LTM4671 [ADI]

Quad DC/DC μModule Regulator with Configurable Dual 12A, Dual 5A Output Array;
LTM4671
型号: LTM4671
厂家: ADI    ADI
描述:

Quad DC/DC μModule Regulator with Configurable Dual 12A, Dual 5A Output Array

文件: 总36页 (文件大小:1920K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4671  
Quad DC/DC µModule Regulator with  
Configurable Dual 12A, Dual 5A Output Array  
FEATURES  
DESCRIPTION  
Quad Output Step-Down µModule® Regulator with  
Dual 12A and Dual 5A Output  
n
ꢁhe LM®467± is a quad DC/DC step-down µModule  
(micromodule) regulator offering dual ±2A and dual ꢀA  
output. Included in the package are the switching control-  
lers, power FEꢁs, inductors and support components.  
Operating over an input voltage range of 3.±V to 20V, the  
LꢁM467± supports an output voltage range of 0.6V to  
3.3V for two ±2A channels and 0.6V to ꢀ.ꢀV for two ꢀA  
channels, each set by a single external resistor. Only bulk  
input and output capacitors are needed.  
n
n
n
n
Wide Input Voltage Range: 3.1V to 20V  
Dual 12A DC Output from 0.6V to 3.3V  
Dual 5A DC Output from 0.6V to 5.5V  
Up to 7W Power Dissipation (T = 60°C, 200LFM,  
A
No Heat Sink)  
n
n
n
n
n
n
n
n
n
n
±±.ꢀ5 ꢁotal Output Voltage Regulation  
Dual Differential Sensing Amplifier  
Current Mode Control, Fast ransient Response  
Parallelable for Higher Output Current  
Selectable Burst Mode® Operation  
Output Voltage racking  
Internal ꢁemperature Sensing Diode Output  
External Frequency Synchronization  
Overvoltage, Current and ꢁemperature Protection  
9.ꢀmm × ±6mm × 4.72mm BGA Package  
Fault protection features include overvoltage, overcurrent  
and overtemperature protection. ꢁhe LꢁM467± is offered  
in 9.ꢀmm × ±6mm × 4.72mm BGA package.  
Configurable Output Array*  
±2A  
±2A  
ꢀA  
±2A  
±2A  
24A  
±0A  
24A  
ꢀA  
ꢀA  
±0A  
ꢀA  
* Note 4  
APPLICATIONS  
All registered trademarks and trademarks are the property of their respective owners.  
n
Multirail Point-of-Load Regulation  
n
FPGAs, DSPs and ASICs Applications  
TYPICAL APPLICATION  
4V to 20V Input, 12A, 12A, 5A, 5A DC/DC Step-Down µModule Regulator  
12VIN Efficiency vs Load Current  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
V
V
OUT0  
V
V
IN  
IN  
OUT0  
+
C
OUT0  
C
22µF  
×2  
VOSNS0  
VOSNS0  
5V TO 20V  
1.2V/12A  
IN  
SV  
SV  
IN0  
IN3  
100µF ×4  
60.4k  
19.1k  
13.3k  
FB0  
RUN0  
RUN1  
RUN2  
RUN3  
V
V
OUT1  
+
OUT1  
VOSNS1  
2.5V/5A  
C
47µF  
OUT1  
FB1  
COMP0a  
COMP0b  
LTM4671  
V
OUT2  
V
OUT2  
+
COMP1  
COMP2  
VOSNS2  
3.3V/5A  
C
47µF  
OUT2  
ꢄ ꢅ.ꢆ  
ꢄ ꢅ.ꢇ  
ꢄ ꢇ.ꢈ  
ꢄ ꢉ.ꢉ  
FB2  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
COMP3a  
COMP3b  
V
OUT3  
V
OUT3  
+
C
VOSNS3  
VOSNS3  
OUT3  
TRACK/SS0  
TRACK/SS1  
TRACK/SS2  
TRACK/SS3  
1.0V/12A  
100µF ×4  
0.1μF  
90.9k  
ꢀꢁ  
ꢀꢁ  
FB3  
0.1μF  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
0.1μF  
ꢀꢁꢂꢃ ꢄꢅꢆꢃꢇ  
TMON GND  
0.1μF  
4671 TA01a  
Rev. B  
1
Document Feedback  
For more information www.analog.com  
LTM4671  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
(See Pin Functions, Component BGA Pinout ꢁable)  
V , SV , SV ........................................ –0.3V to 22V  
IN  
IN0  
, V  
IN3  
ꢇꢈꢉ ꢊꢋꢌꢍ  
V
V
............................................. –0.3V to 3.6V  
OUꢁ0 OUꢁ3  
ꢇꢧꢌꢙꢧꢌꢐ ꢇꢧꢌꢙꢧꢌꢐ  
, V  
................................................ –0.3V to 6V  
B
OUꢁ± OUꢁ2  
INꢁV , INꢁV  
, INꢁV , ................... –0.3V to 3.6V  
CC0  
CC±2  
CC3  
FREQ0, FREQ±2, FREQ3,........................... –0.3V to 3.6V  
FB0, FB±, FB2, FB3,................................... –0.3V to 3.6V  
COMP0a, COMP0b, COMP3a, COMP3b,  
COMP±, COMP2,................................... –0.3V to 3.6V  
RUN0, RUN±, RUN2, RUN3........................ –0.3V to 22V  
ꢁRACK/SS0, ꢁRACK/SS±, ꢁRACK/SS2,  
ꢈꢘꢇꢐ  
ꢋꢙ  
ꢋꢙꢇꢊ  
ꢉꢕꢑꢈꢚꢌꢐ  
ꢧꢊ  
ꢛꢒꢓꢈꢘꢇꢐ ꢉꢖꢈꢈꢚꢐ  
ꢖꢙꢚ  
ꢛꢛꢐ  
ꢋꢙꢐ  
ꢊꢈꢧꢙꢧꢐ ꢇRꢜꢛꢓꢦꢧꢧꢐ ꢗRꢌꢫꢐ Rꢘꢙꢐ  
ꢁRACK/SS3, ......................................... –0.3V to 3.6V  
PGOOD0, PGOOD±, PGOOD2, PGOOD3,... –0.3V to 3.6V  
ꢑꢈꢚꢌꢦ  
ꢖꢙꢚ  
ꢖꢙꢚ  
ꢗBꢐ  
ꢖꢙꢚ ꢛꢒꢓꢋꢙꢐ  
ꢊꢈꢧꢙꢧꢐ  
ꢇRꢜꢛꢓꢦꢧꢧꢀ  
+
+
VOSNS0 , VOSNS0 , VOSNS3 ,  
ꢉꢖꢈꢈꢚꢀ  
ꢗBꢀ  
ꢛꢈꢑꢉꢐꢬ ꢛꢈꢑꢉꢐꢭ  
VOSNS3 ,............................................. –0.3V to 3.6V  
ꢈꢘꢇꢀ  
ꢖꢙꢚ  
ꢖꢙꢚ  
Rꢘꢙꢀ  
ꢇꢑꢈꢙ  
ꢛꢈꢑꢉꢀ  
ꢊꢈꢧꢙꢧꢀ  
VOSNS±, VOSNS2........................................ –0.3V to 6V  
ꢋꢙ  
+
+
ꢁSENSE0 , ꢁSENSE0 , ꢁSENSE3 ,  
ꢋꢙꢇꢊ  
ꢗRꢌꢫꢀꢁ  
ꢊꢈꢧꢙꢧꢁ  
ꢖꢙꢚ  
ꢛꢛꢀꢁ  
ꢖꢙꢚ  
ꢖꢙꢚ  
ꢁSENSE3 ............................................. –0.3V to 0.8V  
ꢑꢈꢚꢌꢦ  
Rꢘꢙꢁ ꢛꢒꢓꢋꢙꢀꢁ  
ꢖꢙꢚ  
ꢖꢙꢚ  
ꢁMON ....................................................... –0.3V to 3.6V  
MODE/CLKIN0, CLKOUꢁ0, MODE/CLKIN3,  
CLKOUꢁ3, MODE/CLKIN±2 ................... –0.3V to 3.6V  
Operating Junction ꢁemperature (Note 2) –40°C to ±2ꢀ°C  
Storage ꢁemperature Range .................. –ꢀꢀ°C to ±2ꢀ°C  
Peak Solder Reflow Body ꢁemperature................. 24ꢀ°C  
ꢋꢙ  
ꢈꢘꢇꢁ  
ꢉꢖꢈꢈꢚꢁ  
ꢛꢈꢑꢉꢁ  
ꢗBꢁ  
R
ꢇRꢜꢛꢓꢦ  
ꢧꢧꢁ ꢛꢈꢑꢉꢂꢭ ꢛꢈꢑꢉꢂꢬ  
ꢗBꢂ ꢊꢈꢧꢙꢧꢂ  
ꢇRꢜꢛꢓꢦ  
ꢖꢙꢚ  
ꢖꢙꢚ  
ꢛꢒꢓꢈꢘꢇꢂ Rꢘꢙꢂ  
ꢗRꢌꢫꢂ  
ꢑꢈꢚꢌꢦ  
ꢧꢧꢂ ꢊꢈꢧꢙꢧꢂ ꢖꢙꢚ  
ꢋꢙꢇꢊ  
ꢛꢛꢂ  
ꢧꢊ  
ꢉꢕꢑꢈꢚꢌꢂ ꢉꢖꢈꢈꢚꢂ ꢛꢒꢓꢋꢙꢂ  
ꢋꢙꢂ  
ꢋꢙ  
ꢖꢙꢚ  
ꢈꢘꢇꢂ  
ꢖꢙꢚ  
ꢖꢙꢚ  
ꢇꢧꢌꢙꢧꢌꢂ ꢇꢧꢌꢙꢧꢌꢂ  
ꢀꢐ  
ꢀꢀ  
Bꢖꢜ ꢉꢜꢛꢓꢜꢖꢌ  
ꢁꢐꢏꢝꢒꢌꢜꢚ ꢞꢏ.ꢄꢟꢟ ꢠ ꢀꢅꢟꢟ ꢠ ꢃ.ꢆꢁꢟꢟꢡ  
ꢣ ꢀꢁꢄꢤꢛꢥ θ  
ꢣ ꢀꢁ.ꢎꢤꢛꢦθ ꢣ ꢀ.ꢄꢤꢛꢦθ ꢣ ꢀꢁꢤꢛꢦꢍ  
ꢔꢑꢜꢢ  
ꢔꢛꢇꢈꢉ  
ꢔꢛBꢈꢇꢇꢈꢑ ꢔꢜ  
θ ꢊꢜꢒꢘꢌꢧ ꢚꢌꢇꢌRꢑꢋꢙꢌꢚ ꢉꢌR ꢔꢌꢧꢚꢄꢀꢝꢀꢁ  
ꢍꢌꢋꢖꢕ.ꢏꢃꢩ  
Rev. B  
2
For more information www.analog.com  
LTM4671  
ORDER INFORMATION  
PART MARKING*  
DEVICE FINISH CODE  
LꢁM467±Y  
LꢁM467±Y  
PACKAGE  
TYPE  
MSL  
TEMPERATURE RANGE  
(SEE NOTE 2)  
PART NUMBER  
LꢁM467±EY#PBF  
LꢁM467±IY#PBF  
PAD OR BALL FINISH  
RATING  
SAC30ꢀ (RoHS)  
e±  
BGA  
3
–40°C to ±2ꢀ°C  
• Device temperature grade is indicated by a label on the shipping container.  
• Pad or ball finish code is per IPC/JEDEC J-SꢁD-609.  
BGA Package and ꢁray Drawings  
• ꢁhis product is not recommended for second side reflow.  
ꢁhis product is moisture sensitive. For more information, go  
to Recommended BGA PCB Assembly and Manufacturing  
Procedures.  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
operating temperature range. Specified as each individual output channel. TA = 25°C (Note 2), SVIN = VIN = 12V, unless otherwise  
noted. Per the typical application in Figure 30.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Switching Regulator Section: (12A Channels)  
l
l
l
l
V
V
V
V
Input DC Voltage  
3.±  
2.9  
0.6  
20  
20  
V
V
V
V
IN  
Input DC Voltage After Start-Up  
Output Voltage Range  
IN(AFꢁER SꢁAR-UP)  
OUꢁ(RANGE)  
OUꢁ(DC)  
3.3  
Output Voltage, ꢁotal Variation with  
Line and Load  
C
= 22µF, C  
= ±00µF Ceramic  
±.482 ±.ꢀ0 ±.ꢀ±8  
IN  
FB  
OUꢁ  
R
= 40.2k, Continuous Current Mode  
SV = V = 3.±V to 20V, I = 0A to ±2A  
OUꢁ  
IN  
IN  
I
Input Supply Bias Current  
SV = V = ±2V, V = ±.ꢀV, Continuous Current Mode  
OUꢁ  
7ꢀ  
70  
mA  
µA  
Q(VIN)  
IN  
IN  
SV = V = ±2V, RUN = 0, Shutdown  
IN  
IN  
I
I
Input Supply Current  
SV = V = ±2V, V  
= ±.ꢀV, I = ±2A  
OUꢁ  
±.6  
A
A
S(VIN)  
IN  
IN  
OUꢁ  
OUꢁ  
Output Continuous Current Range  
Line Regulation Accuracy  
Load Regulation Accuracy  
SV = V = ±2V, V  
= ±.ꢀV (Note 4)  
0
±2  
OUꢁ(DC)  
IN  
OUꢁ  
OUꢁ  
IN  
l
l
∆V  
/V  
V
V
= ±.ꢀV, V = 3.±V to 20V, I = 0A  
OUꢁ  
0.00± 0.0ꢀ  
5/V  
OUꢁ(LINE) OUꢁ  
IN  
∆V  
/V  
= ±.ꢀV, I  
= 0A to ±2A  
0.2  
0.ꢀ  
5
5
OUꢁ(LOAD) OUꢁ  
OUꢁ  
V
Output Ripple Voltage  
ꢁurn-On Overshoot  
I
= 0A, C = ±00µF Ceramic  
OUꢁ  
6
mV  
mV  
ms  
mV  
µs  
OUꢁ(AC)  
OUꢁ  
IN  
SV = V = ±2V, V  
= ±.ꢀV  
IN  
OUꢁ  
∆V  
I
= 0A, C = ±00µF Ceramic,  
OUꢁ  
±ꢀ  
±
OUꢁ(SꢁARꢁ)  
OUꢁLS  
OUꢁ  
SV = V = ±2V, V = ±.ꢀV  
OUꢁ  
IN  
IN  
t
ꢁurn-On ꢁime  
ꢁRACK/SS = 0.0±µF,  
SV = V = ±2V, V  
SꢁARꢁ  
= ±.ꢀV, C  
= 3× ±00µF Ceramic  
= 3× ±00µF Ceramic  
= 3× ±00µF Ceramic  
OUꢁ  
IN  
IN  
OUꢁ  
OUꢁ  
∆V  
Peak Deviation for Dynamic Load  
Load: 05 to 2ꢀ5 to 05 of Full Load  
SV = V = ±2V, V = ±.ꢀV, C  
±ꢀ0  
ꢀ0  
IN  
IN  
OUꢁ  
OUꢁ  
t
Settling ꢁime for Dynamic Load Step Load: 05 to 2ꢀ5 to 05 of Full Load  
SV = V = ±2V, V = ±.ꢀV, C  
SEꢁꢁLE  
IN  
IN  
OUꢁ  
I
Output Current Limit  
Voltage at V Pin  
SV = V = ±2V, V  
= ±.ꢀV  
±4  
A
V
OUꢁPK  
IN  
IN  
OUꢁ  
l
V
I
= 0A, V = ±.ꢀV  
OUꢁ  
0.ꢀ94  
0.6  
0.606  
±ꢀ0  
FB  
FB  
OUꢁ  
I
Current at V Pin  
(Note 6)  
nA  
kΩ  
FB  
FB  
R
Resistor Between V  
and V Pins  
60.0ꢀ 60.40 60.7ꢀ  
FB(ꢁOP)  
OUꢁ  
FB  
Rev. B  
3
For more information www.analog.com  
LTM4671  
The l denotes the specifications which apply over the specified internal  
ELECTRICAL CHARACTERISTICS  
operating temperature range. Specified as each individual output channel. TA = 25°C (Note 2), SVIN = VIN = 12V, unless otherwise  
noted. Per the typical application in Figure 30.  
SYMBOL  
PARAMETER  
CONDITIONS  
Rising  
MIN  
TYP  
MAX UNITS  
V
RUN  
RUN Pin ON ꢁhreshold  
V
±.±0  
±.20  
±ꢀ0  
±.30  
V
mV  
RUN  
Hysteresis  
UVLO  
Undervoltage Lockout  
INꢁV Falling  
2.4  
2.ꢀꢀ  
0.4  
2.7  
V
V
CC  
Hysteresis  
I
t
t
rack Pin Soft-Start Pull-Up Current ꢁRACK/SS = 0V  
6
µA  
ns  
ns  
ꢁRACK/SS  
ON(MIN)  
OFF(MIN)  
Minimum On-ꢁime  
Minimum Off-ꢁime  
PGOOD rip Level  
(Note ꢀ)  
(Note ꢀ)  
2ꢀ  
80  
V
V
FB  
With Respect to Set Output  
PGOOD  
V
Ramping Negative  
Ramping Positive  
–±0  
6
–8  
8
–6  
±0  
5
5
FB  
FB  
V
R
PGOOD Pull-Down Resistance  
±mA Load  
8
±ꢀ  
Ω
V
PGOOD  
INꢁV  
Internal V Voltage  
3.2  
±
3.3  
600  
3.4  
CC  
CC  
FREQ  
Default Switching Frequency  
kHz  
CLKIN_H  
CLKIN_H Input High ꢁhreshold  
CLKIN_H Input Low ꢁhreshold  
V
V
0.3  
Switching Regulator Section: (5A Channels)  
l
l
l
l
V
V
V
V
Input DC Voltage  
3.±  
2.9  
0.6  
20  
20  
V
V
V
V
IN  
Input DC Voltage After Start-Up  
Output Voltage Range  
IN(AFꢁER SꢁAR-UP)  
OUꢁ(RANGE)  
OUꢁ(DC)  
ꢀ.ꢀ  
Output Voltage, ꢁotal Variation with  
Line and Load  
C
= 22µF, C  
= ±00µF Ceramic  
±.477 ±.ꢀ0 ±.ꢀ23  
IN  
OUꢁ  
R
= 40.2k, Continuous Current Mode  
FB  
IN  
V
= 3.±V to 20V, I  
= 0A to ꢀA  
OUꢁ  
I
)
Input Supply Bias Current  
V
IN  
V
IN  
V
IN  
= ±2V, V = ±.ꢀV, Continuous Current Mode  
OUꢁ  
±8  
82  
7ꢀ  
mA  
mA  
µA  
Q(VIN  
= ±2V, V  
= ±.ꢀV, Burst Mode Operation (I  
= 0.ꢀA  
OUꢁ  
OUꢁ  
= ±2V, RUN = 0V, Shutdown  
I
I
Input Supply Current  
V
V
V
V
= ±2V, V  
= ±2V, V  
= ±.ꢀV, I = ꢀA  
OUꢁ  
0.7  
A
A
S(VIN)  
IN  
OUꢁ  
OUꢁ  
Output Continuous Current Range  
Line Regulation Accuracy  
Load Regulation Accuracy  
Output Ripple Voltage  
= ±.ꢀV (Note 4)  
0
OUꢁ(DC)  
IN  
l
l
∆V  
∆V  
/V  
= ±.ꢀV, V = 3.±V to 20V, I = 0A  
OUꢁ  
0.00± 0.0ꢀ  
5/V  
5
OUꢁ(LINE) OUꢁ  
OUꢁ  
OUꢁ  
OUꢁ  
IN  
/V  
= ±.ꢀV, I  
= 0A to ꢀA  
0.2  
8
0.ꢀ  
OUꢁ(LOAD) OUꢁ  
OUꢁ  
V
I
= 0A, C  
= ±00µF Ceramic  
= ±.ꢀV  
mV  
OUꢁ(AC)  
OUꢁ  
V
IN  
= ±2V, V  
OUꢁ  
∆V  
ꢁurn-On Overshoot  
I
= 0A, C  
= ±00µF Ceramic,  
= ±.ꢀV  
±ꢀ  
mV  
ms  
mV  
µs  
OUꢁ(SꢁARꢁ)  
OUꢁLS  
OUꢁ  
IN  
OUꢁ  
V
= ±2V, V  
OUꢁ  
t
ꢁurn-On ꢁime  
ꢁRACK/SS = 0.0±µF,  
= ±2V, V = ±.ꢀV, C = ±00µF Ceramic  
OUꢁ  
SꢁARꢁ  
V
IN  
OUꢁ  
∆V  
Peak Deviation for Dynamic Load  
Load: 05 to 2ꢀ5 to 05 of Full Load  
= ±2V, V = ±.ꢀV, C = ±00µF Ceramic  
30  
70  
V
IN  
OUꢁ  
OUꢁ  
t
I
Settling ꢁime for Dynamic Load Step Load: 05 to 2ꢀ5 to 05 of Full Load  
SEꢁꢁLE  
V
= ±2V, V  
= ±.ꢀV, C = ±00µF Ceramic  
OUꢁ  
IN  
OUꢁ  
OUꢁ  
OUꢁ  
Output Current Limit  
Voltage at V Pin  
V
= ±2V, V  
= ±.ꢀV  
6
A
V
OUꢁPK  
IN  
l
V
I
= 0A, V  
= ±.ꢀV  
0.ꢀ92  
0.6  
0.608  
±30  
FB  
FB  
OUꢁ  
I
Current at V Pin  
(Note 6)  
nA  
kΩ  
FB  
FB  
R
Resistor Between V  
and V Pins  
60.0ꢀ 60.40 60.7ꢀ  
FB(ꢁOP)  
RUN  
OUꢁ  
FB  
V
RUN Pin ON ꢁhreshold  
V
Rising  
±.±ꢀ  
±.2ꢀ  
200  
±.3ꢀ  
V
mV  
RUN  
Hysteresis  
Rev. B  
4
For more information www.analog.com  
LTM4671  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
operating temperature range. Specified as each individual output channel. TA = 25°C (Note 2), SVIN = VIN = 12V, unless otherwise  
noted. Per the typical application in Figure 30.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
UVLO  
Undervoltage Lockout  
INꢁV Falling  
2.2  
2.4  
0.ꢀ  
2.6  
V
V
CC  
Hysteresis  
I
t
t
rack Pin Soft-Start Pull-Up Current ꢁRACK/SS = 0V  
±.4  
20  
4ꢀ  
µA  
ns  
ns  
ꢁRACK/SS  
ON(MIN)  
OFF(MIN)  
Minimum On-ꢁime  
Minimum Off-ꢁime  
PGOOD rip Level  
(Note ꢀ)  
(Note ꢀ)  
V
V
FB  
with Respect to Set Output  
PGOOD  
V
Ramping Negative  
Ramping Positive  
–±0  
–8  
8
–ꢀ  
±0  
5
5
FB  
FB  
V
R
PGOOD Pull-Down Resistance  
±0mA Load  
2ꢀ  
3.3  
±
Ω
V
PGOOD  
INꢁV  
Internal V Voltage  
3.±  
±
3.ꢀ  
0.3  
CC  
CC  
FREQ  
Default Switching Frequency  
MHz  
MODE/CLKIN_L  
MODE/CLKIN_L High ꢁhreshold  
MODE/CLKIN_L Low ꢁhreshold  
V
V
ꢁMON±2  
ꢁemperature Monitor  
ꢁemperature Monitor Slop  
ꢁ = 2ꢀ°C  
A
±.ꢀ  
200  
V
°C/V  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: ꢁhe minimum on-time is tested at wafer sort.  
Note 4: See output current derating curves for different V , V  
Note 5: Guaranteed by design.  
and ꢁ .  
IN OUꢁ  
A
Note 6: ±005 tested at wafer level.  
Note 2: ꢁhe LꢁM467± is tested under pulsed load conditions such  
that ꢁ ≈ ꢁ . ꢁhe LꢁM467±E is guaranteed to meet performance  
J
A
specifications over the 0°C to ±2ꢀ°C internal operating temperature  
range. Specifications over the full –40°C to ±2ꢀ°C internal operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls. ꢁhe LꢁM467±I is guaranteed to meet  
specifications over the full –40°C to ±2ꢀ°C internal operating temperature  
range. Note that the maximum ambient temperature consistent with  
these specifications is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal resistance and  
other environmental factors.  
Rev. B  
5
For more information www.analog.com  
LTM4671  
TYPICAL PERFORMANCE CHARACTERISTICS  
Dual 12A Channels  
Efficiency vs Load Current  
from 3.3VIN  
Efficiency vs Load Current  
from 5VIN  
Efficiency vs Load Current  
from 12VIN  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢅꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢅꢀ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢅ.ꢆꢀ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢃ  
1.0V Output Transient Response  
1.2V Output Transient Response  
1.5V Output Transient Response  
V
V
V
OUT  
(AC-COUPLED)  
50mV/DIV  
OUT  
OUT  
(AC-COUPLED)  
50mV/DIV  
(AC-COUPLED)  
50mV/DIV  
LOAD STEP  
2A/DIV  
LOAD STEP  
2A/DIV  
LOAD STEP  
2A/DIV  
4671 G05  
4671 G04  
4671 G06  
50μs/DIV  
50μs/DIV  
50μs/DIV  
V
C
= 12V, V  
OUT  
= 1.2V, f = 600kHz  
SW  
V
C
= 12V, V  
OUT  
= 1V, f = 600kHz  
SW  
V
C
= 12V, V  
OUT  
OUT  
EXT COMP, C = 2200pF, R = 5k, C = 33pF  
TH FF  
= 1.5V, f = 600kHz  
SW  
IN  
OUT  
= 3× 100μF CERAMIC CAPACITORS  
IN  
OUT  
= 3× 100μF CERAMIC CAPACITORS  
IN  
= 3× 100μF CERAMIC CAPACITORS  
EXT COMP, C = 2200pF, R = 5k, C = 33pF  
EXT COMP, C = 2200pF, R = 5k, C = 33pF  
TH  
TH  
FF  
TH  
TH  
FF  
TH  
3A (25%) LOAD STEP, 1A/μs  
3A (25%) LOAD STEP, 1A/μs  
3A (25%) LOAD STEP, 1A/μs  
1.8V Output Transient Response  
2.5V Output Transient Response  
3.3V Output Transient Response  
V
V
V
OUT  
OUT  
OUT  
(AC-COUPLED)  
100mV/DIV  
(AC-COUPLED)  
50mV/DIV  
(AC-COUPLED)  
50mV/DIV  
LOAD STEP  
2A/DIV  
LOAD STEP  
2A/DIV  
LOAD STEP  
2A/DIV  
4671 G09  
4671 G08  
4671 G07  
50μs/DIV  
50μs/DIV  
50μs/DIV  
V
C
= 12V, V  
OUT  
OUT  
= 3.3V, f = 600kHz  
SW  
V
C
= 12V, V  
OUT  
= 2.5V, f = 600kHz  
SW  
V
C
= 12V, V  
OUT  
= 1.8V, f = 600kHz  
SW  
IN  
IN  
OUT  
= 3× 100μF CERAMIC CAPACITORS  
IN  
OUT  
= 3× 100μF CERAMIC CAPACITORS  
= 3× 100μF CERAMIC CAPACITORS  
EXT COMP, C = 2200pF, R = 5k, C = 33pF  
EXT COMP, C = 2200pF, R = 5k, C = 33pF  
EXT COMP, C = 2200pF, R = 5k, C = 33pF  
TH  
TH  
FF  
TH  
TH  
FF  
TH  
TH  
FF  
3A (25%) LOAD STEP, 1A/μs  
3A (25%) LOAD STEP, 1A/μs  
3A (25%) LOAD STEP, 1A/μs  
Rev. B  
6
For more information www.analog.com  
LTM4671  
TYPICAL PERFORMANCE CHARACTERISTICS  
Dual 12A Channels  
Start-Up Waveform with No Load  
Current Applied  
Start-Up Waveform with 12A Load  
Current Applied  
Short-Circuit Waveform with No  
Load Current Exist  
RUN  
10V/DIV  
RUN  
10V/DIV  
L
IN  
PGOOD  
5V/DIV  
PGOOD  
5V/DIV  
500mA/DIV  
L
L
IN  
200mA/DIV  
IN  
200mA/DIV  
V
OUT  
500mV/DIV  
V
V
OUT  
1V/DIV  
OUT  
1V/DIV  
4671 G10  
4671 G11  
2ms/DIV  
2ms/DIV  
4671 G12  
50μs/DIV  
V
C
= 12V, V  
OUT  
OUT  
= 1V, f = 600kHz  
SW  
V
C
= 12V, V = 1V, f = 600kHz  
OUT  
IN  
IN  
SW  
= 1× 330μF POSCAP,  
V
C
= 12V, V  
OUT  
2× 100μF CERAMIC CAPACITORS  
= 1V, f = 600kHz  
OUT SW  
= 1× 330μF POSCAP,  
IN  
OUT  
= 1× 330μF POSCAP,  
2× 100μF CERAMIC CAPACITORS  
2× 100μF CERAMIC CAPACITORS  
C
= 0.1μF  
C
= 0.1μF  
SS  
SS  
Short-Circuit Waveform with 12A  
Load Current Exist  
Output Ripple  
Start Into Pre-Biased Output  
RUN  
10V/DIV  
PGOOD  
5V/DIV  
L
IN  
500mA/DIV  
V
OUT  
(AC-COUPLED)  
10mV/DIV  
V
OUT  
1V/DIV  
V
OUT  
500mV/DIV  
L
IN  
100mA/DIV  
4671 G15  
2ms/DIV  
4671 G14  
4671 G13  
1μs/DIV  
= 1V, f = 600kHz  
50μs/DIV  
V
C
= 12V, V  
OUT  
= 1.5V, f = 600kHz  
IN  
OUT SW  
V
C
= 12V, V  
OUT  
OUT  
V
C
= 12V, V  
OUT  
2× 100μF CERAMIC CAPACITORS  
= 1V, f = 600kHz  
OUT SW  
IN  
SW  
IN  
= 1× 330μF POSCAP +  
= 3× 100μF CERAMIC CAPACITORS  
= 1× 330μF POSCAP,  
2× 100μF CERAMIC CAPACITORS  
V
= PREBIASED TO 0.9V  
OUT  
Dual 5A Channels  
Efficiency vs Load Current  
from 3.3VIN  
Efficiency vs Load Current  
from 5VIN  
Efficiency vs Load Current  
from 12VIN  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢄ ꢅ.ꢅꢀ  
ꢄ ꢆ.ꢇꢀ  
ꢄ ꢈ.ꢉꢀ  
ꢄ ꢈ.ꢇꢀ  
ꢄ ꢈ.ꢆꢀ  
ꢄ ꢈ.ꢊꢀ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢇ.ꢈꢀ  
ꢄ ꢇ.ꢆꢀ  
ꢄ ꢇ.ꢅꢀ  
ꢄ ꢇ.ꢉꢀ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢄ ꢅ.ꢆꢀ  
ꢄ ꢇ.ꢇꢀ  
ꢄ ꢈ.ꢅꢀ  
ꢄ ꢉ.ꢊꢀ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢄ ꢉ.ꢅꢀ  
ꢄ ꢉ.ꢈꢀ  
ꢄ ꢉ.ꢆꢀ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢃꢅ  
ꢀꢁꢂꢃ ꢄꢃꢂ  
ꢀꢁꢂꢃ ꢄꢃꢁ  
Rev. B  
7
For more information www.analog.com  
LTM4671  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0V Output Transient Response  
1.2V Output Transient Response  
1.5V Output Transient Response  
V
V
V
OUT  
(AC-COUPLED)  
50mV/DIV  
OUT  
OUT  
(AC-COUPLED)  
50mV/DIV  
(AC-COUPLED)  
50mV/DIV  
LOAD STEP  
500mA/DIV  
LOAD STEP  
500mA/DIV  
LOAD STEP  
500mA/DIV  
4671 G21  
4671 G19  
4671 G20  
50μs/DIV  
50μs/DIV  
50μs/DIV  
V
C
C
= 12V, V  
OUT  
= 100pF  
= 1.5V, f = 1MHz  
SW  
V
C
C
= 12V, V  
OUT  
OUT  
= 100pF  
= 1V, f = 1MHz  
SW  
V
C
C
= 12V, V  
OUT  
OUT  
= 100pF  
FF  
= 1.2V, f = 1MHz  
SW  
IN  
OUT  
= 2× 47μF + 10μF CERAMIC CAPACITORS  
IN  
IN  
= 2× 47μF + 10μF CERAMIC CAPACITORS  
= 2× 47μF + 10μF CERAMIC CAPACITORS  
FF  
FF  
1.25A (25%) LOAD STEP, 1A/μs  
1.25A (25%) LOAD STEP, 1A/μs  
1.25A (25%) LOAD STEP, 1A/μs  
1.8V Output Transient Response  
2.5V Output Transient Response  
3.3V Output Transient Response  
V
V
V
OUT  
OUT  
OUT  
(AC-COUPLED)  
100mV/DIV  
(AC-COUPLED)  
50mV/DIV  
(AC-COUPLED)  
50mV/DIV  
LOAD STEP  
500A/DIV  
LOAD STEP  
500mA/DIV  
LOAD STEP  
500A/DIV  
4671 G24  
4671 G22  
4671 G23  
50μs/DIV  
50μs/DIV  
50μs/DIV  
V
C
C
= 12V, V  
OUT  
= 100pF  
= 3.3V, f = 1MHz  
SW  
V
C
C
= 12V, V  
OUT  
OUT  
= 100pF  
= 1.8V, f = 1MHz  
SW  
V
C
C
= 12V, V  
OUT  
= 100pF  
FF  
= 2.5V, f = 1MHz  
SW  
IN  
OUT  
= 2× 47μF + 10μF CERAMIC CAPACITORS  
IN  
IN  
OUT  
= 2× 47μF + 10μF CERAMIC CAPACITORS  
= 2× 47μF + 10μF CERAMIC CAPACITORS  
FF  
FF  
1.25A (25%) LOAD STEP, 1A/μs  
1.25A (25%) LOAD STEP, 1A/μs  
1.25A (25%) LOAD STEP, 1A/μs  
Start-Up Waveform with No Load  
Current Applied  
Start-Up Waveform with 5A Load  
Current Applied  
5V Output Transient Response  
RUN  
10V/DIV  
RUN  
10V/DIV  
V
OUT  
PGOOD  
5V/DIV  
PGOOD  
5V/DIV  
(AC-COUPLED)  
100mV/DIV  
V
OUT  
V
OUT  
1V/DIV  
1V/DIV  
LOAD STEP  
500A/DIV  
L
L
IN  
IN  
200mA/DIV  
200mA/DIV  
4671 G26  
4671 G27  
4671 G25  
20ms/DIV  
20ms/DIV  
50μs/DIV  
V
C
C
= 12V, V  
OUT  
= 100pF, C = 0.1μF  
FF  
SS  
= 1V, f = 1MHz  
SW  
V
C
C
= 12V, V  
OUT  
= 100pF, C = 0.1μF  
SS  
= 1V, f = 1MHz  
SW  
V
C
C
= 12V, V  
OUT  
OUT  
= 100pF  
= 1.8V, f = 1MHz  
SW  
IN  
OUT  
= 2× 47μF + 10μF CERAMIC CAPACITORS  
IN  
OUT  
= 2× 47μF + 10μF CERAMIC CAPACITORS  
IN  
= 2× 47μF + 10μF CERAMIC CAPACITORS  
FF  
FF  
1.25A (25%) LOAD STEP, 1A/μs  
Rev. B  
8
For more information www.analog.com  
LTM4671  
TYPICAL PERFORMANCE CHARACTERISTICS  
Short-Circuit Waveform with No  
Load Current Exist  
Short-Circuit Waveform with 5A  
Load Current Exist  
L
IN  
500mA/DIV  
L
IN  
500mA/DIV  
V
OUT  
V
OUT  
500mV/DIV  
500mV/DIV  
4671 G28  
4671 G29  
50μs/DIV  
50μs/DIV  
V
C
C
= 12V, V  
OUT  
= 100pF  
= 1V, f = 1MHz  
OUT SW  
V
C
C
= 12V, V  
OUT  
= 100pF  
= 1V, f = 1MHz  
OUT SW  
IN  
IN  
= 2× 47μF + 10μF CERAMIC CAPACITORS  
= 2× 47μF + 10μF CERAMIC CAPACITORS  
FF  
FF  
Output Ripple  
Start Into Pre-Biased Output  
RUN  
10V/DIV  
PGOOD  
5V/DIV  
L
IN  
V
OUT  
5mV/DIV  
2V/DIV  
L
IN  
100mA/DIV  
4671 G31  
4671 G30  
2ms/DIV  
500ns/DIV  
= 1V, f = 1MHz  
V
C
C
= 12V, V  
OUT  
= 3.3V, f = 1MHz  
OUT SW  
V
C
C
= 12V, V  
OUT  
= 100pF  
IN  
IN  
OUT  
SW  
= 2× 47μF + 10μF CERAMIC CAPACITORS  
= 2× 47μF + 10μF CERAMIC CAPACITORS  
= 100pF, V PREBIASED 2V  
OUT  
FF  
FF  
Rev. B  
9
For more information www.analog.com  
LTM4671  
PIN FUNCTIONS  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
RUN0 (F11), RUN3 (P7): Run Control Input of Each 12A  
Switching Mode Regulator Channel. Enable regulator  
operation by tying the specific RUN pin above 1.2V. Tying  
it below 1.1V shuts down the specific regulator channel.  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
V (D7-D11, E8, H6, J5-J6, L5-L6, M6, R10, T7-T11):  
IN  
Power Input. Pins connect to the drain of the internal top  
COMP0a (H10), COMP3a (N9): Current Control Thresh-  
old and Error Amplifier Compensation Point of Each 12A  
Switching Mode Regulator Channel. The internal current  
comparatorthresholdislinearlyproportionaltothisvoltage.  
Tie the COMPa pins from different channels together for  
parallel operation. The device is internally compensated.  
Connect to COMP0b or COMP3b, respectively, to use the  
internal compensation. Or connect to a Type-II C-R-C  
network to use customized compensation.  
MOSFET and Signal V to the internal 3.3V regulator for  
IN  
the control circuitry for each switching mode regulator  
channel.ApplyinputvoltagesbetweenthesepinsandGND  
pins. Recommend placing input decoupling capacitance  
directly between each of V pins and GND pins.  
IN  
GND (A4-A5, A8-A11, B4-B11, C4-C11, D4-D6, E3-E5,  
F1-F7, G1-G6, G10, H5, H7, J7, J9, K1-K7, K11, L7,  
L11, M5, M7, M10, N1-N6, P1-P5, P11, R3-R5, T4-T6,  
U4-U11, V4-V11, W4-W5, W8-W11):PowerGroundPins  
for Both Input and Output Returns. Use large PCB copper  
areas to connect all GND together.  
COMP0b (H11), COMP3b (N8): Internal Loop Compen-  
sation Network for Each 12A Switching Mode Regulator  
Channel. Connect to COMP0a or COMP3a, respectively, to  
use the internal compensation in majority of applications.  
PINS FOR DUAL 12A CHANNELS:  
FB0 (G9), FB3 (N10): The Negative Input of the Error  
V
OUT0  
(A1-A3, B1-B3, C1-C3, D1-D3, E1-E2), V  
OUT3  
AmplifierforEach12ASwitchingModeRegulatorChannel.  
+
+
(R1-R2, T1-T3, U1-U3, V1-V3, W1-W3): Power Output  
Pins of Each 12A Switching Mode Regulator Channel.  
Apply output load between these pins and GND pins. Rec-  
ommend placing output decoupling capacitance directly  
between these pins and GND pins. See the Applications  
Information section for paralleling outputs.  
This pin is internally connected to VOSNS0 or VOSNS3 ,  
respectively, with a 60.4kΩ precision resistor. Output  
voltages can be programmed with an additional resistor  
between FB and VOSNS pins. In PolyPhase® operation,  
tying the FB pins together allows for parallel operation.  
See the Applications Information section for details.  
PGOOD0 (E11), PGOOD3 (R7): Output Power Good with  
Open-Drain Logic of Each 12A Switching Mode Regulator  
Channel. PGOOD is pulled to ground when the voltage on  
theFBpinisnotwithin±10%oftheinternal0.6Vreference.  
TRACK/SS0 (F9), TRACK/SS3 (P9): Output Tracking and  
Soft-Start Pin of Each 12A Switching Mode Regulator  
Channel. Allows the user to control the rise time of the  
output voltage. Putting a voltage below 0.6V on this pin  
bypasses the internal reference input to the error ampli-  
fier, instead it servos the FB pin to the TRACK voltage.  
Above 0.6V, the tracking function stops and the internal  
reference resumes control of the error amplifier. There’s  
INTV  
(E7), INTV  
(R11): Internal 3.3V Regulator  
CC0  
CC3  
Output of Each 12A Switching Mode Regulator Channel.  
The internal power drivers and control circuits are pow-  
ered from this voltage. Decouple each pin to GND with a  
minimum of 2.2µF local low ESR ceramic capacitor.  
an internal 6µA pull-up current from INTV on this pin,  
CC  
so putting a capacitor here provides soft-start function.  
See the Applications Information section for details.  
Rev. B  
10  
For more information www.analog.com  
LTM4671  
PIN FUNCTIONS  
+
+
FREQ0(F10),FREQ3(P8):SwitchingFrequencyProgram  
Pin of Each 12A Switching Mode Regulator Channel. Fre-  
quencyissetinternallyto600kHz. Anexternalresistorcan  
be placed from this pin to GND to increase frequency, or  
TSENSE0 (A7), TSENSE3 (W6): Temperature Monitor  
of Each 12A Switching Mode Regulator Channel. An in-  
ternal diode connected PNP transistor is placed between  
+
TSENSE and TSENSE pins. See the Applications Infor-  
mation section.  
from this pin to INTV to reduce frequency. See the Ap-  
CC  
plications Information section for frequency adjustment.  
TSENSE0 (A6), TSENSE3 (W7):LowSideoftheInternal  
+
+
VOSNS0 (G8), VOSNS3 (N11): Positive Input to the Dif-  
ferential Remote Sense Amplifier of Each 12A Switching  
Mode Regulator Channel. Internally, this pin is connected  
Temperature Monitor.  
SV (E9), SV (R9): Signal V . Filtered input voltage  
IN0  
IN3  
IN  
to the on-chip 3.3V regulator. Tie this pin to the V pin in  
IN  
to V with a 60.4k 0.5% precision resistor. See the Ap-  
plications Information section for details.  
FB  
most applications or connect SV to an external voltage  
IN  
supplyofatleast4VwhichmustalsobegreaterthanV  
.
OUT  
VOSNS0 (F8), VOSNS3 (P10): Negative Input to the  
Differential Remote Sense Amplifier of Each 12A Switch-  
ing Mode Regulator Channel. Connect an external resistor  
PINS FOR DUAL 5A CHANNELS:  
V
OUT1  
(H1-H4, J1-J4), V  
(L1-L4, M1-M4): Power  
OUT2  
between FB and VOSNS pin to set the output voltage of  
OutputPinsofEach5ASwitchingModeRegulatorChannel.  
Apply output load between these pins and GND pins. Rec-  
ommend placing output decoupling capacitance directly  
between these pins and GND pins. See the Applications  
Information section for paralleling outputs.  
the specific channel. See the Applications Information  
section for details.  
MODE/CLKIN0 (G11), MODE/CLKIN3 (R8): Discontinu-  
ous Mode Select Pin and External Synchronization Input  
to Phase Detector of Each 12A Switching Mode Regula-  
tor Channel. Tie MODE/CLKIN to GND for discontinuous  
mode of operation. Floating MODE/CLKIN or tying it to  
a voltage above 1V will select forced continuous mode.  
Furthermore,connectingMODE/CLKINtoanexternalclock  
willsynchronizethesystemclocktotheexternalclockand  
puts the part in forced continuous mode. See Applications  
Information section for details.  
PGOOD1 (H8), PGOOD2 (M8): Output Power Good with  
Open-Drain Logic of Each 5A Switching Mode Regulator  
Channel. PGOOD is pulled to ground when the voltage on  
theFBpinisnotwithin±10%oftheinternal0.6Vreference.  
INTV  
(K9): Internal 3.3V RegulatorOutputfor Both 5A  
CC12  
Switching Mode Regulator Channels. The internal power  
drivers and control circuits are powered from this voltage.  
Decouple each pin to GND with a minimum of 2.2µF local  
low ESR ceramic capacitor.  
CLKOUT0 (E10), CLKOUT3 (P6): Output Clock Signal for  
PolyPhaseOperationofEach12ASwitchingModeRegula-  
tor Channel. The phase of CLKOUT with respect to CLKIN  
is determined by the state of the respective PHMODE pin.  
CLKOUT’s peak-to-peak amplitude is INTV to GND. See  
Applications Information section for details.  
RUN1 (J8), RUN2 (L8): Run Control Input of Each 5A  
Switching Mode Regulator Channel. Enable regulator  
operation by tying the specific RUN pin above 1.2V. Tying  
it below 1.1V shuts down the specific regulator channel.  
CC  
PHMODE0 (E6), PHMODE3 (R6): Control Input to the  
Phase Selector of Each 12A Switching Mode Regulator  
Channel. Determines the phase relationship between in-  
COMP1 (J11), COMP2 (M11): Current Control Threshold  
andErrorAmplifierCompensationPointofEach5ASwitch-  
ingModeRegulatorChannel.Theinternalcurrentcompara-  
torthresholdislinearlyproportionaltothisvoltage. Tiethe  
COMP pins from different channels together for parallel  
operation. These channels are internally compensated.  
ternal oscillator and CLKOUT. Tie it to INTV for 2-phase  
CC  
operation, tie it to SGND for 3-phase operation, and float-  
ing for 4-phase operation. See Applications Information  
section for details.  
Rev. B  
11  
For more information www.analog.com  
LTM4671  
PIN FUNCTIONS  
VOSNS1 (J10), VOSNS2 (L10): Output Voltage Sense Pin  
FB1 (H9), FB2 (M9): The Negative Input of the Error  
Amplifier for Each 5A Switching Mode Regulator Channel.  
This pin is internally connected to VOSNS1 or VOSNS2,  
respectively, with a 60.4kΩ precision resistor. Output  
voltages can be programmed with an additional resistor  
between FB and GND pins. In PolyPhase operation, tying  
the FB pins together allows for parallel operation. See the  
Applications Information section for details.  
of Each 5A Switching Mode Regulator Channel. Internally,  
this pin is connected to V with a 60.4k 0.5% precision  
FB  
resistor. See the Applications Information section for  
details. It is very important to connect these pins to the  
V
since this is the feedback path, and cannot be left  
OUT  
open. See the Applications Information section for details.  
MODE/CLKIN12 (L9): Mode Select and External Synchro-  
nization Input Pin for Both 5A Switching Mode Regulator  
Channels.TiethispintoGNDtoforcecontinuoussynchro-  
TRACK/SS1 (G7), TRACK/SS2 (N7): Output Tracking  
and Soft-Start Pin of Each 5A Switching Mode Regulator  
Channel. Allows the user to control the rise time of the  
output voltage. Putting a voltage below 0.6V on this pin  
bypassestheinternalreferenceinputtotheerroramplifier,  
instead it servos the FB pin to the TRACK voltage. Above  
0.6V,thetrackingfunctionstopsandtheinternalreference  
resumes control of the error amplifier. There’s an internal  
nous operation. Floating this pin or tying it to INTV  
CC12  
enables high efficiency Burst Mode operation at light  
loads. When driving this pin with an external clock, the  
phase-locked loop will force the channel 1 turn on signal  
to be synchronized with the rising edge of the CLKIN12  
signal. channel 2 will also be synchronized with the rising  
edge of the CLKIN12 signal with a 180° phase shift. See  
Applications Information section for details.  
1.4µA pull-up current from INTV on this pin, so putting  
CC  
a capacitor here provides soft-start function. See the Ap-  
plications Information section for details.  
TMON(K8):TemperatureMonitorfor5AOutputChannels.  
Avoltageproportionaltothemeasuredon-dietemperature  
will appear at this pin. The voltage-to-temperature scaling  
factoris200°K/V.SeetheApplicationsInformationsection  
for detailed information on the TMON function. Tie this pin  
FREQ12(K10):SwitchingFrequencyProgramPinforBoth  
5A Switching Mode Regulator Channels. Frequency is  
set internally to 1MHz. An external resistor can be placed  
from this pin to GND to increase frequency, or from this  
to INTV  
to disable the temperature monitor circuit.  
pin to INTV to reduce frequency. See the Applications  
CC12  
CC  
Information section for frequency adjustment.  
Rev. B  
12  
For more information www.analog.com  
LTM4671  
BLOCK DIAGRAM  
ꢋꢃꢌꢉꢍꢀꢁꢂꢎꢊꢆ  
ꢓꢆꢆꢙ  
ꢇꢞꢃꢃꢌꢆ  
ꢎꢊꢅꢒ  
ꢀꢀꢆ  
ꢎꢊ  
ꢎꢊ  
ꢚꢒ ꢅꢃ ꢖꢆꢒ  
ꢓꢆꢔꢕ  
ꢚꢛꢔꢕ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢆ.ꢖꢖꢔꢕ  
ꢓꢔꢕ  
ꢆ.ꢗꢗꢔꢘ  
ꢓ.ꢆꢒ  
ꢓꢖꢏ  
ꢃꢄꢅꢆ  
ꢃꢄꢅꢓ  
ꢎꢊꢅꢒ  
ꢀꢀꢆ  
ꢖ.ꢖꢔꢕ  
ꢓꢢꢣꢕ  
ꢅRꢏꢀꢂꢍꢐꢐꢆ  
ꢞꢊꢌ  
ꢇꢃꢈꢉR ꢀꢃꢊꢅRꢃꢁ  
ꢆ.ꢓꢔꢕ  
ꢒꢃꢐꢊꢐꢆ  
Rꢄꢊꢆ  
ꢡꢆ.ꢡꢙ  
ꢓꢆꢆꢙ  
ꢕBꢆ  
ꢀꢃꢋꢇꢆꢑ  
ꢝꢆ.ꢚꢙ  
ꢒꢃꢐꢊꢐꢆ  
ꢀꢃꢋꢇꢆꢤ  
ꢇꢞꢃꢃꢌꢗ  
ꢎꢊꢅꢉRꢊꢏꢁ  
ꢕꢎꢉR  
ꢎꢊꢅꢒ  
ꢎꢊꢅꢉRꢊꢏꢁ ꢀꢃꢋꢇ  
ꢀꢀꢗ  
ꢕRꢉꢜꢆ  
ꢎꢊ  
ꢖꢛꢚꢙ  
ꢆ.ꢖꢖꢔꢕ  
ꢋꢃꢌꢉꢍꢀꢁꢂꢎꢊꢗ  
ꢆ.ꢗꢗꢔꢘ  
ꢓ.ꢖꢒ  
ꢓꢖꢏ  
ꢃꢄꢅꢗ  
ꢃꢄꢅꢗ  
ꢎꢊꢅꢒ  
ꢀꢀꢗ  
ꢖ.ꢖꢔꢕ  
ꢓꢔꢕ  
ꢚꢛꢔꢕ  
ꢞꢊꢌ  
ꢅRꢏꢀꢂꢍꢐꢐꢗ  
ꢇꢃꢈꢉR ꢀꢃꢊꢅRꢃꢁ  
ꢆ.ꢓꢔꢕ  
Rꢄꢊꢗ  
ꢒꢃꢐꢊꢐꢗ  
ꢀꢃꢋꢇꢗꢑ  
ꢀꢃꢋꢇꢗꢤ  
ꢝꢆ.ꢚꢙ  
ꢕBꢗ  
ꢓꢢꢣꢕ  
ꢝꢆ.ꢚꢙ  
ꢒꢃꢐꢊꢐꢗ  
ꢎꢊꢅꢉRꢊꢏꢁ  
ꢕꢎꢉR  
ꢎꢊꢅꢉRꢊꢏꢁ ꢀꢃꢋꢇ  
ꢀꢁꢂꢃꢄꢅꢗ  
ꢒꢃꢐꢊꢐꢖ  
ꢕRꢉꢜꢗ  
ꢕBꢖ  
ꢖꢛꢚꢙ  
ꢒꢃꢐꢊꢐꢓ  
ꢇꢞꢃꢃꢌꢓ  
ꢓꢗ.ꢗꢙ  
ꢝꢆ.ꢚꢙ  
ꢝꢆ.ꢚꢙ  
ꢓꢆꢙ  
ꢓꢆꢙ  
ꢎꢊꢅꢒ  
ꢎꢊꢅꢒ  
ꢀꢀꢓꢖ  
ꢕBꢓ  
ꢓꢡ.ꢓꢙ  
ꢎꢊꢅꢒ  
ꢇꢞꢃꢃꢌꢖ  
ꢀꢀꢓꢖ  
ꢀꢀꢓꢖ  
ꢖ.ꢖꢔꢕ  
ꢎꢊ  
ꢋꢃꢌꢉꢍꢀꢁꢂꢎꢊꢓꢖ  
ꢅRꢏꢀꢂꢍꢐꢐꢓ  
ꢆ.ꢖꢖꢔꢕ  
ꢓꢔꢘ  
ꢆ.ꢓꢔꢕ  
ꢆ.ꢓꢔꢕ  
ꢃꢄꢅꢓ  
ꢃꢄꢅꢓ  
ꢖ.ꢢꢒ  
ꢅRꢏꢀꢂꢍꢐꢐꢖ  
Rꢄꢊꢓ  
ꢢꢏ  
ꢓꢔꢕ  
ꢚꢛꢔꢕ  
ꢞꢊꢌ  
ꢇꢃꢈꢉR ꢀꢃꢊꢅRꢃꢁ  
Rꢄꢊꢖ  
ꢀꢃꢋꢇꢓ  
ꢎꢊꢅꢉRꢊꢏꢁ ꢀꢃꢋꢇ  
ꢆ.ꢖꢖꢔꢕ  
ꢓꢔꢕ  
ꢀꢃꢋꢇꢖ  
ꢎꢊꢅꢉRꢊꢏꢁ ꢀꢃꢋꢇ  
ꢕRꢉꢜꢓꢖ  
ꢓꢔꢘ  
ꢗ.ꢗꢒ  
ꢢꢏ  
ꢃꢄꢅꢖ  
ꢃꢄꢅꢖ  
ꢚꢛꢔꢕ  
ꢞꢊꢌ  
ꢗꢖꢚꢙ  
Figure 1. Simplified LTM4671 Block Diagram  
Rev. B  
13  
For more information www.analog.com  
LTM4671  
DECOUPLING REQUIREMENTS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
C
C
External Input Capacitor Requirement  
44  
66  
µF  
IN  
(V = 3.1V to 20V, V  
= 1.5V)  
IN  
OUT  
, C  
External Output Capacitor Requirement  
(V = 3.1V to 20V, V = 1.5V)  
I
I
= 12A  
= 5A  
100  
22  
200  
47  
µF  
µF  
OUT0 OUT3  
OUT  
IN  
OUT  
, C  
External Output Capacitor Requirement  
(V = 3.1V to 20V, V = 1.5V)  
OUT1 OUT2  
OUT  
IN  
OUT  
OPERATION  
The LTM4671 is a quad output standalone non-isolated  
switch mode DC/DC power supply. It has built-in four  
separate regulator channels which can deliver 12A, 12A,  
5A, 5A continuous output current with few external input  
and output capacitors. Two 12A regulator provides pre-  
cisely regulated output voltage programmable from 0.6V  
to 3.3V via a single external resistor over 3.1V to 20V  
input voltage range while the other two 5A regulator can  
support output voltage from 0.6V to 5.5V. Dual true dif-  
ferentialremotesensingamplifiersareincludedinthehigh  
current channels to get accurate regulation at load point.  
The typical application schematic is shown in Figure 30.  
employ a 2+1+1 or 2+2 channels parallel operation which  
is more than flexible in a multirail POL application like  
FPGA.Furthermore,theLTM4671hasCLKINandCLKOUT  
pins for frequency synchronization or PolyPhase multiple  
devices which allow up to 8 phases of 12A or 5A channels  
can be cascaded to run simultaneously.  
Currentmodecontrolalsoprovidescycle-by-cyclefastcur-  
rentmonitoring.Aninternalovervoltageandundervoltage  
comparators pull the open-drain PGOOD output low if the  
output feedback voltage exits a ±10% window around the  
regulationpoint.Furthermore,inanovervoltagecondition,  
internal top FET is turned off and bottom FET is turned on  
and held on until the overvoltage condition clears.  
The LTM4671 has integrated four separate constant on-  
time valley current mode regulators, power MOSFETs,  
inductors, and other supporting discrete components.  
For switching noise-sensitive applications, the switching  
frequency can be adjusted by external resistors and the  
µModule can be externally synchronized to a clock. See  
the Applications Information section.  
Pulling the RUN pin below 0.6V forces the controller into  
its shutdown state, turning off both power MOSFETs and  
mostoftheinternalcontrolcircuitry.Atlightloadcurrents,  
Burst Mode operation can be enabled to achieve higher  
efficiency compared to continuous mode for the dual 5A  
channels by setting MODE/PLLIN pin floating or tying  
With current mode control and internal feedback loop  
compensation,theLTM4671modulehassufficientstabil-  
ity margins and good transient performance with a wide  
range of output capacitors, even with all ceramic output  
capacitors. For Dual 12A output rails, an optional Type II  
C-R-C external compensation network is allowed to cus-  
tomize the stability and transient performance.  
to INTV . The TRACK/SS pin is used for power supply  
CC  
trackingandsoft-startprogramming.SeetheApplications  
Information section.  
Three different temperature sensing pins are included in-  
side the module to monitor the temperature of the module  
for different channels. See the Applications Information  
section for details.  
Current mode control provides the flexibility of paralleling  
any of the separate regulator channels with accurate cur-  
rent sharing. With a build in clock interleaving between  
each two regulator channels, the LTM4671 could easily  
Rev. B  
14  
For more information www.analog.com  
LTM4671  
APPLICATIONS INFORMATION  
For parallel operation of N-channels, tie the V , the FB  
ThetypicalLTM4671applicationcircuitisshowninFigure  
30. External component selection is primarily determined  
by the input voltage, the output voltage and the maxi-  
mum load current. Refer to Table 3 for specific external  
capacitor requirements for a particular application.  
OUT  
pins and VOSNS pins together but only hooking up one  
+
VOSNS (VOSNS) pin to the V  
so that all the parallel-  
OUT  
ing channels can share the same error amplifier and same  
top 60.4k feedback resistor. See PolyPhase Operation for  
details.  
V TO V  
STEP-DOWN RATIOS  
IN  
OUT  
Table 1. VFB Resistor Table vs Various Output Voltages  
There are restrictions in the maximum V and V  
step-  
IN  
OUT  
V
(V)  
OUT  
0.6  
1.0  
1.2  
1.5  
1.8  
2.5  
3.3  
5.0  
down ratio that can be achieved for a given input voltage  
due to the minimum off-time and minimum on-time limits  
of each regulator. The minimum off-time limit imposes a  
maximum duty cycle which can be calculated as:  
R
(k)  
OPEN 90.9 60.4 40.2 30.1 19.1 13.3 8.25  
FB  
INPUT DECOUPLING CAPACITORS  
The LTM4671 module should be connected to a low AC-  
impedance DC source. For each 12A regulator channel,  
one piece 22µF input ceramic capacitor is required, for  
each 5A regulator channel, one piece 10µF input ceramic  
capacitor is required for RMS ripple current decoupling.  
Bulk input capacitor is only needed when the input source  
impedanceiscompromisedbylonginductiveleads,traces  
ornotenoughsourcecapacitance.Thebulkcapacitorcanbe  
an electrolytic aluminum capacitor and polymer capacitor.  
D
= 1t  
• f  
(MAX)  
OFF(MIN) SW  
where t  
is the minimum off-time, 80ns typical for  
OFF(MIN)  
LTM4671, andf istheswitchingfrequency. Conversely,  
SW  
theminimumon-timelimitimposesaminimumdutycycle  
of the converter which can be calculated as:  
D
= t  
f  
(MIN)  
ON(MIN) SW  
where T  
is the minimum on-time, 25ns typical  
ON(MIN)  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
for LTM4671. In the rare cases where the minimum duty  
cycle is surpassed, the output voltage will still remain in  
regulation, buttheswitchingfrequencywilldecreasefrom  
its programmed value. These constraints are shown in  
I
OUT(MAX)  
I
=
D (1D)  
CIN(RMS)  
η%  
the Typical Performance Characteristic curve labeled “V  
IN  
to V  
Step-Down Ratio.” Note that additional thermal  
whereη%istheestimatedefficiencyofthepowermodule.  
OUT  
derating may be applied. See the Thermal Considerations  
and Output Current Derating section in this data sheet.  
OUTPUT DECOUPLING CAPACITORS  
Withanoptimizedhighfrequency, highbandwidthdesign,  
only single piece of low ESR output ceramic capacitor is  
required for each regulator channel to achieve low output  
voltagerippleandverygoodtransientresponse.Additional  
output filtering may be required by the system designer,  
if further reduction of output ripples or dynamic transient  
spikesisrequired.Table3showsamatrixofdifferentoutput  
voltages and output capacitors to minimize the voltage  
droop and overshoot during a 25% load step transient.  
Multiphase operation will reduce effective output ripple as  
a function of the number of phases. Application Note 77  
discusses this noise reduction versus output ripple cur-  
rent cancellation, but the output capacitance will be more  
OUTPUT VOLTAGE PROGRAMMING  
ThePWMcontrollerhasaninternal0.6Vreferencevoltage.  
For the 12A channels (CH0, CH3), a 60.4k 0.5% internal  
+
feedbackresistorconnectseachregulatorchannelVOSNS  
and FB pin together. Adding a resistor R from FB pin to  
FB  
VOSNS programs the output voltage.  
For the 5A channels (CH1, CH2), a 60.4k 0.5% internal  
feedbackresistorconnectseachregulatorchannelVOSNS  
and FB pin together. Adding a resistor R from FB pin to  
GND programs the output voltage:  
FB  
60.4k + RFB  
VOUT = 0.6V •  
RFB  
Rev. B  
15  
For more information www.analog.com  
LTM4671  
APPLICATIONS INFORMATION  
a function of stability and transient response. The Analog  
DevicesLTpowerCAD® DesignToolisavailabletodownload  
online for output ripple, stability and transient response  
analysis and calculating the output ripple reduction as  
the number of phases implemented increases by N times.  
reversal comparator (I ) detects the negative inductor  
REV  
current and shuts off the bottom power MOSFET, resulting  
in discontinuous operation and increased efficiency. Both  
power MOSFETs will remain off until the ITH voltage rises  
abovethezerocurrentleveltoinitiateanothercycle.During  
this time, the output capacitor supplies the load current  
and the part is placed into a low current sleep mode.  
FORCED CONTINUOUS CURRENT MODE (CCM)  
In applications where fixed frequency operation is more  
critical than low current efficiency, and where the lowest  
outputrippleisdesired,forcedcontinuousoperationshould  
beused.Inthismode,inductorcurrentisallowedtoreverse  
during low output loads, the COMP voltage is in control  
of the current comparator threshold throughout, and the  
top MOSFET always turns on with each oscillator pulse.  
OPERATING FREQUENCY  
The operating frequency of the LTM4671 is optimized  
to achieve the compact package size and the minimum  
output ripple voltage while still keeping high efficiency.  
The default operating frequency is internally set to 600kHz  
for 12A channels and 1MHz for 5A channels. In most ap-  
plications, no additional frequency adjusting is required.  
For the 12A channels (CH0, CH3), CCM can be enabled  
by tying the MODE/CLKIN0 or MODE/CLKIN3 pin to the  
Forthe12Achannels(CH0,CH3),ifanoperatingfrequency  
other than 600kHz is required by the application, the op-  
erating frequency can be increased by adding a resistor,  
respective INTV or simply floating it.  
CC  
For the 5A channels (CH1, CH2), CCM can be enabled by  
tying the MODE/CLKIN12 pin to GND.  
R
, between the FREQ0 or FREQ3 pins and SGND. The  
FSET  
operating frequency can be calculated as:  
During start-up, forced continuous mode is disabled and  
inductor current is prevented from reversing until the  
LTM4671’s output voltage is in regulation.  
11  
1.6e  
f Hz =  
(
)
274k||R  
( )  
FSET  
The programmable operating frequency range is from  
400kHz to 3MHz.  
DISCONTINUOUS MODE/BURST MODE OPERATION  
Inapplicationswherehighefficiencyatintermediatecurrent  
is desired, discontinuous mode or Burst Mode operation  
can be achieved.  
For the 5A channels (CH1, CH2), If an operating frequency  
other than 1MHz is required by the application, the op-  
erating frequency can be increased by adding a resistor,  
For the 12A channels (CH0, CH3), discontinuous mode  
(DCM) can be achieved by tying the MODE/CLKIN0 or  
MODE/CLKIN3 pin to GND. In discontinuous mode, the  
reversecurrentcomparatorwillsensetheinductorcurrent  
and turn of bottom MOSFET when the inductor current  
drops to zero and becomes negative. Both power MOS-  
FETs will remain off with the output capacitor supplying  
the load current until the COMP voltage rises above its  
zero current threshold to initiate the next switching cycle.  
R
, between the FREQ12 pin and SGND. The operating  
FSET  
frequency can be calculated as:  
11  
3.2e  
f Hz =  
(
)
324k||R  
( )  
FSET  
The programmable operating frequency range is from  
400kHz to 3MHz.  
AlsotheµModulecanbeexternallysynchronizedtoaclock  
at ±30% around set operating frequency.  
For the 5A channels (CH1, CH2), Burst Mode operation  
can be achieved by tying MODE/CLKIN12 pin to INTV  
CC12  
or simply floating. In Burst Mode operation, a current  
Rev. B  
16  
For more information www.analog.com  
LTM4671  
APPLICATIONS INFORMATION  
FREQUENCY SYNCHRONIZATION AND CLOCK IN  
ꢇꢈꢉꢊꢋꢌꢍꢎꢏꢐꢅ  
ꢑꢒꢇꢈꢉꢊꢅ  
The power module has a phase-locked loop comprised  
of an internal voltage controlled oscillator and a phase  
detector. This allows all internal top MOSFET turn-on to  
be locked to the rising edge of the same external clock.  
The external clock frequency range must be within ±30%  
around the set frequency.  
ꢏꢐꢔꢕ  
ꢌꢌꢅ  
ꢌꢒꢅ  
ꢖꢅꢗꢘ  
ꢈꢓꢔꢅ  
ꢈꢓꢔꢚ  
ꢈꢓꢔꢃ  
ꢈꢓꢔꢆ  
ꢌꢍꢎꢈꢓꢔꢅ  
ꢃꢙꢅꢗ  
ꢆꢀꢜ  
ꢇꢈꢉꢊꢋꢌꢍꢎꢏꢐꢚ  
ꢑꢒꢇꢈꢉꢊꢚ  
ꢌꢒꢚ  
ꢖꢃꢙꢅꢗꢘ  
ꢄꢍꢈꢜꢔ  
A pulse detection circuit is used to detect a clock on the  
MODE/CLKIN0 pin for CH0 (12A) channel, MODE/CLKIN3  
pinforCH3(12A)channelandMODE/CLKIN12pinforboth  
CH1andCH25Achannelstoturnonthephase-lockedloop.  
ꢌꢍꢎꢈꢓꢔꢚ  
ꢛꢅꢗ  
ꢇꢈꢉꢊꢋꢌꢍꢎꢏꢐꢃꢆ  
ꢌꢒꢃ  
ꢖꢆꢂꢅꢗꢘ  
The pulse width of the clock has to be at least 400ns.  
The clock high level must be above 1V and clock low  
level below 0.3V. During the start-up of the regulator, the  
phase-locked loop function is disabled. When the module  
is driven with an external clock, forced continuous mode  
(CCM) is automatically enabled.  
ꢃꢙꢅꢗ  
ꢃꢅꢜ  
ꢌꢒꢆ  
ꢖꢛꢅꢗꢘ  
ꢇꢀꢁꢂꢃ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
MULTICHANNEL PARALLEL OPERATION  
Figure 2. 2 + 2 Parallel Concept Schematic  
For the application that demand more than 12A of output  
current, the LTM4671 multiple regulator channels can be  
easilyparalleledtorunoutofphasetoprovidemoreoutput  
currentwithoutincreasinginputandoutputvoltageripples.  
pacitors. The RMS input ripple current is reduced by, and  
the effective ripple frequency is multiplied by, the number  
of phases used (assuming that the input voltage is greater  
thanthenumberofphasesusedtimestheoutputvoltage).  
Theoutputrippleamplitudeisalsoreducedbythenumber  
of phases used when all of the outputs are tied together  
to achieve a single high output current design.  
For the 12A channels (CH0, CH3), each channel has its  
own MODE/CLKIN and CLKOUT pin. The CLKOUT signal  
canbeconnectedtotheCLKINpinofthefollowingstageto  
line up both frequency and the phase of the entire system.  
TyingthePHMODEpintoINTV , SGNDorfloatingthepin  
CC  
The LTM4671 device is an inherently current mode con-  
trolled device, so parallel modules will have very good  
current sharing. This will balance the thermals on the  
design. Please tie RUN, TRACK/SS, FB and COMP pins  
of each paralleling channel together. Figure 31 shows an  
example of parallel operation and pin connection.  
generates a phase difference between the clock applied on  
the MODE/CLKIN pin and CLKOUT of 180° degrees, 120°  
degrees, or 90° degrees respectively, which corresponds  
to 2-phase, 3-phase, or 4-phase operation.  
For the 5A channels (CH1, CH2), a preset built-in 180°  
phase different between channel 1 and channel 2. MODE/  
CLKIN12 allows both channels to be synchronized to  
an external clock or the CLKOUT signal from any of the  
12A channels.  
INPUT RMS RIPPLE CURRENT CANCELLATION  
Application Note 77 provides a detailed explanation of  
multiphase operation. The input RMS ripple current  
cancellation mathematical derivations are presented, and  
a graph is displayed representing the RMS ripple current  
reduction as a function of the number of interleaved  
Figure 2 shows a 2 + 2 and a 4-channels parallel concept  
schematic for clock phasing.  
A multiphase power supply significantly reduces the  
amount of ripple current in both the input and output ca-  
phases. Figure 3 shows this graph.  
Rev. B  
17  
For more information www.analog.com  
LTM4671  
APPLICATIONS INFORMATION  
ꢀ.ꢅꢀ  
ꢆꢝꢜꢞꢏꢛꢙ  
ꢉꢝꢜꢞꢏꢛꢙ  
ꢀ.ꢂꢂ  
ꢈꢝꢜꢞꢏꢛꢙ  
ꢄꢝꢜꢞꢏꢛꢙ  
ꢅꢝꢜꢞꢏꢛꢙ  
ꢀ.ꢂꢀ  
ꢀ.ꢄꢂ  
ꢀ.ꢄꢀ  
ꢀ.ꢈꢂ  
ꢀ.ꢈꢀ  
ꢀ.ꢉꢂ  
ꢀ.ꢉꢀ  
ꢀ.ꢆꢂ  
ꢀ.ꢆꢀ  
ꢀ.ꢀꢂ  
ꢀ.ꢆ ꢀ.ꢆꢂ ꢀ.ꢉ ꢀ.ꢉꢂ ꢀ.ꢈ ꢀ.ꢈꢂ ꢀ.ꢄ ꢀ.ꢄꢂ ꢀ.ꢂ ꢀ.ꢂꢂ ꢀ.ꢅ ꢀ.ꢅꢂ ꢀ.ꢁ ꢀ.ꢁꢂ ꢀ.ꢃ ꢀ.ꢃꢂ ꢀ.ꢊ  
ꢋꢌꢍꢎ ꢇꢏꢐꢍꢑR ꢒꢓ ꢔꢓ  
ꢑꢌꢍ ꢕꢖ  
Figure 3. Input RMS Current Ratios to DC Load Current as a Function of Duty Cycle  
SOFT-START AND OUTPUT VOLTAGE TRACKING  
Figure 4 and Figure 5 show an example waveform and  
schematic of a ratiometric tracking where the slave  
The TRACK/SS pin provides a means to either soft-start  
of each regulator channel or track it to a different power  
supply. A capacitor on the TRACK/SS pin will program the  
ramp rate of the output voltage. An internal soft-start cur-  
rent source will charge up the external soft-start capacitor  
regulator’s (V  
, V  
and V  
) output slew rate is  
OUT2 OUT3  
proportional to the master’s (V  
OUT0  
).  
OUT1  
ꢑ ꢒ.ꢒꢍ  
ꢊꢋꢆꢃ  
ꢊꢋꢆꢓ  
ꢊꢋꢆꢒ  
ꢊꢋꢆꢅ  
towards INTV voltage. When the TRACK/SS voltage is  
CC  
below 0.6V, it will take over the internal 0.6V reference  
voltage to control the output voltage. The total soft-start  
time can be calculated as:  
ꢑ ꢓ.ꢔꢍ  
ꢑ ꢃ.ꢓꢍ  
ꢑ ꢃ.ꢅꢍ  
CSS  
tSS = 0.6 •  
ISS  
where C is the capacitance on the TRACK/SS pin and  
SS  
the I is the soft-start current which equals 6µA for the  
SS  
12A output channels (CH0, CH3) and 1.4µA for the 5A  
ꢀꢁꢂꢃ ꢄꢅꢀ  
ꢆꢇꢈꢉ  
Figure 4. Output Ratiometric Tracking Waveform  
output channels (CH1, CH2).  
Outputvoltagetrackingcanalsobeprogrammedexternally  
using the TRACK/SS pin of each regulator channel. The  
output can be tracked up and down with another regulator.  
Rev. B  
18  
For more information www.analog.com  
LTM4671  
APPLICATIONS INFORMATION  
ꢈꢉ  
ꢀꢇ ꢌꢋ ꢖꢅꢇ  
ꢎꢒꢃ  
ꢎꢒꢖ  
ꢎꢒꢔ  
ꢎꢒꢅ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢑꢑ  
R
R
R
ꢄBꢗꢑꢚꢙꢅ  
ꢛꢅ.ꢁꢕ  
ꢄBꢗꢑꢚꢙꢖ  
ꢄBꢗꢑꢚꢙꢔ  
ꢅ.ꢃꢓꢄ  
ꢃꢛ.ꢃꢕ  
ꢁꢅ.ꢀꢕ  
R
ꢄBꢃ  
ꢃꢔ.ꢔꢕ  
R
R
ꢌRꢗꢌꢋꢘꢙꢖ  
ꢁꢅ.ꢀꢕ  
ꢌRꢗBꢋꢌꢙꢖ  
ꢃꢔ.ꢔꢕ  
R
R
R
ꢌRꢗꢌꢋꢘꢙꢔ  
ꢁꢅ.ꢀꢕ  
ꢌRꢗBꢋꢌꢙꢔ  
ꢃꢔ.ꢔꢕ  
R
ꢌRꢗꢌꢋꢘꢙꢅ  
ꢁꢅ.ꢀꢕ  
ꢌRꢗBꢋꢌꢙꢅ  
ꢃꢔ.ꢔꢕ  
Figure 5. Output Ratiometric Tracking Schematic  
Since the slave regulator’s TRACK/SS is connected to  
the master’s output through a R /R resistor  
divider and its voltage used to regulate the slave output  
voltage when TRACK/SS voltage is below 0.6V, the slave  
outputvoltageandthemasteroutputvoltageshouldsatisfy  
the following equation during the start-up.  
Forexample,V  
=3.3V,MR=3.3V/msandV  
=
OUT(MA)  
1.0V,SR=1.0V/msasV  
OUT(SL)  
fromtheequation,  
TR(TOP) TR(BOT)  
andV  
OUT1  
TR(TOP)0  
OUT0  
= 60.4k and R  
we could solve out that R  
=
TR(BOT)0  
13.3k is a good combination. Follow the same equation,  
we can get the same R /R resistor divider  
TR(TOP) TR(BOT)  
OUT3.  
value for V  
and V  
OUT2  
RFB(SL)  
RTR(BOT)  
The TRACK pins will have the 1.5µA current source on  
when a resistive divider is used to implement tracking on  
that specific channel. This will impose an offset on the  
TRACK pin input. Smaller value resistors with the same  
ratios as the resistor values calculated from the above  
equation can be used. For example, where the 60.4k is  
used then a 6.04k can be used to reduce the TRACK pin  
offset to a negligible value.  
VOUT(SL)  
= VOUT(MA) •  
RFB(SL) + 60.4k  
R
TR(TOP) + RTR(BOT)  
The R  
is the feedback resistor and the RTR  
is the resistor divider on the TRACK/SS pin of  
the slave regulator, as shown in Figure 5.  
/
(TOP)  
FB(SL)  
RTR  
(BOT)  
Following the upper equation, the master’s output slew  
rate (MR) and the slave’s output slew rate (SR) in Volts/  
Time is determined by:  
The coincident output tracking can be recognized as a  
special ratiometric output tracking which the master’s  
output slew rate (MR) is the same as the slave’s output  
slew rate (SR), see Figure 6.  
R
FB(SL)  
R
+ 60.4k  
MR  
SR  
FB(SL)  
=
R
TR(BOT)  
R
+ R  
TR(BOT)  
TR(TOP)  
Rev. B  
19  
For more information www.analog.com  
LTM4671  
APPLICATIONS INFORMATION  
reduction, an additional 10pF to 15pF phase boost cap is  
required between V  
and FB pins.  
ꢑ ꢒ.ꢒꢍ  
ꢑ ꢓ.ꢔꢍ  
ꢑ ꢃ.ꢓꢍ  
ꢑ ꢃ.ꢅꢍ  
ꢊꢋꢆꢃ  
ꢊꢋꢆꢓ  
ꢊꢋꢆꢒ  
ꢊꢋꢆꢅ  
OUT  
For specific optimized requirement for the dual 12A chan-  
nels, disconnect COMPb from COMPa and apply a Type II  
C-R-C compensation network from COMPa to SGND to  
achieve external compensation.  
The LTpowerCAD design tool is available to download  
online to perform specific control loop optimization and  
analyzethecontrolstabilityandloadtransientperformance.  
ꢀꢁꢂꢃ ꢄꢅꢁ  
ꢆꢇꢈꢉ  
Figure 6. Output Coincident Tracking Waveform  
RUN ENABLE  
Pulling the RUN pin of each regulator channel to ground  
forcestheregulatorintoitsshutdownstate,turningoffboth  
power MOSFETs and most of its internal control circuitry.  
Bringing the RUN pin above 0.7V turns on the internal  
reference only, while still keeping the power MOSFETs  
off. Further increasing the RUN pin voltage above 1.2V  
will turn on the entire regulator channel.  
RFB(SL)  
RTR(BOT)  
=
R
FB(SL) + 60.4k  
R
TR(TOP) + RTR(BOT)  
From the equation, we could easily find out that, in the  
coincident tracking, the slave regulator’s TRACK/SS pin  
resistor divider is always the same as its feedback divider.  
For example, R  
= 60.4k and R  
= 60.4k  
TR(BOT)3  
TR(TOP)3  
TEMPERATURE MONITORING  
The 12A Channels (CH0, CH3):  
is a good combination for coincident tracking for  
= 3.3V and V =1.2V application.  
V
OUT(MA)  
OUT(SL)  
Measuring the absolute temperature of a diode is pos-  
sible due to the relationship between current, voltage  
and temperature described by the classic diode equation:  
POWER GOOD  
The PGOOD pins are open-drain pins that can be used to  
monitor valid output voltage regulation. This pin monitors  
a ±10% window around the regulation point. A resistor  
can be pulled up to a particular supply voltage for moni-  
toring. To prevent unwanted PGOOD glitches during tran-  
V
D
I = I e  
D
S
η• V  
T
sients or dynamic V  
changes, the LTM4671’s PGOOD  
or  
OUT  
falling edge includes a blanking delay of approximately  
I
52 switching cycles.  
D
V = η • V •In  
D
T
I
S
STABILITY COMPENSATION  
where I is the diode current, V is the diode voltage, η  
D
D
The LTM4671 module internal compensation loop of each  
regulator channel is designed and optimized for low ESR  
ceramic output capacitors only application (COMPb tied  
to COMPa for 12A channels). Table 3 is provided for most  
application requirements using the optimized internal  
compensation. In case of all ceramic output capacitors  
is required for output ripples or dynamic transient spike  
is the ideality factor (typically close to 1.0) and I (satu-  
S
ration current) is a process dependent parameter. V can  
T
be broken out to:  
k • T  
V =  
T
q
Rev. B  
20  
For more information www.analog.com  
LTM4671  
APPLICATIONS INFORMATION  
where T is the diode junction temperature in Kelvin, q is  
the electron charge and k is Boltzmann’s constant. V is  
ꢌ.ꢕ  
ꢌ.ꢖ  
ꢌ.ꢘ  
ꢌ.ꢋ  
ꢌ.ꢗ  
ꢌ.ꢎ  
T
approximately 26mV at room temperature (298K) and  
scales linearly with Kelvin temperature. It is this linear  
temperature relationship that makes diodes suitable tem-  
perature sensors. The I term in the previous equation is  
S
the extrapolated current through a diode junction when  
the diode has zero volts across the terminals. The I term  
S
varies from process to process, varies with temperature,  
and by definition must always be less than I . Combining  
D
ꢊꢋꢌ ꢊꢍꢋ  
ꢍꢋ  
ꢋꢌ  
ꢖꢋ ꢙꢌꢌ ꢙꢍꢋ  
all of the constants into one term:  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢗꢘꢖꢙ ꢚꢌꢖ  
ηk  
K =  
D
Figure 7. Diode Voltage VD vs Temperature T(°C)  
q
−5  
where K = 8.62 , and knowing ln(I /I ) is always posi-  
D
D S  
yields  
∆V = K’ • T(KELVIN)  
tive because I is always greater than I , leaves us with  
the equation that:  
D
S
D
D
Solving for temperature:  
I
D
V = T KELVIN •K •In  
(
)
D
D
∆V  
I
D
S
T(KELVIN)=  
(°CELSIUS)= T(KELVIN)– 273.15  
K'  
D
where V appears to increase with temperature. It is com-  
D
mon knowledge that a silicon diode biased with a current  
source has an approximate –2mV/°C temperature rela-  
tionship (Figure 7), which is at odds with the equation. In  
where  
300°K = 27°C  
means that is we take the difference in voltage across the  
diode measured at two currents with a ratio of 10, the  
resulting voltage is 198μV per Kelvin of the junction with  
a zero intercept at 0 Kelvin.  
fact, the I term increases with temperature, reducing the  
S
ln(I /I ) absolute value yielding an approximate –2mV/°C  
D S  
composite diode voltage slope.  
To obtain a linear voltage proportional to temperature  
+
The diode connected NPN transistor across the T  
SENSEn  
we cancel the I variable in the natural logarithm term to  
S
and pin and T  
pins can be used to monitor the  
SENSEn  
remove the I dependency from the equation 1. This is  
S
internal temperature of the LTM4671 channel 0 and 3.  
accomplished by measuring the diode voltage at two cur-  
rents I , and I , where I = 10 • I ) and subtracting we get:  
1
2
1
2
The 5A Channels (CH1, CH2):  
I
I
2
1
The LTM4671 produces a voltage at the TMON pin  
proportional to the measured junction temperature. The  
junction temperature-to-voltage scaling factor is 200°K/V.  
Thus,toobtainthejunctiontemperatureindegreesKelvin,  
simply multiply the voltage provided at the TMON pin by  
the scaling factor. To obtain the junction temperature in  
degrees Celsius, subtract 273 from the value obtained in  
degrees Kelvin.  
∆V = T(KELVIN)•K •IN – T(KELVIN)•K •IN  
D
D
D
I
I
S
S
Combining like terms, then simplifying the natural log  
terms yields:  
∆V = T(KELVIN) • K • lN(10)  
D
D
and redefining constant  
198µV  
K' = K •IN(10) =  
D
D
K
Rev. B  
21  
For more information www.analog.com  
LTM4671  
APPLICATIONS INFORMATION  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
1. θ , the thermal resistance from junction to ambi-  
JA  
ent, is the natural convection junction-to-ambient  
air thermal resistance measured in a one cubic foot  
sealed enclosure. This environment is sometimes  
referred to as “still air” although natural convection  
causes the air to move. This value is determined with  
the part mounted to a JESD51-9 defined test board,  
which does not reflect an actual application or viable  
operating condition.  
2. θ  
, the thermal resistance from junction to  
JCbottom  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ambient,isthenaturalconvectionjunction-to-ambient  
air thermal resistance measured in a one cubic foot  
sealed enclosure. This environment is sometimes  
referred to as “still air” although natural convection  
causes the air to move. This value is determined with  
the part mounted to a JESD51-9 defined test board,  
which does not reflect an actual application or viable  
operating condition.  
ꢀꢁꢂꢃ ꢄꢅꢆ  
Figure 8. TMON Voltage  
Thermal Considerations and Output Current Derating  
The thermal resistances reported in the Pin Configuration  
section of the data sheet are consistent with those param-  
eters defined by JESD51-9 and are intended for use with  
finite element analysis (FEA) software modeling tools that  
leveragetheoutcomeofthermalmodeling,simulation,and  
correlationtohardwareevaluationperformedonaµModule  
package mounted to a hardware test board—also defined  
by JESD51-9 (“Test Boards for Area Array Surface Mount  
Package Thermal Measurements”). The motivation for  
providingthesethermalcoefficientsinfoundinJESD51-12  
(“Guidelines for Reporting and Using Electronic Package  
Thermal Information”).  
4. θ  
, the thermal resistance from junction to top of  
JCtop  
the product case, is determined with nearly all of the  
componentpowerdissipationflowingthroughthetop  
of the package. As the electrical connections of the  
typical µModule are on the bottom of the package, it  
is rare for an application to operate such that most of  
the heat flows from the junction to the top of the part.  
As in the case of θ  
, this value may be useful  
JCbottom  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
Many designers may opt to use laboratory equipment  
and a test vehicle such as the demo board to anticipate  
the µModule regulator’s thermal performance in their  
applicationatvariouselectricalandenvironmentaloperat-  
ing conditions to compliment any FEA activities. Without  
FEA software, the thermal resistances reported in the  
Pin Configuration section are in-and-of themselves not  
relevant to providing guidance of thermal performance;  
instead, the derating curves provided in the data sheet  
can be used in a manner that yields insight and guidance  
pertainingtoone’sapplication-usage, andcanbeadapted  
tocorrelatethermalperformancetoone’sownapplication.  
5. θ , the thermal resistance from junction to the  
JB  
printed circuit board, is the junction-to-board thermal  
resistance where almost all of the heat flows through  
the bottom of the µModule and into the board, and  
is really the sum of the θ  
and the thermal re-  
JCbottom  
sistance of the bottom of the part through the solder  
joints and through a portion of the board. The board  
temperature is measured a specified distance from  
the package, using a two sided, two layer board. This  
board is described in JESD51-9.  
The Pin Configuration section typically gives four thermal  
coefficients explicitly defined in JESD51-12; these coef-  
ficients are quoted or paraphrased below.  
Rev. B  
22  
For more information www.analog.com  
LTM4671  
APPLICATIONS INFORMATION  
resistance values supplied in this data sheet: (1) Initially,  
FEA software is used to accurately build the mechanical  
geometry of the µModule and the specified PCB with all of  
thecorrectmaterialcoefficientsalongwithaccuratepower  
losssourcedefinitions;(2)thismodelsimulatesasoftware-  
defined JEDEC environment consistent with JSED 51-9 to  
predict power loss heat flow and temperature readings  
at different interfaces that enable the calculation of the  
JEDEC-defined thermal resistance values; (3) the model  
and FEA software is used to evaluate the µModule with  
heat sink and airflow; (4) having solved for and analyzed  
these thermal resistance values and simulated various  
operating conditions in the software model, a thorough  
laboratory evaluation replicates the simulated conditions  
with thermocouples within a controlled-environment  
chamber while operating the device at the same power  
loss as that which was simulated. An outcome of this  
process and due-diligence yields a set of derating curves  
provided in other sections of this data sheet. After these  
laboratory tests have been performed and correlated to  
A graphical representation of the aforementioned ther-  
mal resistances is given in Figure 9; blue resistances are  
contained within the μModule regulator, whereas green  
resistances are external to the µModule.  
As a practical matter, it should be clear to the reader that  
no individual or sub-group of the four thermal resistance  
parameters defined by JESD51-12 or provided in the Pin  
Configuration section replicates or conveys normal op-  
erating conditions of a μModule. For example, in normal  
board-mounted applications, never does 100% of the  
device’s total power loss (heat) thermally conduct exclu-  
sivelythroughthetoporexclusivelythroughbottomofthe  
µModule—asthestandarddefinesforθ  
andθ  
,
JCtop  
JCbottom  
respectively.Inpractice,powerlossisthermallydissipated  
in bothdirectionsawayfromthepackage—granted, in the  
absence of a heat sink and airflow, a majority of the heat  
flow is into the board.  
Within a SIP (system-in-package) module, be aware there  
are multiple power devices and components dissipating  
power, with a consequence that the thermal resistances  
relative to different junctions of components or die are not  
exactly linear with respect to total package power loss. To  
reconcile this complication without sacrificing modeling  
simplicity—but also, not ignoring practical realities—an  
approach has been taken using FEA software modeling  
along with laboratory testing in a controlled-environment  
chamber to reasonably define and correlate the thermal  
the µModule model, then the θ and θ are summed  
JB  
BA  
together to correlate quite well with the µModule model  
withnoairfloworheatsinkinginaproperlydefinechamber.  
This θ + θ value is shown in the Pin Configuration  
JB  
BA  
section and should accurately equal the θ value because  
JA  
approximately 100% of power loss flows from the junc-  
tion through the board into ambient with no airflow or top  
mounted heat sink.  
ꢒꢓꢔꢑꢕꢐꢖꢔꢗꢕꢖꢗꢘꢈBꢐꢎꢔꢕ Rꢎꢙꢐꢙꢕꢘꢔꢑꢎ ꢚꢒꢎꢙꢍꢝꢃꢗꢆ ꢍꢎꢄꢐꢔꢎꢍ BꢖꢘRꢍꢜ  
ꢒꢓꢔꢑꢕꢐꢖꢔꢗꢕꢖꢗꢑꢘꢙꢎ ꢚꢕꢖꢛꢜ  
Rꢎꢙꢐꢙꢕꢘꢔꢑꢎ  
ꢑꢘꢙꢎ ꢚꢕꢖꢛꢜꢗꢕꢖꢗꢘꢈBꢐꢎꢔꢕ  
Rꢎꢙꢐꢙꢕꢘꢔꢑꢎ  
ꢒꢓꢔꢑꢕꢐꢖꢔꢗꢕꢖꢗBꢖꢘRꢍ Rꢎꢙꢐꢙꢕꢘꢔꢑꢎ  
ꢒꢓꢔꢑꢕꢐꢖꢔ  
ꢘꢈBꢐꢎꢔꢕ  
ꢒꢓꢔꢑꢕꢐꢖꢔꢗꢕꢖꢗꢑꢘꢙꢎ  
ꢚBꢖꢕꢕꢖꢈꢜ Rꢎꢙꢐꢙꢕꢘꢔꢑꢎ  
ꢑꢘꢙꢎ ꢚBꢖꢕꢕꢖꢈꢜꢗꢕꢖꢗBꢖꢘRꢍ  
Rꢎꢙꢐꢙꢕꢘꢔꢑꢎ  
BꢖꢘRꢍꢗꢕꢖꢗꢘꢈBꢐꢎꢔꢕ  
Rꢎꢙꢐꢙꢕꢘꢔꢑꢎ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢇꢈꢉꢊꢋꢌe ꢍꢎꢏꢐꢑꢎ  
Figure 9. Graphical Representation of JESD51-12 Thermal Coefficients  
Rev. B  
23  
For more information www.analog.com  
LTM4671  
APPLICATIONS INFORMATION  
The 1V to 5V power loss curves in Figure 10 to Figure  
16 can be used in coordination with the load current  
derating curves in Figure 17 to Figure 26 for calculating  
junctiontemperatureof120°Cminustheambientoperating  
temperaturespecifieshowmuchmoduletemperaturerise  
can be allowed. The printed circuit board for this test is a  
1.6mm thick six layers board with two ounce copper for  
the two outer layers and one ounce copper for the four  
inner layers. The PCB dimensions are 121mm × 112mm.  
an approximate θ thermal resistance for the LTM4671  
JA  
with various heat sinking and airflow conditions. The  
power loss curves are taken at room temperature and  
are increased with a multiplicative factor according to  
the junction temperature. This approximate factor is 1.3  
considering internal junction temperature hitting 120°C at  
the point of derating starts. The derating curves are taken  
withthreedifferentoutputpowercombinations,lowpower  
Figure 27 and Figure 28 display the maximum power loss  
allowance curves vs ambient temperature with various  
heat sinking and airflow conditions. This data was derived  
from the thermal derating curves in Figure 17 to Figure 26  
with the junction temperature measured at 120°C. This  
maximumpowerlosslimitationservesasaguidelinewhen  
designing multiple output rails with different voltages and  
currents by calculating the total power loss. For example,  
to determine the maximum ambient temperature when  
(V  
= V  
OUT0  
high power (V  
= 1V, V  
OUT3  
= V  
OUT1  
= 3.3V, V  
= 1.5V), medium  
OUT0  
power (V  
OUT3  
OUT1  
= 1.8V, V  
OUT2  
= V  
= V  
= 3.3V) and  
OUT2  
= V  
= V  
= 5V).  
OUT0  
OUT3  
OUT1  
OUT2  
Output current starting at 100% of the full load current  
(I = I = 12A, I = I = 5A) and the ambient  
OUT0 OUT3  
OUT1 OUT2  
V = 12V, V  
= 1V at 10A, V  
OUT3  
= 1.8V at 3A, V  
IN  
OUT0  
OUT1 OUT2  
= 1.5V at 10A, without a heat sink  
temperature starting at 30°C. These are chosen to include  
the lower and higher output voltage ranges for correlating  
the thermal resistance. Thermal models are derived from  
several temperature measurements in a controlled tem-  
perature chamber along with thermal modeling analysis.  
The junction temperatures are monitored while ambient  
temperature is increased with and without airflow. The  
power loss increase with ambient temperature change  
is factored into the derating curves. The junctions are  
maintained at 120°C maximum while lowering output cur-  
rent or power with increasing ambient temperature. The  
decreasedoutputcurrentwilldecreasetheinternalmodule  
loss as ambient temperature is increased. The monitored  
= 3.3V at 2A, V  
and any airflow, simply add up the total power loss for  
each channel read from Figure 10 to Figure 16 which in  
this example equals 4.8W (1.6W + 0.7W + 0.6W + 1.9W),  
then multiply by the 1.3 coefficient for 120°C junction  
temperature and compare the total power loss number,  
6.3W with Figure 27. Figure 27 indicates with a 6.3W total  
power loss, the maximum ambient temperature for this  
application is around 66°C. Also from Figure 27, it is easy  
to determine with a 6.3W total power loss, the maximum  
ambient temperature is around 73°C with 200LFM airflow  
and 77°C with 400LFM airflow.  
Rev. B  
24  
For more information www.analog.com  
LTM4671  
APPLICATIONS INFORMATION  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀꢁ ꢄ ꢅꢆꢇꢄ ꢅꢆꢈ  
ꢀꢁ ꢄ ꢅꢆꢇꢄ ꢅꢆꢈ  
ꢀꢁ ꢄ ꢅꢆꢇꢄ ꢅꢆꢈ  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
ꢀꢁꢂ ꢅ ꢆꢇꢀꢅ ꢆꢇꢁ  
ꢀꢁꢂ ꢅ ꢆꢇꢀꢅ ꢆꢇꢁ  
ꢀꢁꢂ ꢅ ꢆꢇꢀꢅ ꢆꢇꢁ  
ꢃꢄ  
ꢃꢄ  
ꢃꢄ  
ꢀꢁ ꢄ ꢅꢆꢇꢄ ꢅꢆꢈ  
ꢀꢁ ꢄ ꢅꢆꢇꢄ ꢅꢆꢈ  
ꢀꢁ ꢄ ꢅꢆꢇꢄ ꢅꢆꢈ  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
ꢀꢁꢂ ꢅ ꢆꢇꢈꢅ ꢆꢇꢉ  
ꢀꢁꢂ ꢅ ꢆꢇꢈꢅ ꢆꢇꢉ  
ꢀꢁꢂ ꢅ ꢆꢇꢈꢅ ꢆꢇꢉ  
ꢃꢄ  
ꢃꢄ  
ꢃꢄ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢃꢅ  
ꢀꢁꢂꢃ ꢄꢃꢃ  
ꢀꢁꢂꢃ ꢄꢃꢅ  
Figure 10. 1V Output Power Loss  
Figure 11. 1.2VOutputPower Loss  
Figure 12. 1.5V Output Power Loss  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁ ꢄ ꢅꢆꢇꢄ ꢅꢆꢈ  
ꢂꢃ  
ꢀꢁ ꢄ ꢅꢆꢇꢄ ꢅꢆꢈ  
ꢂꢃ  
ꢀꢁ ꢄ ꢅꢆꢇꢄ ꢅꢆꢈ  
ꢂꢃ  
ꢀꢁꢂ ꢅ ꢆꢇꢀꢅ ꢆꢇꢁ  
ꢀꢁꢂ ꢅ ꢆꢇꢀꢅ ꢆꢇꢁ  
ꢃꢄ  
ꢃꢄ  
ꢀꢁꢂ ꢅ ꢆꢇꢀꢅ ꢆꢇꢁ  
ꢃꢄ  
ꢀꢁ ꢄ ꢅꢆꢇꢄ ꢅꢆꢈ  
ꢀꢁ ꢄ ꢅꢆꢇꢄ ꢅꢆꢈ  
ꢂꢃ  
ꢀꢁꢂ ꢅ ꢆꢇꢈꢅ ꢆꢇꢉ  
ꢃꢄ  
ꢂꢃ  
ꢀꢁ ꢄ ꢅꢆꢇꢄ ꢅꢆꢈ  
ꢂꢃ  
ꢀꢁꢂ ꢅ ꢆꢇꢈꢅ ꢆꢇꢉ  
ꢃꢄ  
ꢀꢁꢂ ꢅ ꢆꢇꢈꢅ ꢆꢇꢉ  
ꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢃꢅ  
ꢀꢁꢂꢃ ꢄꢃꢀ  
ꢀꢁꢂꢃ ꢄꢃꢅ  
Figure 13. 5V Output Power Loss  
Figure 14. 2.5V Output Power Loss  
Figure 15. 3.3V Output Power Loss  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢅ ꢆꢇꢀꢅ ꢆꢇꢁ  
ꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁBꢂꢃꢄꢅ ꢅꢃꢁꢆꢃRꢀꢅꢇRꢃ ꢈꢉꢊꢋ  
ꢀꢁBꢂꢃꢄꢅ ꢅꢃꢁꢆꢃRꢀꢅꢇRꢃ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃ ꢄꢃꢁ  
ꢀꢁꢂꢃ ꢄꢃꢂ  
ꢀꢁꢂꢃ ꢄꢃꢅ  
Figure 16. 5V Output Power Loss  
Figure 17. 5VIN Derating Curve,  
No Heat Sink CH0 and CH3  
Paralleled to 1V/24A CH1 and  
CH2 Paralleled to 1.5V/10A  
Figure 18. 5VIN Derating Curve,  
with Heat Sink CH0 and CH3  
Paralleled to 1V/24A CH1 and CH2  
Paralleled to 1.5V/10A  
Rev. B  
25  
For more information www.analog.com  
LTM4671  
APPLICATIONS INFORMATION  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁBꢂꢃꢄꢅ ꢅꢃꢁꢆꢃRꢀꢅꢇRꢃ ꢈꢉꢊꢋ  
ꢀꢁBꢂꢃꢄꢅ ꢅꢃꢁꢆꢃRꢀꢅꢇRꢃ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃ ꢄꢃꢅ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
Figure 19. 12VIN Derating Curve, No Heat  
Sink CH0 and CH3 Paralleled to 1V/24A  
CH1 and CH2 Paralleled to 1.5V/10A  
Figure 20. 12VIN Derating Curve, with Heat  
Sink CH0 and CH3 Paralleled to 1V/24A  
CH1 and CH2 Paralleled to 1.5V/10A  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁBꢂꢃꢄꢅ ꢅꢃꢁꢆꢃRꢀꢅꢇRꢃ ꢈꢉꢊꢋ  
ꢀꢁBꢂꢃꢄꢅ ꢅꢃꢁꢆꢃRꢀꢅꢇRꢃ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃ ꢄꢅꢃ  
ꢀꢁꢂꢃ ꢄꢅꢅ  
Figure 21. 5VIN Derating Curve, No Heat  
Sink CH0 and CH3 Paralleled to 1.8V/24A  
CH1 and CH2 Paralleled to 3.3V/10A  
Figure 22. 5VIN Derating Curve, with Heat  
Sink CH0 and CH3 Paralleled to 1.8V/24A  
CH1 and CH2 Paralleled to 3.3V/10A  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁBꢂꢃꢄꢅ ꢅꢃꢁꢆꢃRꢀꢅꢇRꢃ ꢈꢉꢊꢋ  
ꢀꢁBꢂꢃꢄꢅ ꢅꢃꢁꢆꢃRꢀꢅꢇRꢃ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢀ  
Figure 23. 12VIN Derating Curve, No Heat  
Sink CH0 and CH3 Paralleled to 1.8V/24A  
CH1 and CH2 Paralleled to 3.3V/10A  
Figure 24. 12VIN Derating Curve, with Heat  
Sink CH0 and CH3 Paralleled to 1.8V/24A  
CH1 and CH2 Paralleled to 3.3V/10A  
Rev. B  
26  
For more information www.analog.com  
LTM4671  
APPLICATIONS INFORMATION  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁBꢂꢃꢄꢅ ꢅꢃꢁꢆꢃRꢀꢅꢇRꢃ ꢈꢉꢊꢋ  
ꢀꢁBꢂꢃꢄꢅ ꢅꢃꢁꢆꢃRꢀꢅꢇRꢃ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢁ  
Figure 25. 12VIN Derating Curve, No Heat  
Sink CH0 and CH3 Paralleled to 3.3V/24A  
CH1 and CH2 Paralleled to 5V/10A  
Figure 26. 12VIN Derating Curve, with Heat  
Sink CH0 and CH3 Paralleled to 3.3V/24A  
CH1 and CH2 Paralleled to 5V/10A  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢀꢁ ꢀꢁꢂ  
ꢀꢁBꢂꢃꢄꢅ ꢅꢃꢁꢆꢃRꢀꢅꢇRꢃ ꢈꢉꢊꢋ  
ꢀꢁBꢂꢃꢄꢅ ꢅꢃꢁꢆꢃRꢀꢅꢇRꢃ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢂ  
Figure 27. Power Loss Allowance vs  
Ambient Temperature No Heat Sink  
Figure 28. Power Loss Allowance vs  
Ambient Temperature with Heat Sink  
Rev. B  
27  
For more information www.analog.com  
LTM4671  
APPLICATIONS INFORMATION  
Table 2. Different Output, Junction-to-Ambient Thermal Resistance (θJA)  
DERATING CURVE  
Figure 27  
V
(V)  
POWER LOSS CURVE  
Figure 10 to Figure 16  
Figure 10 to Figure 16  
Figure 10 to Figure 16  
Figure 10 to Figure 16  
Figure 10 to Figure 16  
Figure 10 to Figure 16  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
JA(°C/W)  
IN  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
0
8.5  
Figure 27  
200  
400  
0
None  
7
Figure 27  
None  
6.5  
8
Figure 28  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 28  
200  
400  
6
Figure 28  
5.5  
Table 3. Output Voltage Response vs Component Matrix (Refer to Figure 30) 0A to 4A Load Step Typical Measured Values  
CIN (CERAMIC)  
COUT (CERAMIC)  
COUT (BULK)  
VENDORS VALUE  
PART NUMBER  
VENDORS  
VALUE  
PART NUMBER  
VENDORS VALUE  
PART NUMBER  
Murata  
Murata  
22μF, 25V, X5R, 1206 GRT31CR61E226ME01L Murata  
22μF, 25V, X5R, 1210 GRM32ER61E226KE15K Murata  
47μF, 6.3V, X5R, 0805 GRM21BR60J476ME15K Panasonic 680μF, 6.3V, 25mΩ 6TPE330ML  
100μF, 6.3V, X5R, 1210 GRM32ER60J107ME20L  
Taiyo Yuden 22μF, 25V, X5R, 1206 TMK316BBJ226ML-T  
Taiyo Yuden 47μF, 6.3V, X5R, 0805 JMK212BBJ476MG-T  
Taiyo Yuden 100μF, 6.3V, X5R, 1210 JMK325BJ107MM-T  
CH0 and CH3 Transient Response  
C
C
C
OUT2  
P-P  
LOAD  
STEP  
(A)  
LOAD STEP  
SLEW RATE  
(A/μs)  
IN  
OUT1  
V
(CERAMIC) C * (CERAMIC) (BULK)  
C
R
C
V
DERIVATION RECOVERY  
R
OUT  
IN  
TH  
TH  
FF  
IN  
FB  
(V)  
(μF)  
(BULK)  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
(μF)  
100 × 3  
100  
(μF)  
(pF)  
1500  
1000  
1500  
1000  
1500  
1000  
1500  
1000  
1000  
1000  
(kΩ)  
5
8
(pF)  
(V)  
(mV)  
79.7  
76.3  
83.7  
80  
TIME (μs)  
(k)  
1
22 × 2  
22 × 2  
22 × 2  
22 × 2  
22 × 2  
22 × 2  
22 × 2  
22 × 2  
22 × 2  
22 × 2  
NA  
33  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
30  
30  
30  
30  
30  
40  
30  
40  
50  
50  
3
3
3
3
3
3
3
3
3
3
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
90.9  
90.9  
60.4  
60.4  
40.2  
40.2  
30.1  
30.1  
19.1  
13.3  
1
330  
NA  
NA  
33  
1.2  
1.2  
1.5  
1.5  
1.8  
1.8  
2.5  
3.3  
100 × 3  
100  
5
8
330  
NA  
NA  
33  
100 × 3  
100  
5
8
90.4  
89.7  
103.8  
99.1  
147.3  
203  
330  
NA  
NA  
33  
100 × 3  
100  
5
8
330  
330  
330  
NA  
NA  
NA  
100  
8
100  
8
CH1 and CH2 Transient Response  
C
C
C
OUT2  
P-P  
LOAD  
STEP  
(A)  
LOAD STEP  
SLEW RATE  
(A/μs)  
IN  
OUT1  
V
(CERAMIC) C * (CERAMIC) (BULK)  
C
R
C
V
DERIVATION RECOVERY  
R
OUT  
IN  
TH  
(pF)  
TH  
FF  
IN  
FB  
(V)  
(μF)  
22  
22  
22  
22  
22  
22  
22  
(BULK)  
(μF)  
(μF)  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
(kΩ)  
(pF)  
100  
100  
100  
100  
100  
100  
100  
(V)  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
12  
(mV)  
56.9  
57.8  
62.3  
67.6  
85.7  
115  
167  
TIME (μs)  
(k)  
1
100  
47 × 2  
47 × 2  
47 × 2  
47 × 2  
47 × 2  
47 × 2  
47 × 2  
Internal Internal  
Internal Internal  
Internal Internal  
Internal Internal  
Internal Internal  
Internal Internal  
Internal Internal  
50  
60  
60  
70  
70  
70  
70  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
10  
10  
10  
10  
10  
10  
10  
90.9  
60.4  
40.2  
30.1  
19.1  
13.3  
8.25  
1.2  
100  
1.5  
1.8  
100  
100  
2.5  
3.3  
100  
100  
5
100  
12  
*Optional  
Rev. B  
28  
For more information www.analog.com  
LTM4671  
APPLICATIONS INFORMATION  
SAFETY CONSIDERATIONS  
Place a dedicated power ground layer underneath  
the unit.  
The LTM4671 modules do not provide galvanic isolation  
from VIN to VOUT. There is no internal fuse. If required,  
a slow blow fuse with a rating twice the maximum input  
current needs to be provided to protect each unit from  
catastrophic failure. The device does support thermal  
shutdown and over current protection.  
Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
Do not put via directly on the pad, unless they are  
capped or plated over.  
Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to GND underneath the unit.  
LAYOUT CHECKLIST/EXAMPLE  
The high integration of LTM4671 makes the PCB board  
layout very simple and easy. However, to optimize its  
electrical and thermal performance, some layout con-  
siderations are still necessary.  
Forparallelmodules,tietheV ,V ,andCOMPpins  
OUT FB  
together. Useaninternallayertocloselyconnectthese  
pins together. The TRACK pin can be tied a common  
capacitor for regulator soft-start.  
Use large PCB copper areas for high current paths,  
including V , GND, V and V . It helps to  
IN  
OUT1  
OUT2  
Bringouttestpointsonthesignalpinsformonitoring.  
minimizethePCBconductionlossandthermalstress.  
Figure29givesagoodexampleoftherecommendedlayout.  
Place high frequency ceramic input and output  
capacitors next to the V , PGND and V  
pins to  
IN  
OUT  
minimize high frequency noise.  
ꢌꢍꢎꢅ  
ꢌꢍꢎꢃ  
ꢇꢈꢉ  
ꢇꢈꢉ  
ꢌꢍꢎꢏ  
ꢌꢍꢎꢐ  
ꢇꢈꢉ  
ꢇꢈꢉ  
ꢇꢈꢉ  
ꢋꢈ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
Figure 29. Recommended PCB Layout  
Rev. B  
29  
For more information www.analog.com  
LTM4671  
TYPICAL APPLICATIONS  
V
V
OUT0  
V
V
IN1  
IN  
OUT0  
+
C
OUT0  
C
VOSNS0  
VOSNS0  
5V TO 20V  
0.8V/12A  
IN  
SV  
SV  
IN0  
IN3  
100µF ×4  
22µF  
182k  
30.1k  
13.3k  
×4  
FB0  
RUN0  
RUN1  
RUN2  
RUN3  
V
V
OUT1  
+
OUT1  
VOSNS1  
1.8V/5A  
C
OUT1  
FB1  
47µF ×2  
COMP0a  
COMP0b  
V
OUT2  
V
OUT2  
+
COMP1  
COMP2  
VOSNS2  
3.3V/5A  
C
LTM4671  
OUT2  
FB2  
47µF ×2  
COMP3a  
COMP3b  
V
OUT3  
V
OUT3  
+
C
VOSNS3  
VOSNS3  
OUT3  
TRACK/SS0  
TRACK/SS1  
TRACK/SS2  
TRACK/SS3  
1.0V/12A  
100µF ×4  
0.1μF  
90.9k  
FB3  
0.1μF  
0.1μF  
0.1μF  
PGOOD0  
PGOOD1  
PGOOD2  
PGOOD3  
4671 F30  
Figure 30. 5V to 20V Input, Quad Output Design  
Rev. B  
30  
For more information www.analog.com  
LTM4671  
TYPICAL APPLICATIONS  
INTV  
CC0  
V
V
V
V
V
OUT0  
IN1  
OUT0  
OUT3  
IN  
C
22µF  
×4  
5V TO 20V  
1.0V/24A  
IN  
SV  
SV  
IN0  
IN3  
C
+
+
OUT0  
VOSNS0  
VOSNS3  
100µF ×6  
RUN0  
RUN1  
RUN2  
RUN3  
VOSNS0  
VOSNS3  
COMP0a  
COMP0b  
90.0k  
FB0  
FB3  
COMP1  
COMP2  
LTM4671  
V
V
V
OUT1  
OUT1  
OUT2  
COMP3a  
COMP3b  
3.3V/10A  
C
OUT1  
+
+
TRACK/SS0  
TRACK/SS1  
TRACK/SS2  
TRACK/SS3  
VOSNS1  
VOSNS2  
47µF ×4  
0.1μF  
0.1μF  
0.1μF  
FB1  
FB2  
13.3k  
0.1μF  
PGOOD0  
PGOOD1  
PGOOD2  
PGOOD3  
4671 F31  
400k  
400k  
90°  
INTV  
CC0  
CH0  
180°  
0°  
CH1  
180°  
CH2  
CH3  
180°  
90°  
Phase Shift  
Phase  
270°  
Figure 31. Parallel Operation with 1MHz Clock and Interleaved Phases  
Rev. B  
31  
For more information www.analog.com  
LTM4671  
TYPICAL APPLICATIONS  
ꢁꢂꢃꢐ  
ꢔꢕꢋ  
ꢔꢕ  
ꢁꢂꢃꢐ  
ꢁꢂꢃꢐ  
ꢄꢄꢇꢈ  
ꢉꢅ  
ꢊꢁꢖꢕꢖꢐ  
ꢊꢁꢖꢕꢖꢐ  
ꢒ.ꢒꢊ  
ꢐ.ꢤꢊꢌꢋꢄꢎ  
ꢔꢕ  
ꢖꢊ  
ꢖꢊ  
ꢔꢕꢐ  
ꢔꢕꢒ  
ꢋꢐꢐꢇꢈ ꢉꢅ  
ꢋꢤꢄꢑ  
ꢒꢐ.ꢋꢑ  
ꢏꢐ.ꢅꢑ  
ꢈBꢐ  
Rꢂꢕꢐ  
Rꢂꢕꢋ  
Rꢂꢕꢄ  
Rꢂꢕꢒ  
ꢁꢂꢃꢋ  
ꢋ.ꢤꢊꢌꢍꢎ  
ꢁꢂꢃꢋ  
ꢊꢁꢖꢕꢖꢋ  
ꢁꢂꢃꢋ  
ꢈBꢋ  
ꢅꢆꢇꢈ ꢉꢄ  
ꢀꢁꢗꢘꢐꢙ  
ꢀꢁꢗꢘꢐꢚ  
ꢗꢅꢏꢆꢋ  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢀꢁꢗꢘꢋ  
ꢀꢁꢗꢘꢄ  
ꢊꢁꢖꢕꢖꢄ  
ꢋ.ꢄꢊꢌꢍꢎ  
ꢁꢂꢃꢄ  
ꢈBꢄ  
ꢅꢆꢇꢈ ꢉꢄ  
ꢀꢁꢗꢘꢒꢙ  
ꢀꢁꢗꢘꢒꢚ  
ꢁꢂꢃꢒ  
ꢁꢂꢃꢒ  
ꢊꢁꢖꢕꢖꢒ  
ꢊꢁꢖꢕꢖꢒ  
ꢁꢂꢃꢒ  
ꢘꢛꢁꢁꢜꢐ  
ꢘꢛꢁꢁꢜꢋ  
ꢘꢛꢁꢁꢜꢄ  
ꢘꢛꢁꢁꢜꢒ  
ꢋ.ꢐꢊꢌꢋꢄꢎ  
ꢋꢐꢐꢇꢈ ꢉꢅ  
ꢓꢐ.ꢓꢑ  
ꢏꢐ.ꢅꢑ  
ꢒꢐ.ꢋꢑ  
ꢈBꢒ  
ꢃRꢎꢀꢡꢌꢖꢖꢐ  
ꢃRꢎꢀꢡꢌꢖꢖꢋ  
ꢐ.ꢋꢇꢈ  
ꢏꢐ.ꢅꢑ ꢏꢐ.ꢅꢑ  
ꢒꢐ.ꢋꢑ ꢒꢐ.ꢋꢑ  
ꢃRꢎꢀꢡꢌꢖꢖꢄ  
ꢃRꢎꢀꢡꢌꢖꢖꢒ  
ꢅꢏꢆꢋ ꢈꢒꢄ  
Figure 32. 3.3VIN , 1.8V, 1.2V, 1V, 0.8V with Ratiometric Tracking  
Rev. B  
32  
For more information www.analog.com  
LTM4671  
COMPONENT BGA PINOUT  
PIN ID  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
FUNCTION  
PIN ID  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
FUNCTION  
PIN ID  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
FUNCTION  
PIN ID  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
FUNCTION  
PIN ID  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
FUNCTION  
V
OUT0  
V
OUT0  
V
OUT0  
V
V
V
V
OUT0  
V
OUT0  
V
OUT0  
V
V
V
V
V
OUT0  
OUT0  
OUT0  
OUT0  
OUT0  
OUT0  
OUT0  
OUT0  
GND  
GND  
GND  
PHMODE0  
INTV  
CC0  
V
IN  
SV  
IN0  
CLKOUT0  
PGOOD0  
GND  
GND  
TSENSE0  
TSENSE0  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
+
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
A9  
A10  
A11  
GND  
GND  
GND  
B9  
B10  
B11  
C10  
C11  
D10  
D11  
E10  
E11  
PIN ID  
F1  
F2  
F3  
F4  
FUNCTION  
GND  
PIN ID  
G1  
G2  
G3  
G4  
FUNCTION  
GND  
PIN ID  
H1  
H2  
H3  
H4  
FUNCTION  
PIN ID  
J1  
J2  
J3  
J4  
FUNCTION  
PIN ID  
K1  
K2  
K3  
K4  
FUNCTION  
GND  
V
OUT1  
V
OUT1  
V
OUT1  
V
OUT1  
V
OUT1  
V
OUT1  
V
OUT1  
V
OUT1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
F5  
F6  
GND  
GND  
G5  
G6  
GND  
GND  
H5  
H6  
GND  
J5  
J6  
V
V
K5  
K6  
GND  
GND  
IN  
V
IN  
IN  
F7  
F8  
F9  
F10  
F11  
GND  
VOSNS0  
TRACK/SS0  
FREQ0  
RUN0  
G7  
G8  
G9  
G10  
G11  
TRACK/SS1  
V0SNS0  
FB0  
GND  
MODE/CLKIN0  
H7  
H8  
H9  
H10  
H11  
GND  
PGOOD1  
FB1  
COMP0a  
COMP0b  
J7  
J8  
J9  
J10  
J11  
GND  
RUN1  
GND  
VOSNS1  
COMP1  
K7  
K8  
K9  
K10  
K11  
GND  
TMON  
INTV  
CC12  
FREQ12  
GND  
+
+
PIN ID  
L1  
L2  
L3  
L4  
FUNCTION  
PIN ID  
M1  
M2  
M3  
M4  
FUNCTION  
PIN ID  
N1  
N2  
N3  
N4  
FUNCTION  
GND  
PIN ID  
P1  
P2  
P3  
P4  
FUNCTION  
GND  
PIN ID  
R1  
R2  
R3  
R4  
FUNCTION  
V
OUT2  
V
OUT2  
V
OUT2  
V
OUT2  
V
V
V
V
V
V
OUT2  
OUT2  
OUT2  
OUT2  
OUT3  
GND  
GND  
GND  
GND  
GND  
GND  
OUT3  
GND  
GND  
L5  
L6  
L7  
L8  
L9  
V
V
M5  
M6  
M7  
M8  
M9  
GND  
N5  
N6  
N7  
N8  
N9  
GND  
GND  
TRACK/SS2  
COMP3b  
COMP3a  
FB3  
P5  
P6  
P7  
P8  
P9  
GND  
CLKOUT3  
RUN3  
FREQ3  
TRACK/SS3  
V0SNS3  
R5  
R6  
R7  
R8  
R9  
GND  
IN  
V
PHMODE3  
PGOOD3  
MODE/CLKIN3  
IN  
IN  
GND  
RUN2  
MODE/CLKIN12  
GND  
PGOOD2  
FB2  
GND  
COMP2  
SV  
IN3  
+
L10  
L11  
V0SNS2  
GND  
M10  
M11  
N10  
N11  
P10  
P11  
R10  
R11  
V
IN  
+
V0SNS3  
GND  
INTV  
CC3  
PIN ID  
T1  
T2  
FUNCTION  
PIN ID  
U1  
U2  
FUNCTION  
PIN ID  
V1  
V2  
FUNCTION  
PIN ID  
W1  
W2  
FUNCTION  
V
OUT3  
V
OUT3  
V
OUT3  
V
OUT3  
V
OUT3  
V
OUT3  
V
OUT3  
V
OUT3  
V
OUT3  
V
V
V
OUT3  
OUT3  
OUT3  
T3  
U3  
V3  
W3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
GND  
GND  
GND  
U4  
U5  
U6  
U7  
U8  
U9  
U10  
U11  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
V4  
V5  
V6  
V7  
V8  
V9  
V10  
V11  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
W4  
W5  
W6  
W7  
W8  
W9  
W10  
W11  
GND  
GND  
TSENSE3  
TSENSE3  
GND  
GND  
GND  
GND  
+
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
Rev. B  
33  
For more information www.analog.com  
LTM4671  
PACKAGE DESCRIPTION  
BGA Package  
209-Lead (16mm × 9.50mm × 4.72mm)  
ꢢReꢣeꢤeꢥꢦe ꢇꢃꢏ ꢎꢀꢋꢧ ꢗꢕꢨꢗꢙꢨꢑꢕꢖꢑ Rev Bꢩ  
ꢡꢍꢍ ꢅꢛꢃꢍꢡ  
ꢎꢍꢃꢐꢜꢇ ꢐ  
×  
ꢶꢶꢶ ꢬ  
ꢐꢒ  
ꢡꢍꢍ ꢅꢛꢃꢍꢡ  
ꢑꢑ ꢑꢗ  
ꢄꢜꢅ ꢑ  
B
ꢐꢑ  
ꢄꢜꢅ ꢝꢐꢑꢞ  
ꢏꢛRꢅꢍR  
ꢦꢦꢦ  
ꢮꢑ  
ꢆꢛꢇꢎ  
ꢏꢐꢄ  
ꢡꢂBꢡꢃRꢐꢃꢍ  
ꢊꢑ  
ꢊꢒ  
ꢎꢍꢃꢐꢜꢇ B  
R
e
ꢭꢮ ꢢꢒꢗꢘ ꢄꢇꢐꢏꢍꢡꢩ  
ꢯꢯꢯ  
eee  
ꢠ ꢟ  
ꢎꢍꢃꢐꢜꢇ ꢐ  
×  
ꢶꢶꢶ ꢬ  
e
ꢄꢐꢏꢈꢐꢋꢍ ꢃꢛꢄ ꢁꢜꢍꢀ  
ꢎꢍꢃꢐꢜꢇ B  
ꢄꢐꢏꢈꢐꢋꢍ ꢡꢜꢎꢍ ꢁꢜꢍꢀ  
ꢄꢐꢏꢈꢐꢋꢍ Bꢛꢃꢃꢛꢆ ꢁꢜꢍꢀ  
ꢅꢛꢃꢍꢡꢪ  
ꢚ.ꢒꢗ  
ꢖ.ꢔꢗ  
ꢕ.ꢖꢗ  
ꢔ.ꢙꢗ  
ꢔ.ꢗꢗ  
ꢓ.ꢒꢗ  
ꢒ.ꢔꢗ  
ꢑ.ꢖꢗ  
ꢗ.ꢙꢗ  
ꢗ.ꢗꢗ  
ꢗ.ꢙꢗ  
ꢑ.ꢖꢗ  
ꢒ.ꢔꢗ  
ꢓ.ꢒꢗ  
ꢔ.ꢗꢗ  
ꢔ.ꢙꢗ  
ꢕ.ꢖꢗ  
ꢖ.ꢔꢗ  
ꢚ.ꢒꢗ  
ꢑ. ꢎꢜꢆꢍꢅꢡꢜꢛꢅꢜꢅꢋ ꢐꢅꢎ ꢃꢛꢇꢍRꢐꢅꢏꢜꢅꢋ ꢄꢍR ꢐꢡꢆꢍ ꢟꢑꢔ.ꢕꢆꢨꢑꢘꢘꢔ  
ꢗ.ꢔꢗ ꢗ.ꢗꢒꢕ ꢭ ꢒꢗꢘꢵ  
DIMENSIONS  
ꢒ. ꢐꢇꢇ ꢎꢜꢆꢍꢅꢡꢜꢛꢅꢡ ꢐRꢍ ꢜꢅ ꢆꢜꢇꢇꢜꢆꢍꢃꢍRꢡ  
SYMBOL  
ꢐꢑ  
ꢐꢒ  
ꢮꢑ  
e
ꢊꢑ  
ꢊꢒ  
ꢶꢶꢶ  
ꢮꢮꢮ  
ꢦꢦꢦ  
ꢯꢯꢯ  
eee  
MIN  
ꢔ.ꢕꢓ  
ꢗ.ꢓꢗ  
ꢔ.ꢒꢓ  
ꢗ.ꢔꢕ  
ꢗ.ꢓꢚ  
NOM  
ꢔ.ꢚꢒ  
ꢗ.ꢔꢗ  
ꢔ.ꢓꢒ  
ꢗ.ꢕꢗ  
ꢗ.ꢔꢗ  
ꢑꢖ.ꢗꢗ  
ꢘ.ꢕꢗ  
ꢗ.ꢙꢗ  
ꢑꢔ.ꢔꢗ  
ꢙ.ꢗꢗ  
ꢗ.ꢓꢒ  
ꢔ.ꢗꢗ  
MAX  
NOTES  
Bꢐꢇꢇ ꢎꢍꢡꢜꢋꢅꢐꢃꢜꢛꢅ ꢄꢍR ꢉꢍꢄꢘꢕ  
ꢔ.ꢘꢑ  
ꢗ.ꢕꢗ  
ꢔ.ꢔꢑ  
ꢗ.ꢕꢕ  
ꢗ.ꢔꢓ  
Bꢐꢇꢇ ꢊꢃ  
ꢎꢍꢃꢐꢜꢇꢡ ꢛꢌ ꢄꢜꢅ ꢧꢑ ꢜꢎꢍꢅꢃꢜꢌꢜꢍR ꢐRꢍ ꢛꢄꢃꢜꢛꢅꢐꢇꢫ  
Bꢂꢃ ꢆꢂꢡꢃ Bꢍ ꢇꢛꢏꢐꢃꢍꢎ ꢀꢜꢃꢊꢜꢅ ꢃꢊꢍ ꢬꢛꢅꢍ ꢜꢅꢎꢜꢏꢐꢃꢍꢎ.  
ꢃꢊꢍ ꢄꢜꢅ ꢧꢑ ꢜꢎꢍꢅꢃꢜꢌꢜꢍR ꢆꢐꢟ Bꢍ ꢍꢜꢃꢊꢍR ꢐ ꢆꢛꢇꢎ ꢛR  
ꢆꢐRꢈꢍꢎ ꢌꢍꢐꢃꢂRꢍ  
Bꢐꢇꢇ ꢎꢜꢆꢍꢅꢡꢜꢛꢅ  
ꢄꢐꢎ ꢎꢜꢆꢍꢅꢡꢜꢛꢅ  
ꢕ. ꢄRꢜꢆꢐRꢟ ꢎꢐꢃꢂꢆ ꢨꢬꢨ ꢜꢡ ꢡꢍꢐꢃꢜꢅꢋ ꢄꢇꢐꢅꢍ  
ꢄꢐꢏꢈꢐꢋꢍ Rꢛꢀ ꢐꢅꢎ ꢏꢛꢇꢂꢆꢅ ꢇꢐBꢍꢇꢜꢅꢋ ꢆꢐꢟ ꢁꢐRꢟ  
ꢐꢆꢛꢅꢋ ꢰꢆꢱꢯꢲꢳe ꢄRꢛꢎꢂꢏꢃꢡ. Rꢍꢁꢜꢍꢀ ꢍꢐꢏꢊ ꢄꢐꢏꢈꢐꢋꢍ  
ꢇꢐꢟꢛꢂꢃ ꢏꢐRꢍꢌꢂꢇꢟ  
!
ꢡꢂBꢡꢃRꢐꢃꢍ ꢃꢊꢈ  
ꢆꢛꢇꢎ ꢏꢐꢄ ꢊꢃ  
ꢗ.ꢑꢕ  
ꢗ.ꢒꢗ  
ꢗ.ꢒꢗ  
ꢗ.ꢑꢕ  
ꢗ.ꢗꢙ  
ꢆꢠꢠꢠꢠ  
ꢰꢆꢱꢯꢲꢳe  
ꢏꢛꢆꢄꢛꢅꢍꢅꢃ  
ꢄꢜꢅ ꢝꢐꢑꢞ  
ꢃꢛꢃꢐꢇ ꢅꢂꢆBꢍR ꢛꢌ Bꢐꢇꢇꢡꢪ ꢒꢗꢘ  
ꢃRꢐꢟ ꢄꢜꢅ ꢑ  
Bꢍꢁꢍꢇ  
ꢄꢐꢏꢈꢐꢋꢍ ꢜꢅ ꢃRꢐꢟ ꢇꢛꢐꢎꢜꢅꢋ ꢛRꢜꢍꢅꢃꢐꢃꢜꢛꢅ  
Bꢋꢐ ꢒꢗꢘ ꢗꢒꢑꢙ Rꢍꢁ B  
ꢡꢂꢋꢋꢍꢡꢃꢍꢎ ꢄꢏB ꢇꢐꢟꢛꢂꢃ  
ꢃꢛꢄ ꢁꢜꢍꢀ  
Rev. B  
34  
For more information www.analog.com  
LTM4671  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
08/19 Corrected value of Start-Up Waveform graphs from 2ms/DIV to 20ms/DIV  
8
B
01/20 Added text and formula to set operating frequency  
Added Temperature Monitering section  
16  
20, 21, 22  
3, 4  
Changed MAX Value of Line Regulation Accuracy to 0.05%  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
35  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
For more information www.analog.com  
LTM4671  
PACKAGE PHOTO  
DESIGN RESOURCES  
SUBJECT  
DESCRIPTION  
µModule Design and Manufacturing Resources  
Design:  
Manufacturing:  
• Selector Guides  
• Quick Start Guide  
• Demo Boards and Gerber Files  
• Free Simulation Tools  
• PCB Design, Assembly and Manufacturing Guidelines  
• Package and Board Level Reliability  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
Digital Power System Management  
Analog Devices’ family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTM4644  
LTM4633  
Quad 4A Step-Down µModule Regulator  
Triple 3A Step-Down µModule Regulator  
4.5V ≤ V 14V, 0.6V ≤ V  
5.5V, 9mm × 15mm × 5.01mm BGA  
IN  
OUT  
4.7V ≤ V ≤ 16V, 0.8V ≤ V  
and V  
≤ 1.8V, 0.8V ≤ V  
5.5V,  
IN  
OUT1  
OUT2  
OUT3  
15mm × 15mm × 5.01mm BGA  
LTM4622  
Ultrathin, Dual 2.5A or Single 5A Step-Down µModule Regulator 3.6V ≤ V ≤ 20V, 0.6V ≤ V  
5.5V, 6.25mm × 6.25mm × 1.82mm  
IN  
OUT  
LGA, 6.25mm x 6.25mm × 2.42mm BGA  
LTM4646  
LTM4662  
LTM4650A  
Dual 10A or Single 20A Step-Down µModule Regulator  
Dual 15A or Single 30A Step-Down µModule Regulator  
Dual 25A or Single 50A Step-Down µModule Regulator  
4.5V ≤ V 20V, 0.6V ≤ V  
5.5V, 11.25mm × 15mm × 5.01mm BGA  
5.5V, 11.25mm × 15mm × 5.74mm BGA  
OUT  
IN  
OUT  
4.5V ≤ V 20V, 0.6V ≤ V  
IN  
4.5V ≤ V 16V, 0.6V ≤ V  
5.5V, 16mm × 16mm × 4.41mm LGA,  
IN  
OUT  
16mm × 16mm × 5.01mm BGA  
LTM4626  
LTM4638  
12A µModule Regulator  
15A µModule Regulator  
3.1V ≤ V ≤ 20V, 0.6V ≤ V  
5.5V, 6.25mm × 6.25mm × 3.87mm BGA  
5.5V, 6.25mm × 6.25mm × 5.02mm BGA  
IN  
OUT  
OUT  
3.1V ≤ V ≤ 20V, 0.6V ≤ V  
IN  
Rev. B  
01/20  
www.analog.com  
36  
© ANALOG DEVICES, INC. 2020  

相关型号:

LTM4675

30A DC/DC Step-Down μModule Regulator
Linear

LTM4675

Quad 31.25A or Single 125A μModule Regulator with Digital Power System Management
ADI

LTM4675EY#PBF

LTM4675 - Dual 9A or Single 18A µModule (Power Module) Regulator with Digital Power System Management; Package: BGA; Pins: 108; Temperature Range: -40°C to 85°C
Linear

LTM4675IY#PBF

LTM4675 - Dual 9A or Single 18A µModule (Power Module) Regulator with Digital Power System Management; Package: BGA; Pins: 108; Temperature Range: -40°C to 85°C
Linear

LTM4676

Triple Output 5A/5A/4A Step-Down DC/DC μModule® Regulator
Linear

LTM4676A

25A DC/DC Step-Down μModule Regulator
Linear

LTM4676A

Quad 31.25A or Single 125A μModule Regulator with Digital Power System Management
ADI

LTM4677

25A DC/DC Step-Down μModule Regulator
Linear

LTM4678

Dual 25A or Single 50A μModule Regulator with Digital Power System Management
ADI

LTM4678EYPBF

Dual 25A or Single 50A μModule Regulator with Digital Power System Management
ADI

LTM4678IY

Dual 25A or Single 50A μModule Regulator with Digital Power System Management
ADI

LTM4678IYPBF

Dual 25A or Single 50A μModule Regulator with Digital Power System Management
ADI