A
AMPLIFIER = LTC6600-20, LT1993, ETC.  
22201 F04  
Figure 3 shows the LTC2220/LTC2221 being driven by an  
RF transformer with a center tapped secondary. The sec-  
ondary center tap is DC biased with VCM, setting the ADC  
input signal at its optimum DC level. Terminating on the  
transformer secondary is desirable, as this provides a  
common mode path for charging glitches caused by the  
sample and hold. Figure 3 shows a 1:1 turns ratio trans-  
former. Other turns ratios can be used if the source  
impedanceseenbytheADCdoesnotexceed100foreach  
ADC input. A disadvantage of using a transformer is the  
loss of low frequency response. Most small RF transform-  
ers have poor performance at frequencies below 1MHz.  
3pF  
Figure 4. Differential Drive with an Amplifier  
V
CM  
2.2µF  
1k  
1k  
0.1µF  
LTC2220/  
LTC2221  
+
25  
A
IN  
IN  
IN  
IN  
ANALOG  
INPUT  
+
A
12pF  
A
A
25Ω  
22201 F05  
0.1µF  
Figure 5. Single-Ended Drive  
22201fa  
20  
LTC2220/LTC2221  
W U U  
U
APPLICATIO S I FOR ATIO  
The AIN and AINinputs each have two pins to reduce  
Reference Operation  
+
package inductance. The two AIN+ and the two AINpins  
should be shorted together.  
Figure 9 shows the LTC2220/LTC2221 reference circuitry  
consisting of a 1.6V bandgap reference, a difference  
amplifier and switching and control circuit. The internal  
voltage reference can be configured for two pin selectable  
input ranges of 2V (±1V differential) or 1V (±0.5V differ-  
ential). Tying the SENSE pin to VDD selects the 2V range;  
typing the SENSE pin to VCM selects the 1V range.  
For input frequencies above 100MHz the input circuits of  
Figure 6, 7 and 8 are recommended. The balun trans-  
former gives better high frequency response than a flux  
coupled center tapped transformer. The coupling capaci-  
tors allow the analog inputs to be DC biased at 1.6V. In  
Figure 8 the series inductors are impedance matching  
elements that maximize the ADC bandwidth.  
The 1.6V bandgap reference serves two functions: its  
output provides a DC bias point for setting the common  
mode voltage of any external input circuitry; additionally,  
the reference is used with a difference amplifier to gener-  
ate the differential reference levels needed by the internal  
ADC circuitry. An external bypass capacitor is required for  
the 1.6V reference output, VCM. This provides a high  
frequency low impedance path to ground for internal and  
external circuitry.  
V
CM  
2.2µF  
0.1µF  
0.1µF  
+
+
12  
A
IN  
IN  
ANALOG  
INPUT  
LTC2220/  
LTC2221  
A
8pF  
A
0.1µF  
25Ω  
25Ω  
T1  
IN  
IN  
12Ω  
A
T1 = MA/COM ETC1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
22201 F06  
The difference amplifier generates the high and low refer-  
ence for the ADC. High speed switching circuits are  
connected to these outputs and they must be externally  
bypassed. Each output has four pins: two each of REFHA  
and REFHB for the high reference and two each of REFLA  
and REFLB for the low reference. The multiple output pins  
are needed to reduce package inductance. Bypass capaci-  
tors must be connected as shown in Figure 9.  
Figure 6. Recommended Front End Circuit for  
Input Frequencies Between 100MHz and 250MHz  
V
CM  
2.2µF  
0.1µF  
0.1µF  
+
+
A
IN  
ANALOG  
INPUT  
LTC2220/  
LTC2221  
A
0.1µF  
IN  
25Ω  
25Ω  
T1  
LTC2220/LTC2221  
A
A
IN  
IN  
4  
V
CM  
1.6V BANDGAP  
REFERENCE  
1.6V  
2.2µF  
T1 = MA/COM ETC1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
22201 F07  
1V  
0.5V  
RANGE  
DETECT  
AND  
Figure 7. Recommended Front End Circuit for  
Input Frequencies Between 250MHz and 500MHz  
CONTROL  
TIE TO V FOR 2V RANGE;  
DD  
SENSE  
REFLB  
TIE TO V FOR 1V RANGE;  
CM  
RANGE = 2 • V  
FOR  
< 1V  
SENSE  
SENSE  
BUFFER  
0.5V < V  
V
CM  
INTERNAL ADC  
HIGH REFERENCE  
0.1µF  
REFHA  
1µF  
2.2µF  
0.1µF  
0.1µF  
+
+
4.7nH  
0.1µF  
A
IN  
IN  
ANALOG  
INPUT  
LTC2220/  
LTC2221  
A
2pF  
A
2.2µF  
25Ω  
25Ω  
DIFF AMP  
T1  
1µF  
IN  
IN  
4.7nH  
REFLA  
A
0.1µF  
T1 = MA/COM ETC1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
INTERNAL ADC  
LOW REFERENCE  
22201 F08  
REFHB  
22201 F09  
Figure 8. Recommended Front End Circuit for  
Input Frequencies Above 500MHz  
Figure 9. Equivalent Reference Circuit  
22201fa  
21  
LTC2220/LTC2221  
W U U  
U
APPLICATIO S I FOR ATIO  
Other voltage ranges in between the pin selectable ranges  
can be programmed with two external resistors as shown  
inFigure10.Anexternalreferencecanbeusedbyapplying  
its output directly or through a resistor divider to SENSE.  
It is not recommended to drive the SENSE pin with a logic  
device. The SENSE pin should be tied to the appropriate  
levelasclosetotheconverteraspossible. IftheSENSEpin  
is driven externally, it should be bypassed to ground as  
close to the device as possible with a 1µF ceramic capacitor.  
2. Use as large an amplitude as possible; if transformer  
coupled use a higher turns ratio to increase the amplitude.  
3. If the ADC is clocked with a sinusoidal signal, filter the  
encode signal to reduce wideband noise.  
4. Balance the capacitance and series resistance at both  
encodeinputssothatanycouplednoisewillappearatboth  
inputs as common mode noise. The encode inputs have a  
common mode range of 1.1V to 2.5V. Each input may be  
driven from ground to VDD for single-ended drive.  
1.6V  
V
CM  
V
LTC2220/LTC2221  
DD  
2.2µF  
12k  
0.8V  
LTC2220/  
LTC2221  
TO INTERNAL  
ADC CIRCUITS  
SENSE  
1µF  
12k  
1.6V BIAS  
V
V
DD  
DD  
22201 F10  
6k  
+
ENC  
Figure 10. 1.6V Range ADC  
0.1µF  
50  
1:4  
CLOCK  
INPUT  
Input Range  
1.6V BIAS  
6k  
The input range can be set based on the application. The  
2Vinputrangewillprovidethebestsignal-to-noiseperfor-  
mance while maintaining excellent SFDR. The 1V input  
range will have better SFDR performance, but the SNR will  
degrade by 5dB. See the Typical Performance Character-  
istics section.  
ENC  
22201 F11  
+
Figure 11. Transformer Driven ENC /ENC  
Maximum and Minimum Encode Rates  
Driving the Encode Inputs  
The maximum encode rate for the LTC2220/LTC2221 is  
170Msps (LTC2220) and 135Msps (LTC2221). For the  
ADC to operate properly, the encode signal should have a  
50% (±5%) duty cycle. Each half cycle must have at least  
2.8ns (LTC2220) or 3.5ns (LTC2221) for the ADC internal  
circuitrytohaveenoughsettlingtimeforproperoperation.  
Achievingaprecise50%dutycycleiseasywithdifferential  
sinusoidal drive using a transformer or using symmetric  
differential logic such as PECL or LVDS.  
The noise performance of the LTC2220/LTC2221 can  
depend on the encode signal quality as much as on the  
analog input. The ENC+/ENCinputs are intended to be  
driven differentially, primarily for noise immunity from  
commonmodenoisesources.Eachinputisbiasedthrough  
a 6k resistor to a 1.6V bias. The bias resistors set the DC  
operating point for transformer coupled drive circuits and  
can set the logic threshold for single-ended drive circuits.  
Any noise present on the encode signal will result in  
additionalaperturejitterthatwillbeRMSsummedwiththe  
inherent ADC aperture jitter.  
An optional clock duty cycle stabilizer circuit can be used  
if the input clock has a non 50% duty cycle. This circuit  
uses the rising edge of the ENC+ pin to sample the analog  
input. The falling edge of ENC+ is ignored and the internal  
fallingedgeisgeneratedbyaphase-lockedloop. Theinput  
In applications where jitter is critical (high input frequen-  
cies) take the following into consideration:  
1. Differential drive should be used.  
clock duty cycle can vary from 30% to 70% and the clock  
22201fa  
22  
LTC2220/LTC2221  
W U U  
APPLICATIO S I FOR ATIO  
U
duty cycle stabilizer will maintain a constant 50% internal  
duty cycle. If the clock is turned off for a long period of  
time, the duty cycle stabilizer circuit will require one  
hundred clock cycles for the PLL to lock onto the input  
clock. To use the clock duty cycle stabilizer, the MODE pin  
should be connected to 1/3VDD or 2/3VDD using external  
resistors.  
Digital Output Modes  
The LTC2220/LTC2221 can operate in several digital out-  
put modes: LVDS, CMOS running at full speed, and CMOS  
demultiplexed onto two buses, each of which runs at half  
speed. In the demultiplexed CMOS modes the two buses  
(referred to as bus A and bus B) can either be updated on  
alternateclockcycles(interleavedmode)orsimultaneously  
(simultaneousmode).Fordetailsontheclocktiming,refer  
to the timing diagrams.  
The lower limit of the LTC2220/LTC2221 sample rate is  
determined by droop of the sample-and-hold circuits. The  
pipelined architecture of this ADC relies on storing analog  
signals on small valued capacitors. Junction leakage will  
discharge the capacitors. The specified minimum operat-  
ing frequency for the LTC2220/LTC2221 is 1Msps.  
The LVDS pin selects which digital output mode the part  
uses. This pin has a four-level logic input which should be  
connected to GND, 1/3VDD, 2/3VDD or VDD. An external  
resistor divider can be used to set the 1/3VDD or 2/3VDD  
logic values. Table 2 shows the logic states for the LVDS  
pin.  
+
ENC  
V
= 1.6V  
THRESHOLD  
LTC2220/  
LTC2221  
1.6V  
ENC  
Table 2. LVDS Pin Function  
0.1µF  
LVDS  
Digital Output Mode  
22201 F12Ía  
GND  
Full-Rate CMOS  
Figure 12a. Single-Ended ENC Drive,  
Not Recommended for Low Jitter  
1/3V  
2/3V  
Demultiplexed CMOS, Simultaneous Update  
Demultiplexed CMOS, Interleaved Update  
LVDS  
DD  
DD  
3.3V  
V
DD  
3.3V  
MC100LVELT22  
130  
Q0  
130Ω  
+
Digital Output Buffers (CMOS Modes)  
ENC  
D0  
Figure 13a shows an equivalent circuit for a single output  
buffer in the CMOS output mode. Each buffer is powered  
by OVDD and OGND, which are isolated from the ADC  
power and ground. The additional N-channel transistor in  
theoutputdriverallowsoperationdowntovoltagesaslow  
as 0.5V. The internal resistor in series with the output  
makes the output appear as 50to external circuitry and  
may eliminate the need for external damping resistors.  
LTC2220/  
LTC2221  
ENC  
Q0  
83  
83Ω  
22201 F12b  
Figure 12b. ENC Drive Using a CMOS to PECL Translator  
DIGITAL OUTPUTS  
Table 1. Output Codes vs Input Voltage  
+
A
– A  
D11 – D0  
(Offset Binary)  
D11 – D0  
(2’s Complement)  
IN  
IN  
LTC2220/LTC2221  
(2V Range)  
OF  
OV  
DD  
0.5V  
TO 3.6V  
>+1.000000V  
+0.999512V  
+0.999024V  
1
0
0
1111 1111 1111  
1111 1111 1111  
1111 1111 1110  
0111 1111 1111  
0111 1111 1111  
0111 1111 1110  
V
DD  
V
DD  
0.1µF  
OV  
DD  
+0.000488V  
0.000000V  
–0.000488V  
–0.000976V  
0
0
0
0
1000 0000 0001  
1000 0000 0000  
0111 1111 1111  
0111 1111 1110  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
1111 1111 1110  
DATA  
FROM  
LATCH  
PREDRIVER  
LOGIC  
43  
TYPICAL  
DATA  
OUTPUT  
OE  
OGND  
–0.999512V  
–1.000000V  
<–1.000000V  
0
0
1
0000 0000 0001  
0000 0000 0000  
0000 0000 0000  
1000 0000 0001  
1000 0000 0000  
1000 0000 0000  
22201 F13a  
Figure 13a. Digital Output Buffer in CMOS Mode  
22201fa  
23  
LTC2220/LTC2221  
W U U  
U
APPLICATIO S I FOR ATIO  
As with all high speed/high resolution converters, the  
digital output loading can affect the performance. The  
digital outputs of the LTC2220/LTC2221 should drive a  
minimal capacitive load to avoid possible interaction be-  
tween the digital outputs and sensitive input circuitry. The  
output should be buffered with a device such as an  
ALVCH16373 CMOS latch. For full speed operation the  
capacitive load should be kept under 10pF.  
Data Format  
The LTC2220/LTC2221 parallel digital output can be se-  
lected for offset binary or 2’s complement format. The  
format is selected with the MODE pin. Connecting MODE  
to GND or 1/3VDD selects offset binary output format.  
Connecting MODE to 2/3VDD or VDD selects 2’s comple-  
ment output format. An external resistor divider can be  
used to set the 1/3VDD or 2/3VDD logic values. Table 3  
shows the logic states for the MODE pin.  
Lower OVDD voltages will also help reduce interference  
from the digital outputs.  
Table 3. MODE Pin Function  
Clock Duty  
MODE Pin  
Digital Output Buffers (LVDS Mode)  
Output Format  
Cycle Stablizer  
Figure 13b shows an equivalent circuit for a differential  
output pair in the LVDS output mode. A 3.5mA current is  
steered from OUT+ to OUTor vice versa which creates a  
±350mV differential voltage across the 100termination  
resistor at the LVDS receiver. A feedback loop regulates  
the common mode output voltage to 1.25V. For proper  
operation each LVDS output pair needs an external 100Ω  
termination resistor, even if the signal is not used (such as  
OF+/OFor CLKOUT+/CLKOUT). To minimize noise the  
PC board traces for each LVDS output pair should be  
routedclosetogether.TominimizeclockskewallLVDSPC  
board traces should have about the same length.  
0
Offset Binary  
Off  
On  
On  
Off  
1/3V  
2/3V  
Offset Binary  
DD  
DD  
2’s Complement  
2’s Complement  
V
DD  
Overflow Bit  
An overflow output bit indicates when the converter is  
overranged or underranged. In CMOS mode, a logic high  
on the OFA pin indicates an overflow or underflow on the  
A data bus, while a logic high on the OFB pin indicates an  
overflow or underflow on the B data bus. In LVDS mode,  
a differential logic high on the OF+/OFpins indicates an  
overflow or underflow.  
LTC2220/LTC2221  
OV  
DD  
Output Clock  
The ADC has a delayed version of the ENC+ input available  
as a digital output, CLKOUT. The CLKOUT pin can be used  
tosynchronizetheconverterdatatothedigitalsystem.This  
is necessary when using a sinusoidal encode. In all CMOS  
modes,AbusdatawillbeupdatedjustafterCLKOUTArises  
andcanbelatchedonthefallingedgeofCLKOUTA.Indemux  
CMOS mode with interleaved update, B bus data will be  
updatedjustafterCLKOUTBrisesandcanbelatchedonthe  
falling edge of CLKOUTB. In demux CMOS mode with si-  
multaneous update, B bus data will be updated just after  
CLKOUTB falls and can be latched on the rising edge of  
CLKOUTB. In LVDS mode, data will be updated just after  
CLKOUT+/CLKOUTrises and can be latched on the falling  
edge of CLKOUT+/CLKOUT.  
D
D
D
+
OUT  
+
10k  
10k  
100  
1.25V  
LVDS  
RECEIVER  
OUT  
D
3.5mA  
OGND  
22201 F13b  
Figure 13b. Digital Output in LVDS Mode  
22201fa  
24  
LTC2220/LTC2221  
W U U  
APPLICATIO S I FOR ATIO  
U
35mW. In nap mode, the on-chip reference circuit is kept  
on,sothatrecoveryfromnapmodeisfasterthanthatfrom  
sleepmode,typicallytaking100clockcycles.Inbothsleep  
and nap mode all digital outputs are disabled and enter the  
Hi-Z state.  
Output Driver Power  
Separate output power and ground pins allow the output  
drivers to be isolated from the analog circuitry. The power  
supply for the digital output buffers, OVDD, should be tied  
to the same power supply as for the logic being driven. For  
exampleiftheconverterisdrivingaDSPpoweredbya1.8V  
supply then OVDD should be tied to that same 1.8V supply.  
GROUNDING AND BYPASSING  
TheLTC2220/LTC2221requiresaprintedcircuitboardwith  
a clean unbroken ground plane. A multilayer board with an  
internal ground plane is recommended. Layout for the  
printed circuit board should ensure that digital and analog  
signal lines are separated as much as possible. In particu-  
lar,careshouldbetakennottorunanydigitalsignalalong-  
side an analog signal or underneath the ADC.  
In the CMOS output mode, OVDD can be powered with any  
voltageupto3.6V. OGNDcanbepoweredwithanyvoltage  
from GND up to 1V and must be less than OVDD. The logic  
outputs will swing between OGND and OVDD.  
In the LVDS output mode, OVDD should be connected to a  
3.3V supply and OGND should be connected to GND.  
High quality ceramic bypass capacitors should be used at  
theVDD,OVDD,VCM,REFHA,REFHB,REFLAandREFLBpins  
asshownintheblockdiagramonthefrontpageofthisdata  
sheet. Bypass capacitors must be located as close to the  
pins as possible. Of particular importance are the capaci-  
tors between REFHA and REFLB and between REFHB and  
REFLA. These capacitors should be as close to the device  
aspossible(1.5mmorless).Size0402ceramiccapacitors  
arerecommended.The2.2µFcapacitorbetweenREFHAand  
REFLAcanbesomewhatfurtheraway.Thetracesconnect-  
ing the pins and bypass capacitors must be kept short and  
should be made as wide as possible.  
Output Enable  
Theoutputsmaybedisabledwiththeoutputenablepin,OE.  
In CMOS or LVDS output modes OE high disables all data  
outputsincludingOFandCLKOUT.Thedataaccessandbus  
relinquish times are too slow to allow the outputs to be  
enabledanddisabledduringfullspeedoperation.Theoutput  
Hi-Z state is intended for use during long periods of  
inactivity.  
TheHi-Zstateisnotatrulyopencircuit;theoutputpinsthat  
make an LVDS output pair have a 20k resistance between  
them. Therefore in the CMOS output mode, adjacent data  
bits will have 20k resistance in between them, even in the  
Hi-Z state.  
The LTC2220/LTC2221 differential inputs should run par-  
allel and close to each other. The input traces should be as  
shortaspossibletominimizecapacitanceandtominimize  
noise pickup.  
Sleep and Nap Modes  
The converter may be placed in shutdown or nap modes  
to conserve power. Connecting SHDN to GND results in  
normaloperation. ConnectingSHDNtoVDD andOEtoVDD  
results in sleep mode, which powers down all circuitry  
includingthereferenceandtypicallydissipates1mW.When  
exiting sleep mode it will take milliseconds for the output  
datatobecomevalidbecausethereferencecapacitorshave  
torechargeandstabilize. ConnectingSHDNtoVDD andOE  
to GND results in nap mode, which typically dissipates  
HEAT TRANSFER  
Most of the heat generated by the LTC2220/LTC2221 is  
transferred from the die through the bottom-side exposed  
pad and package leads onto the printed circuit board. For  
goodelectricalandthermalperformance, theexposedpad  
shouldbesolderedtoalargegroundedpadonthePCboard.  
It is critical that all ground pins are connected to a ground  
plane of sufficient area.  
22201fa  
25  
LTC2220/LTC2221  
W U U  
U
APPLICATIO S I FOR ATIO  
Clock Sources for Undersampling  
must be very stable, or propagation delay variation with  
supply will translate into phase noise. Even though these  
clock sources may be regarded as digital devices, do not  
operate them on a digital supply. If your clock is also used  
todrivedigitaldevicessuchasanFPGA, youshouldlocate  
the oscillator, and any clock fan-out devices close to the  
ADC, and give the routing to the ADC precedence. The  
clock signals to the FPGA should have series termination  
at the source to prevent high frequency noise from the  
FPGA disturbing the substrate of the clock fan-out device.  
If you use an FPGA as a programmable divider, you must  
re-time the signal using the original oscillator, and the re-  
timing flip-flop as well as the oscillator should be close to  
the ADC, and powered with a very quiet supply.  
Undersampling raises the bar on the clock source and the  
higher the input frequency, the greater the sensitivity to  
clock jitter or phase noise. A clock source that degrades  
SNR of a full-scale signal by 1dB at 70MHz will degrade  
SNR by 3dB at 140MHz, and 4.5dB at 190MHz.  
In cases where absolute clock frequency accuracy is  
relatively unimportant and only a single ADC is required,  
a 3V canned oscillator from vendors such as Saronix or  
Vectron can be placed close to the ADC and simply  
connected directly to the ADC. If there is any distance to  
the ADC, some source termination to reduce ringing that  
mayoccurevenoverafractionofaninchisadvisable.You  
must not allow the clock to overshoot the supplies or  
performance will suffer. Do not filter the clock signal with  
a narrow band filter unless you have a sinusoidal clock  
source, as the rise and fall time artifacts present in typical  
digital clock signals will be translated into phase noise.  
For cases where there are multiple ADCs, or where the  
clock source originates some distance away, differential  
clock distribution is advisable. This is advisable both from  
the perspective of EMI, but also to avoid receiving noise  
from digital sources both radiated, as well as propagated  
in the waveguides that exist between the layers of multi-  
layer PCBs. The differential pairs must be close together,  
and distanced from other signals. The differential pair  
should be guarded on both sides with copper distanced at  
least 3x the distance between the traces, and grounded  
with vias no more than 1/4 inch apart.  
The lowest phase noise oscillators have single-ended  
sinusoidal outputs, and for these devices the use of a filter  
close to the ADC may be beneficial. This filter should be  
close to the ADC to both reduce roundtrip reflection times,  
as well as reduce the susceptibility of the traces between  
thefilterandtheADC. Ifyouaresensitivetoclose-inphase  
noise, the power supply for oscillators and any buffers  
22201fa  
26  
LTC2220/LTC2221  
W U U  
APPLICATIO S I FOR ATIO  
U
22201fa  
27  
LTC2220/LTC2221  
W U U  
U
APPLICATIO S I FOR ATIO  
Silkscreen Top  
22201fa  
28  
LTC2220/LTC2221  
W U U  
APPLICATIO S I FOR ATIO  
U
Layer 1 Component Side  
Layer 2 GND Plane  
22201fa  
29  
LTC2220/LTC2221  
W U U  
U
APPLICATIO S I FOR ATIO  
Layer 3 Power Plane  
Layer 4 Bottom Side  
22201fa  
30  
LTC2220/LTC2221  
U
PACKAGE DESCRIPTIO  
UP Package  
64-Lead Plastic QFN (9mm × 9mm)  
(Reference LTC DWG # 05-08-1705)  
0.70 ±0.05  
7.15 ±0.05  
8.10 ±0.05 9.50 ±0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.75 ± 0.05  
R = 0.115  
TYP  
9 .00 ± 0.10  
(4 SIDES)  
63 64  
0.40 ± 0.10  
PIN 1 TOP MARK  
(SEE NOTE 5)  
1
2
PIN 1  
CHAMFER  
7.15 ± 0.10  
(4-SIDES)  
(UP64) QFN 1003  
0.25 ± 0.05  
0.50 BSC  
0.200 REF  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION WNJR-5  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
BOTTOM VIEW—EXPOSED PAD  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
6. DRAWING NOT TO SCALE  
22201fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
31  
LTC2220/LTC2221  
RELATED PARTS  
PART NUMBER  
LTC1748  
DESCRIPTION  
COMMENTS  
14-Bit, 80Msps, 5V ADC  
14-Bit, 80Msps, 5V Wideband ADC  
High Speed Differential Op Amp  
76.3dB SNR, 90dB SFDR, 48-Pin TSSOP Package  
Up to 500MHz IF Undersampling, 90dB SFDR  
800MHz BW, 70dBc Distortion at 70MHz, 6dB Gain  
Low Distortion: –94dBc at 1MHz  
LTC1750  
LT1993-2  
LT®1994  
Low Noise, Low Distortion Fully Differential Input/  
Output Amplifier/Driver  
LTC2202  
LTC2208  
LTC2220  
LTC2220-1  
LTC2221  
LTC2224  
LTC2230  
LTC2231  
LTC2255  
LTC2284  
LT5512  
16-Bit, 10Msps, 3.3V ADC, Lowest Noise  
16-Bit, 130Msps, 3.3V ADC, LVDS Outputs  
12-Bit, 170Msps, 3.3V ADC, LVDS Outputs  
12-Bit, 185Msps, 3.3V ADC, LVDS Outputs  
12-Bit, 135Msps, 3.3V ADC, LVDS Outputs  
12-Bit, 135Msps, 3.3V ADC, High IF Sampling  
10-Bit, 170Msps, 3.3V ADC, LVDS Outputs  
10-Bit, 135Msps, 3.3V ADC, LVDS Outputs  
14-Bit, 125Msps, 3V ADC, Lowest Power  
14-Bit, Dual, 105Msps, 3V ADC, Low Crosstalk  
DC-3GHz High Signal Level Downconverting Mixer  
150mW, 81.6dB SNR, 100dB SFDR, 48-pin QFN  
1250mW, 78dB SNR, 100dB SFDR, 64-pin QFN  
890mW, 67.7dB SNR, 84dB SFDR, 64-pin QFN  
910mW, 67.7dB SNR, 80dB SFDR, 64-pin QFN  
660mW, 67.8dB SNR, 84dB SFDR, 64-pin QFN  
630mW, 67.6dB SNR, 84dB SFDR, 48-pin QFN  
890mW, 61.2dB SNR, 78dB SFDR, 64-pin QFN  
660mW, 61.2dB SNR, 78dB SFDR, 64-pin QFN  
395mW, 72.5dB SNR, 88dB SFDR, 32-pin QFN  
540mW, 72.4dB SNR, 88dB SFDR, 64-pin QFN  
DC to 3GHz, 21dBm IIP3, Integrated LO Buffer  
LT5514  
Ultralow Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
450MHz to 1dB BW, 47dB OIP3, Digital Gain Control  
10.5dB to 33dB in 1.5dB/Step  
LT5515  
LT5516  
LT5517  
LT5522  
1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator High IIP3: 20dBm at 1.9GHz, Integrated LO Quadrature Generator  
800MHz to 1.5GHz Direct Conversion Quadrature Demodulator High IIP3: 21.5dBm at 900MHz, Integrated LO Quadrature Generator  
40MHz to 900MHz Direct Conversion Quadrature Demodulator High IIP3: 21dBm at 800MHz, Integrated LO Quadrature Generator  
600MHz to 2.7GHz High Linearity Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz. NF = 12.5dB, 50Ω  
Single Ended RF and LO Ports  
22201fa  
LT 0106 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
32  
© LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2220IUP#TR

LTC2220 - 12-Bit, 170Msps ADCs; Package: QFN; Pins: 64; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2220IUP#TRPBF

LTC2220 - 12-Bit, 170Msps ADCs; Package: QFN; Pins: 64; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2220IUP-1

12-Bit,185Msps ADC
Linear

LTC2220IUP-1#PBF

LTC2220-1 - 12-Bit, 185Msps ADC; Package: QFN; Pins: 64; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2220_15

12-Bit,170Msps/ 135Msps ADCs
Linear

LTC2221

14-Bit, 125/105Msps Low Power 3V ADCs
Linear

LTC2221CUP

LTC2221 - 12-Bit, 135Msps ADCs; Package: QFN; Pins: 64; Temperature Range: 0&deg;C to 70&deg;C
ADI

LTC2221CUP#PBF

LTC2221 - 12-Bit, 135Msps ADCs; Package: QFN; Pins: 64; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2221CUP#TRPBF

12-Bit, 135Msps ADCs
ADI

LTC2221IUP

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, PQCC64
ADI

LTC2221IUP#PBF

LTC2221 - 12-Bit, 135Msps ADCs; Package: QFN; Pins: 64; Temperature Range: -40&deg;C to 85&deg;C
ADI

LTC2221IUP#TRPBF

LTC2221 - 12-Bit, 135Msps ADCs; Package: QFN; Pins: 64; Temperature Range: -40&deg;C to 85&deg;C
Linear