LTC7063 [ADI]

100V Half-Bridge Driver with Floating Grounds and Adjustable Dead-Time;
LTC7063
型号: LTC7063
厂家: ADI    ADI
描述:

100V Half-Bridge Driver with Floating Grounds and Adjustable Dead-Time

文件: 总18页 (文件大小:2229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC7060  
100V Half-Bridge Driver with Floating  
Grounds and Adjustable Dead-Time  
FEATURES  
DESCRIPTION  
The LTC®7060 drives two N-Channel MOSFETs in a  
half-bridge configuration with supply voltages up to  
100V. Both high-side and low-side drivers can drive the  
MOSFETs with a different ground reference, providing  
excellent noise and transient immunity.  
n
Unique Symmetric Floating Gate Driver Architecture  
High Noise Immunity,Tolerates 10V Ground  
Difference between Input and Output Grounds  
100V Maximum Input Voltage Independent of IC  
n
n
Supply Voltage V  
CC  
n
n
n
n
n
n
n
n
n
n
n
6V to 14V V Operating Voltage  
CC  
Its powerful 0.8Ω pull-down and 1.5Ω pull-up MOSFET  
drivers allows the use of large gate capacitance high volt-  
age MOSFETs. Additional features include UVLO, Three-  
State PWM input, adjustable turn-on/-off delays and  
shoot-through protection.  
4V to 14V Gate Driver Voltage  
0.8Ω Pull-Down, 1.5Ω Pull-Up for Fast Turn-On/Off  
Adaptive Shoot-Through Protection  
Programmable Dead-Time  
Three-State PWM Input with Enable Pin  
See chart below for a similar driver in this product family.  
V
UVLO/OVLO and Floating Supplies UVLO  
CC  
Drives Dual N-Channel MOSFETs  
PARAMETER  
LTC7060  
LTC7061  
LTC7062  
LTC7063  
Open-Drain Fault Indicator  
Input Signal  
Three-State  
PWM  
CMOS/  
TTL Logic  
CMOS/  
TTL Logic  
Three-State  
PWM  
Available in Thermally Enhanced 12-LEAD MSOP  
AEC-Q100 Automotive Qualification in Progress  
Shoot-Through  
Protection  
Yes  
115V  
5.3V  
Yes  
115V  
4.3V  
No  
Yes  
155V  
5.3V  
Absolute Max  
Voltage  
115V  
4.3V  
APPLICATIONS  
n
V
Falling  
Automotive and Industrial Power Systems  
CC  
UVLO  
n
Telecommunication Power Systems  
n
Half-Bridge and Full-Bridge Converters  
All registered trademarks and trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢃ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
FLT  
ꢂꢃꢄꢅꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁRꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁRꢂꢃ  
ꢂꢃꢄꢅꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
FLT  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢁ ꢃAꢁꢄ  
Rev. A  
1
Document Feedback  
For more information www.analog.com  
LTC7060  
PIN CONFIGURATION  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
V
Supply Voltage .................................... –0.3V to 15V  
ꢌꢖꢆ ꢍꢗꢉꢇ  
CC  
Top Side Driver Voltage (BST) ..................–0.3V to 115V  
ꢆꢇꢈ  
ꢉꢊ  
FLT  
ꢋꢌ  
ꢀꢁ ꢏꢕꢌ  
ꢀꢀ ꢌꢐ  
ꢀꢑ ꢕꢇ  
Bottom Side Driver Voltage (BGV ).........–0.3V to 115V  
CC  
ꢀꢂ  
ꢕꢐꢊꢋ  
SW, BGRTN................................................–10V to 100V  
ꢊꢎ  
ꢏꢐ  
ꢏꢐRꢌꢊ  
ꢏꢐꢍ  
ꢎꢎ  
ꢎꢎ  
(BST-SW)................................................... –0.3V to 15V  
(BGV -BGRTN) ........................................ –0.3V to 15V  
CC  
ꢈꢕꢉ ꢆAꢎꢘAꢐꢉ  
ꢀꢁꢙꢚꢉAꢋ ꢆꢚAꢕꢌꢗꢎ ꢈꢕꢖꢆ  
ꢝ ꢀꢄꢑꢞꢎꢟ θ ꢝ ꢃꢑꢞꢎꢠꢇ  
ꢛA  
ꢉꢜꢆꢖꢕꢉꢋ ꢆAꢋ ꢡꢆꢗꢊ ꢀꢂꢢ ꢗꢕ ꢕꢐꢊꢋꢟ ꢈꢣꢕꢌ ꢏꢉ ꢕꢖꢚꢋꢉRꢉꢋ ꢌꢖ ꢆꢎꢏ  
EN, FLT ....................................................... –0.3V to 15V  
DT, PWM...................................................... –0.3V to 6V  
Driver Output TG (with Respect to SW)..... –0.3V to 15V  
Driver Output BG  
ꢛꢈAꢜ  
(with Respect to BGRTN)........................... –0.3V to 15V  
Operating Junction Temperature Range  
(Note 2, 3)..... ......................................... –40°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Note: All voltages are referred to SGND unless otherwise  
noted.  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTC7060  
PACKAGE DESCRIPTION  
12-Lead Plastic MSSOP  
12-Lead Plastic MSSOP  
12-Lead Plastic MSSOP  
12-Lead Plastic MSSOP  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 150°C  
LTC7060EMSE#PBF  
LTC7060IMSE#PBF  
LTC7060EMSE#TRPBF  
LTC7060IMSE#TRPBF  
LTC7060JMSE#TRPBF  
LTC7060HMSE#TRPBF  
LTC7060  
LTC7060JMSE#PBF  
LTC7060HMSE#PBF  
AUTOMOTIVE PRODUCTS**  
LTC7060EMSE#WPBF  
LTC7060IMSE#WPBF  
LTC7060JMSE#WPBF  
LTC7060HMSE#WPBF  
LTC7060  
LTC7060  
LTC7060EMSE#WTRPBF  
LTC7060IMSE#WTRPBF  
LTC7060JMSE#WTRPBF  
LTC7060HMSE#WTRPBF  
LTC7060  
LTC7060  
LTC7060  
LTC7060  
12-Lead Plastic MSSOP  
12-Lead Plastic MSSOP  
12-Lead Plastic MSSOP  
12-Lead Plastic MSSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 150°C  
Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
**Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These  
models are designated with a #W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your  
local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for  
these models.  
Rev. A  
2
For more information www.analog.com  
LTC7060  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TA = 25°C (Note 2). VCC = VBGVCC = VBST =10V, VBGRTN = VSW = 0V, unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Supply and V Supply  
CC  
V
V
Input Supply Operating Range  
IC Supply Operating Range  
100  
14  
V
V
IN  
6
5
CC  
I
V
V
Supply Current  
V
V
= V  
= 0V, R = 100kΩ  
0.4  
5.3  
mA  
V
VCC  
CC  
CC  
EN  
PWM  
DT  
V
Undervoltage Lockout Threshold  
Falling  
5.6  
14  
UVLO_VCC  
OVLO_VCC  
CC  
Hysteresis  
Rising  
0.3  
V
V
V
OVLO Threshold  
V
CC  
14.6  
0.8  
V
CC  
Hysteresis  
V
BG Gate Driver Supply (BGV -BGRTN)  
CC  
V
BG Driver Supply Voltage Range  
(With Respect to BGRTN)  
4
4
V
BGVCC-BGRTN  
I
Total BGV Current (Note 4)  
BG = Low  
BG = High  
8
µA  
µA  
V
BGVCC  
CC  
100  
3.4  
0.3  
V
Undervoltage Lockout Threshold  
BGV Falling, With Respect to BGRTN  
UVLO_BGVCC  
CC  
Hysteresis  
V
TG Gate Driver Supply (BST-SW)  
V
TG Driver Supply Voltage Range  
(With Respect to SW)  
14  
V
BST-SW  
I
Total BST Current (Note 4)  
TG = Low  
8
µA  
µA  
V
BST  
TG = High  
100  
3.4  
0.3  
V
Undervoltage Lockout Threshold  
BST Falling, With Respect to SW  
Hysteresis  
UVLO_BST  
V
Input Signal (PWM, EN)  
l
l
l
l
V
V
V
V
V
TG Turn-On Input Threshold  
TG Turn-Off Input Threshold  
BG Turn-On Input Threshold  
BG Turn-Off Input Threshold  
PWM Input Three-State Float Voltage  
PWM Internal Pull-Up Resistor  
PWM Internal Pull-Down Resistor  
EN Pin Rising Threshold  
PWM Rising  
PWM Falling  
PWM Falling  
PWM Rising  
2.6  
2.45  
0.5  
3.1  
2.95  
1
3.6  
3.45  
1.5  
V
V
IH(TG)  
IL(TG)  
V
IH(BG)  
IL(BG)  
0.75  
1.9  
1.25  
2.1  
48  
1.75  
2.3  
V
V
PWM_TRI  
R
R
To Internal 4.5V Supply  
kΩ  
kΩ  
V
UP_PWM  
DOWN_PWM  
ENR  
42  
l
V
V
EN Rising  
EN Falling  
1.1  
1.2  
1.1  
2
1.3  
EN Pin Falling Threshold  
V
ENF  
R
EN Pin Internal Pull-Down Resistor  
MΩ  
EN  
Dead-Time and FAULT (DT, FLT)  
t
t
BG/TG Low to TG/BG High Propagation  
Delay (Dead-Time)  
R
= 0Ω  
32  
ns  
PLH(BG) /  
PLH(TG)  
DT  
R
R
R
R
= 24.9kΩ  
= 64.9kΩ  
= 100kΩ  
= Open  
43  
62  
ns  
ns  
ns  
ns  
Ω
DT  
DT  
DT  
DT  
76  
250  
60  
R
Open Drain Pull-Down Resistance  
FLTb  
t
FLT Pin Release Delay  
Low to High  
100  
µs  
FLTb  
Rev. A  
3
For more information www.analog.com  
LTC7060  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TA = 25°C (Note 2). VCC = VBGVCC = VBST =10V, VBGRTN = VSW = 0V, unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Low Side Gate Driver Output (BG)  
V
V
BG High Output Voltage  
BG Low Output Voltage  
BG Pull-Up Resistance  
BG Pull-Down Resistance  
I
I
= –100mA, V  
= V  
– V  
BG  
150  
80  
mV  
mV  
Ω
OH(BG)  
BG  
BG  
OH(BG)  
BGVCC  
= 100mA, V  
=V – V  
BGRTN  
OL(BG)  
OL(BG) BG  
R
R
V
V
=10V  
=10V  
1.5  
0.8  
UP(BG)  
BGVCC-BGRTN  
BGVCC-BGRTN  
Ω
DOWN(BG)  
High Side Gate Driver Output (TG)  
V
V
TG High Output Voltage  
TG Low Output Voltage  
TG Pull-Up Resistance  
TG Pull-Down Resistance  
I
I
= –100mA, V  
= V  
– V  
150  
80  
mV  
mV  
Ω
OH(TG)  
OL(TG)  
TG  
TG  
OH(TG)  
BST  
TG  
= 100mA, V  
= V – V  
TG  
OL(TG)  
SW  
R
R
V
V
= 10V  
= 10V  
1.5  
0.8  
UP(TG)  
BST-SW  
BST-SW  
Ω
DOWN(TG)  
Switching Time  
t
t
t
t
t
t
t
t
PWM High to BG Low Propagation Delay  
PWM Low to TG Low Propagation Delay  
BG Output Rise Time  
17  
17  
18  
13  
18  
13  
30  
36  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PHL(BG)  
PHL(TG)  
r(BG)  
C
C
C
C
= 3.3nF (Note 5)  
= 3.3nF (Note 5)  
= 3.3nF (Note 5)  
= 3.3nF (Note 5)  
LOAD  
LOAD  
LOAD  
LOAD  
BG Output Fall Time  
f(BG)  
TG Output Rise Time  
r(TG)  
TG Output Fall Time  
f(TG)  
EN High to TG/BG High Propagation Delay  
EN Low to TG/BG Low Propagation Delay  
PH(EN)  
PL(EN)  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Ratings for extended periods may affect device reliability and  
lifetime.  
for junction temperatures greater than 125°C. Note that the maximum  
ambient temperature consistent with these specifications is determined by  
specific operating conditions in conjunction with board layout, the rated  
package thermal impedance and other environment factors.  
Note 2: The LTC7060E is guaranteed to meet performance specifications  
from 0°C to 85°C junction temperature. Specifications over the −40°C  
to 125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTC7060I is guaranteed over the −40°C to 125°C operation junction  
temperature range. The LTC7060J is guaranteed over the −40°C to 150°C  
operation junction temperature range. The LTC7060H is guaranteed over  
the −40°C to 150°C operation junction temperature range. High junction  
temperature degrades operation lifetimes; operating lifetime is derated  
Note 3: T is calculated from the ambient temperature T and power  
dissipation PD according to the following formula  
J
A
T = T + (P • 51°C/W) for LFCSP package; T = T + (P • 40°C/W) for  
J
A
D
J
A
D
MSOP package.  
Note 4: The total current includes both the current from BGV /BST to  
CC  
BGRTN/SW and the current to SGND. Dynamic supply current is higher  
due to the gate charge being delivered at the switching frequency.  
Note 5: Rise and fall times are measured using 10% and 90% levels.  
Rev. A  
4
For more information www.analog.com  
LTC7060  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
PWM Pin Thresholds vs  
Temperature  
EN Pin Thresholds vs  
Temperature  
Quiescent Supply Current vs  
Supply Voltage  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢁ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ Rꢂꢃꢂꢁꢄ  
ꢀ ꢁꢂ ꢃ ꢄ  
ꢀꢁꢂꢃꢃ  
ꢀ ꢁꢂ ꢃ ꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ ꢂAꢃꢃꢄꢁꢅ  
ꢀ ꢁꢂ ꢃ ꢄ  
ꢀꢁꢂꢃꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀ ꢁꢂ ꢃ ꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢀ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢀ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢀ  
ꢀ ꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀ ꢁ  
ꢀꢀ ꢀꢁꢂꢃꢃꢄꢀꢁRꢅꢆ ꢀꢁꢁꢄ  
ꢀꢁꢂꢁ ꢃꢁꢄ  
ꢀꢁꢂꢁ ꢃꢁꢄ  
ꢀꢁꢂꢁ ꢃꢁꢄ  
VCC Undervoltage Lockout  
Thresholds vs Temperature  
VCC Overvoltage Lockout  
Thresholds vs Temperature  
Supply Current vs Input  
Frequency  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢂ  
ꢀ ꢁꢂꢃ ꢀ ꢁꢂꢃ ꢀ ꢄꢅꢆ  
ꢀꢀ  
ꢀꢀ  
ꢀꢁ  
ꢀ ꢁ ꢀ ꢁ.ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ ꢂ ꢃꢄRꢅꢆ ꢂ ꢇꢈ  
Rꢀꢁꢀꢂꢃ  
ꢀꢀ  
Rꢀꢁꢀꢂꢃ  
ꢀꢀ  
ꢀAꢁꢁꢂꢃꢄ  
ꢀꢀ  
ꢀꢀ  
ꢀAꢁꢁꢂꢃꢄ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢀ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢀ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢁ ꢃꢁꢂ  
ꢀꢁꢂꢁ ꢃꢁꢄ  
ꢀꢁꢂꢁ ꢃꢁꢄ  
Switching Supply Current vs Load  
Capacitance  
Rise and Fall Time vs Floating  
Supply Voltage  
Rise and Fall Time vs Load  
Capacitance  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂꢃ  
ꢀ ꢁꢂꢃ ꢀ ꢁꢂꢃ ꢀ ꢄꢅꢆ  
ꢀꢀ ꢀꢀ  
ꢀ ꢁꢂꢃ ꢀ ꢁꢂꢃ ꢀ ꢄꢅꢆ  
ꢀꢀ  
ꢀꢁAꢂ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢂ ꢃꢄRꢅꢆ ꢂ ꢇꢈ  
ꢀ ꢁꢂ.ꢃꢄ  
ꢀꢁ ꢂ ꢃꢄRꢅꢆ ꢂ ꢇꢈ  
ꢀ ꢁꢂ.ꢃꢄ  
R
R
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀ ꢁ ꢀ ꢁ ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢃ ꢀꢁꢂ ꢀꢁ  
ꢀ ꢁ ꢀ ꢁ ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢃ ꢀꢁꢂ ꢀꢁ  
ꢀ ꢁ ꢀ ꢁꢂꢂꢃꢄꢅ  
ꢀꢁꢁ ꢀꢁ  
ꢀ.ꢁ  
ꢀꢁ ꢀꢀ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁ  
ꢀꢁAꢂ ꢃAꢄAꢃꢅꢆAꢇꢃꢈ ꢉꢊꢋꢌ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁAꢂ ꢃAꢄAꢃꢅꢆAꢇꢃꢈ ꢉꢊꢋꢌ  
ꢀꢁ  
ꢀ ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢃꢄꢀꢁRꢅꢆ ꢀꢁꢁꢄ  
ꢀꢁꢂꢁ ꢃꢁꢀ  
ꢀꢁꢂꢁ ꢃꢁꢄ  
ꢀꢁꢂꢁ ꢃꢁꢄ  
Rev. A  
5
For more information www.analog.com  
LTC7060  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
Propagation Delay vs Floating  
Supply Voltage  
Propagation Delay vs  
Temperature  
Dead-Time vs RDT  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃ ꢀ ꢁꢂꢃ ꢀꢄꢅꢆ  
ꢀꢀ  
ꢀꢀ  
ꢀꢁRꢂꢃ ꢄ ꢅꢆ ꢄ ꢇꢈ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢂꢁAꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
(kΩ)  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢀ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
R
ꢀꢁ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀ ꢁ  
ꢀꢁꢂꢃꢃꢄꢀꢁRꢅꢆ ꢀꢁꢁꢄ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢄ  
ꢀꢁꢂꢁ ꢃꢄꢁ  
Dead-Time vs Floating Supply  
Voltage  
Dead-Time vs Temperature  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢀ ꢁꢂꢃ ꢀꢄꢅꢆ  
ꢀꢀ  
ꢀꢁRꢂꢃ ꢄ ꢅꢆ ꢄ ꢇꢈ  
ꢀꢁ ꢂꢁAꢃ  
ꢀ R = 64.9kΩ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢅꢈ ꢀꢁ  
ꢀ R = 64.9kΩ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢅꢈ ꢀꢁ  
ꢀ R = 24.9kΩ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢅꢈ ꢀꢁ  
ꢀ R = 24.9kΩ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢅꢈ ꢀꢁ  
ꢀ R = 0Ω  
ꢀꢁꢂꢃꢄꢅꢆꢇꢅꢈ ꢀꢁ  
ꢀ R = 0Ω  
ꢀꢁꢂꢃꢄꢅꢆꢇꢅꢈ ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢀ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢁ  
ꢀ ꢁ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢃꢄꢀꢁRꢅꢆ ꢀꢁꢁꢄ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
TG/BG Pull-Up and Pull-Down  
Resistance vs Floating Supply  
Voltage  
TG/BG Pull-Up and Pull-Down  
Resistance vs Temperature  
ꢀꢁꢂ ꢀ ꢁꢂꢃ ꢀꢄꢅꢆ  
ꢀꢀ  
ꢀꢁRꢂꢃ ꢄ ꢅꢆ ꢄ ꢇꢈ  
R
ꢀ R  
ꢀꢁꢂꢃꢄꢅ ꢀꢁꢂꢃꢄꢅ  
R
R
R
R
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅ  
R
ꢀ R  
ꢀꢁꢂꢃꢄꢅꢆꢇ ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢀ ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀ ꢁ  
ꢀꢁꢂꢃꢃꢄꢀꢁRꢅꢆ ꢀꢁꢁꢄ  
ꢀꢁꢂꢁ ꢃꢄꢅ  
ꢀꢁꢂꢁ ꢃꢄꢂ  
Rev. A  
6
For more information www.analog.com  
LTC7060  
PIN FUNCTIONS  
V : V Supply. IC bias supply referred to the SGND pin.  
TG: Top MOSFET Gate Driver Output. This pin drives the  
gate of the N-channel MOSFET between SW and BST.  
CC  
AnCCinternal 4.5V supply is generated from the V supply  
CC  
to bias most of the internal circuitry. A bypass capacitor  
with a minimum value of 0.1uF should be tied between  
this pin and the SGND pin.  
DT: Dead-Time Program Pin Referred to the SGND Pin.  
A single resistor from this pin to SGND sets the BG/TG  
low to TG/BG high propagation delay. See the operation  
section for details.  
BGVCC: Bottom MOSFET Driver Supply. The bottom  
MOSFET gate driver is biased between this pin and the  
BGRTN pin. An external capacitor should be tied between  
this pin and BGRTN and placed close to the IC.  
PWM: Three-State Gate Driver Input Signal Referred to  
the SGND Pin. The TG/BG state is determined by the volt-  
age at this pin. If this pin is floating, an internal resistor  
divider triggers the High-Z mode in which both BG and  
TG are turned off. Trace capacitance on this pin should  
be minimized.  
BGRTN: Bottom MOSFET Driver Return. The bottom  
gate driver is biased between BGV and BGRTN. Kelvin  
CC  
connect BGRTN to the bottom MOSFET source pin for  
high noise immunity. The voltage difference between the  
BGRTN pin and the SGND can be –10V to 100V.  
EN: Enable Control Input Pin Referred to the SGND Pin.  
A voltage on this pin above 1.2V enables the gate drivers.  
The TG and BG pins are both in the low state if this pin  
is logic low.  
BG: Bottom MOSFET Gate Driver Output. This pin drives  
the gate of the N-channel MOSFET between BGRTN and  
BGV .  
CC  
FLT: Open Drain Fault Output Pin Referred to the SGND  
Pin. Open-drain output that pulls to SGND during VCC  
UVLO/OVLO and floating supplies UVLO condition. The  
typical pull-down resistance is 60Ω.  
BST: Top MOSFET Driver Supply. The top MOSFET gate  
driver is biased between this pin and the SW pin. An exter-  
nal capacitor should be tied between this pin and the SW  
pin and placed close to the IC.  
NC: No Internal Connection. Always keep this pin floating.  
It is intentionally skipped to isolate adjacent high voltage  
pins.  
SW: Top MOSFET Driver Return. The top gate driver is  
biased between BST and SW. Kelvin connect SW to the top  
MOSFET source pin for high noise immunity. The voltage  
difference between the SW pin and SGND can be –10V  
to 100V.  
SGND: Chip Ground. The exposed pad must be soldered  
to the PCB ground for electrical contact and for rated  
thermal performance.  
BLOCK DIAGRAM  
FLT  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂAꢃ  
ꢀRꢁꢂꢃR  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀRꢁꢂꢃR  
ꢄꢅꢆꢁꢇ  
ꢀꢁꢂꢁꢀ  
ꢀꢁꢂꢃꢄꢅR  
ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢂꢄ  
ꢀꢁꢂꢁꢀ  
ꢀꢁꢂꢃꢄꢅR  
ꢀ.ꢁꢂ  
ꢃꢁRꢂꢅꢆꢁ  
ꢀꢁꢂ  
ꢀꢀ  
ꢇRꢂꢃꢈꢉꢃꢊꢂꢋ  
ꢀꢁꢂ  
ꢀRꢁꢂꢃR  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀ.ꢁꢂ  
ꢀꢁRꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢁ ꢃꢄ  
Rev. A  
7
For more information www.analog.com  
LTC7060  
TIMING DIAGRAM  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁR  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢁ ꢃꢄ  
OPERATION  
OVERVIEW  
the transition thresholds and three input states of the  
LTC7060 is illustrated in Figure 1. When the voltage on  
PWM is greater than the threshold VIH(TG), TG is pulled up  
to BST, turning the high side MOSFET on. This MOSFET  
The LTC7060 receives a ground-referenced, low volt-  
age digital PWM signal to drive two N-channel power  
MOSFETs in a half-bridge configuration. The gate of the  
low side MOSFET is driven high or low, swinging between  
will stay on until PWM falls below V  
. Similarly, when  
IL(TG)  
PWM is less than V  
, BG is pulled up to BGV , turn-  
IH(BG)  
CC  
BGV and BGRTN, depending on the state of the PWM  
CC  
ing the low side MOSFET on. BG will stay high until PWM  
pin. Similarly, the gate of the high side MOSFET is driven  
complimentary to the low side MOSFET, swinging between  
BST and SW.  
increases above the threshold V  
.
IL(BG)  
The hysteresis between the corresponding VIH and VIL  
voltage levels eliminates false triggering due to the noise  
during switch transitions. However, care should be taken  
to keep noise from coupling into the PWM pin, particularly  
in high frequency, high voltage applications.  
Both the low side and high side drivers are floating gate  
drivers. The unique double floating architecture makes the  
gate driver outputs robust and less sensitive to ground  
noise. The symmetric design allows the half-bridge output  
to be inverting or non-inverting of the input logic.  
The thresholds are positioned to allow for a region in  
which both BG and TG are low. An internal resistor divider  
V
SUPPLY  
CC  
ꢀꢁ ꢂꢃꢁꢂ  
V
is the power supply for the LTC7060’s internal circuitry.  
ꢃꢂꢅꢀꢁꢆ  
ACnCinternal 4.5V supply is generated from the V supply  
ꢀꢁ ꢂꢃꢁꢂ  
ꢀꢁ ꢇꢌꢊ  
ꢀꢁ ꢇꢌꢊ  
ꢃꢇꢅꢀꢁꢆ  
CC  
to bias most of the internal circuits referred to SGND. The  
V
ꢉꢊꢋ  
pin may be tied to the BGV pin if SGND and BGRTN  
CC  
CC  
are at the same potential. V is independent of V .  
CC  
IN  
ꢈꢁ ꢇꢌꢊ  
ꢈꢁ ꢂꢃꢁꢂ  
ꢃꢇꢅꢈꢁꢆ  
ꢈꢁ ꢇꢌꢊ  
ꢈꢁ ꢂꢃꢁꢂ  
ꢃꢂꢅꢈꢁꢆ  
INPUT STAGE (PWM, EN)  
ꢍꢎꢏꢎ ꢐꢎꢑ  
The LTC7060 employs a three-state PWM input with  
fixed transition thresholds. The relationship between  
Figure 1. Three-State PWM Operation  
Rev. A  
8
For more information www.analog.com  
LTC7060  
OPERATION  
sets the PWM pin voltage into this region if the signal  
driving the PWM pin goes into a high impedance state.  
output pull-up and pull-down resistance may increase  
with lower driver supply voltage.  
The EN pin can also be used to keep both BG and TG low  
if the high impedance state is not available from the PWM  
driving signal. Driving the EN pin low keeps both TG and  
BG off, and driving the EN pin high enables TG and BG  
switching based on the PWM input. There is an internal  
2MΩ pull-down resistor from the EN pin to SGND, keep-  
ing the EN default state low if its input is not driven.  
Since the power MOSFETs generally account for the  
majority of the power loss in a converter, it is important  
to turn them on and off quickly, thereby minimizing the  
transition time and power loss. The LTC7060’s typical  
1.5Ω pull-up resistance and 0.8Ω pull-down resistance  
are equivalent to 3A peak pull-up current and 6A peak pull  
down current at a 10V driver supply. Both BG and TG can  
produce a rapid turn-on transition for the MOSFETs with  
capability of driving a 3.3nF load with 18ns rise time.  
Both three-state PWM and EN pin can be used by the  
controller IC to perform the Discontinuous Conduction  
Mode (DCM) in switching regulator applications.  
Furthermore, a strong pull-down on the driver outputs  
prevents cross-conduction current. For example, in the  
half-bridge configuration shown in Figure 2, when BG  
turns the low side power MOSFET off and TG turns the  
high side power MOSFET on, the voltage on the SW pin  
OUTPUT STAGE  
A simplified version of the LTC7060’s output stage is  
shown in Figure 2. The BG and TG design are symmetric  
and they both have floating gate driver outputs. The pull-  
could rise to V very rapidly. This high frequency posi-  
IN  
tive voltage transient will couple through the C capaci-  
GD  
up device is a PMOS with a typical 1.5Ω R  
and the  
DS(ON)  
DS(ON)  
tance of the low side power MOSFET to the BG pin. If the  
BG pin is not held down sufficiently, the voltage on the  
BG pin could rise above the threshold voltage of the low  
side power MOSFET, momentarily turning it back on. As  
a result, both the high side and low side MOSFETs would  
be conducting, which would cause significant cross-con-  
pull-down device is a NMOS with a typical 0.8Ω R  
.
The wide driver supply voltage ranging from 4V to 14V  
enables the driving of different power MOSFETs, such  
as logic level or higher threshold MOSFETs. However,  
the LTC7060 is optimized for higher threshold MOSFETs  
(e.g. BST-SW = 10V and BGV -BGRTN = 10V). The driver  
CC  
duction current to flow through the MOSFETs from V  
IN  
to ground, thereby incurring substantial power loss and  
potentially damaging the MOSFETs. For this reason, short  
PCB traces for the BG and TG pins, which minimize the  
parasitic inductances, are recommended.  
ꢀꢁ  
ꢂꢃꢄꢅꢄ  
ꢀꢁꢂ  
1.5Ω  
ꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢀ ꢃꢁꢄꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢆꢃꢇ  
ꢁꢂ  
PROTECTION CIRCUITRY  
0.8Ω  
ꢀꢁ  
When using the LTC7060, care must be taken not to  
exceed any of the ratings specified in the Absolute  
Maximum Ratings section. As an added safeguard, the  
LTC7060 incorporates overtemperature shutdown fea-  
ture. If the junction temperature reaches approximately  
180°C, the LTC7060 will enter thermal shutdown mode  
and BG will be pulled to BGRTN; TG will be pulled to SW.  
Normal operation will resume when the junction tempera-  
ture cools down below 165°C. The overtemperature level  
is not production tested. The LTC7060 is guaranteed to  
operate below 150°C.  
ꢀꢁꢂ  
ꢃꢃ  
1.5Ω  
ꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ ꢃꢄꢅꢆ  
ꢀꢁꢂꢃR ꢄꢁꢅꢆꢃꢇ  
ꢁꢂ  
0.8Ω  
ꢀꢁRꢂꢃ  
ꢀꢁꢂꢁ ꢃꢁꢄ  
Figure 2. Simplified Output Stage in Half-Bridge Configuration  
Rev. A  
9
For more information www.analog.com  
LTC7060  
OPERATION  
The LTC7060 contains both undervoltage and overvoltage  
lockout detectors that monitor the V supply. When V  
applications, the LTC7060 provides a DT pin which can  
be used to program the propagation delay during BG/TG  
low to TG/BG high transition (Dead-Time). An external  
CC  
CC  
falls below 5.3V or rises above 14.6V, BG and TG pins are  
pulled to BGRTN and SW, respectively, turning off both  
resistor (R ) from the DT pin to the SGND equally sets  
DT  
the external MOSFETs. When V has adequate supply  
both the BG low to TG high propagation delay and the TG  
low to BG high propagation delay. Their relationship can  
be seen in Figure 3. The Dead-Time can be estimated by  
CC  
voltage but less than the overvoltage threshold, normal  
operation will resume.  
the following equation when the R is less than 100kΩ:  
DT  
Additional undervoltage lockout circuitry is included in  
each floating driver supply. The BG will be pulled down to  
BGRTN when the floating voltage from BGV to BGRTN  
falls below 3.3V. Similarly, the TG will be CpCulled down  
to SW when the floating voltage from BST to SW is less  
than 3.3V.  
Dead-Time = R • 0.44ns/kΩ + 32ns  
DT  
If the DT pin is shorted to SGND, the Dead-Time is 32ns.  
If the DT Pin is floating, the Dead-Time is around 250ns.  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
The normal operation and undervoltage/overvoltage logic  
table is shown in Table 1.  
Table 1. Normal Operation and Undervoltage/Overvoltage Logic  
V
(BGV -  
CC  
CC  
UVLO or (BST-SW) BGRTN)  
PWM  
EN  
L
OVLO  
UVLO  
UVLO  
TG  
L
BG  
L
X
X
Y
N
N
N
N
X
X
X
X
X
N
Y
X
X
X
N
Y
X
X
X
X
X
L
L
ꢀꢁ  
ꢀꢁ  
R
ꢀꢁ  
(kΩ)  
ꢀꢁ  
ꢀꢁꢁ  
L
H
H
H
H
H
L
H
L
ꢀꢁ  
ꢀꢁꢂꢁ ꢃꢁꢄ  
L
L
Figure 3. Dead-Time vs RDT  
H
H
H
L
L
L
FAULT FLAG  
HIGH-Z  
L
L
The FLT pin is connected to the open-drain of an internal  
Note: “X” means "Don't Care"  
N-channel MOSFET. It needs a pull-up resistor (e.g. 51k)  
tied to a supply such as V or any other bias voltage up  
ADAPTIVE SHOOT-THROUGH PROTECTION  
CC  
to 15V. The FLT pin is pulled low to SGND immediately if  
Internal adaptive shoot-through protection circuitry moni-  
tors the external MOSFETs to ensure that they do not  
conduct simultaneously. The LTC7060 does not allow the  
bottom MOSFET to turn on until the gate-source voltage  
on the top MOSFET is sufficiently low, and vice-versa. This  
feature improves efficiency and reliability by eliminating  
potential shoot-through current through the MOSFETs  
during switching transitions.  
any of these conditions are met:  
a. The VCC is below its UVLO threshold or above its  
OVLO threshold.  
b. (BGV -BGRTN) is below its UVLO threshold.  
CC  
c. (BST-SW) is below its UVLO threshold.  
d. The junction temperature reaches approximately  
180°C.  
PROGRAMMABLE DEAD-TIME  
When all the faults are cleared, the FLT pin is pulled up by  
the external resistor after a built-in 100µs delay.  
To ensure robust shoot-through protection in high voltage  
half-bridge configuration and switched capacitor converter  
Rev. A  
10  
For more information www.analog.com  
LTC7060  
APPLICATIONS INFORMATION  
BOOTSTRAPPED SUPPLY (BGV -BGRTN, BST-SW)  
Power dissipation consists of standby, switching and  
capacitive load power losses:  
CC  
Either or both of the BGV -BGRTN and BST-SW sup-  
CC  
plies can be bootstrapped supplies. An external boost  
P = P + P + P  
D
DC  
AC  
QG  
capacitor, C , connected between BGV and BGRTN, or  
B
CC  
where:  
between BST and SW, supplies the gate driver voltage for  
P
DC  
= quiescent power loss  
its respective MOSFET driver. When the external MOSFET  
is turned on, the driver places the C voltage across the  
B
P
AC  
P
QG  
= internal switching loss at input frequency f  
IN  
gate-source of the MOSFET. This enhances the MOSFET  
= loss due to turning on and off external MOSEFT  
with gate charge Q at frequency f  
and turns it on.  
G
IN  
The charge to turn on the external MOSFET is referred to  
gate charge, Q , and is typically specified in the external  
The LTC7060 consumes very little quiescent current. The  
DC power loss at VCC = 10V is only (10V)(0.4mA) = 4mW.  
MOSFET data Gsheet. The boost capacitor, C , needs to  
B
have at least 10 times the gate capacitance to turn on the  
external MOSFET fully. Gate charge can range from 5nC  
to hundreds of nC and is influenced by the gate drive level  
and type of external MOSFET used. For most applica-  
At a particular switching frequency, the internal power  
loss increases due to both AC currents required to charge  
and discharge internal nodal capacitances and cross-con-  
duction currents in the internal logic gates. The sum of the  
quiescent current and internal switching current with no  
load are shown in the Typical Performance Characteristics  
plot of Switching Supply Current vs Input Frequency.  
tions, a capacitor value of 0.1uF for C will be sufficient.  
B
However, if multiple MOSFETs are paralleled and driven  
by the LTC7060, C capacitance needs to be increased  
B
correspondingly.  
The gate charge losses are primarily due to the large AC  
currents required to charge and discharge the capacitance  
of the external MOSFETs during switching. For identical  
An external supply, typically VCC connected through a  
Schottky diode, is required to keep the C charged. The  
B
LTC7060 does not charge the C and always discharges  
B
pure capacitive loads C  
on BG and TG at switching  
LOAD  
the C . When the BG/TG is high, the total current from  
B
frequency f , the load losses would be:  
IN  
BGV /BST to BGRTN/SW and SGND is typically 100µA;  
CC  
2
2
P
= (C  
)(f )[(V  
) + (V  
) ]  
CLOAD  
LOAD IN  
BST-SW  
BGVCC-BGRTN  
when the BG/TG is low, the total current from BGV /BST  
CC  
is typically 8µA.  
In a typical synchronous buck configuration, the V is  
CC  
connected to the power for the bottom MOSFET driver,  
BGV . V  
is equal to V -V , where V is the for-  
CC BST-SW  
CC D D  
POWER DISSIPATION  
ward voltage drop of the external Schottky diode between  
and BST. If this drop is small relative to V , the load  
To ensure proper operation and long-term reliability, the  
LTC7060 must not operate beyond its maximum tem-  
perature rating. Package junction temperature can be  
calculated by:  
V
CC  
CC  
losses can be approximated as:  
2
P
≈ 2(C )(f )(V )  
LOAD IN CC  
CLOAD  
Unlike a pure capacitive load, a power MOSFET’s gate  
capacitance seen by the driver output varies with its V  
voltage level during switching. A MOSFET’s capacitiGveS  
load power dissipation can be calculated using its gate  
T = T + (P )(θ )  
J
A
D
JA  
where:  
T = junction temperature  
J
charge, Q . The Q value corresponding to the MOSFET’s  
G
VGS value (VCC iGn this case) can be readily obtained  
T = ambient temperature  
A
P = power dissipation  
D
from the manufacturer’s Q vs V curves. For identical  
G
GS  
MOSFETs on BG and TG:  
θ
JA  
= junction-to-ambient thermal resistance  
P
QG  
≈ 2(Q )(f )(V )  
G
IN  
CC  
Rev. A  
11  
For more information www.analog.com  
LTC7060  
APPLICATIONS INFORMATION  
BYPASSING AND GROUNDING  
Plan the power/ground routing carefully. Know where  
the large load switching current is coming from and  
going to. Maintain separate ground return paths for  
the input pin and the output power stage.  
The LTC7060 requires proper bypassing on the VCC,  
VBST-SW, and VBGVCC-BGRTN supplies due to its high  
speed switching (nanoseconds) and large AC currents  
(amperes). Careless component placement and PCB  
trace routing may cause excessive ringing and under/  
overshoot.  
Kelvin connect the TG pin to the top MOSFET gate and  
SW pin to the top MOSFET source. Kelvin connect  
the BG pin to the bottom MOSFET gate and BGRTN  
to the bottom MOSFET source. Keep the copper trace  
between the driver output pin and load short and  
wide.  
To obtain the optimum performance form the LTC7060:  
Mount the bypass capacitors as close as possible  
between the VCC and SGND pins, the BGVCC and  
BGRTN pins, and the BST and SW pins. The leads  
should be shortened as much as possible to reduce  
lead inductance.  
Be sure to solder the Exposed Pad on the back side of  
the LTC7060 packages to the board. Failure to make  
good thermal contact between the exposed back side  
and the copper board will result in thermal resistances  
far greater than specified for the packages.  
Use a low inductance, low impedance ground plane  
to reduce any ground drop and stray capacitance.  
Remember that the LTC7060 switches greater than  
5A peak currents and any significant ground drop will  
degrade signal integrity.  
Rev. A  
12  
For more information www.analog.com  
LTC7060  
TYPICAL APPLICATIONS  
Rev. A  
13  
For more information www.analog.com  
LTC7060  
TYPICAL APPLICATIONS  
Rev. A  
14  
For more information www.analog.com  
LTC7060  
TYPICAL APPLICATIONS  
Up to 100A High Efficiency 4 to 1 Switched Capacitor Converter  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢃꢄ ꢅꢁꢂ  
ꢀ.ꢁꢂꢃ ꢄꢀ  
ꢀꢁꢁꢂ  
ꢀꢁꢁꢂꢃ ꢄꢅ  
ꢀꢁꢂ  
2.2Ω  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢀ.ꢁꢂ  
ꢀꢁꢂꢀ  
ꢀꢁ  
ꢂꢃꢄꢅꢆ  
ꢀꢁRꢂ  
ꢀRꢁ  
ꢀꢁRꢂꢃꢄꢅꢂꢂꢆꢇ  
ꢀꢁꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀ.ꢁꢂꢃ  
Rꢀꢁ  
ꢀꢁ ꢂꢃꢄꢂRꢅAꢆ  
ꢇꢈꢉꢉꢊ  
ꢀꢀ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂꢃꢄꢄꢅꢅ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢁꢄꢅꢆ  
ꢀꢁꢂꢂꢃ  
ꢀRꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢁꢂ  
ꢀAꢁꢂꢃꢂꢃꢄꢅꢂꢆꢇꢈ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢆꢁꢈ  
ꢀ.ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
2mΩ  
ꢀ.ꢀꢁꢂ ꢃꢀ  
ꢀꢁꢁꢂ  
ꢀRꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆꢃꢇꢆꢁꢈ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀRꢁꢂꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢀꢁ  
ꢀꢁ  
ꢀꢁꢁꢂꢃ  
ꢀꢀ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
549Ω  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂꢃA  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂꢀꢁ  
ꢀꢁꢂ  
ꢁꢂꢃꢁꢄꢅꢆꢇꢅꢆ  
FꢀꢁLT  
ꢀꢁꢁꢂꢃꢄ  
ꢀ.ꢁꢂꢃꢄ  
ꢀꢁ  
ꢂꢃꢄꢅꢆ  
ꢀꢀ  
ꢀꢁꢂꢃ  
2.2Ω  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢀ  
ꢀꢁꢂꢂꢃ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀꢁ  
ꢀꢁꢂꢃA  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ.ꢀꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄRꢅꢆ  
ꢀꢁ  
ꢀꢁꢂꢃA  
ꢀRꢁꢂ  
ꢀꢁ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃR  
ꢁꢂꢃꢄꢅꢆꢇꢅꢆ  
ꢀꢁ.ꢂꢃ  
ꢀ.ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁRꢂꢃꢄꢅꢂꢂꢆꢇ  
ꢀ.ꢀꢁꢂ ꢃꢄꢅ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢂꢃꢄꢅꢄ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢁꢇ  
FLT  
ꢀꢁ  
ꢀꢁꢂꢃA  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃꢄꢃꢅꢃꢆꢇꢁꢈ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁRꢂꢃ  
ꢀꢁꢂ  
ꢀꢀ  
ꢀꢁꢂꢃ ꢄꢅꢁ  
ꢀ.ꢀꢁꢂ  
ꢀꢁRꢂꢃꢄꢅꢂꢂꢆꢇ  
ꢀꢁꢂ  
ꢀꢁRꢂꢃꢄꢅꢂꢂꢆꢇ  
ꢀꢁꢂꢃ ꢄꢅꢁ  
ꢀꢁꢂ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢂꢃꢄꢅꢄ  
ꢀꢁꢂꢃꢄꢃꢅꢃꢆꢇꢁꢈ  
FLT  
ꢀꢁ  
ꢀꢁꢂꢃA  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢁ  
ꢀꢁ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢇꢈꢁꢉ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ ꢂꢃ ꢄꢅꢅA  
ꢀꢁRꢂꢃ  
ꢀꢁꢂ  
ꢀꢀ  
ꢀꢁꢂꢃꢄ ꢅꢆ  
ꢀ.ꢁꢂꢃ ꢄꢅꢆ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀꢁRꢂꢃꢄꢅꢂꢂꢆꢇ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀꢁRꢂꢃꢄꢅꢂꢂꢆꢇ  
ꢀꢁRꢂꢃꢄꢅꢂꢂꢆꢇ  
ꢀꢁRꢂꢃꢄꢅꢂꢂꢆꢇ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢀ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢇꢈꢁꢉ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢇꢈꢁꢉ  
ꢂꢃꢄꢅꢄ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢇꢈꢁꢉ  
ꢂꢃꢄꢅꢄ  
ꢂꢃꢄꢅꢄ  
FLT  
FLT  
FLT  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃA  
ꢀꢁꢂ  
ꢀꢁꢂꢃA  
ꢀꢁꢂ  
ꢀꢁꢂꢃA  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ.ꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢇꢈꢁꢉ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢇꢈꢁꢉ  
ꢀꢁꢂꢃꢄꢃꢅꢆꢇꢈꢁꢉ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁRꢂꢃ  
ꢀꢁRꢂꢃ  
ꢀꢁRꢂꢃ  
ꢀꢁꢂ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢀ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂꢁ ꢃAꢁꢄ  
Rev. A  
15  
For more information www.analog.com  
LTC7060  
PACKAGE DESCRIPTION  
MSE Package  
12-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1666 Rev G)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 ±0.102  
(.112 ±.004)  
2.845 ±0.102  
(.112 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
1
6
0.35  
REF  
1.651 ±0.102  
(.065 ±.004)  
5.10  
(.201)  
MIN  
1.651 ±0.102  
(.065 ±.004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
NO MEASUREMENT PURPOSE  
DETAIL “B”  
12  
7
0.65  
(.0256)  
BSC  
0.42 ±0.038  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
(.0165 ±.0015)  
TYP  
0.406 ±0.076  
RECOMMENDED SOLDER PAD LAYOUT  
(.016 ±.003)  
12 11 10 9 8 7  
REF  
DETAIL “A”  
0.254  
(.010)  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
0° – 6° TYP  
4.90 ±0.152  
(.193 ±.006)  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1
2 3 4 5 6  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MSE12) 0213 REV G  
0.650  
(.0256)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL  
NOT EXCEED 0.254mm (.010") PER SIDE.  
Rev. A  
16  
For more information www.analog.com  
LTC7060  
REVISION HISTORY  
REV  
DATE  
04/20 Updated Order Information.  
changed from 64.9kΩ to 100kΩ in I  
DESCRIPTION  
PAGE NUMBER  
A
2
3
R
DT  
row.  
VCC  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
subject to change without notice. No license isgrantedbyimplicationor otherwiseunderany patent or patent rights of Analog Devices.  
17  
LTC7060  
TYPICAL APPLICATION  
High Input Voltage Buck Converter  
ꢀ.ꢁꢁꢂꢃ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
10Ω  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢀ  
ꢀꢁ  
ꢀꢀ  
ꢂꢃꢄꢅꢄ  
ꢀ.ꢁꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
FLT  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ.ꢂꢃ  
ꢀꢁRꢂꢃ  
ꢀꢁꢂ  
ꢀꢁRꢂꢃ ꢄꢂꢅꢆRꢂꢇꢇꢈR ꢉꢄꢊ  
ꢀꢁꢂ  
ꢀꢁꢂꢁ ꢃAꢁꢄ  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC4449  
High Speed Synchronous N-Channel MOSFET Driver  
Up to 38V Supply Voltage, 4V ≤ V ≤ 6.5V, 3.2A Peak Pull-Up/4.5A Peak  
CC  
Pull-Down  
LTC4442/  
LTC4442-1  
High Speed Synchronous N-Channel MOSFET Driver  
Up to 38V Supply Voltage, 6V ≤ V ≤ 9.5V, 2.4A Peak Pull-Up/5A Peak  
CC  
Pull-Down  
LTC4446  
High Voltage Synchronous N-Channel MOSFET Driver  
without Shoot-Through Protection  
Up to 100V Supply Voltage, 7.2V ≤ V ≤ 13.5V, 2.5A Peak Pull-Up/3A Peak  
CC  
Pull-Down  
LTC4444/  
LTC4444-5  
High Voltage Synchronous N-Channel MOSFET Driver  
with Shoot-Through Protection  
Up to 100V Supply Voltage, 4.5V/7.2V ≤ V ≤ 13.5V, 2.5A Peak Pull-Up/3A  
CC  
Peak Pull-Down  
LTC3774  
LTC3861  
LTC7851  
LTC7820  
LTC7821  
LTC7871  
LTC7801  
Dual, Mulitphase Curent Mode Synchronous Step-Down  
DC/DC Controller for Sub-Milliohm DCR Sensing  
Operates with DrMOS, Power Blocks or External Drivers/MOSFETs, 4.5V≤ V  
IN  
≤ 38V, 0.6V ≤ V  
≤ 3.5V  
OUT  
Dual, Multiphase Step-Down Voltage Mode DC/DC  
Controller with Accurate Current Sharing  
Operates with Power Blocks, DrMOS or External MOSFETs, 3V≤ V ≤ 24V  
IN  
Quad Output, Multiphase Step-Down Voltage Mode DC/DC Operates with DrMOS, Power Blocks or External Drivers/MOSFETs, V Range  
Controller with Accurate Current Sharing  
IN  
Depends on External Components, 3V≤ V ≤ 5.5V, 0.6V ≤ V  
≤ V −0.5V  
CC  
OUT CC  
Fixed Ratio High Power Inductorless (Charge Pump)  
DC/DC Controller  
6V ≤ V ≤ 72V, 2:1 Voltage Divider, 1:2 Voltage Doubler, 1:1 Voltage Inverter,  
IN  
Low Noise Soft Switching, 4mm × 5mm QFN-28  
Hybrid Step-Down Synchronous Controller  
10V ≤ V ≤ 72V, 0.9V ≤ V  
≤ 20V, Low Noise Soft Switching, 5mm × 5mm  
IN  
OUT  
QFN-32  
Six-Phase, Synchronous Bidirectional Buck or Boost  
Controller  
V
HIGH  
up to 100V, V  
up to 60V, SPI Interface, 64-Lead LQFP  
LOW  
150V Low I , Synchronous Step-Down DC/DC Controller, 4V ≤ V ≤ 140V, 150V , 0.8V ≤ V  
≤ 60V, I = 40µA, PLL Fixed  
Q
Q
IN  
PK  
OUT  
100% Duty Cycle Capability, Adjustable 5V to 10V Gate  
Frequency 50kHz to 900kHz  
Drive  
Rev. A  
05/20  
www.analog.com  
ANALOG DEVICES, INC. 2020  
18  

相关型号:

LTC7067

150V Dual High-Side MOSFET Gate Driver
ADI

LTC7103

150V Low IQ, Synchronous Step-Down DC/DC Controller
Linear

LTC7103EUHE#PBF

LTC7103 - 105V, 2.3A Low EMI Synchronous Step-Down Regulator; Package: QFN; Pins: 36; Temperature Range: -40°C to 85°C
Linear

LTC7103EUHE#TRPBF

LTC7103 - 105V, 2.3A Low EMI Synchronous Step-Down Regulator; Package: QFN; Pins: 36; Temperature Range: -40°C to 85°C
Linear

LTC7103HUHE#PBF

LTC7103 - 105V, 2.3A Low EMI Synchronous Step-Down Regulator; Package: QFN; Pins: 36; Temperature Range: -40°C to 125°C
Linear

LTC7103HUHE#TRPBF

暂无描述
Linear

LTC7103IUHE#PBF

LTC7103 - 105V, 2.3A Low EMI Synchronous Step-Down Regulator; Package: QFN; Pins: 36; Temperature Range: -40°C to 85°C
Linear

LTC7103IUHE#TRPBF

LTC7103 - 105V, 2.3A Low EMI Synchronous Step-Down Regulator; Package: QFN; Pins: 36; Temperature Range: -40°C to 85°C
Linear

LTC7103MPUHE#PBF

LTC7103 - 105V, 2.3A Low EMI Synchronous Step-Down Regulator; Package: QFN; Pins: 36; Temperature Range: -55°C to 125°C
Linear

LTC7106

A 7-Bit Current DAC with PMBus Interface
Linear

LTC7132

25A, Dual PolyPhase Regulator with Digital Power System Management
ADI

LTC7132EY

25A, Dual PolyPhase Regulator with Digital Power System Management
ADI