LTC5594 [ADI]

300MHz to 9GHz High Linearity I/Q Demodulator with Wideband IF Amplifier;
LTC5594
型号: LTC5594
厂家: ADI    ADI
描述:

300MHz to 9GHz High Linearity I/Q Demodulator with Wideband IF Amplifier

文件: 总32页 (文件大小:2812K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC5594  
300MHz to 9GHz High Linearity  
I/Q Demodulator with  
Wideband IF Amplifier  
DESCRIPTION  
FEATURES  
TheLTC®5594isadirectconversionquadraturedemodula-  
tor optimized for high linearity zero-IF and low-IF receiver  
applications in the 300MHz to 9GHz frequency range.  
The very wide IF bandwidth of more than 1GHz makes  
the LTC5594 particularly suited for demodulation of very  
wideband signals, especially in 5G fronthaul/backhaul  
receiver applications. The outstanding dynamic range of  
the LTC5594 makes the device suitable for demanding  
infrastructure direct conversion applications. Proprietary  
technology inside the LTC5594 provides the capability  
to optimize OIP2 to 65dBm, and achieve image rejection  
better than 60dB. The DC offset control function allows  
nulling of the DC offset at the A/D converter input, thereby  
optimizingthedynamicrangeoftruezero-IFreceiversthat  
use DC-coupled IF signal paths. The wideband RF and LO  
input ports make it possible to cover all the major wireless  
infrastructure frequency bands using a single device. The  
IFoutputsoftheLTC5594aredesignedtointerfacedirectly  
with most common A/D converter input interfaces. The  
highOIP3andhighconversiongainofthedeviceeliminate  
the need for additional amplifiers in the IF signal path.  
All registered trademarks and trademarks are the property of their respective owners.  
n
True Zero IF Demodulation  
n
Wideband Input Matched from 500MHz to 9GHz  
n
Wide IF Bandwidth: DC to 1GHz (1dB Flatness)  
n
37dB Image Rejection, Adjustable to 60dB  
n
High Total OIP3: 37dBm at 5.8GHz  
n
58dBm OIP2 at 5.8GHz, Adjustable to 65dBm  
n
Max Power Conversion Gain: 9.2dB at 5.8GHz  
n
Single-Ended RF Input with On-Chip Transformer  
n
User Adjustable DC Offset Null  
n
Serial Interface  
n
IF Amplifier Gain Adjustable in Eight Steps  
IF Amplifier Shutdown/Enable  
Low Power Shutdown Mode  
n
n
n
Operating Temperature Range (T ): –40°C to 105°C  
C
n
32-Lead 5mm × 5mm QFN Package  
APPLICATIONS  
n
5G Base Station Fronthaul/Backhaul Receivers  
n
Military and Satellite Receivers  
n
Point-to-Point Broadband Radios  
High Linearity Direct Conversion I/Q SDR  
Test Instrumentation  
DPD Receivers  
n
n
n
Gain, OIP3, and OIP2 vs  
Temperature (TC) (Unoptimized)  
TYPICAL APPLICATION  
Direct Conversion I/Q Receiver  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢂꢃꢃꢄꢅ  
ꢀꢁꢀꢂ  
Aꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢀꢂ  
Rꢀ  
ꢀꢁA  
ꢀꢁ  
ꢀꢁ  
ꢀAꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
Aꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢀꢁꢂ ꢃAꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢀꢁꢂ ꢃAꢄꢅꢆ  
Rev A  
1
Document Feedback  
For more information www.analog.com  
LTC5594  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
ꢇꢈꢉ ꢊꢋꢌꢍ  
V
Supply Voltage (Note 23) ................... –0.3V to 5.5V  
DD  
CC  
OV , SDO Voltage (Note 20) ................... –0.3V to 3.8V  
ꢀꢁ ꢀꢂ ꢀꢃ ꢁꢄ ꢁꢅ ꢁꢆ ꢁꢨ ꢁꢘ  
RF DC Voltage..............................................1.5V to 2.0V  
LOP, LOM DC Voltage ..................................2.1V to 2.8V  
IFIM, IFIP, IFQP, IFQM DC Voltage............. –0.3V to 3.5V  
AIM, AIP, AQM, AQP  
ꢎꢏꢐ  
ꢇꢌꢟꢉ  
ꢎꢏꢐ  
Rꢝ  
ꢁꢧ ꢈꢊ  
ꢐꢐ  
ꢛꢓꢔ  
ꢁꢀ  
ꢁꢁ  
ꢛꢐꢋ  
ꢁꢂ ꢛꢐꢈ  
ꢁꢃ ꢖꢈꢟ  
ꢂꢄ ꢖꢈꢉ  
ꢀꢀ  
ꢎꢏꢐ  
DC Voltage........................... V – 1.7V to V – 1.2V  
CC  
CC  
ꢎꢏꢐ  
MIM, MIP, MQM, MQP  
DC Voltage........................... V – 1.7V to V – 1.2V  
Voltage on Any Other Pin.......................... –0.3V to 5.5V  
LOP, LOM, RF Input Power (Note 19).................+20dBm  
Output Short Circuit Duration (Notes 16, 19)... Indefinite  
Maximum Junction Temperature (T  
Case Operating Temperature  
ꢓꢟ  
ꢌꢏ  
ꢂꢅ  
CC  
CC  
ꢓꢓ  
ꢎꢏꢐ  
ꢂꢆ  
ꢓꢛꢦ  
ꢂꢃ ꢂꢂ ꢂꢁ ꢂꢀ ꢂꢧ ꢂꢘ ꢂꢨ  
ꢑꢒ ꢉAꢓꢔAꢎꢌ  
)............. 150°C  
JMAX  
ꢀꢁꢕꢖꢌAꢐ ꢗꢘꢙꢙ × ꢘꢙꢙꢚ ꢉꢖAꢛꢇꢋꢓ ꢜꢝꢏ  
ꢡ ꢂꢘꢃꢢꢓꢣ θ ꢡ ꢆꢤꢆꢢꢓꢥꢍ  
ꢞꢓ  
ꢞꢟAꢠ  
Range (T )......................................... –40°C to 105°C  
ꢌꢠꢉꢈꢛꢌꢐ ꢉAꢐ ꢗꢉꢋꢏ ꢀꢀꢚ ꢋꢛ ꢎꢏꢐꢣ ꢟꢑꢛꢇ ꢦꢌ ꢛꢈꢖꢐꢌRꢌꢐ ꢇꢈ ꢉꢓꢦ  
C
Storage Temperature Range .................. –65°C to 150°C  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 105°C  
LTC5594IUH#PBF  
LTC5594IUH#TRPBF  
5594  
32-Lead (5mm × 5mm) Plastic QFN  
Consult ADI Marketing for parts specified with wider operating temperature ranges.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
Rev A  
2
For more information www.analog.com  
LTC5594  
ELECTRICAL CHARACTERISTICS TC = 25°C, VCC = 5V, OVDD = EN = CSB = 3.3V, SDI = SCK = AMPD = 0V,  
VCM = 0.9V, PIF = 1.5dBm (–1.5dBm/tone for 2-tone tests), PLO = 6dBm, all registers at default values, and all parameters listed for  
combined performance of demodulator and amplifier unless otherwise noted. (Notes 2, 3, 6, 9, 21, 24)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.3 to 9.0  
0.3 to 9.0  
1.0  
MAX  
UNITS  
GHz  
f
f
RF Input Frequency Range  
LO Input Frequency Range  
IF Output Bandwidth  
(Note 12)  
RF(RANGE)  
LO(RANGE)  
(Note 12)  
GHz  
BW  
–1dB Corner Frequency (Note 22)  
GHz  
IF  
RL  
RF Input Return Loss (Note 5)  
f
f
= 300MHz to 500MHz  
= 500MHz to 9.0GHz  
>10  
>10  
dB  
dB  
RF  
RF  
RF  
RL  
LO Input Return Loss  
LO Input Power Range  
f
= 300MHz to 9.0GHz  
>10  
dB  
LO  
LO  
P
(Note 12)  
–6 to 12  
dBm  
LO(RANGE)  
G
P
Power Conversion Gain  
AMPG = 0x06,  
LOAD  
f
RF  
f
RF  
f
RF  
f
RF  
f
RF  
f
RF  
= 400MHz  
11.5  
12.3  
11.0  
9.2  
dB  
dB  
dB  
dB  
dB  
dB  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
R
= 100Ω Differential (Note 8)  
7.0  
5.2  
NF  
NF  
Noise Figure, Double Side Band (Note 4)  
f
f
f
f
f
f
= 400MHz  
15.7  
16.0  
17.9  
21.2  
23.5  
28.6  
dB  
dB  
dB  
dB  
dB  
dB  
RF  
RF  
RF  
RF  
RF  
RF  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
Noise Figure Under Blocking Conditions  
f
f
f
f
f
f
= 400MHz  
16.7  
17.0  
18.9  
22.2  
24.5  
29.6  
dB  
dB  
dB  
dB  
dB  
dB  
BLOCKING  
RF  
RF  
RF  
RF  
RF  
RF  
Double Side Band, P ,  
= 1.5dBm  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
IF BLOCKER  
(Note 7)  
OIP3  
OIP2  
Output 3rd Order Intercept  
Unadjusted/Adjusted  
f
f
f
f
f
f
= 400MHz  
40/44  
37/43  
37/42  
37/40  
33/38  
33/35  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
RF  
RF  
RF  
RF  
RF  
RF  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
Output 2nd Order Intercept  
Unadjusted/Adjusted  
f
f
f
f
f
f
= 400MHz  
75/80  
68/75  
68/70  
58/65  
48/55  
43/48  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
RF  
RF  
RF  
RF  
RF  
RF  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
IIP3  
Input 3rd Order Intercept without Amplifier  
Unadjusted  
f
f
f
f
f
f
= 400MHz  
30  
26  
27  
24  
24  
27  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
DEMOD  
RF  
RF  
RF  
RF  
RF  
RF  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
OIP3  
Output 3rd Order Intercept, Amplifier Only  
(Note 17)  
f
f
f
f
f
f
= 10MHz  
42  
41  
38  
37  
35  
30  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
AMP  
IF  
IF  
IF  
IF  
IF  
IF  
= 100MHz  
= 200MHz  
= 300MHz  
= 500MHz  
= 1000MHz  
Rev A  
3
For more information www.analog.com  
LTC5594  
ELECTRICAL CHARACTERISTICS TC = 25°C, VCC = 5V, OVDD = EN = CSB = 3.3V, SDI = SCK = AMPD = 0V,  
VCM = 0.9V, PIF = 1.5dBm (–1.5dBm/tone for 2-tone tests), PLO = 6dBm, all registers at default values, and all parameters listed for  
combined performance of demodulator and amplifier unless otherwise noted. (Notes 2, 3, 6, 9, 21, 24)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HD2  
2nd Order Harmonic Distortion  
Unadjusted/Adjusted  
f
f
f
f
f
f
= 400MHz  
–65  
–64  
–60  
–56  
–50  
–46  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
RF  
RF  
RF  
RF  
RF  
RF  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
HD3  
3rd Order Harmonic Distortion  
Unadjusted/Adjusted  
f
f
f
f
f
f
= 400MHz  
–82  
–80  
–76  
–70  
–65  
–68  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
RF  
RF  
RF  
RF  
RF  
RF  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
P1dB  
Output 1dB Compression Point  
DC Offset, Unadjusted (Note 13)  
f
f
f
f
f
f
= 400MHz  
13.2  
13.2  
13.2  
13.2  
13.2  
13.2  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
RF  
RF  
RF  
RF  
RF  
RF  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
DC  
f
f
f
f
f
f
= 400MHz  
19  
17  
17  
–26  
–63  
–19  
mV  
mV  
mV  
mV  
mV  
mV  
OFFSET  
RF  
RF  
RF  
RF  
RF  
RF  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
DC  
DC  
∆G  
DC Offset Adjustment Range  
DC Offset Step Size  
DCOI, DCOQ = 0x00 to 0xFF  
–75 to 75  
640  
mV  
µV  
OFF(RANGE)  
OFF(STEP)  
I/Q Gain Mismatch, Unadjusted  
f
f
f
f
f
f
= 400MHz  
0.05  
0.05  
0.06  
0.06  
0.07  
0.44  
dB  
dB  
dB  
dB  
dB  
dB  
RF  
RF  
RF  
RF  
RF  
RF  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
∆G  
I/Q Gain Mismatch Adjustment Range  
I/Q Gain Mismatch Adjustment Step Size  
I/Q Phase Mismatch, Unadjusted  
GERR = 0x00 to 0x3F  
–0.5 to 0.5  
0.016  
dB  
dB  
(RANGE)  
∆G(STEP)  
φ  
f
f
f
f
f
f
= 400MHz  
0.9  
1.1  
3.1  
1.6  
1.1  
1.0  
Deg  
Deg  
Deg  
Deg  
Deg  
Deg  
RF  
RF  
RF  
RF  
RF  
RF  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
φ  
φ  
I/Q Phase Mismatch Adjustment Range  
I/Q Phase Mismatch Adjustment Step Size  
PHA = 0x000 to 0x1FF  
–2.5 to 2.5  
0.05  
Deg  
Deg  
(RANGE)  
(STEP)  
IRR  
Image Rejection Ratio  
Unadjusted/Adjusted  
(Note 10)  
f
f
f
f
f
f
= 400MHz  
43/70  
42/65  
33/65  
37/60  
40/60  
33/60  
dB  
dB  
dB  
dB  
dB  
dB  
RF  
RF  
RF  
RF  
RF  
RF  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
Rev A  
4
For more information www.analog.com  
LTC5594  
ELECTRICAL CHARACTERISTICS TC = 25°C, VCC = 5V, OVDD = EN = CSB = 3.3V, SDI = SCK = AMPD = 0V,  
VCM = 0.9V, PIF = 1.5dBm (–1.5dBm/tone for 2-tone tests), PLO = 6dBm, all registers at default values, and all parameters listed for  
combined performance of demodulator and amplifier unless otherwise noted. (Notes 2, 3, 6, 9, 21, 24)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LR  
LEAK  
LO to RF Leakage  
f
f
f
f
f
f
= 400MHz  
–67  
–65  
–56  
–52  
–50  
–55  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
LO  
LO  
LO  
LO  
LO  
LO  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
RL  
ISO  
RF to LO Isolation  
f
f
f
f
f
f
= 400MHz  
69  
57  
66  
55  
57  
53  
dB  
dB  
dB  
dB  
dB  
dB  
RF  
RF  
RF  
RF  
RF  
RF  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
RI  
RF to IF Isolation (Note 18)  
LO to IF Isolation (Note 18)  
f
f
f
f
f
f
= 400MHz  
70  
48  
59  
48  
40  
43  
dB  
dB  
dB  
dB  
dB  
dB  
ISO  
RF  
RF  
RF  
RF  
RF  
RF  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
LI  
f
f
f
f
f
f
= 400MHz  
40  
29  
38  
36  
33  
35  
dB  
dB  
dB  
dB  
dB  
dB  
ISO  
LO  
LO  
LO  
LO  
LO  
LO  
= 1900MHz  
= 3500MHz  
= 5800MHz  
= 7200MHz  
= 8500MHz  
Power Supply and Other Parameters  
V
Supply Voltage  
4.75  
450  
230  
5.0  
5.25  
500  
270  
900  
V
mA  
mA  
μA  
CC  
I
I
I
I
t
t
Supply Current  
470  
CC  
Mixer Supply Current  
Amplifier Disabled, AMPD = 3.3V  
EN < 0.3V  
250  
CC(MIX)  
CC(OFF)  
CC(SLEEP)  
ON  
Shutdown Current  
20  
Sleep Current  
EDEM = EDC = EADJ = EAMP = 0  
EN Transition from Logic Low to High  
EN Transition from Logic High to Low  
4
mA  
µs  
Turn-On Time (Note 14)  
Turn-Off Time (Note 15)  
Digital I/O Supply Voltage  
EN Input High Voltage (On)  
EN Input Low Voltage (Off)  
EN Pin Input Current  
1
1
µs  
OFF  
OV  
1.2 to 3.3  
V
DD  
V
V
0.7 • OV  
V
DH  
DD  
0.3 • OV  
V
DL  
DD  
I
EN  
EN = 3.3V  
41  
0.774  
–1.52  
100||0.6  
3.6  
μA  
V
TEMP Diode Bias Voltage  
TEMP Diode Temperature Slope  
Mixer Output Impedance  
Mixer Output DC Voltage  
Amplifier Input Impedance  
Amplifier DC Input Voltage  
Amplifier Output Impedance  
Amplifier DC Output Short Circuit Current  
I
I
= 100μA into TEMP Pin, T = 25°C  
V
TEMP  
TEMP  
TEMP  
J
= 100μA into TEMP Pin  
mV/°C  
Ω||pF  
V
Z
Differential  
MIX(OUT)  
V
Common Mode  
Differential  
MIX(OUT)  
Z
200||0.2  
3.6  
Ω||pF  
V
AMP(IN)  
V
Common Mode  
Differential  
AMP(IN)  
AMP(OUT)  
AMP(SC)  
Z
4||0.5  
100  
kΩ||pF  
mA  
V
I
IFIP = IFIM = IFQP = IFQM = 0V  
V
V
Pin Voltage Range (Notes 11, 12)  
CM  
0.5 to 2.0  
CM(RANGE)  
Rev A  
5
For more information www.analog.com  
LTC5594  
ELECTRICAL CHARACTERISTICS TC = 25°C, VCC = 5V, OVDD = EN = CSB = 3.3V, SDI = SCK = AMPD = 0V,  
VCM = 0.9V, PIF = 1.5dBm (–1.5dBm/tone for 2-tone tests), PLO = 6dBm, all registers at default values, and all parameters listed for  
combined performance of demodulator and amplifier unless otherwise noted. (Notes 2, 3, 6, 9, 21, 24)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Serial Interface Pins  
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Hysteresis Voltage  
Input Current  
CSB, SDI, SCK  
0.7 • OV  
V
V
IH  
DD  
CSB, SDI, SCK  
0.3 • OV  
10  
IL  
DD  
CSB, SDI, SCK  
250  
mV  
μA  
V
IHYS  
IN(SER)  
I
CSB, SDI, SCK (Note 19)  
SDO, 10mA Current Sink  
SDO, 10mA Current Source  
V
OH  
V
OL  
High Level Output Voltage  
Low Level Output Voltage  
0.7 • OV  
DD  
0.3 • OV  
V
DD  
Serial Interface Timing  
t
t
t
t
t
t
t
SCK High Time  
25  
25  
10  
10  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
CKL  
CSS  
CSH  
DS  
SCK Low Time  
CSB Setup Time  
CSB High Time  
SDI to SCK Setup Time  
SDI to SCK Hold Time  
SCK to SDO Time  
6
DH  
To V /V /Hi-Z with 30pF Load  
16  
DO  
IH IL  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may  
cause permanent damage to the device. Exposure to any Absolute Maximum  
Rating condition for extended periods may affect device reliability and  
Note 9: Input P adjusted so that P = –1.5dBm/tone at the amplifier  
RF IF  
output. RF tone spacing set at 4MHz with high side LO, f = f + 30MHz.  
LO  
RF  
Note 10: Image rejection is measured at f = 12MHz and calculated from  
IF  
lifetime. The voltage on all pins should not exceed V + 0.3V or be less than  
CC  
the measured gain error and phase error.  
–0.3V, otherwise damage to the ESD diodes may occur.  
Note 2: Tests are performed with the test circuit of Figure 1.  
Note 3: The LTC5594 is guaranteed to be functional over the –40°C to  
105°C case temperature operating range.  
Note 4: DSB noise figure is measured at the baseband frequency of 15MHz  
with a small-signal noise source without any filtering on the RF input and  
no other RF signal applied.  
Note 5: A 6.8pF shunt capacitor is used on the RF inputs for 300MHz to  
500MHz. 0.2pF is used for 500MHz to 9GHz.  
Note 11: If the V pin is left floating, it will self bias to a nominal 0.9V.  
CM  
Note 12: This is the recommended operating range, operation outside the  
listed range is possible with degraded performance to some parameters.  
Note 13: DC offset measured differentially between IFIP and IFIM and  
between IFQP and IFQM. The reported value is the mean of the absolute  
values of the characterization data distribution.  
Note 14: IF amplitude is within 10% of final value.  
Note 15: IF amplitude is at least 30dB down from its on state.  
Note 16: IF outputs shorted to ground.  
Note 6: The differential amplifier outputs (IFIP, IFIM and IFQP, IFQM) are  
combined using a 180° combiner.  
Note 17: IF tone spacing set at 1MHz.  
Note 18: Worst case isolation measured to each IF single-ended port.  
Note 19: Guaranteed by design characterization, not tested in production.  
Note 20: The voltage on the OV pin must never exceed V + 0.3V,  
Note 7: Noise figure under blocking conditions (NF  
) is measured  
BLOCKING  
at an output frequency of 60MHz with RF input signal at f + 1MHz. Both  
LO  
RF and LO input signals are appropriately filtered, as well as the baseband  
output.  
DD  
CC  
otherwise damage to the ESD diodes may occur.  
Note 21: Refer to Appendix for register definition and default values.  
Note 22: Mixer outputs directly connected to amplifier inputs. Bandwidth  
measured on single amplifier output, I or Q.  
Note 8: Power conversion gain is defined from the RF input to the I or Q  
output. Power conversion gain is measured with a 100Ω differential load  
impedance on the I and Q outputs. Any losses due to IF combiner and  
spectrum analyzer termination have been de-embedded.  
Note 23: V should be ramped up slower than 5V/ms to prevent damage.  
CC  
Note 24: P measured at amplifier differential outputs.  
IF  
Rev A  
6
For more information www.analog.com  
LTC5594  
VCC = 5V, EN = 3.3V, TC = 25°C, PLO = 6dBm,  
TYPICAL PERFORMANCE CHARACTERISTICS  
HSLO, RF tone spacing = 4MHz, fIF = 30MHz, PIF = –1.5dBm per tone, and register defaults. DC Blocks, 50Ω terminations, and  
MACOM H9 180° combiner at amplifier outputs de-embedded from measurement unless otherwise noted. Test circuit shown in  
Figure 1 with 1GHz interstage filter.  
TEMP Diode Voltage  
vs Junction Temperature (TJ)  
Noise Figure and Conversion  
Gain vs Temperature (TC)  
Supply Current vs Supply Voltage  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
A
ꢀꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀAꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢀ  
ꢀꢁ  
ꢀꢁꢂꢂAꢈꢉ ꢊꢅꢋ  
RA  
R
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Noise Figure and Conversion  
Gain vs LO Power  
Gain vs IF Frequency for Various  
Fixed LO Frequencies  
Gain vs IF Frequency for Various  
Fixed LO Frequencies  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢀꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀAꢁꢂ  
ꢀꢁ ꢂꢃꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢄꢅꢆꢇ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢁ ꢁRꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
ꢀꢁ ꢁRꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
ꢀꢀꢁꢂ ꢃꢄꢂ  
ꢀꢀꢁꢂ ꢃꢄꢀ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
OIP3 vs RF Frequency for Various  
Fixed IF Frequencies  
OIP3 vs RF Frequency for Various  
Fixed IF Frequencies  
Gain vs AMPG Register Value  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢃꢆ ꢁꢇꢂꢈRꢉꢂAꢅꢈ ꢊꢁꢈR  
ꢀꢁꢂꢃ  
ꢀꢁꢀꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
Rꢀ ꢀ ꢁꢂꢃꢃꢄꢅꢆ  
ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢁRꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢁ  
Rev A  
7
For more information www.analog.com  
LTC5594  
VCC = 5V, EN = 3.3V, TC = 25°C, PLO = 6dBm,  
TYPICAL PERFORMANCE CHARACTERISTICS  
HSLO, RF tone spacing = 4MHz, fIF = 30MHz, PIF = –1.5dBm per tone, and register defaults. DC Blocks, 50Ω terminations, and  
MACOM H9 180° combiner at amplifier outputs de-embedded from measurement unless otherwise noted. Test circuit shown in  
Figure 1 with 1GHz interstage filter.  
OIP3 vs Temperature (TC)  
OIP3 vs Supply Voltage (VCC  
)
OIP3 vs LO Power  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃ  
ꢀꢁ ꢂꢃꢄꢂꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃ  
ꢀꢁ ꢂꢃꢄꢂꢅ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢄ  
Optimized OIP3 vs  
Temperature (TC)  
OIP3 vs Temperature (TC) and  
Register Value  
OIP3 vs IF Tone Power  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃAꢄꢄꢅꢆ  
Rꢀ ꢀ ꢁꢂꢃꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢇ Aꢂ ꢈꢉꢊꢋ  
ꢀꢁ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢀꢆꢇꢈꢉ  
ꢀꢁꢂꢀꢆꢇꢈ  
ꢀꢁꢂꢀꢆꢇꢈ  
ꢀꢁꢂꢀꢆꢇꢈꢉ  
ꢀꢁꢂꢀꢃꢄ ꢅꢆꢇꢈꢉ  
ꢀꢁꢂꢀꢃꢄ ꢅꢆꢇꢈ  
ꢀꢁꢂꢀꢃꢄ ꢅꢆꢇꢈ  
ꢀꢁꢂꢀꢃꢄ ꢅꢆꢇꢈꢉ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢀꢁ ꢀꢁꢂ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
RꢀꢁꢂꢃꢄꢀR ꢅAꢆꢇꢀ ꢈꢂꢉꢄꢀꢁꢀRꢊ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢂ  
ꢀꢀꢁꢂ ꢃꢄꢀ  
OIP3 vs Temperature (TC) and  
Register Value  
OIP3 vs IP3CC Register Value  
OIP3 vs IP3IC Register Value  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁꢂꢃAꢄꢄꢅꢆ  
Rꢀ ꢀ ꢁꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁꢂꢃꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢇꢈꢉ  
ꢀꢁꢂꢃꢇꢈꢉ  
ꢀꢁꢂꢃꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
RꢀꢁꢂꢃꢄꢀR ꢅAꢆꢇꢀ ꢈꢂꢉꢄꢀꢁꢀRꢊ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Rev A  
8
For more information www.analog.com  
LTC5594  
VCC = 5V, EN = 3.3V, TC = 25°C, PLO = 6dBm,  
TYPICAL PERFORMANCE CHARACTERISTICS  
HSLO, RF tone spacing = 4MHz, fIF = 30MHz, PIF = –1.5dBm per tone, and register defaults. DC Blocks, 50Ω terminations, and  
MACOM H9 180° combiner at amplifier outputs de-embedded from measurement unless otherwise noted. Test circuit shown in  
Figure 1 with 1GHz interstage filter.  
OIP3 vs LVCM Register Value  
OIP2 vs Temperature (TC)  
OIP2 vs LO Power  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢀꢁꢂ ꢃꢄꢁ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Optimized OIP2 vs  
Temperature (TC)  
OIP2 vs Temperature (TC) and  
Register Value  
OIP2 vs Temperature (TC) and  
Register Value  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢇ Aꢂ ꢈꢉꢊꢋ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢀꢃꢄ ꢅꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢀꢁꢂꢃAꢄꢄꢅꢆ  
Rꢀ ꢀ ꢁꢂꢃꢃꢄꢅꢆ  
ꢀꢁꢂꢃAꢄꢄꢅꢆ  
Rꢀ ꢀ ꢁꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢀꢃꢄ ꢂꢅꢆꢇ  
ꢀꢁꢂꢀꢃꢄ ꢅꢆꢇꢈ  
ꢀꢁꢂꢀꢃꢄ ꢅꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅ ꢂꢆꢇꢈ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢀꢁ ꢀꢁꢂ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
RꢀꢁꢂꢃꢄꢀR ꢅAꢆꢇꢀ ꢈꢂꢉꢄꢀꢁꢀRꢊ  
RꢀꢁꢂꢃꢄꢀR ꢅAꢆꢇꢀ ꢈꢂꢉꢄꢀꢁꢀRꢊ  
ꢀꢀꢁꢂ ꢃꢄꢄ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢂ  
Optimized HD2 vs  
Temperature (TC)  
HD2 vs Temperature (TC)  
HD2 vs LO Power  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢇ Aꢂ ꢈꢉꢊꢋ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢀꢁꢂ ꢃꢄꢀ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Rev A  
9
For more information www.analog.com  
LTC5594  
VCC = 5V, EN = 3.3V, TC = 25°C, PLO = 6dBm,  
TYPICAL PERFORMANCE CHARACTERISTICS  
HSLO, RF tone spacing = 4MHz, fIF = 30MHz, PIF = –1.5dBm per tone, and register defaults. DC Blocks, 50Ω terminations, and  
MACOM H9 180° combiner at amplifier outputs de-embedded from measurement unless otherwise noted. Test circuit shown in  
Figure 1 with 1GHz interstage filter.  
HD2 vs Temperature (TC) and  
Register Value  
HD2 vs Temperature (TC) and  
Register Value  
HD3 vs Temperature (TC)  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢆꢇꢈ  
ꢀꢁꢂꢃꢇꢈꢉ  
ꢀꢁꢂꢃꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢆꢇꢈ  
ꢀꢁꢂꢃꢇꢈꢉ  
ꢀꢁꢂꢃꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅ ꢂꢆꢇꢈ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢄꢅ ꢂꢆꢇꢈ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃAꢄꢄꢅꢆ  
Rꢀ ꢀ ꢁꢂꢃꢃꢄꢅꢆ  
ꢀꢁꢂꢃAꢄꢄꢅꢆ  
Rꢀ ꢀ ꢁꢂꢃꢃꢄꢅꢆ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁ  
RꢀꢁꢂꢃꢄꢀR ꢅAꢆꢇꢀ ꢈꢂꢉꢄꢀꢁꢀRꢊ  
RꢀꢁꢂꢃꢄꢀR ꢅAꢆꢇꢀ ꢈꢂꢉꢄꢀꢁꢀRꢊ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢁ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Optimized HD3 vs  
Temperature (TC)  
HD3 vs Temperature (TC) and  
Register Value  
HD3 vs Temperature (TC) and  
Register Value  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢇ Aꢂ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢇꢈꢉ  
ꢀꢁꢂꢃꢇꢈꢉ  
ꢀꢁꢂꢃꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢇꢈꢉ  
ꢀꢁꢂꢃꢇꢈꢉ  
ꢀꢁꢂꢃꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢉꢊ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃAꢄꢄꢅꢆ  
Rꢀ ꢀ ꢁꢂꢃꢃꢄꢅꢆ  
ꢀꢁꢂꢃAꢄꢄꢅꢆ  
Rꢀ ꢀ ꢁꢂꢃꢃꢄꢅꢆ  
ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢀꢁ ꢀꢁꢂ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
RꢀꢁꢂꢃꢄꢀR ꢅAꢆꢇꢀ ꢈꢂꢉꢄꢀꢁꢀRꢊ  
RꢀꢁꢂꢃꢄꢀR ꢅAꢆꢇꢀ ꢈꢂꢉꢄꢀꢁꢀRꢊ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢄ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Image Rejection vs  
Temperature (TC)  
Output Referred P1dB  
Image Rejection vs LO Power  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢁ ꢂRꢃꢄꢅꢃꢆꢇꢈ ꢉꢊꢋꢌꢍ  
ꢀꢁ ꢂRꢃꢄꢅꢃꢆꢇꢈ ꢉꢊꢋꢌꢍ  
ꢀꢀꢁꢂ ꢃꢄꢂ  
ꢀꢀꢁꢂ ꢃꢄꢀ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Rev A  
10  
For more information www.analog.com  
LTC5594  
VCC = 5V, EN = 3.3V, TC = 25°C, PLO = 6dBm,  
TYPICAL PERFORMANCE CHARACTERISTICS  
HSLO, RF tone spacing = 4MHz, fIF = 30MHz, PIF = –1.5dBm per tone, and register defaults. DC Blocks, 50Ω terminations, and  
MACOM H9 180° combiner at amplifier outputs de-embedded from measurement unless otherwise noted. Test circuit shown in  
Figure 1 with 1GHz interstage filter.  
Optimized Image Rejection vs  
Temperature (TC)  
Optimized Image Rejection vs  
Baseband Frequency  
Gain Error vs Temperature (TC)  
and GERR Register Value  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢇ Aꢂ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂAꢃꢅ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢇ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀ ꢀ ꢁꢂꢃꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄ ꢅꢀꢁ ꢀ ꢁꢂꢃꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢇ Aꢂ ꢈRꢀ ꢀ ꢁꢂꢃꢃꢄꢅꢆ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢂꢃ ꢀꢁꢂꢃ ꢀꢁꢂꢃ ꢀꢁꢂꢃ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀAꢁꢂꢀAꢃꢄ ꢅRꢂꢆꢇꢂꢃꢈꢉ ꢊꢋꢌꢍꢎ  
RꢀꢁꢂꢃꢄꢀR ꢅAꢆꢇꢀ ꢈꢂꢉꢄꢀꢁꢀRꢊ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢁ  
Phase Error vs Temperature (TC)  
and PHA Register Value  
DC Offset vs Temperature (TC)  
DC Offset vs LO Power  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
Rꢀ ꢀ ꢁꢂꢃꢃꢄꢅꢆ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁ ꢂRꢃꢄꢅꢃꢆꢇꢈ ꢉꢊꢋꢌꢍ  
ꢀꢁ ꢂRꢃꢄꢅꢃꢆꢇꢈ ꢉꢊꢋꢌꢍ  
RꢀꢁꢂꢃꢄꢀR ꢅAꢆꢇꢀ ꢈꢂꢉꢄꢀꢁꢀRꢊ  
ꢀꢀꢁꢂ ꢃꢂꢄ  
ꢀꢀꢁꢂ ꢃꢂꢄ  
ꢀꢀꢁꢂ ꢃꢂꢄ  
Optimized DC Offset vs  
Temperature (TC)  
DC Offset vs Temperature (TC)  
and Register Value  
Blocking Noise Figure vs  
LO Power  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ ꢀ ꢁꢂꢃꢄꢅꢆꢇ  
R ꢁ ꢂꢃꢄꢅꢆ ꢀ ꢁꢂꢃꢄꢅꢆꢇ  
ꢀ ꢂ ꢃꢄꢀꢅꢆ ꢀ ꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢇ Aꢂ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ ꢀ ꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ ꢂRꢃꢄꢅꢃꢆꢇꢈ ꢉꢊꢋꢌꢍ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ ꢀAꢁ ꢇꢈꢉꢆꢅꢊꢅRꢋ  
Rꢀ ꢁꢂꢃꢄꢅ ꢃꢆꢇꢈR ꢉꢊꢋꢌꢍ  
ꢀꢀꢁꢂ ꢃꢂꢄ  
ꢀꢀꢁꢂ ꢃꢂꢀ  
ꢀꢀꢁꢂ ꢃꢂꢀ  
Rev A  
11  
For more information www.analog.com  
LTC5594  
VCC = 5V, EN = 3.3V, TC = 25°C, PLO = 6dBm,  
TYPICAL PERFORMANCE CHARACTERISTICS  
HSLO, RF tone spacing = 4MHz, fIF = 30MHz, PIF = –1.5dBm per tone, and register defaults. DC Blocks, 50Ω terminations, and  
MACOM H9 180° combiner at amplifier outputs de-embedded from measurement unless otherwise noted. Test circuit shown in  
Figure 1 with 1GHz interstage filter.  
Gain, IIP3, and IIP2 for  
Mixer Only  
RF to LO Isolation  
LO to RF Leakage  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢁ ꢂRꢃꢄꢅꢃꢆꢇꢈ ꢉꢊꢋꢌꢍ  
ꢀꢀꢁꢂ ꢃꢂꢄ  
ꢀꢀꢁꢂ ꢃꢂꢄ  
ꢀꢀꢁꢂ ꢃꢂꢄ  
OIP3 Distribution vs  
Temperature (TC)  
RF to IF Isolation  
LO to IF Isolation  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢀꢂ  
ꢀꢁꢀꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀAꢁꢂ ꢃ ꢄ  
ꢀꢁꢂ ꢃ ꢄ  
ꢀꢁꢂ ꢃ ꢄ  
ꢀꢁꢂ ꢃ ꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢀꢂ  
ꢀꢁꢀꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀAꢁꢂ ꢃ ꢄ  
ꢀꢁꢂ ꢃ ꢄ  
ꢀꢁꢂ ꢃ ꢄ  
ꢀꢁꢂ ꢃ ꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀ ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈ  
ꢀꢁ ꢂRꢃꢄꢅꢃꢆꢇꢈ ꢉꢊꢋꢌꢍ  
ꢀꢀꢁꢂ ꢃꢂꢁ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
OIP2 Distribution vs  
Temperature (TC)  
Conversion Gain Distribution vs  
Temperature (TC)  
Noise Figure Distribution vs  
Temperature (TC)  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
Rꢀ ꢀ ꢁꢂꢃꢄ  
Rꢀ ꢀ ꢁꢂꢃꢄ  
Rꢀ ꢀ ꢁꢂꢃꢄ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁ ꢀꢁꢂꢃ ꢀꢀ ꢀꢀꢁꢂ ꢀꢁ ꢀꢁꢂꢃ ꢀꢁ ꢀꢁꢂꢃ  
ꢀꢁ ꢀꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈ  
ꢀAꢁꢂ ꢃꢄꢅꢆ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
ꢀꢀꢁꢂ ꢃꢀꢂ  
Rev A  
12  
For more information www.analog.com  
LTC5594  
VCC = 5V, EN = 3.3V, TC = 25°C, PLO = 6dBm,  
TYPICAL PERFORMANCE CHARACTERISTICS  
HSLO, RF tone spacing = 4MHz, fIF = 30MHz, PIF = –1.5dBm per tone, and register defaults. DC Blocks, 50Ω terminations, and  
MACOM H9 180° combiner at amplifier outputs de-embedded from measurement unless otherwise noted. Test circuit shown in  
Figure 1 with 1GHz interstage filter.  
Gain Error Distribution vs  
Temperature (TC)  
Phase Error Distribution vs  
Temperature (TC)  
Image Rejection Distribution vs  
Temperature (TC)  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
Rꢀ ꢀ ꢁꢂꢃꢄ  
Rꢀ ꢀ ꢁꢂꢃꢄ  
Rꢀ ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢁ ꢀꢁꢂꢃꢄ ꢀꢁꢂꢃꢁ ꢀꢁꢂꢁꢃ  
ꢀꢁꢀꢂ ꢀꢁꢂꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀAꢁꢂ ꢃRRꢄR ꢅꢆꢇꢈ  
ꢀꢁAꢂꢃ ꢃRRꢄR ꢅꢆꢃꢇRꢃꢃꢈ  
ꢀꢁꢂAꢃꢄ Rꢄꢅꢄꢆꢇꢁꢈꢉ ꢊꢋꢌꢍ  
ꢀꢀꢁꢂ ꢃꢀꢀ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
PIN FUNCTIONS  
TEMP (Pin 2): Temperature Monitoring Diode. The diode  
to ground at this pin can be used to measure the die  
temperature. A forward bias current of 100µA can be  
used into this pin and the forward voltage drop can be  
measured as a function of die temperature.  
DNC (Pins 11, 14, 30): DO NOT CONNECT. No connection  
should be made to these pins.  
AQM, AQP, AIP, AIM (Pins 12, 13, 28, 29): Amplifier  
Differential Input Pins. When connected to the mixer  
output pins, the DC bias point is V – 1.4V for each pin.  
CC  
RF (Pin 4): 50Ω RF Input. The pin should be DC-blocked  
with a coupling capacitor; 1000pF is recommended.  
A lowpass filter is typically used between the AQM(P) or  
AIM(P) pins and the MQM(P) or MIM(P) pins to suppress  
the high frequency mixing products. See the Applications  
section for more information.  
V
(Pin 6): IF Amplifier Common Mode Output Voltage  
CM  
Adjust. Source resistance should be 1k or lower. If this  
pin is left unconnected, it will internally self-bias to 0.9V.  
IFQM, IFQP, IFIP, IFIM (Pins 15, 16, 25, 26): IF Amplifier  
Output Pins. The current used by the output amplifiers  
is set by a resistance of 25Ω to 200Ω from each pin to  
EN (Pin 7): Enable Pin. A logic high on this pin will enable  
the chip. An internal 200k pull-down resistor ensures the  
chip remains disabled if there is no connection to the pin  
(open-circuit condition).  
ground and the V control voltage.  
CM  
CSB (Pin 17): Chip Select Bar. When CSB is low, the  
serial interface is enabled. It can be driven with 1.2V to  
3.3V logic levels.  
MQP, MQM, MIM, MIP (Pins 9, 10, 31, 32): Mixer Dif-  
ferential Output Pins. When connected to the amplifier  
input pins, the DC bias point is V – 1.4V for each pin.  
V
(Pin 18): Positive Supply Pin. This pin should be  
CC  
CC  
A lowpass filter is typically used between the MQM(P) or  
MIM(P) pins and the AQM(P) or AIM(P) pins to suppress  
the high frequency mixing products. See the Applications  
section for more information.  
bypassed with a 1000pF and 4.7µF capacitor to ground.  
LOP, LOM (Pins 19, 20): LO Inputs. External matching  
is not needed. Can be driven 50Ω single-ended or 100Ω  
differentially. The LO pins should be DC-blocked with  
Rev A  
13  
For more information www.analog.com  
LTC5594  
PIN FUNCTIONS  
couplingcapacitor;1000pFisrecommended.Whendriven  
single-ended, the unused pin should be terminated with  
50Ω in series with the DC-blocking capacitor.  
capacitortoground.TheV supplymustbeappliedbefore  
CC  
the OV supply to prevent damage to the ESD diodes.  
DD  
AMPD (Pin 27): IF Amplifier Disable Pin. A logic high  
on this pin will disable the IF amplifiers. The state of the  
IF amplifers is the logical AND of AMPD and the EAMP  
register. An internal 200k pull-down resistor ensures the  
IF amplifiers are enabled by default if the is no connection  
to the pin (open-circuit condition).  
SDO (Pin 21): Serial Data Output. This output can accom-  
modate logic levels from 1.2V to 3.3V. During read-mode,  
data is read out MSB first.  
SDI (Pins 22): Serial Data Input. Data is clocked MSB first  
into the mode-control registers on the rising edge of SCK.  
SDI can be driven with 1.2V to 3.3V logic levels.  
GND(Pins1,3,5,8,ExposedPadPin33):Ground.These  
pinsmustbesolderedtothecircuitboardRFgroundplane.  
Thebacksideexposedpadgroundconnectionshouldhave  
a low inductance connection and good thermal contact  
to the printed circuit board ground plane using many  
through-hole vias. See layout information.  
SCK (Pin 23): Serial Clock Input. SDI can be driven with  
1.2V to 3.3V logic levels.  
OV (Pin 24): Positive Digital Interface Supply Pin. This  
DD  
pin sets the logic levels for the digital interface. 1.2V to  
3.3V can be used. This pin should be bypassed with a 1µF  
BLOCK DIAGRAM  
ꢀꢁ  
ꢀꢁ ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢀ  
ꢀꢁ  
Aꢀꢁ  
ꢀꢁ  
ꢀꢁ  
Aꢀꢁ Aꢀꢁꢂ  
ꢁꢁ  
ꢀꢁ  
ꢀꢁAꢂ  
ꢀꢁꢂꢃ ꢄAꢁꢂꢅꢆꢇ ꢈꢀꢀꢉꢃꢊꢅ  
ꢀꢁꢂꢃꢄRꢃꢁꢄꢅ Aꢀꢆꢇꢂꢃ  
ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢀꢂ  
+
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢀꢂ  
ꢀ ꢁꢂꢃꢄꢁ  
Rꢀ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢂAꢃꢄꢅ  
Aꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
Aꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
+
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄꢁ  
Aꢀꢁꢂꢃꢄ  
RꢀꢁꢂꢃꢄꢀRꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄAꢁꢂꢅꢆꢇ ꢈꢀꢀꢉꢃꢊꢅ  
ꢀꢁꢂꢃꢄRꢃꢁꢄꢅ Aꢀꢆꢇꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢀꢅ  
ꢀꢁꢀ Aꢀꢁ  
ꢀꢁ ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
Aꢀꢁ  
ꢀꢁ  
ꢀAꢁ  
ꢂꢂ  
ꢀꢀ  
ꢀꢀꢁꢂ ꢃꢄꢅꢆ  
Rev A  
14  
For more information www.analog.com  
LTC5594  
TIMING DIAGRAMS  
SPI Port Timing (Readback Mode)  
ꢀꢁ  
AꢀꢁꢂꢃꢄꢅꢆRꢇꢈꢇꢅꢁ  
ꢀꢁꢂ  
AꢀꢁꢂꢃꢄꢅꢆRꢇꢈꢇꢅꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
RꢀAꢀ Aꢀ Aꢀ Aꢀ Aꢀ Aꢀ Aꢀ ꢀꢀ ꢀꢀ ꢀꢀ ꢀꢀ ꢀꢀ ꢀꢀ ꢀꢀ ꢀꢀ ꢀꢀ ꢀꢀ ꢀꢀ ꢀꢀ ꢀꢀ ꢀꢀ ꢀꢀ ꢀꢀ  
ꢀꢁꢂꢀꢃꢄ  
ꢀꢁꢂꢀꢃꢄ  
ꢀꢁꢂ  
Aꢀ Aꢀ Aꢀ Aꢀ Aꢀ Aꢀ Aꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢃꢂꢆꢇꢈꢉ  
ꢀꢁꢂꢀꢃꢄ  
ꢀꢁꢂꢀꢃꢄ  
ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢃꢂꢆꢇꢈꢉ  
SPI Port Timing (Write Mode)  
ꢀꢁ  
AꢀꢁꢂꢃꢄꢅꢆRꢇꢈꢇꢅꢁ  
ꢀꢁꢂ  
AꢀꢁꢂꢃꢄꢅꢆRꢇꢈꢇꢅꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
RꢀAꢀ Aꢀ Aꢀ Aꢀ Aꢀ Aꢀ Aꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂꢀꢃꢄ  
ꢀꢁꢂꢀꢃꢄ  
ꢀꢁꢂ  
Aꢀ Aꢀ Aꢀ Aꢀ Aꢀ Aꢀ Aꢀ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢃꢂꢆꢇꢈꢉ  
ꢀꢁꢂꢀꢃꢄ  
ꢀꢁꢂꢀꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢃꢂꢆꢇꢈꢉ  
Rev A  
15  
For more information www.analog.com  
LTC5594  
TEST CIRCUIT  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂꢃꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
Rꢀ  
Rꢀ  
ꢀꢁ  
Rꢀ  
ꢀꢁꢀꢂꢃꢄ  
ꢀꢁꢀꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂꢃꢁꢂ  
Rꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢀꢂꢃꢄ  
ꢀꢁꢂꢃꢄ ꢀꢅꢆꢆꢆꢇꢈꢉ  
ꢀꢁ  
ꢂꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢂꢂ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
Rꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
Rꢀ  
ꢀꢁ  
ꢂꢃꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂ  
ꢀꢁ  
ꢁꢂ  
ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢀ  
ꢁꢁ  
ꢁꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆ ꢃꢁꢇꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢁꢂ  
Rꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀꢀ  
Rꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀꢁ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
REF DES  
VALUE  
1000pF  
0.2pF  
0.3pF  
1.0pF  
3.0pF  
1μF  
SIZE  
0402  
0402  
0402  
0201  
0201  
0603  
0805  
VENDOR  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
REF DES  
L1 TO L4  
VALUE  
SIZE  
VENDOR  
Coilcraft  
C1, C6, C8, C42  
8.2nH  
49.9Ω  
0Ω  
0805  
0402  
0402  
0402  
C2  
C5, C7  
R1, R3, R4, R11, R12  
R5, R13  
R20  
C9, C11, C13, C15  
C10, C12, C14, C16  
C40  
40.2kΩ  
C43  
4.7μF  
Figure 1. Test Circuit Schematic  
Rev A  
16  
For more information www.analog.com  
LTC5594  
TEST CIRCUIT  
5594 F02  
Figure 2. Component Side of Evaluation Board  
5594 F03  
Figure 3. Bottom Side of Evaluation Board  
Rev A  
17  
For more information www.analog.com  
LTC5594  
APPLICATIONS INFORMATION  
The LTC5594 is an IQ demodulator designed for high  
dynamic range receiver applications. It consists of an RF  
balun, I/Q mixers, quadrature LO amplifiers, IF amplifiers,  
and correction circuitry for DC offset, image rejection,  
and nonlinearity.  
internally by the device or by external amplifiers and fil-  
ters. The DC offset in both IF channels can be adjusted in  
order to minimize the accumulated DC offset at the A/D  
converter input.  
The IF gain, gain error and phase error adjust, DC offset  
adjust, and nonlinearity adjust registers are digitally con-  
trolled through a 4-wire serial interface. The register map  
is detailed in the Appendix.  
Operation  
As shown in the Block Diagram for the LTC5594, the RF  
input signal is converted to a differential signal by the  
on-chip balun transformer before going to the I and Q  
channel mixers.  
RF Input Port  
Figure 4 shows a simplified schematic of the demodula-  
tor’s RF input connected to an on-chip balun transformer.  
External DC voltage should not be applied to the RF input  
pin. DC current flowing into the pin may cause damage  
to the chip. Series DC blocking capacitors should be  
used to couple the RF input pin to the RF signal source.  
As shown in Figure 5, the RF input port is well matched  
with return loss greater than 10dB over the frequency  
range of 500MHz to 9GHz with a 0.2pF capacitor on C2.  
A 0.1pF capacitor on C3 placed 3mm away from C1 on  
the 50Ω input transmission line may improve return loss  
at higher frequencies. The RF pin can also be externally  
matched over the 300MHz to 500MHz frequency range  
by changing C2 to 6.8pF. Table 1 shows the impedance  
and input reflection coefficient for the RF input with C2 =  
0.2pF. The input transmission line length is de-embedded  
from the measurement.  
The LO inputs are impedance matched using a program-  
mablenetwork,andthenaccuratelyshiftedinphaseby90°  
by an internal precision phase shifter. This phase shifter  
maintains the accurate quadrature relation over the full LO  
input range from 300MHz to 9GHz. In addition, the phase  
shifter allows fine tuning of the phase difference between  
the I- and Q-channel LO with a resolution of around 0.05  
degrees to compensate for any phase mismatch between  
themixersandphasemismatchintroducedintotheIFpath  
by any filter component mismatch.  
The differential mixer IF output signals are filtered off-chip  
to remove the f + f signal and other high frequency  
RF  
LO  
mixing products before being applied to the on-chip IF  
amplifiers. The IF amplifiers have adjustable gain and  
common mode output voltage to allow for direct interfac-  
ing with A/D converters. The gain balance between both  
IF output channels of the LTC5594 can be fine tuned with  
a resolution of about 0.016dB in order to compensate  
for gain mismatches in the IF signal path, either caused  
ꢁꢁ  
ꢀꢁꢂ  
ꢂꢃꢃꢄꢅ  
ꢀꢁ  
ꢀꢁꢁꢁꢂꢃ  
= 50Ω  
ꢀ ꢁ ꢂꢃꢃ  
Rꢀ  
ꢀꢁꢂꢃꢄ  
Rꢀ  
ꢀꢁAꢂꢃꢄꢅꢆꢇ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀꢁꢂ ꢃꢄꢂ  
ꢀꢁꢂ  
Figure 4. Simplified Schematic of the RF Input with External Matching Components  
Rev A  
18  
For more information www.analog.com  
LTC5594  
APPLICATIONS INFORMATION  
Table 1. RF Input Impedance  
LO Input Port  
S11  
FREQUENCY  
Thedemodulator’sLOinputinterfaceisshowninFigure6.  
The input consists of a programmable input match and a  
high precision quadrature phase shifter which generates  
0° and 90° phase shifted LO signals for the LO buffer  
amplifiers to drive the I/Q mixers. DC blocking capacitors  
are required on the LOP and LOM inputs. When using a  
single-ended LO input, it is necessary to terminate the  
unused LO input (LOP in Figure 6) into 50Ω.  
(MHz)  
300  
INPUT IMPEDANCE (Ω)  
30.0 + j57.1  
66.8 – j5.3  
MAG  
0.594  
0.151  
0.092  
0.048  
0.113  
0.111  
0.124  
0.233  
0.278  
0.236  
0.191  
0.206  
0.240  
0.192  
0.404  
ANGLE (°)  
122.5  
–17.6  
–94.0  
133.7  
96.0  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4500  
5000  
5500  
6000  
7000  
8000  
9000  
49.4 – j10.4  
46.8 + j4.0  
48.9 + j12.8  
56.5 + j10.6  
62.7 – j5.8  
56.5  
–24.0  
–62.6  
–78.5  
–97.9  
–133.2  
–162.0  
–155.2  
179.7  
93.6  
61.5 – j23.6  
55.4 – j30.6  
47.0 – j26.3  
38.6 – j16.1  
33.7 – j7.5  
The programmable input match adjust is controlled by  
the BAND, CF1, LF1, and CF2 registers as detailed in the  
register map shown in Table 2. The return loss for the  
register setting in Table 2 is shown in Figure 7.  
Table 2. Register Settings for Single-Ended LO Matching  
32.3 – j12.0  
33.9 + j0.1  
LO FREQUENCY (MHz)  
BAND  
CF1  
31  
21  
14  
17  
10  
15  
14  
8
LF1  
CF2  
31  
24  
23  
31  
23  
31  
27  
21  
31  
28  
26  
31  
3
300 to 339  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
3
48.0 + j44.0  
339 to 398  
3
398 to 419  
3
ꢀ ꢁꢂꢃꢄ  
419 to 556  
2
556 to 625  
2
ꢀꢁ  
625 to 801  
1
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
801 to 831  
1
831 to 1046  
1046 to 1242  
1242 to 1411  
1411 to 1696  
1696 to 2070  
Default  
1
31  
21  
17  
15  
8
3
3
2
ꢀꢁ ꢂ ꢃꢄꢁꢅꢆ  
ꢀꢁ ꢂ ꢃꢄꢅꢆꢇ  
1
3
ꢀꢁ  
2070 to 2470  
2470 to 2980  
2980 to 3500  
3500 to 9000  
8
1
21  
10  
19  
0
Rꢀ ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢀꢁꢂ ꢃꢄꢀ  
2
1
Figure 5. RF Input Return Loss with C2 = 0.2pF and 6.8pF  
1
0
0
0
ꢁꢁ  
ꢀꢁꢂ  
ꢂꢃꢃꢄꢅ  
ꢀꢁ  
= 50Ω  
ꢀꢁꢁꢁꢂꢃ  
ꢀ ꢁ ꢀꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁAꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀAꢁꢂꢃ  
Aꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
Rꢀ  
ꢀꢁ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢁꢂ  
Figure 6. Simplified Schematic of the LO Inputs with Single-Ended Drive  
Rev A  
19  
For more information www.analog.com  
LTC5594  
APPLICATIONS INFORMATION  
Figure 8 shows the high band LO input return loss for  
various input TL1 transmission line lengths for LO input  
frequencies from 6GHz to 9GHz. Return loss greater than  
10dB can be achieved by using a 0.2pF capacitor at Cx on  
the input 50Ω transmission line. The high band LO input  
return loss is listed in Table 3 with no capacitor at Cx and  
BAND, CF1, LF1, and CF2 registers set to 1,0,0,0.  
Table 3. High Band LO Input Impedance  
FREQUENCY  
S11  
(MHz)  
5000  
5500  
6000  
6500  
7000  
7500  
8000  
8500  
9000  
INPUT IMPEDANCE (Ω)  
MAG  
0.436  
0.503  
0.453  
0.347  
0.406  
0.467  
0.531  
0.361  
0.402  
ANGLE (°)  
46.4  
87.2 + j37.9  
121.5 + j32.1  
132.1 + j5.4  
27.8  
4.8  
95.2 – j17.7  
–23.8  
–58.2  
–66.0  
–59.9  
–75.4  
–122.6  
73.5 – j39.5  
69.0 – j47.5  
ꢀ ꢁꢂꢃꢄ  
77.8 – j51.9  
ꢀꢁ  
77.8 – j38.8  
58.8 – j38.8  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Interstage Filter  
An interstage IF filter should be used between the MIP  
(MIM) and AIP (AIM) pins and the MQP (MQM) and AQP  
ꢀꢁꢂ  
(AQM) pins to suppress the large f + f and other mix-  
RF LO  
ꢀꢁ ꢂ ꢃꢄ  
ing products from the mixer outputs. Without the filter, the  
linearity of the amplifier can be degraded for the desired  
signal. Figure 9 shows a recommended lowpass filter.  
Table 4 shows typical values used for a lowpass response  
of various bandwidths.  
ꢀꢁꢂ  
ꢀꢁ ꢂRꢃꢄꢅꢃꢆꢇꢈ ꢉꢊꢋꢌꢍ  
ꢀꢁ ꢂꢃꢁ ꢂꢁ ꢂꢃ  
ꢀꢁ ꢂꢃꢁ ꢄꢁ ꢅꢂ  
ꢀꢁ ꢂꢃꢁ ꢂꢁ ꢄꢅ  
ꢀꢁ ꢂꢀꢁ ꢃꢁ ꢂꢄ  
ꢀꢁ ꢀꢂꢁ ꢀꢁ ꢃꢀ  
ꢀꢁ ꢂꢁ ꢀꢁ ꢀꢃ  
ꢀꢁ ꢀꢁ ꢂꢁ ꢀꢃ  
ꢀꢁ ꢂꢁ ꢂꢁ ꢂ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Table 4. Component Values for Interstage Lowpass Filter  
Figure 7. Single-Ended LO Input Return Loss  
vs BAND, CF1, LF1, and CF2  
1dB BW (MHz)  
L1, L2 (nH)  
C9, C11 (pF)  
C10, C12 (pF)  
20  
50  
330  
150  
68  
39  
15  
120  
47  
100  
300  
500  
1000  
10  
22  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
33  
4.7  
3.0  
1.0  
6.8  
3.0  
3.0  
22  
8.2  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
It is important that the placement of C10 and C12 be  
as close as possible to the amplifier inputs. Long line  
lengths on the amplifier inputs can lead to instability. As  
shown in Figure 10, a 50Ω common mode termination  
resistance can be used to better ensure stability with long  
line lengths and/or higher order filtering. The placement  
of C9 and C11 should be as close as possible to the mixer  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ ꢂ ꢃꢄꢄ  
ꢀꢁ ꢂ ꢃꢄꢄ  
ꢀꢁ ꢂ ꢃꢄꢄ  
ꢀꢁ ꢂ ꢃꢄꢅꢆꢇꢇ  
ꢀꢁ  
ꢀꢁ ꢂRꢃꢄꢅꢃꢆꢇꢈ ꢉꢊꢋꢌꢍ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
outputs for effective filtering of the 2xLO, f + f , and  
other mixing products.  
RF  
LO  
Figure 8. High Band LO Input Return Loss vs  
Input Transmission Line Length Lt  
By adjusting the values of the capacitors in the filter, it  
is possible to add or remove frequency slope of the IF  
response. The RF input has a frequency slope above 2GHz  
of approximately –1dB/GHz. If a high side LO (HSLO) is  
Rev A  
20  
For more information www.analog.com  
LTC5594  
APPLICATIONS INFORMATION  
V
CC  
LTC5594  
0.2pF  
PACKAGE  
1pF 50Ω  
2k  
50Ω  
1pF  
PARASITICS  
1.5nH  
MIP  
1.5nH  
MIM  
0.2pF  
C11  
C12  
C9  
42mA  
42mA  
AC CURRENT  
SOURCE  
L2  
L1  
V
CC  
PACKAGE  
PARASITICS  
100Ω  
100Ω  
C10  
1.5nH  
AIM  
AIP  
0.2pF  
0.2pF  
1.5nH  
0.6pF  
50Ω  
0.6pF  
50Ω  
5594 F09  
GND  
Figure 9. Simplified Schematic of the Mixer Output and IF Amplifier Input with Interstage Filter  
ꢀꢁꢂ  
I-Channel and Q-Channel Outputs  
ꢀꢁꢀ  
ꢀꢁꢁ  
ꢀꢁ  
The phase relationship between the I-channel output  
signal and the Q-channel output signal is fixed. When the  
LO input frequency is higher (or lower) than the RF input  
frequency, the Q-channel outputs (IFQP, IFQM) lead (or  
lag) the I-channel outputs (IFIP, IFIM) by 90°.  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
Aꢀꢁ  
Aꢀꢁ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Figure 11 shows a simplified schematic of the IF amplifier  
outputs. The current-mode outputs require a terminating  
resistance to establish a common mode voltage level. The  
optimum operating current is 18mA per output. A 50Ω  
termination is recommended on each output for a 0.9V  
common mode voltage (R5, R6). Operation at a higher  
common mode voltage is possible with the addition of  
a common mode termination. For example, to operate  
at 1.8V, an additional common mode resistance of 25Ω  
(R5 = 66.5Ω and R6 = 0Ω, or R5 = R6 = 43.2Ω) would  
be used to maintain an output current of 18mA. Alterna-  
tively, a 100Ω termination to ground on each output can  
be used for a 1.8V common mode voltage with 6dB more  
50Ω  
Figure 10. Interstage IF Filter with Common Mode Termination  
used, the resulting IF slope will be 1dB/GHz. If a low side  
LO (LSLO) is used, the resulting IF slope will be –1dB/  
GHz.TheIFfiltercomponentvaluescanbeadjustedsothat  
approximately 1dB of peaking or roll-off can be achieved  
over the filter bandwidth to give an overall flat IF response  
for the HSLO or LSLO case.  
Rev A  
21  
For more information www.analog.com  
LTC5594  
APPLICATIONS INFORMATION  
conversion gain. To operate at lower common mode volt-  
ages, a lower termination resistance can be used on each  
output at the expense of conversion gain, or a negative  
supply can be used at the connection of the termination  
resistors. Figure 12 shows the OIP3 of the amplifier alone  
with various common mode voltages.  
A typical anti-alias filter is shown in Figure 11 for interface  
with an ADC. The parallel combinations of R3||R7 and  
R4||R8 set the differential impedance for the ADC. The  
input and output of the filter contain a common mode  
terminationforhighfrequencies.TheseareformedbyC17,  
C18 and 24.9Ω at the input and C23, C24 and 24.9Ω at  
theoutput.Thecommonmodeterminationattheamplifier  
output ensures stability and the common mode termina-  
tion at the ADC input provides a termination for the high  
frequency kickback from the sampling capacitors in the  
ADC. Table 5 shows some typical values vs 1dB cutoff  
frequency for the anti-alias filter. To optimize the flatness  
and ripple of the IF band, both the IF interstage filter and  
the anti-alias filter can be designed together in a simulator  
including package parasitics. The additional slope due to  
RF slope and HSLO or LSLO can be compensated by us-  
ing this method. The layout of the anti-alias filter should  
be done so that the amplifier outputs and ADC inputs are  
as close as possible. This is to prevent long line lengths  
from introducing additional parasitics.  
ꢀꢁ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇAꢈꢀꢄꢉ ꢊ ꢋꢌꢍꢎ  
ꢊ ꢏꢋꢐꢑꢒꢓꢔꢂꢃꢄꢅ  
ꢊ ꢑꢑꢕꢈ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢁRꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Figure 12. OIP3 of Amplifier Only vs  
Output Common Mode Voltage (VCM  
)
Theamplifiergaincanbeadjustedineightstepsofroughly  
1dB from 8dB to 15dB using the AMPG register. Setting  
AMPG = 0x7 sets the gain at about 15dB and setting  
AMPG = 0x0 sets the gain to about 8dB.  
ꢁꢁ  
ꢂꢃꢃꢄꢅ  
ꢀꢁꢂ ꢃRꢄꢅR  
AꢆꢁꢇꢈAꢉꢇAꢊ  
ꢀꢁꢄR  
+
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
0.9V  
ꢀꢁꢂ  
ꢀAꢁꢂAꢃꢄ  
ꢀARAꢁꢂꢃꢂꢄꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
R3  
R7  
ꢀꢁꢂ  
ꢀꢁꢂ  
68.1Ω  
200Ω  
ꢀꢁꢀꢂ  
Aꢀ ꢀꢁRRꢂꢃꢄ  
ꢀꢁꢂRꢃꢄ  
R5  
R6  
0Ω  
ꢀꢁꢂꢃꢄ  
R2  
24.9Ω  
R9  
0Ω  
24.9Ω  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢀꢂ  
R4  
R8  
200Ω  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
Z
OUT  
= 100Ω  
ꢀꢁꢂ  
68.1Ω  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
5594 F11  
0.9V  
ꢀꢁꢂ  
Figure 11. Simplified Schematic of the IF Amplifier Output with Anti-Alias Filter  
Rev A  
22  
For more information www.analog.com  
LTC5594  
APPLICATIONS INFORMATION  
Table 5. Component Values for Anti-Alias Lowpass Filter  
Table 6. IF Amplifier S-Parameters (Differential-Mode)  
1dB BW  
(MHz)  
L5 – L8  
(nH)  
C17, C18  
(pF)  
C20, C21  
(pF)  
C23, C24  
(pF)  
IF  
S
S
S
S
22  
11  
21  
12  
MAG ANG MAG ANG MAG ANG MAG ANG  
(MHz)  
20  
50  
560  
240  
120  
33  
56  
22  
180  
68  
82  
33  
0.001 0.204 –179.9 2.129 180.0 1.8e-4 164.8 0.014 178.5  
100 0.203 176.0 2.154 171.9 5.4e-4 118.0 0.026 –120.9  
200 0.205 172.2 2.170 163.7 1.0e-4 102.8 0.050 –112.0  
300 0.207 168.5 2.197 155.6 1.7e-4 92.8 0.079 –113.5  
400 0.210 164.8 2.239 147.3 2.8e-4 93.7 0.111 –118.3  
500 0.215 160.9 2.292 138.8 3.2e-4 95.4 0.147 –125.0  
600 0.221 157.0 2.363 130.1 4.0e-4 92.0 0.186 –132.1  
700 0.227 153.0 2.445 121.2 5.0e-4 92.1 0.230 –140.0  
800 0.235 149.0 2.535 112.0 5.5e-4 86.2 0.279 –148.1  
900 0.242 144.6 2.642 102.0 6.9e-4 93.2 0.334 –157.0  
1000 0.251 140.6 2.770 92.3 7.9e-4 92.7 0.396 –166.2  
1500 0.303 117.6 3.420 32.3 0.003 92.6 0.738 134.4  
2000 0.365 90.2 3.318 –45.5 0.005 33.2 0.828 70.0  
2500 0.385 56.1 2.232 –105.2 0.005 –3.1 0.666 13.1  
3000 0.365 16.6 2.620 –160.2 0.005 –34.2 0.488 –38.4  
3500 0.319 –28.2 1.021 157.4 0.005 –61.9 0.418 –94.7  
4000 0.307 –83.4 0.742 113.3 0.005 –79.5 0.409 –150.6  
100  
300  
500  
1000  
12  
39  
22  
3.9  
1.8  
1.0  
8.2  
6.8  
3.3  
6.8  
3.3  
1.8  
22  
8
Tables 6 and 7 show the differential and common mode  
S-parameters for the amplifier by itself with 50Ω termina-  
tionsonallports. Inaddition, commonmodeterminations  
were used on the input and output ports having a value of  
2pF in series with 50Ω.  
The common mode feedback amplifier holds the common  
mode output voltage within about 20mV of the V pin  
CM  
voltage. The V pin interface is shown in Figure 13. The  
CM  
V
pin should be driven by a voltage source with an  
CM  
output impedance lower than 1kΩ. When the V pin is  
CM  
unbiased, the output common mode voltage will be held  
Table 7. IF Amplifier S-Parameters (Common Mode)  
at a nominal 0.9V given by the internal voltage divider  
IF  
S
S
S
S
22  
11  
21  
12  
MAG ANG MAG ANG MAG ANG MAG ANG  
(MHz)  
formed by the 40k and 8k resistors. Connecting the V  
CM  
0.001 0.184 –138.7 9.2e-4 –112.8 0.037 –65.3 0.985 179.8  
100 0.186 172.5 0.085 –118.9 0.013 –68.6 0.152 126.7  
200 0.188 166.6 0.173 –134.7 0.007 –91.8 0.125 116.7  
300 0.191 160.2 0.237 –150.0 0.004 –113.1 0.097 97.3  
400 0.196 154.4 0.291 –163.8 0.002 –145.4 0.067 75.2  
500 0.202 148.4 0.340 –176.8 0.002 170.2 0.037 43.6  
600 0.210 142.8 0.387 170.9 0.002 137.0 0.023 –38.0  
700 0.219 137.2 0.436 159.1 0.003 118.1 0.051 –97.8  
800 0.230 132.0 0.488 147.1 0.003 107.8 0.094 –121.5  
900 0.243 126.5 0.550 134.9 0.004 106.6 0.148 –137.0  
1000 0.252 120.9 0.612 122.2 0.006 104.8 0.211 –151.3  
1500 0.325 96.7 0.981 43.4 0.020 80.4 0.749 136.1  
2000 0.438 72.1 0.776 –46.1 0.036 18.6 1.005 55.9  
pin to an ADC common mode reference pin allows the  
output common mode voltage of the IF amplifier to track  
the ADC common mode.  
ꢁꢁ  
ꢂꢃꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
250Ω  
+
ꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
2500 0.549 40.1 0.496 –97.1 0.041 –21.9 0.873  
2.9  
3000 0.601 6.9 0.397 –143.2 0.042 –52.2 0.764 –37.3  
3500 0.618 –27.5 0.281 –175.7 0.044 –80.3 0.668 –72.7  
4000 0.595 –60.3 0.254 147.3 0.046 –101.2 0.620 –107.0  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢁꢂ  
Figure 13. Simplified Schematic of the VCM Input Pin  
Rev A  
23  
For more information www.analog.com  
LTC5594  
APPLICATIONS INFORMATION  
Temperature Diode  
ablethedemodulator,amplifier,DCoffset,andnonlinearity  
adjust circuits which are controlled by the EDEM, EAMP,  
EDC,andEADJbits.Alternatively,writinganycombination  
of bits to the four MSB’s of register 0x16 will enable or  
disable the individual circuit blocks.  
A schematic of the TEMP pin is shown in Figure 14. The  
temperature diode can be used to directly measure the  
die temperature. A 40k resistor is recommended to V  
CC  
to generate a 100µA current source for the diode readout.  
The temperature slope is about –1.52mV/°C.  
AMPD Interface  
ꢁꢁ  
ꢁꢁ  
Also shown in Figure 15 is the simplified schematic for  
the AMPD IF amplifier disable pin. The IF amplifiers are  
enabled if the logical AND of AMPD and the EAMP register  
is 1. The IF amplifier state is detailed in Table 8.  
ꢂꢃꢃꢄꢅ  
Rꢀꢁ  
ꢂꢁꢃꢀꢄ  
100Ω  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Table 8. IF Amplifier State vs Logic Levels  
AMPD Pin  
EAMP  
Register  
0
1
ꢀꢀꢁꢂ ꢃꢄꢂ  
0
1
OFF  
ON  
OFF  
OFF  
ꢀꢁꢂ  
Figure 14. Schematic of the TEMP Pin  
Digital Input Pins  
Enable Interface  
Figure 16 shows the simplified schematics for the digital  
input pins, SCK, CSB, and SDI. These pins should not be  
leftfloating,sincethereisnointernalpull-downorpull-up.  
A simplified schematic of the EN pin is shown in Figure 15.  
TheenablevoltagenecessarytoturnontheLTC5594is0.7  
• OV . To disable or turn off the chip, this voltage should  
DD  
ꢁꢁ  
bebelow0.3OV .IftheENpinisnotconnected,thechip  
DD  
is disabled. An internal 200kΩ pull-down keeps the part in  
shutdown mode if the pin is left floating. The LTC5594 can  
be put into a lower current sleep mode through the serial  
interface by writing 0x00 to register 0x16. This will dis-  
ꢂꢃꢃꢄꢅ  
ꢀꢁ  
ꢀꢁꢂꢁꢃAꢄ  
ꢀꢁꢂꢃꢄ  
ꢁꢁ  
ꢂꢃꢃꢄꢅ  
ꢀꢁ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢁ  
ꢅꢆꢇ Aꢈꢉꢊꢋ  
ꢀꢁꢂ  
ꢀꢁꢁꢂ  
Figure 16. Simplified Schematic of the Digital  
Input Pins (SCK, CSB, SDI)  
OV Interface  
DD  
ꢀꢀꢁꢂ ꢃꢄꢀ  
Figure 17 shows the simplified schematic of the OV  
ꢀꢁꢂ  
DD  
interface. The OV pin supplies the voltage for the digital  
DD  
Figure 15. Simplified Schematic of the EN (or AMPD)  
Pin Interface  
inputs and SDO pin. By setting the pin at 1.2V to 3.3V, the  
serial port can function with 1.2V to 3.3V logic levels. It is  
important that when sequencing the supply voltages for  
Rev A  
24  
For more information www.analog.com  
LTC5594  
APPLICATIONS INFORMATION  
the chip that the V supply be brought up first before the  
data is transferred to the internal register at the falling  
CC  
th  
edge of the 16 clock cycle (parallel load).  
OV supply. This is to prevent the ESD diode connected  
DD  
between OV and V from getting damaged.  
DD  
CC  
Multiple Byte Transfers  
ꢁꢁ  
More efficient data transfer of multiple bytes is accom-  
plished by using the LTC5594’s register address auto-  
increment feature as shown in the timing diagram. The  
serial port master sends the destination register address  
in the first byte and reads or writes data in the second  
byte as before, but on the third byte the address pointer  
is auto-incremented by 1 and the serial port master can  
read or write to subsequent registers. If the register ad-  
dress pointer attempts to increment past 23 (0x17), it is  
automatically reset to 0.  
ꢂꢃꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁ  
ꢂꢂ  
ꢀꢁꢂꢁꢃAꢄ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢁꢂ  
Figure 17. Simplified Schematic of the OVDD Pin Interface  
SDO_MODE Control Bit  
SERIAL PORT  
The SDO output has two modes of operation as shown  
in the timing diagram. When register 0x16 control bit  
SDO_MODE = 0, the SDO pin functions as a normal output  
which is Hi-Z during a write command. If SDO_MODE = 1,  
the SDO output is put into a serial repeater mode where  
SDO echos the command written to SDI before readback  
of register contents either in read or write mode. This  
can be used in high bus noise environments where it is  
necessary to perform error checking on commands sent  
to the serial port.  
The SPI compatible serial port provides control and moni-  
toring functionality.  
Communication Sequence  
The serial bus is comprised of CSB, SCK, SDI and SDO.  
Data transfers to the part are accomplished by the  
serial bus master device first taking CSB low to enable the  
LTC5594’s port. Input data applied on SDI is clocked on  
the rising edge of SCK, with all transfers MSB first. The  
communicationburstisterminatedbytheserialbusmaster  
returning CSB high. See the timing diagrams for details.  
A simplified schematic of the SDO output is shown in  
Figure 18. The OV supply sets the logic level of the  
DD  
output, anda25seriesresistorlimitstheoutputcurrent.  
Data is read from the part during a communication burst  
using SDO. Readback may be multidrop (more than one  
LTC5594 or other serial device connected in parallel on  
the serial bus), as SDO is high impedance (Hi-Z) when  
CSB = 1.  
ꢀꢁ  
ꢂꢂ  
ꢁꢁ  
ꢂꢃꢃꢄꢅ  
Single Byte Transfers  
25Ω  
ꢀꢁꢂ  
The serial port is arranged as a simple memory map, with  
status and control available in 23 registers as shown in  
the appendix. All data bursts are comprised of at least two  
8-bit bytes. The most significant bit of the first byte is the  
read/write bit. Setting this bit to 1 puts the serial port into  
read mode. The next 7 bits of the first byte are address bits  
and can be set from 0x00 to 0x17. The subsequent byte,  
or bytes, is data from/to the specified register address.  
See the timing diagrams for details. Note that the written  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢁꢂ  
Figure 18. Simplified Schematic of the SDO Pin Interface  
Rev A  
25  
For more information www.analog.com  
LTC5594  
APPLICATIONS INFORMATION  
Register Defaults  
application is shown in Figure 19. A 2-tone source signal  
is applied to the RF input and the I and Q ADC outputs are  
measuredinthedigitaldomaintodeterminetheoptimized  
register settings in the LTC5594 for minimization of the  
impairments.  
The register map and defaults are given in Tables 9 and  
10 in the Appendix. When the device is powered up, the  
registers may not be reset to their default values. By  
writing a 1 to the SRST bit (bit[3]) of register 0x16, the  
device will go into soft reset and the registers will be reset  
to their default values.  
Figure 20 shows the nonoptimized baseband spectrum  
and Figure 21 shows the optimized baseband spectrum  
for a 2-tone test signal at 5.8GHz.  
Impairment Minimization  
The LTC5594 contains circuitry for minimizing receiver  
impairments such as DC offset, phase and gain error,  
and nonlinearity. An example block diagram of a receiver  
Aꢀꢁꢂꢃꢂꢂ  
ꢀꢁ  
Aꢀꢁꢂꢃꢄ  
ꢂꢃꢃꢄꢅ  
Aꢀꢁ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃAꢄ  
ꢀꢁꢂRꢃꢄ  
ꢀꢁꢂꢃARꢁꢄꢅ  
ꢀꢁ ꢂꢃꢃꢄꢅꢆ  
ꢀꢁAꢂꢃ  
ꢀꢁ  
Rꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁAꢂꢃRꢁꢀꢁꢄꢅ  
Aꢀꢁ ꢂꢃꢄꢅꢆꢅꢇAꢄꢅꢂꢀ  
Aꢀꢁꢂꢃꢄ  
Aꢀꢁ  
ꢀꢁꢂ  
ꢀꢀꢁꢂ ꢃꢄꢁ  
Figure 19. Example Block Diagram of a Receiver with 2-Tone Test Signal for Impairment Minimization  
Rev A  
26  
For more information www.analog.com  
LTC5594  
APPLICATIONS INFORMATION  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
Figure 20. Nonoptimized 2-Tone Spectrum at 5.8GHz with 1GHz Anti-Alias Filter  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
Figure 21. Optimized 2-Tone Spectrum at 5.8GHz with 1GHz Anti-Alias Filter  
Rev A  
27  
For more information www.analog.com  
LTC5594  
APPENDIX  
Table 9. Serial Port Register Contents  
ADDR  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
MSB  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
LSB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DEFAULT  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x04  
0x82  
0x48  
0xE3  
0x80  
0x6A  
0xF0  
0x01  
IM3QY[7]  
IM3QX[7]  
IM3IY[7]  
IM3IX[7]  
IM2QX[7]  
IM2IX[7]  
IM3QY[6]  
IM3QX[6]  
IM3IY[6]  
IM3IX[6]  
IM2QX[6]  
IM2IX[6]  
IM3QY[5]  
IM3QX[5]  
IM3IY[5]  
IM3IX[5]  
IM2QX[5]  
IM2IX[5]  
IM3QY[4]  
IM3QX[4]  
IM3IY[4]  
IM3IX[4]  
IM2QX[4]  
IM2IX[4]  
IM3QY[3]  
IM3QX[3]  
IM3IY[3]  
IM3IX[3]  
IM2QX[3]  
IM2IX[3]  
IM3QY[2]  
IM3QX[2]  
IM3IY[2]  
IM3IX[2]  
IM2QX[2]  
IM2IX[2]  
IM3QY[1]  
IM3QX[1]  
IM3IY[1]  
IM3IX[1]  
IM2QX[1]  
IM2IX[1]  
IM3QY[0]  
IM3QX[0]  
IM3IY[0]  
IM3IX[0]  
IM2QX[0]  
IM2IX[0]  
HD3QY[7] HD3QY[6] HD3QY[5]  
HD3QX[7] HD3QX[6] HD3QX[5]  
HD3QY[4] HD3QY[3] HD3QY[2] HD3QY[1] HD3QY[0]  
HD3QX[4] HD3QX[3] HD3QX[2] HD3QX[1] HD3QX[0]  
HD3IY[7]  
HD3IX[7]  
HD3IY[6]  
HD3IX[6]  
HD3IY[5]  
HD3IX[5]  
HD3IY[4]  
HD3IX[4]  
HD3IY[3]  
HD3IX[3]  
HD3IY[2]  
HD3IX[2]  
HD3IY[1]  
HD3IX[1]  
HD3IY[0]  
HD3IX[0]  
HD2QY[7] HD2QY[6] HD2QY[5]  
HD2QX[7] HD2QX[6] HD2QX[5]  
HD2QY[4] HD2QY[3] HD2QY[2] HD2QY[1] HD2QY[0]  
HD2QX[4] HD2QX[3] HD2QX[2] HD2QX[1] HD2QX[0]  
HD2IY[7]  
HD2IX[7]  
DCOI[7]  
DCOQ[7]  
0*  
HD2IY[6]  
HD2IX[6]  
DCOI[6]  
DCOQ[6]  
0*  
HD2IY[5]  
HD2IX[5]  
DCOI[5]  
DCOQ[5]  
0*  
HD2IY[4]  
HD2IX[4]  
DCOI[4]  
DCOQ[4]  
0*  
HD2IY[3]  
HD2IX[3]  
DCOI[3]  
DCOQ[3]  
0*  
HD2IY[2]  
HD2IX[2]  
DCOI[2]  
DCOQ[2]  
IP3IC[2]  
GERR[0]  
CF1[2]  
HD2IY[1]  
HD2IX[1]  
DCOI[1]  
DCOQ[1]  
IP3IC[1]  
IP3CC[1]  
CF1[1]  
HD2IY[0]  
HD2IX[0]  
DCOI[0]  
DCOQ[0]  
IP3IC[0]  
IP3CC[0]  
CF1[0]  
GERR[5]  
LVCM[2]  
BAND  
GERR[4]  
LVCM[1]  
LF1[1]  
GERR[3]  
LVCM[0]  
LF1[0]  
GERR[2]  
CF1[4]  
CF2[4]  
PHA[5]  
AMPG[0]  
EAMP  
GERR[1]  
CF1[3]  
CF2[3]  
CF2[2]  
CF2[1]  
CF2[0]  
PHA[8]  
PHA[0]  
EDEM  
PHA[7]  
AMPG[2]  
EDC  
PHA[6]  
AMPG[1]  
EADJ  
PHA[4]  
PHA[3]  
PHA[2]  
AMPIC[1]  
0*  
PHA[1]  
AMPIC[0]  
0*  
AMPCC[1] AMPCC[0]  
SRST  
0*  
SDO_MODE  
0*  
CHIPID[1] CHIPID[0]  
0*  
0*  
0*  
1*  
*Unused, do not change default value.  
Rev A  
28  
For more information www.analog.com  
LTC5594  
APPENDIX  
Table 10. Serial Port Register Bit Field Summary  
BITS  
FUNCTION  
DESCRIPTION  
VALID VALUES  
DEFAULT  
0x02  
0x02  
0x06  
1
AMPCC[1:0]  
AMPIC[1:0]  
AMPG[2:0]  
BAND  
IF Amplifier IM3 CC Adjust  
IF Amplifier IM3 IC Adjust  
IF Amplifier Gain Adjust  
LO Band Select  
Used to optimize the IF amplifier IM3.  
Used to optimize the IF amplifier IM3.  
Adjusts the amplifier gain from 8dB to 15dB.  
0x00 to 0x03  
0x00 to 0x03  
0x00 to 0x07  
0, 1  
Selects which LO matching band is used. BAND = 1 for high band. BAND  
= 0 for low band.  
CF1[5:0]  
LO Matching Capacitor CF1 Controls the CF1 capacitor in the LO matching network.  
LO Matching Capacitor CF2 Controls the CF2 capacitor in the LO matching network.  
0x00 to 0x1F  
0x00 to 0x1F  
0x00 to 0x03  
0x00 to 0xFF  
0x00 to 0xFF  
0, 1  
0x08  
0x03  
0x00  
0x80  
0x80  
1
CF2[5:0]  
CHIPID  
Chip Identification Bits  
I-Channel DC Offset  
Factory set to default value.  
DCOI[7:0]  
DCOQ[7:0]  
EADJ  
Controls the I-channel DC offset over a range from –200mV to 200mV.  
Controls the Q-channel DC offset over a range from –200mV to 200mV.  
Enables the nonlinearity adjustment circuitry if EADJ = 1.  
Enables the IF amplifiers if EAMP = 1.  
Q-Channel DC Offset  
Enable Nonlinearity Adjust  
Enable IF Amplifiers  
Enable DC Offset Adjust  
Enable Demodulator  
EAMP  
0, 1  
1
EDC  
Enables the DC offset adjustment circuitry if EDC = 1.  
Enables the demodulator circuitry if EDEM = 1.  
0, 1  
1
EDEM  
0, 1  
1
GERR[5:0]  
HD2IX[7:0]  
HD2IY[7:0]  
HD2QX[7:0]  
HD2QY[7:0]  
HD3IX[7:0]  
HD3IY[7:0]  
HD3QX[7:0]  
HD3QY[7:0]  
IM2IX[7:0]  
IM2QX[7:0]  
IM3IX[7:0]  
IM3IY[7:0]  
IM3QX[7:0]  
IM3QY[7:0]  
IP3CC[1:0]  
IP3IC[2:0]  
LF1[1:0]  
I Gain Error Adjust  
Controls the I gain error over a range from –0.5dB to 0.5dB.  
0x00 to 0x3F  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0xFF  
0x00 to 0x03  
0x00 to 0x07  
0x00 to 0x03  
0x00 to 0x07  
0x000 to 0x1FF  
0x20  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x80  
0x02  
0x04  
0x03  
0x02  
0x100  
Q
Q
HD2 I-Channel X-Vector  
HD2 I-Channel Y-Vector  
HD2 Q-Channel X-Vector  
HD2 Q-Channel Y-Vector  
HD3 I-Channel X-Vector  
HD3 I-Channel Y-Vector  
HD3 Q-Channel X-Vector  
HD3 Q-Channel Y-Vector  
IM2 I-Channel X-Vector  
IM2 Q-Channel X-Vector  
IM3 I-Channel X-Vector  
IM3 I-Channel Y-Vector  
IM3 Q-Channel X-Vector  
IM3 Q-Channel Y-Vector  
RF Input IP3 CC Adjust  
RF Input IP3 IC Adjust  
LO Matching Inductor LF1  
LO Bias Adjust  
Controls the I-channel HD2 X-vector adjustment if EADJ = 1.  
Controls the I-channel HD2 Y-vector adjustment if EADJ = 1.  
Controls the Q-channel HD2 X-vector adjustment if EADJ = 1.  
Controls the Q-channel HD2 Y-vector adjustment if EADJ = 1.  
Controls the I-channel HD3 X-vector adjustment if EADJ = 1.  
Controls the I-channel HD3 Y-vector adjustment if EADJ = 1.  
Controls the Q-channel HD3 X-vector adjustment if EADJ = 1.  
Controls the Q-channel HD3 Y-vector adjustment if EADJ = 1.  
Controls the I-channel IM2 X-vector adjustment if EADJ = 1.  
Controls the Q-channel IM2 X-vector adjustment if EADJ = 1.  
Controls the I-channel IM3 X-vector adjustment if EADJ = 1.  
Controls the I-channel IM3 Y-vector adjustment if EADJ = 1.  
Controls the Q-channel IM3 X-vector adjustment if EADJ = 1.  
Controls the Q-channel IM3 Y-vector adjustment if EADJ = 1.  
Used to optimize the RF input IP3.  
Used to optimize the RF input IP3.  
Controls the LF1 inductor in the LO matching network.  
Used to optimize mixer IP3.  
LVCM[2:0]  
PHA[8:0]  
I Phase Error Adjust  
Q
Controls the I phase error over a range from –2.5 Degrees to 2.5  
Q
Degrees.  
SDO_MODE  
SRST  
SDO Readback Mode  
Soft Reset  
Enables the SDO readback mode if SDO_MODE = 1.  
Writing 1 to this bit resets all registers to their default values.  
0, 1  
0, 1  
0
0
Rev A  
29  
For more information www.analog.com  
LTC5594  
PACKAGE DESCRIPTION  
UH Package  
32-Lead Plastic QFN (5mm × 5mm)  
ꢄReꢩeꢪeꢫꢬe ꢗꢍꢔ ꢈꢏꢐ ꢭ ꢂꢀꢙꢂꢮꢙꢃꢣꢯꢞ Rev ꢈꢊ  
ꢂꢁꢥꢂ ±ꢂꢁꢂꢀ  
ꢀꢁꢀꢂ ±ꢂꢁꢂꢀ  
ꢅꢁꢃꢂ ±ꢂꢁꢂꢀ  
ꢞꢁꢅꢀ ±ꢂꢁꢂꢀ  
ꢞꢁꢀꢂ Rꢉꢟ  
ꢄꢅ ꢆꢇꢈꢉꢆꢊ  
ꢞꢁꢅꢀ ±ꢂꢁꢂꢀ  
ꢑAꢔꢕAꢐꢉ ꢌꢖꢍꢗꢇꢋꢉ  
ꢂꢁꢚꢀ ±ꢂꢁꢂꢀ  
ꢂꢁꢀꢂ ꢒꢆꢔ  
Rꢉꢔꢌꢘꢘꢉꢋꢈꢉꢈ ꢆꢌꢗꢈꢉR ꢑAꢈ ꢗAꢢꢌꢖꢍ  
AꢑꢑꢌꢗꢈꢉR ꢘAꢆꢕ ꢍꢌ ARꢉAꢆ ꢍꢜAꢍ ARꢉ ꢋꢌꢍ ꢆꢌꢗꢈꢉRꢉꢈ  
ꢒꢌꢍꢍꢌꢘ ꢛꢇꢉꢏꢤꢉꢝꢑꢌꢆꢉꢈ ꢑAꢈ  
ꢑꢇꢋ ꢃ ꢋꢌꢍꢔꢜ R ꢦ ꢂꢁꢞꢂ ꢍꢢꢑ  
ꢌR ꢂꢁꢞꢀ × ꢅꢀ° ꢔꢜAꢘꢟꢉR  
R ꢦ ꢂꢁꢂꢀ  
ꢍꢢꢑ  
ꢂꢁꢂꢂ ꢨ ꢂꢁꢂꢀ  
R ꢦ ꢂꢁꢃꢃꢀ  
ꢍꢢꢑ  
ꢂꢁꢥꢀ ±ꢂꢁꢂꢀ  
ꢀꢁꢂꢂ ±ꢂꢁꢃꢂ  
ꢄꢅ ꢆꢇꢈꢉꢆꢊ  
ꢞꢃ ꢞꢚ  
ꢂꢁꢅꢂ ±ꢂꢁꢃꢂ  
ꢑꢇꢋ ꢃ  
ꢍꢌꢑ ꢘARꢕ  
ꢄꢋꢌꢍꢉ ꢣꢊ  
ꢞꢁꢅꢀ ±ꢂꢁꢃꢂ  
ꢞꢁꢀꢂ Rꢉꢟ  
ꢄꢅꢙꢆꢇꢈꢉꢆꢊ  
ꢞꢁꢅꢀ ±ꢂꢁꢃꢂ  
ꢄꢖꢜꢞꢚꢊ ꢧꢟꢋ ꢂꢅꢂꢣ Rꢉꢛ ꢈ  
ꢂꢁꢚꢂꢂ Rꢉꢟ  
ꢂꢁꢚꢀ ±ꢂꢁꢂꢀ  
ꢂꢁꢀꢂ ꢒꢆꢔ  
ꢋꢌꢍꢉꢎ  
ꢃꢁ ꢈRAꢏꢇꢋꢐ ꢑRꢌꢑꢌꢆꢉꢈ ꢍꢌ ꢒꢉ A ꢓꢉꢈꢉꢔ ꢑAꢔꢕAꢐꢉ ꢌꢖꢍꢗꢇꢋꢉ  
ꢘꢂꢙꢚꢚꢂ ꢛARꢇAꢍꢇꢌꢋ ꢏꢜꢜꢈꢙꢄꢝꢊ ꢄꢍꢌ ꢒꢉ AꢑꢑRꢌꢛꢉꢈꢊ  
ꢚꢁ ꢈRAꢏꢇꢋꢐ ꢋꢌꢍ ꢍꢌ ꢆꢔAꢗꢉ  
ꢞꢁ Aꢗꢗ ꢈꢇꢘꢉꢋꢆꢇꢌꢋꢆ ARꢉ ꢇꢋ ꢘꢇꢗꢗꢇꢘꢉꢍꢉRꢆ  
ꢅꢁ ꢈꢇꢘꢉꢋꢆꢇꢌꢋꢆ ꢌꢟ ꢉꢝꢑꢌꢆꢉꢈ ꢑAꢈ ꢌꢋ ꢒꢌꢍꢍꢌꢘ ꢌꢟ ꢑAꢔꢕAꢐꢉ ꢈꢌ ꢋꢌꢍ ꢇꢋꢔꢗꢖꢈꢉ  
ꢘꢌꢗꢈ ꢟꢗAꢆꢜꢁ ꢘꢌꢗꢈ ꢟꢗAꢆꢜꢠ ꢇꢟ ꢑRꢉꢆꢉꢋꢍꢠ ꢆꢜAꢗꢗ ꢋꢌꢍ ꢉꢝꢔꢉꢉꢈ ꢂꢁꢚꢂꢡꢡ ꢌꢋ Aꢋꢢ ꢆꢇꢈꢉ  
ꢀꢁ ꢉꢝꢑꢌꢆꢉꢈ ꢑAꢈ ꢆꢜAꢗꢗ ꢒꢉ ꢆꢌꢗꢈꢉR ꢑꢗAꢍꢉꢈ  
ꢣꢁ ꢆꢜAꢈꢉꢈ ARꢉA ꢇꢆ ꢌꢋꢗꢢ A RꢉꢟꢉRꢉꢋꢔꢉ ꢟꢌR ꢑꢇꢋ ꢃ ꢗꢌꢔAꢍꢇꢌꢋ  
ꢌꢋ ꢍꢜꢉ ꢍꢌꢑ Aꢋꢈ ꢒꢌꢍꢍꢌꢘ ꢌꢟ ꢑAꢔꢕAꢐꢉ  
Rev A  
30  
For more information www.analog.com  
LTC5594  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
06/18 Added T = 25°C  
5, 7  
J
Rev A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
subject to change without notice. No license is ante lic otherw er any patent or patent rights of Analog Devices.  
31  
gr d by imp atio or ise und  
LTC5594  
TYPICAL APPLICATION  
Simplified Schematic of a 0.5GHz to 9.0GHz Receiver, (Only I-Channel Is Shown)  
ꢀꢁꢂ ꢃꢄꢅꢆꢇ  
ꢀꢁꢂ ꢃꢄꢁꢅꢆ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
AꢀꢁꢂꢃAꢄꢂAꢅ  
ꢀꢁꢄR  
ꢀꢁꢂ  
ꢀꢁꢀ  
Aꢀꢁ  
Aꢀꢁ  
ꢂꢃꢃꢄꢅ  
ꢀꢁꢂ ꢃꢁꢄꢅ  
ꢀꢁꢂ ꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢂ ꢄꢅꢆꢇꢈꢉ Aꢊꢋ  
Rꢀ ꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇ ꢈꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
Rꢀ  
Aꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
R2  
25Ω  
ꢀꢁꢁꢁꢂꢃ  
ꢀꢁꢀꢂꢃ  
73.2Ω  
A
ꢀꢁꢀꢂ  
ꢁꢂ  
R9, 25Ω  
RꢀA  
Aꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
A
ꢀꢁꢀꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
Rꢀ  
73.2Ω  
ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢀꢂꢃ  
Rꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢁꢂ  
ꢀꢁꢂ ꢃꢄꢅꢆ  
ꢀꢁꢂ ꢃꢄꢅꢆ  
ꢀꢁ  
ꢀꢁꢁꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢀꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢁꢁꢂꢃ  
ꢀꢁꢀꢂꢃꢄ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇ ꢈꢃꢄꢅ  
Rꢀ  
49.9Ω  
R32, 10Ω  
ꢀꢀꢁꢂ ꢃAꢄꢅ  
RELATED PARTS  
PART  
NUMBER  
Infrastructure  
LTC5553  
DESCRIPTION  
COMMENTS  
3GHz to 20GHz Microwave Mixer with 500MHz to 9GHz IF  
3GHz to 20GHz Microwave Mixer with DC to 6GHz IF  
2GHz to 14GHz Mixer with Integrated LO Doubler  
Up-or-Down Conversion, 21.5dBm IIP3 at 17GHz, 0dBm LO Drive  
Up-or-Down Conversion, 18.3dBm IIP3 at 17GHz, 0dBm LO Drive  
LTC5552  
Ultra-Wideband Bidirectional Up-, or Down-Conversion Mixer, 22.8dBm IIP3  
at 12GHz, 0dBm LO Drive, 500MHz to 6GHz IF Bandwidth  
LTC5549  
2GHz to 14GHz Mixer with IF Frequency Extending to DC  
Ultra-Wideband Bidirectional Up-, or Down-Conversion Mixer, 18.7dBm IIP3  
at 12GHz, 0dBm LO Drive with On-Chip Frequency Doubler, DC to 6GHz IF  
Bandwidth  
LTC5548  
200MHz to 6GHz Quadrature Modulator  
<100kHz to 1.4GHz High OIP3 Amplifier  
31dBm OIP3, –160dBm/Hz Output Noise Floor, Excellent ACPR Performance  
LTC5588-1  
Fixed 15dB Gain, Single-Ended 50Ω Input and Output, 41dBm OIP3 at  
240MHz, 3.3dB NF  
LTC6433-15  
RF PLL/Synthesizer with VCO  
Microwave Wideband Synthesizer with Integrated VCO  
54MHz to 13.6GHz, –221dBc/Hz Normalized In-Band Phase Noise Floor  
ADF5355  
LTC6948  
Ultralow Noise Fractional-N Synthesizer with Integrated  
VCO  
370MHz to 6.39GHz PLL, No ∆∑ Modulator Spurs, 18-Bit Fractional  
Denominator, 226dBc/Hz Normalized In-Band Phase Noise Floor  
ADCs  
14-Bit, 3Gsps JESD204B Dual ADC  
16-Bit, 125Msps 1.8V Dual ADC  
70dB SFDR, Integrated Input Buffer  
AD9208  
LTC2185  
LTC2158-14  
76.8dB SNR, 90dB SFDR, 185mW/Channel Power Consumption  
14-Bit, 310Msps 1.8V Dual ADC, 1.25GHz Full-Power  
Bandwidth  
68.8dB SNR, 88dB SFDR, 362mW/Ch Power Consumption, 1.32V Input  
Range  
P-P  
Rev A  
D16967-0-6/18(A)  
www.analog.com  
32  
ANALOG DEVICES, INC. 2018  

相关型号:

LTC5596HDC#PBF

LTC5596 - 100MHz to 40GHz Linear-in-dB RMS Power Detector with 35dB Dynamic Range; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC5596HDC#TRPBF

LTC5596 - 100MHz to 40GHz Linear-in-dB RMS Power Detector with 35dB Dynamic Range; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC5596IDC#PBF

LTC5596 - 100MHz to 40GHz Linear-in-dB RMS Power Detector with 35dB Dynamic Range; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC5596IDC#TRMPBF

LTC5596 - 100MHz to 40GHz Linear-in-dB RMS Power Detector with 35dB Dynamic Range; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC5598

200MHz to 6000MHz Quadrature Modulator with Ultrahigh OIP3
Linear

LTC5598IUF

5MHz to 1600MHz High Linearity Direct Quadrature Modulator
Linear

LTC5598IUF#PBF

LTC5598 - 5MHz to 1600MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC5598IUF#TRPBF

LTC5598 - 5MHz to 1600MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC5599

30MHz to 1300MHz Low Power Direct Quadrature Modulator
Linear

LTC5599IUF#PBF

LTC5599 - 30MHz to 1300MHz Low Power Direct Quadrature Modulator; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC5599IUF#TRPBF

LTC5599 - 30MHz to 1300MHz Low Power Direct Quadrature Modulator; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC5599_15

30MHz to 1300MHz Low Power Direct Quadrature Modulator
Linear