LTC3250-1.5 [ADI]

High Voltage Boost Charge Pump;
LTC3250-1.5
型号: LTC3250-1.5
厂家: ADI    ADI
描述:

High Voltage Boost Charge Pump

文件: 总14页 (文件大小:1441K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3290  
High Voltage Boost  
Charge Pump  
FEATURES  
DESCRIPTION  
The LTC®3290 is a high voltage boost charge pump with  
a wide 4.5V to 55V input voltage range that can deliver  
up to 50mA of output current.  
n
Wide Input Range: 4.5V to 55V V /V  
IN AUX  
n
n
n
n
n
n
n
n
Reverse Input Protection to –55V  
Split Input Supplies for High Efficiency Boost Ratios  
I
Up to 50mA  
OUT  
When the V  
pin is grounded, the LTC3290 operates  
SET  
15µA V Quiescent Current  
IN  
as a standard boost charge pump, boosting the V  
OUT  
1µA V  
Quiescent Current  
AUX  
output to a maximum of the sum of the V and V  
IN  
AUX  
Stable with Ceramic Capacitors  
input supplies. An external resistor divider can be used  
Short-Circuit/Thermal Protection  
Thermally Enhanced 10-Pin MSOP Package  
on the V , FB and GND pins to set the output voltage  
OUT  
to any value between 1V and V + V  
Burst Mode operation.  
with hysteretic  
IN  
AUX  
APPLICATIONS  
Alternatively,thedevicecanbeconfiguredinaV tracking  
IN  
n
High Efficiency General Purpose High Voltage Boost  
mode, in which the V  
pin regulates at a fixed offset  
OUT  
Supplies  
above the V pin. The offset voltage is programmed with  
IN  
n
High Side N-FET Driver  
external resistors, one from the V  
to the V pin and  
OUT  
SET  
n
Industrial/Automotive Power Switching  
the other from the FB pin to GND. The maximum output  
n
V Tracking Supply  
IN  
voltage is limited to V + V  
.
AUX  
IN  
The LTC3290 is available in a thermally enhanced 10-pin  
MSOP package.  
All registered trademarks and trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
15V Output from a 12V Input (with 5V Auxiliary Input)  
Standard Boost Charge Pump Mode, VSET = 0V  
Efficiency vs Output Current  
ꢑ0  
ꢒ0  
ꢖ0  
ꢓ0  
ꢗ0  
ꢔ0  
ꢘ0  
ꢕ0  
ꢄꢋꢌ  
ꢕꢙ  
ꢕꢘ  
ꢄꢅꢀ  
ꢅꢀ  
ꢁꢂꢃ  
ꢇꢂꢛ  
ꢜꢒ  
0ꢆꢇ ꢃꢁ ꢈ0ꢆꢇ  
ꢄ0ꢋꢌ  
ꢄ0ꢋꢌ  
ꢄ0ꢋꢌ  
ꢕꢖꢈꢗ0  
ꢄ.ꢉꢊ  
ꢄꢈꢀ  
ꢎꢏꢃ  
ꢌꢐ  
ꢜ ꢙꢕꢈ  
ꢜ ꢗꢈ  
ꢂꢄ  
ꢏꢒ  
ꢙ0  
0
ꢎꢊꢏ  
ꢉꢊꢋ  
ꢜ ꢙꢗꢈ  
ꢐꢜꢇꢎ  
ꢚꢑꢁꢁꢓ  
ꢄ00ꢍ  
ꢑꢒꢓ  
ꢉ.ꢝꢋꢌ  
ꢖꢈꢗ0 ꢃꢇ0ꢄ  
0.0ꢙ  
0.ꢙ  
ꢙ0 ꢕ0  
ꢆꢚꢎꢐ  
ꢉꢊꢋ  
ꢘꢕꢑ0 ꢋꢎ0ꢙꢛ  
Rev. 0  
1
Document Feedback  
For more information www.analog.com  
LTC3290  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 3)  
V , EN, V  
.............................................. –60V to 60V  
ꢉꢊꢋ ꢌꢍꢎꢏ  
IN  
AUX  
V to V , V to EN...............................................60V  
V
ꢀ0  
V
V
AUX  
EN  
OUT  
SET  
IN  
AUX IN  
ꢀꢀ  
ꢐꢑꢒ  
+
V
, V .................................................. –0.3V to 60V  
OUT SET  
C
FB  
C
PGOOD  
BIAS  
FB, PGOOD.....................................–0.3V to BIAS + 0.3V  
BIAS............................................................. –0.3V to 6V  
V
IN  
ꢓꢔꢎ ꢋꢕꢖꢗꢕꢐꢎ  
ꢀ0ꢘꢙꢎꢕꢒ ꢋꢙꢕꢔꢉꢍꢖ ꢓꢔꢊꢋ  
ꢜ ꢀꢄ0ꢝꢖꢞ θ ꢜ ꢃꢄꢝꢖꢟꢏ  
ꢚꢕ  
ꢎꢛꢋꢊꢔꢎꢒ ꢋꢕꢒ ꢠꢋꢍꢑ ꢀꢀꢡ ꢍꢔ ꢐꢑꢒꢞ ꢓꢢꢔꢉ ꢣꢎ ꢔꢊꢙꢒꢎRꢎꢒ ꢉꢊ ꢋꢖꢣ  
V
Short-Circuit Duration............................. Indefinite  
OUT  
ꢚꢓꢕꢛ  
Operating Junction Temperature Range  
(Notes 2, 3)............................................ –55°C to 150°C  
Storage Temperature Range ................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3290EMSE#PBF  
LTC3290IMSE#PBF  
LTC3290HMSE#PBF  
LTC3290MPMSE#PBF  
TAPE AND REEL  
PART MARKING*  
LTGZW  
PACKAGE DESCRIPTION  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
TEMPERATURE RANGE  
LTC3290EMSE#TRPBF  
LTC3290IMSE#TRPBF  
LTC3290HMSE#TRPBF  
LTC3290MPMSE#TRPBF  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–55°C to 150°C  
LTGZW  
LTGZW  
LTGZW  
Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
Rev. 0  
2
For more information www.analog.com  
LTC3290  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2), VIN = EN = 12V, VAUX = 5V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Boost Charge Pump  
l
l
l
V
V
Input Supply Voltage Range  
Auxiliary Supply Voltage Range  
Sum of Input Supply Voltages  
4.5  
4.5  
9
55  
55  
55  
67  
V
V
V
IN  
AUX  
(V + V  
)
AUX  
IN  
(V + V )_OV Input Overvoltage Rising Threshold  
(V + V ) Rising, V = Hig  
63  
65  
4
V
V
IN  
AUX  
IN  
AUX  
SET  
Hysteresis  
(Note 4)  
V
Output Overvoltage Rising Threshold  
Hysteresis  
V
Rising  
63  
65  
4
67  
V
V
OUT_OV  
VIN  
OUT  
(Note 4)  
I
I
V
Quiescent Current  
Shutdown, EN = 0V  
3
15  
5
30  
µA  
µA  
IN  
I
= 0mA  
VOUT  
V
Quiescent Current  
Shutdown, EN = 0V  
= 0mA  
1
1
3
3
µA  
µA  
VAUX  
AUX  
I
VOUT  
l
V
FB Regulation Voltage  
0.98  
100  
0.4  
1
65  
150  
1.1  
1
1.02  
V
Ω
mA  
V
FB  
R
Effective Open Loop Output Resistance  
OL  
l
l
l
l
l
I
V
Current Limit  
V Not in Regulation (Note 5)  
OUT  
200  
2
CL_VOUT  
OUT  
V
V
V
V
Enable Pin Threshold Rising  
Enable Pin Threshold Falling  
ENH  
ENL  
V
V
V
Pin Threshold Rising  
Pin Threshold Falling  
1.1  
1
2
V
SETH  
SETL  
SET  
SET  
0.4  
–1  
V
I
Enable Pin Leakage Current  
0
1
µA  
%
%
V
EN  
l
l
V
V
V
V
PGOOD Pin Threshold Rising in Boost  
PGOOD Pin Threshold Falling in Boost  
% of Final Regulation Voltage, V = GND  
95  
91  
–1.5  
–1.6  
98  
PG_RISE_BST  
PG_FALL_BST  
PG_RISE_TRK  
PG_FALL_TRK  
PGOOD_HIGH  
SET  
% of Final Regulation Voltage, V = GND  
88  
–1  
SET  
PGOOD Pin Threshold Rising in Tracking Offset from Programmed V  
PGOOD Pin Threshold Falling in Tracking Offset from Programmed V  
OUT  
OUT  
V
l
l
I
PGOOD Output High Leakage Current  
PGOOD Output Low Voltage  
V
= 3V  
1
µA  
V
PGOOD  
PGOOD  
V
I
= 0.2mA  
0.1  
0.4  
PGOOD_LOW  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
The junction temperature (T , in °C) is calculated from the ambient  
J
temperature (T , in °C) and power dissipation (P , in Watts) according to  
A
D
the formula:  
T = T + (P • θ ),  
J
A
D
JA  
where θ = 45°C/W is the package thermal impedance.  
JA  
Note 2: The LTC3290 is tested under pulsed load conditions such  
that T ≈ T . The LTC3290E is guaranteed to meet specifications from  
Note 3: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperatures will exceed 150°C when overtemperature protection is  
active. Continuous operation above the specified maximum operating  
junction temperature may result in device degradation or failure.  
Note 4: This IC includes overvoltage protection that is intended to protect  
the device during momentary overload conditions. Pin voltages will  
exceed ABSMAX voltage ratings of the part while the protection is active.  
Continuous operation above the ABSMAX voltage ratings may result in  
device degradation or failure.  
J
A
0°C to 85°C junction temperature. Specifications over the –40°C to  
125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTC3290I is guaranteed over the –40°C to 125°C operating junction  
temperature range, the LTC3290H is guaranteed over the –40°C to 150°C  
operating junction temperature range and the LTC3290MP is guaranteed  
over the –55°C to 150°C operating junction temperature range. Note that  
the maximum ambient temperature consistent with these specifications  
is determined by specific operating conditions in conjunction with board  
layout, the rated package thermal impedance and other environmental  
factors.  
Note 5: Current limit is a protection feature. Refer to Available Output  
Current section in Applications Information for additional information.  
During a short-circuit event, the current limit is folded back further to  
reduce power dissipation.  
Rev. 0  
3
For more information www.analog.com  
LTC3290  
TA = 25°C, CFLY = 1µF, CIN = CAUX = COUT = 10µF  
TYPICAL PERFORMANCE CHARACTERISTICS  
unless otherwise noted.  
Quiescent Current vs Temperature  
(Boost Mode)  
Quiescent Current vs Temperature  
(VIN Tracking Mode)  
Shutdown Current vs Temperature  
ꢓꢔ  
ꢓ0  
ꢋꢔ  
ꢋ0  
ꢑꢒ  
ꢑ0  
ꢓꢒ  
ꢓ0  
ꢋꢒ  
ꢋ0  
ꢑ0  
ꢒꢓ  
ꢒ0  
ꢋꢓ  
ꢋ0  
ꢗ ꢓꢓꢖ  
ꢍꢏ  
ꢗ ꢋꢒꢖ  
ꢍꢏ  
ꢗ ꢒꢒꢖ  
ꢍꢏ  
ꢚ ꢔꢔꢘ  
ꢙꢑ  
ꢗ ꢋꢓꢖ  
ꢍꢏ  
ꢚ ꢋꢓꢘ  
ꢙꢑ  
ꢗ ꢘ.ꢓꢖ  
ꢓ0  
ꢗ ꢘ.ꢒꢖ  
ꢍꢏ  
ꢍꢏ  
ꢚ ꢛ.ꢔꢘ  
ꢙꢑ  
0
0
0
ꢊꢋ00 ꢊꢔ0  
0
ꢔ0  
ꢋ00  
ꢋꢔ0  
ꢓ00  
ꢊꢋ00 ꢊꢒ0  
0
ꢒ0  
ꢋ00  
ꢋꢒ0  
ꢓ00  
ꢊꢋ00 ꢊꢓ0  
0
ꢋ00  
ꢋꢓ0  
ꢒ00  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢕꢓꢖ0 ꢗ0ꢋ  
ꢑꢓꢔ0 ꢕ0ꢓ  
ꢑꢒꢔ0 ꢕ0ꢑ  
VOUT Effective Open Loop  
Resistance vs Temperature  
VOUT Current Limit vs Supply  
Voltage  
100  
80  
60  
40  
20  
0
ꢓꢔ0  
ꢓꢕ0  
ꢓꢗ0  
ꢓꢖ0  
ꢓ00  
ꢔ0  
V
V
= 12V  
AUX  
ꢁꢉꢄ ꢀꢁ Rꢌꢋꢃꢆꢊꢄꢀꢉꢁ  
IN  
ꢉꢃꢄ  
= 5V  
ꢕ0  
ꢗ0  
ꢖ0  
0
–100 –50  
0
50  
100  
150  
200  
0
ꢓ0  
ꢖ0  
ꢙ0  
ꢗ0  
ꢘ0  
ꢕ0  
TEMPERATURE (°C)  
ꢀꢁꢂꢃꢄ ꢅꢃꢂꢂꢋꢌ ꢍꢈꢎ  
3290 G04  
ꢙꢖꢚ0 ꢋ0ꢘ  
FB Pin Voltage vs Temperature  
VBIAS vs Supply Voltage  
ꢋ.0ꢔ0  
ꢋ.0ꢋꢕ  
ꢋ.0ꢋ0  
ꢋ.00ꢕ  
ꢋ.000  
0.ꢖꢖꢕ  
0.ꢖꢖ0  
0.ꢖꢗꢕ  
0.ꢖꢗ0  
ꢐ.0  
ꢑ.ꢐ  
ꢑ.0  
ꢒ.ꢐ  
ꢒ.0  
ꢓ.ꢐ  
ꢓ.0  
ꢔ.ꢐ  
ꢔ.0  
0.ꢐ  
0
ꢚ ꢋꢔꢐ  
ꢎꢏ  
ꢊꢋ00 ꢊꢕ0  
0
ꢕ0  
ꢋ00  
ꢋꢕ0  
ꢔ00  
0
ꢔ0  
ꢓ0  
ꢒ0  
ꢑ0  
ꢐ0  
ꢗ0  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄ ꢅꢃꢂꢂꢋꢌ ꢍꢈꢎ  
ꢘꢔꢖ0 ꢓ0ꢙ  
ꢒꢓꢕ0 ꢋ0ꢖ  
Rev. 0  
4
For more information www.analog.com  
LTC3290  
TA = 25°C, CFLY = 1µF, CIN = CAUX = COUT = 10µF  
TYPICAL PERFORMANCE CHARACTERISTICS  
unless otherwise noted.  
VOUT Output Ripple (Boost Mode)  
VOUT Transient (Boost Mode)  
ꢁꢂꢃ  
ꢄ00ꢅꢀꢆꢇꢈꢀ  
ꢉꢊꢋꢊꢁꢂꢌꢍꢎꢇ  
ꢁꢂꢃ  
ꢄ00ꢅꢀꢆꢇꢈꢀ  
ꢉꢊꢋꢊꢁꢂꢌꢍꢎꢇ  
ꢄ0ꢅꢉ  
ꢀꢁꢂꢃ  
ꢏꢅꢉ  
ꢒꢄꢓ0 ꢔ0ꢕ  
ꢒꢄꢓ0 ꢔ0ꢓ  
ꢄꢏ0ꢐꢑꢆꢇꢈꢀ  
ꢗ ꢏ ꢙ  
ꢄ.ꢐꢅꢑꢆꢇꢈꢀ  
ꢗ ꢘꢄ ꢙ ꢀ  
ꢁꢂꢃ  
ꢖ ꢏꢄ ꢗ ꢀ  
ꢁꢂꢃ  
ꢖ ꢐ ꢗ  
ꢉꢂꢘ  
ꢖ ꢏꢅꢉ ꢃꢁ ꢄ0ꢅꢉ  
ꢀꢁꢂꢃ  
ꢈꢖ  
ꢉꢂꢚ  
ꢈꢕ  
ꢗ ꢘꢏ ꢙ ꢈ  
ꢗ ꢄ0ꢅꢉ  
ꢖ ꢏꢐ ꢗ ꢈ  
ꢀꢁꢂꢃ  
VOUT Output Ripple  
(Tracking Mode)  
VOUT Transient (Tracking Mode)  
ꢁꢂꢃ  
ꢄ00ꢅꢀꢆꢇꢈꢀ  
ꢉꢊꢋꢊꢁꢂꢌꢍꢎꢇ  
ꢁꢂꢃ  
ꢄ00ꢅꢀꢆꢇꢈꢀ  
ꢉꢊꢋꢊꢁꢂꢌꢍꢎꢇ  
ꢄ0ꢅꢉ  
ꢀꢁꢂꢃ  
ꢏꢅꢉ  
ꢒꢄꢓ0 ꢔꢕ0  
ꢒꢄꢓ0 ꢔꢏꢏ  
ꢄꢏ0ꢐꢑꢆꢇꢈꢀ  
ꢗ ꢕꢄ ꢘ  
ꢄ.ꢐꢅꢑꢆꢇꢈꢀ  
ꢖ ꢏꢄ ꢗ  
ꢗ ꢕꢄ ꢘ ꢀ  
ꢖ ꢏꢄ ꢗ ꢀ  
ꢉꢂꢘ  
ꢈꢖ  
ꢉꢂꢙ  
ꢈꢕ  
ꢗ ꢛꢀ ꢜ ꢕ0ꢀꢝꢘ ꢈ  
ꢗ ꢄ0ꢅꢉ  
ꢖ ꢚꢀ ꢛ ꢏ0ꢀꢜꢗ ꢈ  
ꢖ ꢏꢅꢉ ꢃꢁ ꢄ0ꢅꢉ  
ꢁꢂꢃ  
ꢈꢖ  
ꢀꢁꢂꢃ  
ꢁꢂꢃ  
ꢈꢕ  
ꢀꢁꢂꢃ  
Rev. 0  
5
For more information www.analog.com  
LTC3290  
PIN FUNCTIONS  
V
(Pin 1): Auxiliary Input Supply Voltage. V  
should  
AUX  
pin servos to 1V to achieve the desired output voltage at  
the V pin. In tracking mode, an external resistor from  
AUX  
be bypassed with a low impedance ceramic capacitor.  
OUT  
the FB pin to GND generates a reference current. This  
EN (Pin 2): Enable Logic Input. A logic high on the EN pin  
enables the part and regulates the output voltage to the  
desired value depending on the circuit configuration and  
current is replicated at the V pin. An external resistor  
SET  
from V  
OUT  
to the V pin sets the effective voltage at the  
OUT  
SET  
V
Pin. This configuration is used in the tracking mode,  
the state of the V pin. Do not float this pin.  
SET  
when V  
above the input voltage V .  
is desired to be set to a fixed offset voltage  
OUT  
+
C (Pin 3): Flying Capacitor Positive Connection.  
IN  
C (Pin 4): Flying Capacitor Negative Connection.  
V
(Pin 9): Output Voltage Set Pin. An external resis-  
SET  
tor from this pin to the V  
pin sets the output voltage  
OUT  
V (Pin 5): Input Supply Voltage. V should be bypassed  
IN  
IN  
of the part in V tracking mode. For conventional boost  
IN  
with a low impedance ceramic capacitor.  
charge pump operation, this pin must be grounded. Do  
BIAS (Pin 6): Internal BIAS Voltage, 4.5V (typ). Connect  
this pin to a 4.7µF bypass capacitor to GND. A ceramic  
capacitor of at least 6.3V rating is recommended. The bias  
pin is for internal operation only and should not be loaded  
or driven externally.  
not float this pin.  
V
(Pin10):OutputVoltage.Thispinshouldbebypassed  
OUT  
with a low impedance ceramic capacitor to GND in normal  
boost charge pump mode or to the V pin in V track-  
IN  
IN  
OUT  
ing mode. When the V pin is set to GND, the V  
pin  
SET  
PGOOD (Pin 7): Power Good Output. This open drain  
output is low when the part is enabled and the output is  
not in regulation. Once the part reaches regulation, this  
pin transitions to a Hi-Z state. An external resistor pull-up  
to a suitable voltage ≤ 3.6V is required to interface this pin  
with external circuitry such as a microprocessor.  
voltage is set by an external divider between the V , FB  
OUT  
and GND pins. In V tracking mode, the V  
pin oper-  
IN  
OUT  
ates at a fixed offset voltage above the V pin. The value  
IN  
of the offset voltage is set by a pair of external resistors,  
one from the V  
the FB pin to GND.  
pin to the V  
pin and another from  
OUT  
SET  
FB (Pin 8): Feedback Input Voltage. When the V pin is  
SET  
GND(ExposedPadPin11):Ground.Theexposedpackage  
is ground and must be soldered to the PC board ground  
plane for proper functionality and for rated thermal per-  
formance.  
settoGND,theFBpinfunctionsasaconventionalfeedback  
input pin. An external resistor divider from the V  
pin  
OUT  
pin. The FB  
to GND sets the output voltage at the V  
OUT  
Rev. 0  
6
For more information www.analog.com  
LTC3290  
BLOCK DIAGRAM  
ꢎ0  
ꢓꢔꢃ  
ꢌꢔꢚ  
ꢁꢎ  
ꢁꢇ  
ꢁꢈ  
ꢋꢅ  
ꢊꢓꢓꢁꢃ  
ꢑꢛꢌRꢄꢂ  
ꢖꢔꢜꢖ  
ꢁꢒ  
ꢁꢂꢃ  
ꢈꢕ0ꢝꢛꢞ  
ꢋꢅꢃꢂRꢅꢌꢟ  
ꢓꢁꢑ  
ꢑꢛꢌRꢄꢂ ꢖꢔꢜꢖ  
ꢌꢅꢆ  
ꢋꢅꢖꢔꢃ ꢟꢓꢄꢋꢑ  
ꢂꢅ  
ꢎꢀ  
Rꢂꢘ  
ꢘꢊ  
ꢊꢋꢌꢁ  
ꢋꢅꢃꢂRꢅꢌꢟ  
ꢊꢋꢌꢁ  
ꢖꢄꢓꢓꢆ  
Rꢂꢘ  
ꢖꢄꢓꢓꢆ  
0
ꢓꢁ  
ꢋꢅ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢄꢅꢆ  
ꢎꢎ  
ꢇꢈꢉ0 ꢊꢆ  
Rev. 0  
7
For more information www.analog.com  
LTC3290  
(Refer to the Block Diagram)  
OPERATION  
ꢎ  
The LTC3290 is a high voltage boost charge pump that  
uses an input power supply and an auxiliary supply to  
generate high efficiency boosted output voltages. It sup-  
ports a wide input power supply range from 4.5V to 55V  
and a wide auxiliary power supply range from 4.5V to 55V  
to generate boosted output voltages up to 55V.  
ꢇꢕ  
ꢇꢔ  
ꢁꢂꢃ  
ꢄꢂꢅ  
ꢄꢂꢅ  
ꢗꢐ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢄꢂꢅ  
ꢗꢐ  
ꢇꢒꢆꢓ0  
Rꢆ  
Rꢈ  
ꢗꢐ  
ꢉꢊꢃ  
ꢋꢌ  
Shutdown Mode  
ꢊꢐ  
ꢌꢗꢄꢉ  
ꢖꢏꢁꢁꢑ  
In shutdown mode, all circuitry except the internal bias  
is turned off. The LTC3290 is in shutdown when a logic  
low is applied to the enable input (EN). The LTC3290 only  
ꢏꢐꢑ  
ꢌꢗꢄꢉ  
ꢒꢆꢓ0 ꢋ0ꢆ  
Figure 1. Boost Charge Pump with VOUT Regulation  
draws 3µA (typ.) from the V supply in shutdown. If the  
IN  
V
pin is tied to V it draws an additional 1µA (typ.)  
AUX  
in shutdown.  
IN  
V Tracking Mode  
IN  
The LTC3290 can be configured to set the V  
voltage  
OUT  
Charge Pump Operation and V  
Regulation  
to track the V voltage with a fixed offset as shown in  
OUT  
IN  
Figure 2.  
The LTC3290 boost charge pump provides low power  
BurstMode® operation.Theboostchargepumpandoscilla-  
tor circuit are enabled using the EN pin. At the beginning of  
a clock cycle, switches S1 and S4 are closed. The external  
ꢁꢂꢃ  
ꢎ  
+
flying capacitor across the C and C pins is charged to the  
V
supply.Inthesecondphaseoftheclockcycle,switches  
AUX  
S1andS4areopened,whileswitchesS2andS3areclosed.  
ꢇꢔ  
ꢇꢓ  
ꢁꢂꢃ  
ꢄꢅ  
ꢄꢅ  
ꢁꢂꢃ  
In this configuration the C side of the flying capacitor is  
ꢄꢅ  
ꢇꢑꢆꢒ0  
Rꢆ  
Rꢈ  
+
connected to V and charge is delivered through the C  
IN  
ꢊꢅ  
ꢉꢊꢃ  
ꢋꢌ  
pin to V . An external resistor divider from V  
to the  
pin.  
OUT  
OUT  
ꢖꢂꢗ  
ꢖꢂꢗ  
FB and GND pins sets the output voltage at the V  
OUT  
ꢖꢂꢗ  
ꢌꢄꢖꢉ  
ꢕꢏꢁꢁꢐ  
The V  
output voltage is given by  
ꢏꢅꢐ  
OUT  
ꢌꢄꢖꢉ  
ꢑꢆꢒ0 ꢋ0ꢑ  
R2  
R1  
V
= 1V •  
+1  
OUT  
Figure 2. Boost Charge Pump with VIN Tracking  
Once the V  
voltage reaches its programmed value, the  
The V  
output voltage in this configuration is given by  
OUT  
OUT  
part shuts down the internal oscillator to reduce switch-  
ing losses and goes into a low current state. This state is  
referred to as the sleep state in which the part consumes  
R2  
R1  
V
= V +1V •  
IN  
OUT  
onlyabout1AfromtheV pin. Whentheoutputvoltage  
IN  
In this configuration, the FB pin servos to 1V. This voltage  
combinedwiththeexternalresistorR1createsareference  
current which is mirrored into the other external resistor  
(R2) between the V  
of these two resistors creates a fixed offset voltage above  
droops enough to overcome the burst comparator hys-  
teresis, the part wakes up and commences boost charge  
pump cycles until the V  
output voltage exceeds the  
OUT  
and V  
pins. The combination  
OUT  
SET  
V
OUT  
programmed voltage. For low current operation, it  
is important to note that the external divider adds a cur-  
rent equal to 2 • (1V/R1) to the total quiescent current.  
Recommended range of values for R1 is 100k to 500k.  
V
at the V  
pin. The magnitude of this offset is set  
IN  
OUT  
only by external resistors R1 and R2. The auxiliary sup-  
Rev. 0  
8
For more information www.analog.com  
LTC3290  
(Refer to the Block Diagram)  
OPERATION  
ply (V ) serves as an upper maximum for the offset  
Short-Circuit/Thermal Protection  
AUX  
voltage. R2 and R1 values must be chosen such that the  
The LTC3290 has built-in short-circuit current limit as  
well as overtemperature protection. During an overcurrent  
condition, thepartautomaticallylimitsoutputcurrentfrom  
offset voltage does not exceed V . For low quiescent  
AUX  
current operation, it is important to note that the external  
divider adds a current equal to 2 • (1V/R1) to the total  
quiescent current. Recommended range of values for R1  
is 100k to 500k.  
the V  
pin to 150mA (typ). In the event of a short-circuit  
OUT  
OUT  
on the V  
pin, the output current is dialed back to further  
reduce power dissipation. If the junction temperature ex-  
ceedsapproximately175°Cthethermalshutdowncircuitry  
disables current delivery to the output. Once the junction  
temperature drops back to approximately 165°C, current  
delivery to the output resumes. When thermal protection  
is active the junction temperature is beyond the specified  
operating range. Thermal protection is intended for mo-  
mentary overload conditions outside of normal operation.  
Continuous operation above the specified maximum op-  
erating junction temperature may impair device reliability.  
Soft-Start  
The LTC3290 has built in soft-start circuitry to prevent  
excessive current flow during start-up. The soft-start is  
achievedbyinternalcircuitrythatslowlyrampstheamount  
of current available at the output storage capacitors on the  
V
pin. The soft-start circuitry is reset in the event of a  
OUT  
commanded shutdown or thermal shutdown.  
APPLICATIONS INFORMATION  
Available Output Current  
100  
V
V
= 12V  
AUX  
IN  
= 5V  
For the LTC3290, the available output current can be  
calculated from the effective open-loop output resistance,  
80  
60  
40  
20  
0
R , and the effective output voltage, (V + V  
)
.
OL  
IN  
AUX (MIN)  
From Figure 3, the available current is given by:  
V + V  
– V  
OUT  
(
)
IN  
AUX  
I
=
OUT  
R
OL  
–100 –50  
0
50  
100  
150  
200  
R
OL  
TEMPERATURE (°C)  
+
3290 F04  
+
(V + V  
IN  
)
I
V
OUT  
AUX  
OUT  
Figure 4. Typical ROL vs Temperature  
Input/Output Capacitor Selection  
3290 F03  
ThestyleandvalueofthecapacitorsusedwiththeLTC3290  
determine several important parameters such as output  
ripple, charge pump strength and minimum turn-on time.  
To reduce noise and ripple, it is recommended that low  
ESR ceramic capacitors be used for the charge pump  
Figure 3. Equivalent Open-Loop Circuit  
The value of the R depends on many factors such as the  
OL  
internal oscillator frequency (f ), the value of the flying  
OSC  
capacitor (C ), the nonoverlap time, the internal switch  
FLY  
output. C  
should retain at least 5µF of capacitance over  
resistances (R ) and the ESR of the external capacitors.  
OUT  
S
operating temperature and bias voltage. In Boost Mode,  
tantalum and aluminum capacitors can be used in parallel  
Typical R values of the boost charge pump as a function  
of temperature are shown in Figure 4.  
OL  
Rev. 0  
9
For more information www.analog.com  
LTC3290  
APPLICATIONS INFORMATION  
with a ceramic capacitor to increase the total capacitance  
but should not be used alone because of their high ESR.  
60% or more of their capacitance when the rated voltage  
isapplied.Thereforewhencomparingdifferentcapacitors,  
it is often more appropriate to compare the amount of  
achievable capacitance for a given case size rather than  
discussing the specified capacitance value. The capacitor  
manufacture’s data sheet should be consulted to ensure  
the desired capacitance at all temperatures and voltages.  
Below is a list of ceramic capacitor manufacturers and  
their websites.  
Increasing the size of C  
will reduce the output ripple  
OUT  
at the expense of higher minimum turn-on time.  
Just as the value of C controls the amount of output  
OUT  
ripple, the values of C and C  
control the amount of  
AUX  
IN  
ripplepresentattheinputpins(V andV ).Theamount  
IN  
AUX  
of bypass capacitance required at the input depends on  
the source impedance driving V and V . For best re-  
IN  
IN  
AUX  
AUX  
sults it is recommended that V and V  
be bypassed  
AVX  
www.avxcorp.com  
www.kemet.com  
with at least 5µF of low ESR capacitance. A high ESR  
capacitor such as tantalum or aluminum will have higher  
input noise than a low ESR ceramic capacitor. Therefore,  
a ceramic capacitor is recommended as the main bypass  
capacitance with a tantalum or aluminum capacitor used  
in parallel if desired.  
Kemet  
Murata  
Taiyo Yuden  
Vishay  
TDK  
www.murata.com  
www.t-yuden.com  
www.vishay.com  
www.component.tdk.com  
Layout Considerations  
Flying Capacitor Selection  
Due to high switching frequency and high transient cur-  
rents produced by the LTC3290, careful board layout is  
necessary for optimum performance. A true ground plane  
and short connections to all the external capacitors will  
improve performance and ensure proper regulation under  
all conditions. Figure 5 shows an example layout for the  
LTC3290.  
The flying capacitor (C ) controls the strength of the  
FLY  
charge pumps. A 1µF or greater ceramic capacitor is sug-  
gested for the flying capacitor for applications requiring  
the full rated output current of the charge pump. Polarized  
capacitors such as aluminum or tantalum should not be  
used for C because the voltage on C can reverse  
FLY  
FLY  
during startup.  
+
TheflyingcapacitornodesC ,andC switchlargecurrents  
at a high frequency. These nodes should not be routed  
For very light load applications, the flying capacitor may  
be reduced to save space or cost. For example, a 0.2µF  
capacitormightbesufficientforloadcurrentsupto10mA.  
A smaller flying capacitor leads to a larger effective open  
close to sensitive pins such as FB and V pins.  
SET  
Thermal Management  
loop resistance (R ) and thus limits the maximum load  
OL  
At high input voltages and maximum output current, there  
can be substantial power dissipation in the LTC3290. If  
the junction temperature increases above approximately  
175°C, the thermal shutdown circuitry will automatically  
deactivate the output. To reduce the maximum junction  
temperature, a good thermal connection to the PC board  
groundplaneisrecommended.Connectingtheexposedpad  
of the package to a ground plane under the device on two  
layers of the PC board can reduce the thermal resistance  
of the package and PC board considerably.  
current that can be delivered by the charge pump.  
Ceramic Capacitors  
Ceramiccapacitorsofdifferentmaterialslosetheircapaci-  
tancewithhighertemperatureandvoltageatdifferentrates.  
For example, a capacitor made of X5R or X7R material  
will retain most of its capacitance from –40°C to 85°C  
whereasaZ5UorY5Vstylecapacitorwillloseconsiderable  
capacitance over that range. Z5U and Y5V capacitors may  
also have a poor voltage coefficient causing them to lose  
Rev. 0  
10  
For more information www.analog.com  
LTC3290  
APPLICATIONS INFORMATION  
ꢔ.0  
ꢎ.0  
ꢗ.0  
ꢕ.0  
ꢘ.0  
ꢖ.0  
0
θ
ꢝ ꢗꢎꢊꢋꢞꢑ  
ꢜꢀ  
ꢉꢊꢋ  
ꢆꢟꢄRꢁꢀꢠ  
ꢓꢟꢈꢆꢒꢐꢑꢅ  
ꢄꢂꢅ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢄꢂꢅ  
ꢆ ꢝ ꢖꢛꢎꢊꢋ  
Rꢆ  
Rꢄꢋꢐꢁꢁꢄꢅꢒꢄꢒ  
ꢐꢇꢄRꢀꢆꢃꢐꢅ  
ꢆ ꢝ ꢖꢎ0ꢊꢋ  
ꢎ  
Rꢈ  
ꢍꢎꢏ  
ꢌꢊ  
ꢍꢎ0 ꢍꢘꢎ  
0
ꢘꢎ ꢎ0 ꢛꢎ ꢖ00 ꢖꢘꢎ ꢖꢎ0 ꢖꢛꢎ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉꢊꢋꢌ  
ꢕꢘꢙ0 ꢚ0ꢔ  
ꢌꢊ  
Figure 6. Maximum Power Dissipation vs Ambient Temperature  
ꢉꢊꢋ  
The power dissipated in the LTC3290 should always fall  
under the recommended operation line shown for a given  
ambient temperature.  
V
IN  
TRACKING LAYOUT  
Power dissipated in the LTC3290:  
ꢉꢊꢋ  
P = (V + V  
– V ) • I  
OUT OUT  
D
IN  
AUX  
ꢄꢂꢅ  
where I  
denotes the output load current.  
OUT  
ꢄꢂꢅ  
ꢁꢂꢃ  
ꢁꢂꢃ  
The derating curve in Figure 6 assumes a maximum ther-  
mal resistance, θ , of 45°C/W for the package. This can  
Rꢆ  
JA  
be achieved with a four layer PCB that includes 2oz Cu  
traces and six vias from the exposed pad of the LTC3290  
to the ground plane.  
Rꢈ  
ꢎ  
ꢍꢎꢏ  
ꢌꢊ  
It is recommended that the LTC3290 be operated in the  
region corresponding to T ≤ 150°C for continuous op-  
J
ꢌꢊ  
eration as shown in Figure 6. Operation beyond 150°C  
should be avoided as it may degrade part performance  
andlifetime.Athightemperatures,typicallyaround175°C,  
the part goes into thermal shutdown and all outputs are  
disabled. When the part cools back down to a low enough  
temperature, typically around 165°C, the outputs are re-  
enabled and the part resumes normal operation.  
ꢉꢊꢋ  
ꢐꢆꢑ0 ꢒ0ꢓ  
BOOST LAYOUT  
Figure 5. Recommended Layout  
Derating Power at High Temperatures  
To prevent an overtemperature condition in high power  
applications, Figure 6 should be used to determine the  
maximumcombinationofambienttemperatureandpower  
dissipation.  
Rev. 0  
11  
For more information www.analog.com  
LTC3290  
TYPICAL APPLICATIONS  
ꢈ0ꢋꢌ  
ꢈꢋꢌ  
ꢕꢇ  
ꢕꢘ  
ꢄꢀ ꢇ ꢈ0ꢀꢉ  
ꢅꢆꢃ  
ꢚꢒ  
ꢁꢂꢃ  
ꢈꢍꢀ  
ꢈ0ꢋꢌ  
ꢈ0ꢋꢌ  
ꢕꢖꢍꢗ0  
ꢈꢊ  
ꢏꢐꢃ  
ꢌꢅ  
ꢆꢂꢛ  
ꢈ00ꢎ  
ꢐꢒ  
ꢅꢚꢆꢏ  
ꢙꢑꢁꢁꢓ  
ꢑꢒꢓ  
ꢜ.ꢝꢋꢌ  
ꢖꢍꢗ0 ꢃꢆ0ꢖ  
Figure 7. 10V Plus Battery Tracking Application  
ꢈꢉꢊ  
ꢔꢗ  
ꢔꢖ  
ꢅꢄꢀ  
ꢄꢅꢀ  
ꢙꢂꢚ  
ꢛꢑ  
ꢁꢂꢃ  
ꢈ0ꢉꢊ  
ꢈ0ꢉꢊ  
ꢈ0ꢉꢊ  
ꢔꢆꢅꢕ0  
ꢄ.ꢆꢅꢇ  
ꢍꢎꢃ  
ꢊꢏ  
ꢎꢑ  
ꢏꢛꢙꢍ  
ꢘꢐꢁꢁꢒ  
ꢈ0ꢋꢌ  
ꢐꢑꢒ  
ꢄ.ꢜꢉꢊ  
ꢆꢅꢕ0 ꢃꢙ0ꢄ  
Figure 8. 24V to 42V Boost  
Q1A  
Q1B  
LOAD  
C6  
+
C
LOAD  
100µF  
1µF  
R6  
10k  
Z1  
18V  
R4  
10Ω  
R5  
10Ω  
R11  
300Ω  
C4  
4.7µF  
R10  
1k  
R7  
100k  
C3  
0.1µF  
Q2  
12V  
LEAD ACID  
BATTERY  
Q3  
C+  
C–  
V
V
OUT  
IN  
R8  
100k  
C1  
1µF  
R1  
499k  
R9  
Q1A, Q1B: Si4946CEY  
Q2, Q3: CMPT3904E  
Z1: CMHZ5248B  
V
SET  
1k  
R2  
100k  
EN  
LTC3290  
1W  
Z2: MMSZ5245B  
EN  
EN  
FB  
3.3V  
V
BIAS  
GND PGOOD  
AUX  
C5  
4.7µF  
C2  
1µF  
Z2  
15V  
R3  
510k  
PGOOD  
3290 TA05  
Figure 9. High Side FET Driver with Inrush Current Limiting and Load Disconnect  
Rev. 0  
12  
For more information www.analog.com  
LTC3290  
PACKAGE DESCRIPTION  
MSE Package  
10-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1664 Rev I)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
1.88  
(.074)  
1.88 ±0.102  
(.074 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
1
0.29  
REF  
1.68  
(.066)  
0.05 REF  
5.10  
(.201)  
MIN  
1.68 ±0.102  
3.20 – 3.45  
DETAIL “B”  
(.066 ±.004) (.126 – .136)  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
10  
NO MEASUREMENT PURPOSE  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ±.0015)  
TYP  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 3)  
0.497 ±0.076  
(.0196 ±.003)  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
REF  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
4.90 ±0.152  
(.193 ±.006)  
DETAIL “A”  
0° – 6° TYP  
0.254  
(.010)  
1
2
3
4 5  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
0.50  
(.0197)  
BSC  
MSOP (MSE) 0213 REV I  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD  
SHALL NOT EXCEED 0.254mm (.010") PER SIDE.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
13  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
For more information www.analog.com  
LTC3290  
TYPICAL APPLICATION  
ꢈ0ꢋꢌ  
VOUT, VIN vs Time  
ꢈꢋꢌ  
ꢐꢎꢄ  
ꢔꢇ  
ꢔꢘ  
ꢄꢀ ꢇ ꢈ0ꢀꢉ  
ꢅꢆ  
ꢅꢆ  
ꢅꢆ  
ꢁꢂꢃ  
ꢌꢍ  
ꢈ0ꢋꢌ  
ꢈ0ꢋꢌ  
ꢅꢎꢏ  
ꢔꢕꢖꢗ0  
ꢈꢊ  
ꢏꢆ  
ꢎꢏꢃ  
ꢌꢐ  
0ꢀ  
ꢈꢖꢀ  
ꢚꢂꢛ  
ꢁꢂꢃ0 ꢄꢅ0ꢂꢆ  
ꢇ00ꢈꢉꢊꢋꢌꢀ  
ꢈ00ꢍ  
ꢑ ꢒꢂꢀ  
ꢅꢎꢏ  
ꢐꢅꢚꢎ  
ꢙꢑꢁꢁꢒ  
Rꢅꢓꢔ ꢕRꢐꢓ 0ꢀ ꢄꢐ ꢇ0ꢀ  
ꢌꢍ  
ꢐꢎꢄ  
ꢐꢎꢄ  
ꢑꢆꢒ  
ꢑ ꢀ ꢖ ꢒ0ꢀ  
ꢜ.ꢝꢋꢌ  
ꢌꢍ  
ꢕꢖꢗ0 ꢃꢚ0ꢖ  
ꢑ ꢒꢈꢅ ꢗꢕRꢐꢓ ꢀ  
ꢄꢐ ꢀ ꢘ  
ꢐꢎꢄ ꢌꢍ  
ꢅꢙꢙ ꢚꢛꢅꢍꢍꢜꢙꢝ ꢒ0ꢀꢊꢋꢌꢀ  
Figure 10. (VIN + 10V) Tracking Power Supply  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Wide Input Voltage Range: 2V to 18V, I < 8µA, SO8 Package  
LTC1144  
Switched-Capacitor Wide Input Range Voltage Converter  
with Shutdown  
SD  
LTC1514/LTC1515  
LT1611  
Step-Up/Step-Down Switched Capacitor DC/DC Converters  
V : 2V to 10V, V : 3.3V to 5V, I = 60µA, SO8 Package  
IN  
OUT  
Q
150mA Output, 1.4MHz Micropower Inverting Switching  
Regulator  
V : 0.9V to 10V, V  
:
OUT  
34V, ThinSOT™ Package  
IN  
LT1614  
250mA Output, 600kHz Micropower Inverting Switching  
Regulator  
V : 0.9V to 6V, V  
IN  
: 30V, I = 1mA, MS8, SO8 Packages  
OUT Q  
LTC1911  
250mA, 1.5MHz Inductorless Step-Down DC/DC Converter  
V : 2.7V to 5.5V, V : 1.5V/1.8V, I = 180µA, MS8 Package  
IN OUT Q  
LTC3250/LTC3250-1.2/ Inductorless Step-Down DC/DC Converter  
LTC3250-1.5  
V : 3.1V to 5.5V, V : 1.2V, 1.5V, I = 35µA, ThinSOT Package  
IN OUT Q  
LTC3251  
500mA Spread Spectrum Inductorless Step-Down DC/DC  
Converter  
V : 2.7V to 5.5V, V : 0.9V to 1.6V, 1.2V, 1.5V, I = 9µA,  
IN  
OUT  
Q
MS10E Package  
LTC3252  
Dual 250mA, Spread Spectrum Inductorless Step-Down  
DC/DC Converter  
V : 2.7V to 5.5V, V : 0.9V to 1.6V, I = 50µA, DFN12 Package  
IN  
OUT  
Q
LT1054/LT1054L  
Switched Capacitor Voltage Converter with Regulator  
V : 3.5V to 15V/7V, I  
= 100mA/125mA, N8, S08, SO16  
IN  
OUT  
Packages  
LTC3260  
LTC3261  
LTC3265  
Low Noise Dual Supply Inverting Charge Pump  
V : 4.5V to 32V, ILDO = 50mA, DE14, MSE16 Packages  
IN  
High Voltage, Low Quiescent Current Inverting Charge Pump V : 4.5V to 32V, I  
= 100mA, MSE12 Package  
OUT  
IN  
Low Noise Dual Supply with Boost and Inverting  
Charge Pumps  
V : 4.5V to 16V, ILDO = 50mA, DFN18, TSSOP20 Packages  
IN  
LTC3256  
LTC3245  
LTC3255  
Wide V Range, Dual Output 350mA Step-Down Charge  
V : 5.5V to 38V, V : 5V/3.3V, I  
= 100mA/250mA, MSE16  
IN  
IN  
OUT  
OUT  
Pump with Watchdog Timer  
Package  
Wide V Range, Low Noise, 250mA Buck-Boost Charge  
V : 2.7V to 38V, V : 2.5V to 5V/3.3V/5V, I  
= 250mA, DFN12  
OUT  
IN  
IN  
OUT  
Pump  
and MSE12 Packages  
Wide V Range, Fault Protected, 50mA Step-Down Charge V : 4V to 48V, V : 2.4V to 12.5V, I = 50mA, DFN10 and  
OUT  
IN  
IN  
OUT  
Pump  
MSE10 Packages  
Rev. 0  
08/19  
www.analog.com  
ANALOG DEVICES, INC. 2019  
14  

相关型号:

LTC3250-1.5_15

High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter
Linear

LTC3250ES6-1.2

High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter
Linear

LTC3250ES6-1.2#TR

LTC3250 - High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3250ES6-1.2#TRM

LTC3250 - High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear
Linear

LTC3250ES6-1.2#TRPBF

LTC3250 - High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3250ES6-1.5

High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter
Linear

LTC3250ES6-1.5#TR

暂无描述
Linear

LTC3250ES6-1.5#TRM

LTC3250 - High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear
Linear

LTC3251

High Voltage, Low Quiescent Current Inverting Charge Pump
Linear System

LTC3251

500mA High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter
Linear