LTM8051EY [ADI]

Quad 40VIN Silent Switcher μModule Regulator with Configurable 1.2A Output Array;
LTM8051EY
型号: LTM8051EY
厂家: ADI    ADI
描述:

Quad 40VIN Silent Switcher μModule Regulator with Configurable 1.2A Output Array

文件: 总28页 (文件大小:2571K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM8051  
Quad 40V Silent Switcher μModule Regulator  
IN  
with Configurable 1.2A Output Array  
FEATURES  
DESCRIPTION  
The LTM®8051 is quad 40VIN, 1.2A step-down Silent  
Switcher μModule® regulator. The Silent Switcher archi-  
tecture minimizes EMI while delivering high efficiency at  
frequencies up to 3MHz. Included in the package are the  
controllers, power switches, inductors, and support com-  
ponents. Operating over a wide input voltage range, the  
LTM8051 supports output voltages from 0.8V to 8V, and  
a switching frequency range of 300kHz to 3MHz, each set  
by a single resistor. Only the bulk input and output filter  
capacitors are needed to finish the design. The LTM8051  
product video is available on website.  
n
Four Complete Step-Down Switching Power Supplies  
Low Noise Silent Switcher® Architecture  
CISPR22 Class B Compliant  
n
n
n
n
n
n
CISPR25 Class 5 Compliant  
Wide Input Voltage Range: 3V to 40V  
Wide Output Voltage Range: 0.8V to 8V  
1.2A Continuous Output Current per Channel at  
12V , 3.3V , T = 85°C  
IN  
OUT  
A
n
n
1.5A Continuous Output Current per Channel at  
12V , 3.3V , T = 60°C  
IN  
OUT  
A
Multiphase or Multi-µModule Parallelable for  
The LTM8051 is packaged in a compact (6.25mm ×  
11.25mm × 2.22mm) over-molded Ball Grid Array (BGA)  
package suitable for automated assembly by standard  
surface mount equipment. The LTM8051 is available with  
SnPb (BGA) or RoHS compliant.  
Increased Output Current  
n
n
Selectable Switching Frequency: 300kHz to 3MHz  
Compact Package (6.25mm × 11.25mm × 2.22mm)  
Surface Mount BGA  
Configurable Output Array  
APPLICATIONS  
The LTM8051 outputs can be paralleled in an array for up  
to 4.8A capability.  
n
Automated Test Equipment  
n
Distributed Supply Regulation  
1.2A  
n
Industrial Supplies  
Medical Equipment  
2.4A  
1.2A  
1.2A  
1.2A  
3.6A  
1.2A  
n
4.8A  
1.2A  
1.2A  
All registered trademarks and trademarks are the property of their respective owners.  
Click to view associated Video Design Idea.  
TYPICAL APPLICATION  
1.8-5VOUT from 7-40VIN Quad Step-Down Converter  
Efficiency, VIN = 24V, BIAS = 5V  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ ꢂꢃ ꢄ0ꢁ  
Rꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ.ꢀꢂ  
ꢀ ꢁ.ꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂRꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ.ꢁꢂ  
ꢀꢁꢁꢂꢃ  
ꢀ.ꢁꢂ  
ꢀ00ꢁꢂ  
ꢀ00ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁ.ꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀ.ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.ꢀꢁ  
ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ00ꢁꢂ  
ꢀꢁ  
ꢀꢁ.ꢀꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
R
R
R
R
0
0.ꢀ  
ꢀ.ꢁ  
ꢀꢁꢂRꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ.ꢁꢂ  
ꢀꢁꢁꢂꢃ  
ꢀ.ꢁꢂ  
ꢀ0ꢁꢂ ꢃꢄ0ꢂꢅ  
ꢀ00ꢁꢂ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
0
0
Rev. 0  
1
Document Feedback  
For more information www.analog.com  
LTM8051  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
SYNCn .......................................................................6V  
Maximum Internal Temperature (Note 2).............. 125°C  
Storage Temperature ............................. –55°C to 125°C  
Peak Solder Reflow Package Body Temperature ..260°C  
V
V
, RUNn, PGn ......................................................42V  
OUTn  
INn  
, BIASn ...........................................................10V  
FBn, TRSSn, SHAREn , RT , VCC .............................4V  
n
n
PIN CONFIGURATION  
ꢖꢩꢉ ꢧꢤꢋꢞ  
Rꢨꢂꢄꢅ Rꢨꢂꢍꢢ  
ꢉꢇꢅ  
ꢉꢇꢄ  
ꢉꢇꢢ  
ꢉꢇꢍ  
ꢤꢂꢍ  
ꢤꢂꢢ  
ꢆꢈꢂꢊꢄ  
ꢩꢨꢖꢄ  
ꢆꢈꢂꢊꢢ  
ꢩꢨꢖꢢ  
ꢃꢏꢊꢩꢨꢖꢄꢅ ꢃꢏꢊꢩꢨꢖꢍꢢ ꢀꢁꢂꢃꢄꢅ ꢀꢁꢂꢃꢍꢢ  
ꢆꢤꢈꢀꢄꢅ  
ꢀꢥꢈRꢋꢍꢢ  
ꢆꢈꢂꢊꢔ  
ꢇꢂꢐ  
ꢃꢃꢍꢢ  
ꢃꢃꢄꢅ  
ꢀꢥꢈRꢋꢄꢅ  
ꢆꢤꢈꢀꢍꢢ  
ꢖRꢀꢀꢄ ꢪꢆꢄ  
ꢖRꢀꢀꢅ ꢪꢆꢅ  
ꢖRꢀꢀꢍ ꢖRꢀꢀꢢ ꢪꢆꢍ  
Rꢖꢄꢅ Rꢖꢍꢢ ꢪꢆꢢ  
ꢆꢈꢂꢊꢍ  
ꢩꢨꢖꢍ  
ꢆꢈꢂꢊꢅ  
ꢆꢈꢂꢊꢒ  
ꢩꢨꢖꢅ  
ꢤꢂꢄꢅ  
ꢆꢇꢈ ꢉꢈꢃꢊꢈꢇꢋ  
ꢌꢍꢎꢏꢋꢈꢐ ꢑꢍꢍ.ꢄꢒꢓꢓ × ꢔ.ꢄꢒꢓꢓ × ꢄ.ꢄꢄꢓꢓꢕ  
ꢚ ꢍꢄꢒꢛꢃꢜ θ ꢚ ꢍꢔꢛꢃꢝθ ꢚ ꢍꢍ.ꢢꢛꢃꢝꢜ  
ꢗꢃꢣꢠꢟ  
ꢗꢘꢈꢙ  
ꢗꢈ  
ꢗꢃꢟꢠꢡ  
θ
ꢚ ꢅ.ꢒꢛꢃꢝꢋꢤꢇꢥꢖ ꢚ 0.ꢢꢄꢦ  
θ ꢧꢈꢏꢨꢋꢀ ꢐꢋꢖꢋRꢘꢤꢂꢋꢐ ꢉꢋR ꢗꢋꢐꢋꢃ ꢒꢍꢎꢌꢜ ꢒꢍꢎꢍꢄ  
ORDER INFORMATION  
PART MARKING*  
PACKAGE  
MSL  
TEMPERATURE RANGE  
(SEE NOTE 2)  
PART NUMBER  
LTM8051EY#PBF  
LTM8051IY#PBF  
LTM8051IY  
PAD OR BALL FINISH  
SAC305 (RoHS)  
SnPb (63/37)  
DEVICE  
FINISH CODE  
TYPE  
RATING  
e1  
LTM8051Y  
BGA  
3
–40°C to 125°C  
e0  
• Device temperature grade is indicated by a label on the shipping container. This product is not recommended for second side reflow.  
This product is moisture sensitive. For more information, go to  
Recommended BGA PCB Assembly and Manufacturing Procedures.  
• Pad or ball finish code is per IPC/JEDEC J-STD-609.  
BGA Package and Tray Drawings  
Rev. 0  
2
For more information www.analog.com  
LTM8051  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
internal temperature range, otherwise specifications are at TA = 25°C. VIN1n = 12V, RUNn = 2V unless otherwise noted (Note 2).  
PARAMETER  
Minimum V Input Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
3.0  
3.0  
2.0  
V
V
V
IN1  
Minimum V  
Input Voltage  
IN23  
Minimum V Input Voltage  
V
IN1  
= 3V  
IN4  
Output DC Voltage  
FBn open  
FBn = 27.4kΩ  
0.8  
8
V
V
Maximum Output DC Current  
(Note 3)  
2.5  
4
A
Quiescent Current into V  
RUNn = 0  
BIASn = 5V, SYNCn = 0V, No load  
BIASn = 5V, SYNCn = 3.3V, No load  
2
60  
10  
μA  
µA  
mA  
INn  
Current into BIAS  
RUNn = 0, BIASn = 5V  
BIASn = 5V, SYNCn = 3.3V, No load  
1
μA  
mA  
n
7
Line Regulation  
Load Regulation  
Output RMS Ripple  
FBn Voltage  
5V < V < 40V  
0.1  
0.2  
10  
%
%
INn  
12V , 0.1A < I  
<2A  
INn  
OUTn  
3.3V  
mV  
OUTn  
792  
784  
800  
800  
808  
816  
mV  
mV  
l
Current out of FBn  
V n = 1V, FBn = 0V  
OUT  
4
μA  
V
Minimum BIASn for Proper Operation  
3.2  
Switching Frequency  
RTn = 113KΩ  
RTn = 30.9KΩ  
RTn = 7.15KΩ  
300  
1
3
KHz  
MHz  
MHz  
RUNn Threshold  
0.74  
V
RUNn Input Current  
PGn Threshold at FBn  
RUNn = 0V  
1
μA  
FBn Rising  
FBn Falling  
740  
860  
mV  
mV  
PGn Output Sink Current  
PGn = 0.1V  
100  
μA  
V
CLKOUTn V  
CLKOUTn V  
0
OL  
OH  
3.3  
V
SYNCn Input High Threshold  
SYNCn Input Low Threshold  
SYNCn Threshold to Enable Spread Spectrum  
SYNCn Current  
1.5  
2.8  
V
0.8  
4
V
V
SYNCn = 6V  
65  
2
μA  
μA  
Ω
TRSSn Source Current  
TRSSn = 0V  
TRSSn Pull-Down Resistance  
Fault Condition, TRSSn = 0.1V  
230  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM8051E is guaranteed to meet performance specifications  
from 0°C to 125°C internal. Specifications over the full –40°C to  
125°C internal operating temperature range are assured by design,  
characterization and correlation with statistical process controls.  
The LTM8051I is guaranteed to meet specifications over the full –40°C  
to 125°C internal operating temperature range. Note that the maximum  
internal temperature is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal resistance and  
other environmental factors.  
Note 3: The maximum current out of either channel may be limited by the  
internal temperature of the LTM8051. See output current derating curves  
for different V , V , and T .  
IN OUT  
A
Rev. 0  
3
For more information www.analog.com  
LTM8051  
TA = 25°C, operating per Table 1,unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency, VOUT = 0.8V  
BIAS = 5V  
Efficiency, VOUT = 1.0V  
BIAS = 5V, Burst Mode  
Efficiency, VOUT = 1.2V  
BIAS = 5V, Burst Mode  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ0ꢁꢂ ꢃ0ꢂ  
ꢀ0ꢁꢂ ꢃ0ꢄ  
ꢀ0ꢁꢂ ꢃ0ꢄ  
Efficiency, VOUT = 1.5V  
BIAS = 5V, Burst Mode  
Efficiency, VOUT = 1.8V  
BIAS = 5V, Burst Mode  
Efficiency, VOUT = 2.0V  
BIAS = 5V, Burst Mode  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢀ  
ꢀ0  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ0ꢁꢂ ꢃ0ꢁ  
ꢀ0ꢁꢂ ꢃ0ꢄ  
Efficiency, VOUT = 2.5V  
BIAS = 5V, Burst Mode  
Efficiency, VOUT = 3.3V  
BIAS = 5V, Burst Mode  
Efficiency, VOUT = 3.3V, 2MHz  
BIAS = 5V, Burst Mode  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ0ꢁꢂ ꢃ0ꢄ  
ꢀ0ꢁꢂ ꢃ0ꢀ  
ꢀ0ꢁꢂ ꢃ0ꢄ  
Rev. 0  
4
For more information www.analog.com  
LTM8051  
TA = 25°C, operating per Table 1,unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency, VOUT = 5.0V  
BIAS = 5V, Burst Mode  
Efficiency, VOUT = 5.0V, 2MHz  
BIAS = 5V, Burst Mode  
Efficiency, VOUT = 8.0V  
BIAS = 5V, Burst Mode  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
ꢀꢁꢂꢃR ꢄꢁꢅꢅ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ0ꢁꢂ ꢃꢂ0  
ꢀ0ꢁꢂ ꢃꢂꢂ  
ꢀ0ꢁꢂ ꢃꢂꢄ  
Input vs Load Current  
OUT = 0.8V, BIAS = 5V, Burst Mode  
Input vs Load Current  
VOUT = 1.0V, BIAS = 5V, Burst Mode  
Input vs Load Current  
VOUT = 1.2V, BIAS = 5V, Burst Mode  
V
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ0ꢁꢂ ꢃꢂꢄ  
ꢀ0ꢁꢂ ꢃꢂꢄ  
ꢀ0ꢁꢂ ꢃꢂꢁ  
Input vs Load Current  
VOUT = 1.5V, BIAS = 5V, Burst Mode  
Input vs Load Current  
VOUT = 1.8V, BIAS = 5V, Burst Mode  
Input vs Load Current  
VOUT = 2.0V, BIAS = 5V, Burst Mode  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ0ꢁꢂ ꢃꢂꢄ  
ꢀ0ꢁꢂ ꢃꢂꢀ  
ꢀ0ꢁꢂ ꢃꢂꢄ  
Rev. 0  
5
For more information www.analog.com  
LTM8051  
TA = 25°C, operating per Table 1,unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input vs Load Current  
VOUT = 2.5V, BIAS = 5V, Burst  
Mode  
Input vs Load Current  
VOUT = 3.3V, 2MHz, BIAS = 5V,  
Burst Mode  
Input vs Load Current  
VOUT = 3.3V, BIAS = 5V, Burst  
Mode  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
0.ꢀ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ0ꢁꢂ ꢃꢄ0  
ꢀ0ꢁꢂ ꢃꢄꢂ  
ꢀ0ꢁꢂ ꢃꢂꢄ  
Input vs Load Current  
VOUT = 5V, 2MHz, BIAS = 5V,  
Burst Mode  
Input vs Load Current  
VOUT = 5V, BIAS = 5V, Burst Mode  
Input vs Load Current  
VOUT = 8V, BIAS = 5V, Burst Mode  
ꢀ.ꢁ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
ꢀ.ꢁ  
ꢀ.ꢁ  
0.ꢀ  
0.ꢀ  
0
ꢀ.ꢁ  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
0
0.ꢀ  
ꢀ.ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀ0ꢁꢂ ꢃꢄꢄ  
ꢀ0ꢁꢂ ꢃꢄꢅ  
ꢀ0ꢁꢂ ꢃꢄꢅ  
Derating, VOUT = 1V  
Derating, VOUT = 1.2V  
Derating, VOUT = 0.8V  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
All Channels At Same Load  
All Channels At Same Load  
All Channels At Same Load  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁꢂ ꢃꢄꢁ  
ꢀ0ꢁꢂ ꢃꢄꢅ  
ꢀ0ꢁꢂ ꢃꢄꢅ  
Rev. 0  
6
For more information www.analog.com  
LTM8051  
TA = 25°C, operating per Table 1,unless otherwise noted.  
Derating, VOUT = 2V  
TYPICAL PERFORMANCE CHARACTERISTICS  
Derating, VOUT = 1.5V  
Derating, VOUT = 1.8V  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
All Channels At Same Load  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
All Channels At Same Load  
All Channels At Same Load  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁꢂ ꢃꢄꢅ  
ꢀ0ꢁꢂ ꢃꢄ0  
ꢀ0ꢁꢂ ꢃꢄꢀ  
Derating, VOUT = 2.5V  
Derating, VOUT = 3.3V  
Derating, VOUT = 3.3V, FSW = 2MHz  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
All Channels At Same Load  
All Channels At Same Load  
All Channels At Same Load  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁꢂ ꢃꢄꢂ  
ꢀ0ꢁꢂ ꢃꢄꢅ  
ꢀ0ꢁꢂ ꢃꢄꢄ  
Derating, VOUT = 5V  
Derating, VOUT = 5V, FSW = 2MHz  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
Derating, VOUT = 8V  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
All Channels At Same Load  
All Channels At Same Load  
All Channels At Same Load  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁꢂ ꢃꢄꢅ  
ꢀ0ꢁꢂ ꢃꢄꢁ  
ꢀ0ꢁꢂ ꢃꢄꢅ  
Rev. 0  
7
For more information www.analog.com  
LTM8051  
TA = 25°C, operating per Table 1,unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Derating with Airflow,  
Derating with Airflow,  
Derating with Airflow,  
12VIN to 1.5VOUT, TJ =120°C  
BIAS = 5V, DC2860A Demo Board  
Forced Continuous Mode  
All Channels At Same Load  
24VIN to 1.5VOUT, TJ =120°C  
36VIN to 1.5VOUT, TJ =120°C  
BIAS = 5V, DC2860A Demo Board  
Forced Continuous Mode  
BIAS = 5V, DC2860A Demo Board  
Forced Continuous Mode  
All Channels At Same Load  
All Channels At Same Load  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁꢂ ꢃꢄꢅ  
ꢀ0ꢁꢂ ꢃꢄꢀ  
ꢀ0ꢁꢂ ꢃꢄꢅ  
Derating with Airflow,  
Derating with Airflow,  
Derating with Airflow,  
12VIN to 3.3VOUT, TJ =120°C  
24VIN to 3.3VOUT, TJ =120°C  
36VIN to 3.3VOUT, TJ =120°C  
BIAS = 5V, DC2860A Demo Board  
Forced Continuous Mode  
All Channels At Same Load  
BIAS = 5V, DC2860A Demo Board  
Forced Continuous Mode  
All Channels At Same Load  
BIAS = 5V, DC2860A Demo Board  
Forced Continuous Mode  
All Channels At Same Load  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁꢂ ꢃꢄ0  
ꢀ0ꢁꢂ ꢃꢄꢅ  
ꢀ0ꢁꢂ ꢃꢄꢂ  
Rev. 0  
8
For more information www.analog.com  
LTM8051  
TA = 25°C, operating per Table 1,unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Derating with Airflow,  
Derating with Airflow,  
Derating with Airflow,  
12VIN to 5VOUT, TJ =120°C  
BIAS = 5V, DC2860A Demo Board  
Forced Continuous Mode  
All Channels At Same Load  
24VIN to 5VOUT, TJ =120°C  
36VIN to 5VOUT, TJ =120°C  
BIAS = 5V, DC2860A Demo Board  
Forced Continuous Mode  
BIAS = 5V, DC2860A Demo Board  
Forced Continuous Mode  
All Channels At Same Load  
All Channels At Same Load  
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
ꢀ.0  
ꢀ.0  
ꢀ.0  
ꢀ.0  
0
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0ꢀꢁꢂ  
ꢀ00ꢁꢂꢃ  
ꢀ00ꢁꢂꢃ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁꢂ ꢃꢄꢅ  
ꢀ0ꢁꢂ ꢃꢄꢄ  
ꢀ0ꢁꢂ ꢃꢄꢁ  
Single Channel Derating, VOUT = 1.5V  
CH1 ON, CH2/CH3/CH4 OFF  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
Single Channel Derating, VOUT = 5V  
CH1 ON, CH2/CH3/CH4 OFF  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
Single Channel Derating, VOUT = 3.3V  
CH1 ON, CH2/CH3/CH4 OFF  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁꢂ ꢃꢄꢅ  
ꢀ0ꢁꢂ ꢃꢄꢅ  
ꢀ0ꢁꢂ ꢃꢄꢀ  
Rev. 0  
9
For more information www.analog.com  
LTM8051  
TA = 25°C, operating per Table 1,unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Dual Channel Derating, VOUT = 1.5V  
CH1/CH2 ON, CH3/CH4 OFF  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
Dual Channel Derating, VOUT = 3.3V  
Dual Channel Derating, VOUT = 5V  
CH1/CH2 ON, CH3/CH4 OFF  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
CH1/CH2 ON, CH3/CH4 OFF  
BIAS = 5V, DC2860A Demo Board  
TJ = 120°C, Burst Mode  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
0 ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ00  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄRꢀꢆꢈRꢄ ꢉ ꢀꢁ  
ꢀ0ꢁꢂ ꢃꢄꢅ  
ꢀ0ꢁꢂ ꢃꢁ0  
ꢀ0ꢁꢂ ꢃꢁꢂ  
BIAS Current vs Frequency  
12VIN to 3.3 VOUT  
Forced Continuous Mode  
Input Current vs VIN  
VOUT Short Circuited  
Dropout Voltage vs Load Current  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
0.ꢀ  
0.ꢀ  
0
ꢀ000  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
0
ꢀꢁꢂꢃeꢄ ꢅꢁꢆꢇꢈꢆꢉꢁꢉꢊ ꢋꢁꢄe  
ꢀꢁꢂꢃꢄ ꢅꢆꢇe  
0
0
0
0.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁꢂꢃꢄꢅꢂꢆꢇ ꢈRꢉꢊꢋꢉꢆꢄꢌ ꢍꢎꢅꢏꢐ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁ  
ꢀ0ꢁꢂ ꢃꢁꢄ  
ꢀ0ꢁꢂ ꢃꢁꢄ  
ꢀ0ꢁꢂ ꢃꢁꢄ  
Rev. 0  
10  
For more information www.analog.com  
LTM8051  
TA = 25°C, operating per Table 1,unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Noise Spectrum  
Output Noise Spectrum  
DC2860A, 100MHz Span  
DC2860A, 100kHz Span  
VIN = 12V, VOUT = 3.3V  
IOUT = 1.2A, fSW = 1.2MHz  
Output Voltage Ripple  
DC2860A Demo Board  
VIN = 12V, VOUT = 3.3V  
V
IN = 12V, VOUT = 3.3V  
IOUT = 1.2A, fSW = 1.2MHz  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀꢁꢂꢃꢄꢅꢂ  
ꢀꢁ ꢁꢂꢃꢄꢅꢆꢇ  
ꢀ0ꢁꢂ ꢃꢁꢁ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
0
ꢀ0  
ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ00  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀ0ꢁꢂ ꢃꢁꢄ  
ꢀ0ꢁꢂ ꢃꢁꢄ  
CISPR25 Radiated Emission  
with Class 5 Peak Limit  
DC2860A Demo Board,  
VIN = 14V, VOUT = 3.3V  
Four Channels Paralleled,  
IOUT = 4.8A, fSW = 2 MHz  
CISPR22 Class B Emissions  
DC2860A Demo Board  
Output Noise Spectrum  
DC2860A, 500MHz Span  
VIN = 12V, VOUT = 3.3V  
IOUT = 1.2A, fSW = 1.2MHz  
VINn = 12V, IOUTn = 1.2A  
5VOUT1, 3.3VOUT2, 2.5VOUT3, 1.8VOUT4  
Spread Spectrum On, No EMI Filter  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀꢁRꢂꢃꢁꢄꢅꢆꢇ  
ꢀꢁRꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢃ ꢄ ꢅꢆꢇꢈꢇR Rꢂꢉꢊꢂꢈꢇꢉ ꢁꢊꢆꢊꢈ  
ꢀꢁꢂꢃꢃ ꢄ ꢅꢆꢂꢇ ꢁꢈꢉꢈꢊ  
ꢀꢁꢂeꢃꢄ ꢀꢁeꢅꢆꢂꢇꢈ ꢉꢊꢄe  
ꢀꢁꢂeꢃ ꢀꢄeꢅꢆeꢇꢈꢉ ꢊꢋꢃe  
ꢀꢁꢂꢃe ꢄꢅꢁꢁꢆ  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
0
0
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ000  
0
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ000  
0
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀ00  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀ0ꢁꢂ ꢃꢁꢄ  
ꢀ0ꢁꢂ ꢃꢄ0  
ꢀ0ꢁꢂ ꢃꢁꢀ  
Rev. 0  
11  
For more information www.analog.com  
LTM8051  
PIN FUNCTIONS  
VIN1 (Pin E7): Input power for the channel 1 regulator.  
the CLKOUT pin will be internally grounded. Float this pin  
if the CLKOUT function is not used. Do not drive this pin.  
The V powers the internal control circuitry for channel  
IN1  
1/4 and is monitored by undervoltage lockout circuitry.  
The VIN1 voltage must be greater than 3.0V for either  
FB1/2/3/4 (Pin L2/D2/D1/L1): The LTM8051 regulates the  
FBn pins to 800mV. Connect the feedback resistor to this  
pin to set the output voltage.  
channel1/4 of the LTM8051 to operate. Decouple V to  
IN1  
ground with an external, low ESR capacitor. See Table 1  
for recommended values.  
PG1/2/3/4 (Pin L6/K6/K7/L7): The PGn pin is the open-  
drain output of an internal comparator. PGn remains low  
until the FBn pin is within 7.5% of the final regulation  
voltage, and there are no fault conditions. PGn is pulled  
VIN4 (Pin F7): Input power for the channel 4 regulator.  
Decouple VIN4 to ground with an external, low ESR capaci-  
tor. See Table 1 for recommended values.  
low during V UVLO, Thermal Shutdown, or when the  
INn  
V
(Bank 5): Input power for the channel 2/3 regula-  
RUNn pin is low.  
IN23  
tor. The V  
bank powers the internal control circuitry  
IN23  
RT14/23 (Pin K1/J1): Connect a resistor between RTn  
and ground to set the switching frequency. Do not drive  
this pin.  
for both channel 2/3 and is monitored by undervoltage  
lockout circuitry. The V voltage must be greater than  
IN23  
3.0V for either channel2/3 of the LTM8051 to operate.  
Decouple VIN23 to ground with an external, low ESR  
capacitor. See Table 1 for recommended values.  
RUN14/23 (Pin D7/C7): The corresponding channel of  
the LTM8051 is shutdown when this pin is low and active  
when this pin is high. Tie to V if shutdown feature is  
INn  
VOUT1/2/3/4 (Bank 1/2/3/4): Power Output for channel  
1/2/3/4, respectively. Apply the output filter capacitor and  
the output load between these pins and GND pins.  
not used. An external resistor divider from V can be  
INn  
used to program a V threshold below which the cor-  
INn  
responding channel of the LTM8051 will shut down. Do  
GND (Bank 6): Tie these GND pins to a local ground plane  
below the LTM8051 and the circuit components. In most  
applications, the bulk of the heat flow out of the LTM8051  
is through these pads, so the printed circuit design has a  
large impact on the thermal performance of the part. See  
the PCB Layout and Thermal Considerations sections for  
more details. Return the feedback divider (RFB) to this net.  
not float this pin.  
SHARE14/23 (Pin N5/A3): Sharing Control. Float  
SHARE14 when VOUT1 and VOUT4 are load sharing.  
Connect SHARE14 to V  
pendent. Float SHARE23 when V  
sharing. Connect SHARE23 to V  
if V  
and V  
are inde-  
CC14  
OUT1  
OUT4  
and V  
are load  
OUT3  
OUT2  
CC23  
if V  
and V  
OUT2  
OUT3  
are independent. Connect SHARE14 and SHARE23 if par-  
allel all four channels. Connect this pin to the SHAREn  
pin of another LTM8051 when load sharing with another  
LTM8051.  
BIAS14/23 (Pin N3/A5): The internal regulator will draw  
current from BIASn instead of V or V  
when BIASn  
IN1  
IN23  
is tied to a voltage higher than 3.2V. For output voltages  
of 3.3V and above this pin should be tied to V . If this  
OUTn  
V
(Pin N4/A4): Internal Regulator Bypass Pin. The  
CC14/23  
pin is tied to a supply other than VOUTn use a local bypass  
internal power drivers and control circuits are powered  
capacitor on this pin.  
from this voltage. VCCn current will be supplied from  
CLKOUT14/23 (Pin D6/C6): Synchronization output.  
When SYNC14/23>2.8V, the CLKOUT14/23 pin provides  
a waveform about 90 degrees out-of-phase with Channel  
1/2 respectively. This allows synchronization with other  
regulators with up to four phases. When an external clock  
is applied to the SYNC pin, the CLKOUT pin will output a  
waveform with about the same phase, duty cycle, and fre-  
quency as the SYNC waveform. In Burst Mode operation,  
BIASn if V  
> 3.2V, otherwise current will be drawn  
BIASn  
from VINn. If VOUT1 and VOUT4 are load sharing, leave  
V
V
floating. If V  
and V  
are load sharing, leave  
are independent volt-  
CC14  
CC23  
OUT2  
OUT3  
floating. If V  
and V  
OUT1  
ages, connect SHARE14 to VCC14  
OUT4 ; if VOUT2 and VOUT3  
are independent voltages, connect SHARE23 to V  
,
CC23  
otherwise the LTM8051 will not regulate properly. Do not  
load the V with external circuitry.  
CCn  
Rev. 0  
12  
For more information www.analog.com  
LTM8051  
PIN FUNCTIONS  
TRSS1/2/3/4 (Pin J2/C2/C1/K2): Output Tracking and  
Soft-Start Pin. This pin allows user control of output volt-  
age ramp rate during startup. A TRSSn voltage below  
0.8V forces the LTM8051 to regulate the FBn pin to equal  
the TRSSn pin voltage. When TRSSn is above 0.8V, the  
tracking function is disabled and the internal reference  
resumes control of the error amplifier. An internal 2μA  
pull-up current on this pin allows a capacitor to program  
output voltage slew rate. This pin is pulled to ground dur-  
ing shutdown and fault conditions; use a series resistor if  
driving from a low impedance output. This pin may be left  
floating if the soft-start feature is not being used.  
SYNC14/23 (Pin F6/E6): External clock synchronization  
input. Ground this pin for low ripple Burst Mode opera-  
tion at low output loads; this will also disable the CLKOUT  
function. Apply a DC voltage between 2.8V and 4.2V for  
forced continuous mode operation with spread spectrum  
modulation. Float the SYNCn pin for forced continuous  
mode operation without spread spectrum modulation.  
Apply a clock source to the SYNCn pin for synchronization  
to an external frequency. The LTM8051 will be in forced  
continuous mode when an external frequency is applied.  
BLOCK DIAGRAM  
V
IN1  
HOUSEKEEPING  
10nF  
CIRCUITRY  
2.2μH  
2.2μH  
2.2μH  
V
RUN14  
TRSS1  
OUT1  
CURRENT MODE  
CONTROLLER  
10pF  
3.3nF  
249k  
FB1  
V
IN4  
0.1μF  
V
OUT4  
CURRENT MODE  
CONTROLLER  
TRSS4  
10pF  
3.3nF  
249k  
FB4  
V
IN23  
HOUSEKEEPING  
CIRCUITRY  
10nF  
V
V
OUT2  
RUN23  
TRSS2  
CURRENT MODE  
CONTROLLER  
10pF  
3.3nF  
249k  
FB2  
2.2μH  
OUT3  
CURRENT MODE  
CONTROLLER  
TRSS3  
3.3nF  
10pF  
249k  
FB3  
8051 BD  
Rev. 0  
13  
For more information www.analog.com  
LTM8051  
OPERATION  
The LTM8051 is a quad standalone non-isolated step-  
down switching DC/DC power supply that can deliver a  
peak current of up to 2.5A per channel. The continuous  
current is determined by the internal operating tempera-  
ture. It provides a precisely regulated output voltage pro-  
grammable via one external resistor from 0.8V to 8V. The  
To enhance efficiency, the LTM8051 automatically  
switches to Burst Mode operation in light or no load  
situations. Between bursts, all circuitry associated with  
controlling the output switch is shut down reducing the  
input supply current to just a few µA.  
The TRSSn node acts as an auxiliary input to the error  
amplifier. The voltage at FBn servos to the TRSSn voltage  
until TRSSn goes above 0.8V. Soft-start is implemented  
by generating a voltage ramp at the TRSSn pin using an  
external capacitor which is charged by an internal 2μA  
constant current. Alternatively, driving the TRSSn pin with  
a signal source or resistive network provides a tracking  
function. Do not drive the TRSSn pin with a low imped-  
ance voltage source. See the Applications Information  
section for more details.  
input voltage range for V , V  
input voltage range for V is 2V to 40V.  
is 3V to 40V, while the  
IN1 IN23  
IN4  
Given that the LTM8051 is a step-down converter, make  
sure that the input voltage is high enough to support the  
desired output voltage and load current. See simplified  
Block Diagram.  
The LTM8051 contains current mode controllers, power  
switching elements, power inductors and a modest  
amount of input and output capacitance. The LTM8051 is  
a fixed frequency PWM regulator. The switching frequency  
is set by simply connecting the appropriate resistor value  
from the RTn pin to GND.  
The LTM8051 contains power good comparators which  
trip when the FBn pin is at about 92% to 108% of its regu-  
lated value. The PGn output is an open-drain transistor  
that is off when the output is in regulation, allowing an  
external resistor to pull the PGn pin high.  
Internal regulators provide power to the control circuit-  
ries. Bias regulators normally draw power from the V  
INn  
pin, but if the BIASn pin is connected to an external volt-  
age higher than 3.2V, bias power is drawn from the exter-  
nal source (typically the regulated output voltage). This  
improves efficiency. Tie BIASn to GND if it is not used.  
The LTM8051 is equipped with a thermal shutdown that  
inhibits power switching at high junction temperatures.  
The activation threshold of this function is above the max-  
imum temperature rating to avoid interfering with normal  
operation, so prolonged or repetitive operation under a  
condition in which the thermal shutdown activates may  
damage or impair the reliability of the device.  
Rev. 0  
14  
For more information www.analog.com  
LTM8051  
APPLICATIONS INFORMATION  
Set Output Voltage  
For most applications, the design process is straight-  
forward, summarized as follows:  
The output voltage is programmed with a FB resistor as  
shown in the Figure below. Choose the resistor value  
according to:  
1. Look at Table 1 and find the row that has the desired  
input range and output voltage.  
249kΩ  
2. Apply the recommended CIN, COUT, RFB and RT values.  
3. Connect BIAS as indicated.  
RFB =  
V
OUT 1  
0.8V  
When using the LTM8051 with different output voltages,  
the higher frequency recommended by Table 1 will usu-  
ally result in the best operation. While these component  
combinations have been tested for proper operation, it is  
incumbent upon the user to verify proper operation over  
the intended system’s line, load and environmental condi-  
tions. Bear in mind that the maximum output current is  
limited by junction temperature, the relationship between  
the input and output voltage magnitude and other fac-  
tors. Please refer to the graphs in the Typical Performance  
Characteristics section for guidance.  
1% resistor is recommended to maintain output voltage  
accuracy.  
ꢀꢁRRꢂꢃꢄ ꢅꢆꢇꢂ  
ꢀꢁꢂꢃRꢁꢄꢄꢅR  
ꢀ.ꢀꢁꢂ  
ꢀꢁꢂ  
0.ꢀꢁ  
ꢀ.ꢀꢁꢂ  
ꢀ0ꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃ  
R
ꢀꢁ  
The maximum frequency (and attendant RT value) at  
which the LTM8051 should be allowed to switch is given  
ꢂ0ꢃꢄ ꢅ0ꢄ  
in Table 1 in the Maximum f column, while the recom-  
Figure 1. Set Output Voltage with a FB Resistor  
SW  
mended frequency (and R value) for optimal efficiency  
T
over the given input condition is given in the f column.  
SW  
There are additional conditions that must be satisfied if  
the synchronization function is used. Please refer to the  
Synchronization section for details.  
Rev. 0  
15  
For more information www.analog.com  
LTM8051  
APPLICATIONS INFORMATION  
Capacitor Selection Considerations  
Ceramic capacitors are also piezoelectric. In Burst Mode  
operation, the LTM8051’s switching frequency depends  
on the load current, and can excite a ceramic capacitor  
at audio frequencies, generating audible noise. Since the  
LTM8051 operates at a lower current limit during Burst  
Mode operation, the noise is typically very quiet to a  
casual ear.  
The C and C  
capacitor values in Table 1 are the mini-  
OUT  
mumIrNecommended values for the associated operating  
conditions. Applying capacitor values below those indi-  
cated in Table 1 is not recommended and may result in  
undesirable operation. Using larger values is generally  
acceptable, and can yield improved dynamic response,  
if it is necessary. Again, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions.  
If this audible noise is unacceptable, use a high perfor-  
mance electrolytic capacitor at the output. It may also be  
a parallel combination of a ceramic capacitor and a low  
cost electrolytic capacitor.  
Ceramic capacitors are small, robust and have very low  
ESR. However, not all ceramic capacitors are suitable. X5R  
and X7R types are stable over temperature and applied  
voltage and give dependable service. Other types, includ-  
ing Y5V and Z5U have very large temperature and voltage  
coefficients of capacitance. In an application circuit they  
may have only a small fraction of their nominal capaci-  
tance resulting in much higher output voltage ripple  
than expected.  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM8051. A  
ceramic input capacitor combined with trace or cable  
inductance forms a high-Q (underdamped) tank circuit.  
If the LTM8051 circuit is plugged into a live supply, the  
input voltage can ring to twice its nominal value, possi-  
bly exceeding the device’s rating. This situation is easily  
avoided; see the Hot-Plugging Safely section.  
Table 1. Recommended Component Values and Configuration (TA = 25°C)  
V
R
f
MAX f  
MIN  
RT  
OUT  
FB  
(kΩ)  
SW  
SW  
2
V
(V)  
0.8  
1
C
C
BIAS  
C
(kHz)  
R (kΩ)  
(kHz)  
1200  
1400  
1400  
1400  
1800  
1800  
2000  
2800  
3000  
3000  
(kΩ)  
24.9  
21  
IN  
IN  
OUT  
FF  
T
1
1
1
1
3V to 40V  
3V to 40V  
3V to 40V  
3V to 40V  
Open 1µF 50V X5R 0805 2 x 100uF 4V X5R 0805  
3.2V to 10V  
3.2V to 10V  
3.2V to 10V  
3.2V to 10V  
3.2V to 10V  
3.2V to 10V  
3.2V to 10V  
3.2V to 10V  
3.2V to 10V  
3.2V to 10V  
47pF  
450  
75  
1000  
499  
287  
200  
165  
118  
78.7  
47.5  
27.4  
1µF 50V X5R 0805 2 x 100uF 4V X5R 0805  
1µF 50V X5R 0805 2 x 100uF 4V X5R 0805  
1µF 50V X5R 0805 2 x 100uF 4V X5R 0805  
33pF  
550  
60.4  
49.9  
40.2  
40.2  
34.8  
27.4  
24.9  
22.1  
16.5  
1.2  
1.5  
1.8  
2
22pF  
650  
21  
22pF  
800  
21  
1
3.2V to 40V  
3.5V to 40V  
4.2V to 40V  
1µF 50V X5R 0805  
1µF 50V X5R 0805  
1µF 50V X5R 0805  
1µF 50V X5R 0805  
1µF 50V X5R 0805  
1µF 50V X5R 0805  
100uF 4V X5R 0805  
100uF 4V X5R 0805  
100uF 4V X5R 0805  
100uF 4V X5R 0805  
47uF 6.3V X5R 0805  
22uF 10V X5R 0805  
-
-
-
-
-
-
800  
15  
1
1
900  
15  
2.5  
3.3  
5
1100  
1200  
1300  
1700  
13.3  
8.06  
7.15  
7.15  
1
1
5V to 40V  
7V to 40V  
1
10.5V to 40V  
8
Note 1: The LTM8051 may be capable of the operating at lower input voltages but may skip switching cycles.  
Note 2: A bulk input capacitor is required.  
Rev. 0  
16  
For more information www.analog.com  
LTM8051  
APPLICATIONS INFORMATION  
Frequency Selection  
excessive heat or even damage the LTM8051 if the output  
is overloaded or short-circuited. A frequency that is too  
low can result in a final design that has too much output  
ripple or too large of an output capacitor.  
The LTM8051 uses a constant frequency PWM architec-  
ture that can be programmed to switch from 300kHz to  
3MHz by using a resistor tied from the RT pin to ground.  
Table 2 provides a list of R resistor values and their resul-  
T
BIASn Pin Considerations  
tant frequencies. The resistors in the table are standard  
The BIASn pin is used to provide drive power for the  
internal power switching stage and operate other internal  
circuitry. For proper operation, it must be powered by at  
least 3.2V. If the output voltage is programmed to 3.2V  
1% E96 values.  
Operating Frequency Trade-Offs  
It is recommended that the user apply the optimal RT value  
given in Table 1 for the input and output operating condi-  
tion. When using the LTM8051 with different output volt-  
ages, the higher frequency recommended by Table 1 will  
usually result in the best operation. System level or other  
considerations, however, may necessitate another operat-  
ing frequency. While the LTM8051 is flexible enough to  
accommodate a wide range of operating frequencies, a  
haphazardly chosen one may result in undesirable opera-  
tion under certain operating or fault conditions. A fre-  
quency that is too high can reduce efficiency, generate  
or higher, BIASn may be simply tied to V  
. If V  
is less than 3.2V, BIASn can be tied to OVUINTnn or sOoUmTen  
other voltage source. If the BIASn pin voltage is too high,  
the efficiency of the LTM8051 may suffer. The optimum  
BIASn voltage is dependent upon many factors, such as  
load current, input voltage, output voltage and switching  
frequency. In all cases, ensure that the maximum volt-  
age at the BIASn pin is less than 10V. If BIASn power is  
applied from a remote or noisy voltage source, it may be  
necessary to apply a decoupling capacitor locally to the  
pin. A 1µF ceramic capacitor works well. The BIASn pin  
may also be tied to GND at the cost of a small degradation  
in efficiency.  
Table 2. Switching Frequency vs RT Value  
f
SW  
(MHz)  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
R (kΩ)  
T
113  
86.6  
68.1  
54.9  
46.4  
40.2  
34.8  
30.9  
24.9  
21.0  
17.8  
15.0  
13.3  
11.5  
10.2  
9.09  
8.06  
7.15  
Maximum Load  
The maximum practical continuous load that the  
LTM8051 can drive per channel, while rated at 1.2A,  
actually depends upon both the internal current limit  
and the internal temperature. The internal current limit is  
designed to prevent damage to the LTM8051 in the case  
of overload or short-circuit. The internal temperature of  
the LTM8051 depends upon operating conditions such  
as the ambient temperature, the power delivered, and  
the heat sinking capability of the system. For example,  
if V  
of LTM8051 is configured to regulate at 1V, and  
OUT1  
the other 3 channels are turned off, V  
may continu-  
OUT1  
ously deliver 3A from 24V if the ambient temperature  
IN  
is controlled to less than 60°C. This is quite a bit higher  
than the 1.2A continuous rating. Please see graphs in the  
Typical Performance Characteristics section. Similarly,  
if all 4 channels of the LTM8051 are delivering 8V  
OUT  
and the ambient temperature is 100°C, each channel will  
deliver at most 0.6A from 24V , which is less than the  
IN  
1.2A continuous rating.  
Rev. 0  
17  
For more information www.analog.com  
LTM8051  
APPLICATIONS INFORMATION  
Power Derating  
The junction temperatures are monitored while ambient  
temperature is increased with and without airflow. The  
power loss increase with ambient temperature change  
is factored into the derating curves. The junctions are  
maintained at ~120°C maximum while lowering output  
current or power while increasing ambient temperature.  
The decreased output current will decrease the internal  
module loss as ambient temperature is increased.  
The 12V , 24V and 36V power loss curves can be  
IN  
IN  
IN  
used in coordination with the load current derating curves  
for calculating an approximate θ thermal resistance for  
JA  
the LTM8051 with airflow conditions. The power loss  
curves are taken at room temperature, and are increased  
with a 1.35 to 1.4 multiplicative factor at 125°C. These  
factors come from the fact that the power loss of the  
regulator increases about 45% from 25°C to 150°C, thus  
a 45% spread over 125°C delta equates to ~0.35%/°C loss  
increase. A 125°C maximum junction minus 25°C room  
temperature equates to a 100°C increase. This 100°C  
increase multiplied by 0.35%/°C equals a 35% power loss  
increase at the 125°C junction, thus the 1.35 multiplier.  
The derived thermal resistances in Tables 3 through 5  
for the various conditions can be multiplied by the calcu-  
lated power loss as a function of ambient temperature to  
derive temperature rise above ambient, thus maximum  
junction temperature. Room temperature power loss can  
be derived from the power loss curves and adjusted with  
the above ambient temperature multiplicative factors. The  
printed circuit board is a 1.6mm thick 4-layer board with  
two-ounce copper (70µm) for all the layers.  
The derating curves are plotted with four V  
at the  
OUTn  
same operating condition starting at 6A of total load cur-  
rent and low ambient temperature. The derating curves  
with airflow are measured at output voltages of 1.5V, 3.3V  
and 5V. These are chosen to include the lower and higher  
output voltage ranges for correlating the thermal resis-  
tance. Thermal models are derived from several tempera-  
ture measurements in a controlled temperature chamber  
along with thermal FEA modeling.  
Table 3. 1.5V Output  
DERATING CURVE  
V
IN  
(V)  
POWER LOSS CURVE  
AIRFLOW (LFM)  
HEAT SINK  
θ
JA  
(°C/W)  
Graph 37-39  
12, 24, 36  
Graph 04  
0
None  
16  
Graph 37-39  
Graph 37-39  
12, 24, 36  
12, 24, 36  
Graph 04  
Graph 04  
200  
400  
None  
None  
13.5  
12.5  
Table 4. 3.3V Output  
DERATING CURVE  
Graph 40-42  
V
(V)  
POWER LOSS CURVE  
AIRFLOW (LFM)  
HEAT SINK  
θ
JA  
(°C/W)  
IN  
12, 24, 36  
Graph 08  
0
None  
16  
Graph 40-42  
Graph 40-42  
12, 24, 36  
12, 24, 36  
Graph 08  
Graph 08  
200  
400  
None  
None  
13.5  
12.5  
Table 5. 5V Output  
DERATING CURVE  
Graph 43-45  
V
(V)  
POWER LOSS CURVE  
AIRFLOW (LFM)  
HEAT SINK  
θ
JA  
(°C/W)  
IN  
12, 24, 36  
Graph 10  
0
None  
16  
Graph 43-45  
Graph 43-45  
12, 24, 36  
12, 24, 36  
Graph 10  
Graph 10  
200  
400  
None  
None  
13.5  
12.5  
Rev. 0  
18  
For more information www.analog.com  
LTM8051  
APPLICATIONS INFORMATION  
Load Sharing  
Minimum Input Voltage  
The four LTM8051 channels may be paralleled to produce  
higher currents. To do this on two or more LTM8051, tie  
The LTM8051 is a step-down converter, so a minimum  
amount of headroom is required to keep the output in  
regulation. Keep the input above 3V to ensure proper  
operation. Voltage transients or ripple valleys that cause  
the input to fall below 3V may turn off the LTM8051.  
the V , V  
, FBn and SHAREn pins of all the paral-  
INn OUTn  
leled channels/modules together (see Figure 7). To ensure  
that paralleled channels start up together, the TRSSn pins  
may be tied together, as well. If it is inconvenient to tie  
the TRSSn pins together, make sure that the same value  
soft-start capacitors are used for each µModule regulator.  
VIN1 must be above 3V for channel 1 and channel 4 to  
operate. If VIN1 is above 3V, channel 4 will operate as long  
as V is above 2V.  
IN4  
When load sharing among n units and using a single R  
FB  
V
must be above 3V for channel 2 and channel 3 to  
resistor, the value of the resistor is:  
IN23  
operate.  
199.2  
n(VOUT 0.8)  
RFB =  
,where RFB is in kΩ  
Output Voltage Tracking and Soft-Start  
The LTM8051 allows the user to adjust its output voltage  
ramp rate by means of the TRSSn pin. An internal 2μA  
pulls up the TRSSn pin to about 2.4V. Putting an external  
capacitor on TRSSn enables soft starting the output to  
reduce current surges on the input supply. During the  
soft-start ramp the output voltage will proportionally track  
the TRSSn pin voltage. For output tracking applications,  
TRSSn can be externally driven by another voltage source.  
From 0V to 0.8V, the TRSSn voltage will override the  
internal 0.8V reference input to the error amplifier, thus  
regulating the FBn pin voltage to that of the TRSSn pin.  
When TRSSn is above 0.8V, tracking is disabled and the  
feedback voltage will regulate to the internal reference  
voltage. The TRSSn pin may be left floating if the function  
is not needed.  
Examples of load sharing applications are given in Figure 6  
through Figure 8.  
Burst Mode Operation  
To enhance efficiency at light loads, the LTM8051  
automatically switches to Burst Mode operation which  
keeps the output capacitor charged to the proper volt-  
age while minimizing the input quiescent current. During  
Burst Mode operation, the LTM8051 delivers single cycle  
bursts of current to the output capacitor followed by sleep  
periods where most of the internal circuitry is powered off  
and energy is delivered to the load by the output capacitor.  
During the sleep time, VINn and BIASn quiescent currents  
are greatly reduced, so, as the load current decreases  
towards a no load condition, the percentage of time that  
the LTM8051 operates in sleep mode increases and the  
average input current is greatly reduced, resulting in  
higher light load efficiency.  
An active pull-down circuit is connected to the TRSSn  
pin which will discharge the external soft-start capacitor  
in the case of fault conditions and restart the ramp when  
the faults are cleared. Fault conditions that clear the soft-  
Burst Mode operation is enabled by tying SYNC to GND.  
start capacitor are the RUNn pin transitioning low, V  
INn  
voltage falling too low, or thermal shutdown.  
Rev. 0  
19  
For more information www.analog.com  
LTM8051  
APPLICATIONS INFORMATION  
Pre-Biased Output  
Shorted Input Protection  
As discussed in the Output Voltage Tracking and Soft-Start  
section, the LTM8051 regulates the output to the FBn volt-  
age determined by the TRSSn pin whenever TRSSn is less  
than 0.8V. If the LTM8051 output is higher than the target  
output voltage, and SYNCn is not held below 0.8V, the  
LTM8051 will attempt to regulate the output to the target  
voltage by returning a small amount of energy back to the  
input supply. If there is nothing loading the input supply,  
its voltage may rise. Take care that it does not rise so high  
that the input voltage exceeds the absolute maximum rat-  
ing of the LTM8051. If SYNC is grounded, the LTM8051  
will not return current to the input.  
Care needs to be taken in systems where the output is  
held high when the input to the LTM8051 is absent. This  
may occur in battery charging applications or in battery  
backup systems where a battery or some other supply  
is diode OR’ed with the LTM8051’s output. If the V  
INn  
pin is allowed to float and the RUNn pin is held high  
(either by a logic signal or because it is tied to VINn),  
then the LTM8051’s internal circuitry pulls its quiescent  
current through its internal power switch. This is fine if  
your system can tolerate a few milliamps in this state.  
If you ground the RUNn pin, the internal current drops  
to essentially zero. However, if the V pin is grounded  
INn  
while the output is held high, parasitic diodes inside the  
LTM8051 can pull large currents from the output through  
Synchronization  
the V pin. Figure 5 shows a circuit that runs only when  
INn  
To select low ripple Burst Mode operation, tie the SYNC  
pin below about 0.8V (this can be ground or a logic low  
output). To synchronize the LTM8051 oscillator to an  
external frequency, connect a square wave (with about  
20% to 80% duty cycle) to the SYNCn pin. The square  
wave amplitude should have valleys that are below 0.8V  
and peaks above 1.5V.  
the input voltage is present and that protects against a  
shorted or reversed input.  
ꢁꢂ  
ꢁꢂ  
ꢂꢃ0ꢄꢅ  
Rꢀꢁ  
The LTM8051 may be synchronized over a 300kHz to  
3MHz range. The LTM8051 will not enter Burst Mode  
operation at light output loads while synchronized to an  
ꢀ0ꢁꢂ ꢃ0ꢄ  
external clock. The R resistor should be chosen to set  
T
Figure 2. The Input Diode Prevents a Shorted Input from  
Discharging a Backup Battery Tied to the Output. It Also Protects  
the Circuit from a Reversed Input. The LTM8051 Runs Only  
When the Input Is Present  
the switching frequency equal to or below the lowest  
synchronization input. For example, if the synchroniza-  
tion signal will be 500kHz and higher, the R should be  
T
selected for 500kHz or lower.  
PCB Layout  
The LTM8051 features spread spectrum operation to fur-  
ther reduce EMI/EMC emissions. To enable spread spec-  
trum operation, apply between 2.8V and 4.2V to the SYNC  
pin. In this mode, triangular frequency modulation is used  
to vary the switching frequency between the value pro-  
Most of the headaches associated with PCB layout have  
been alleviated or even eliminated by the high level of  
integration of the LTM8051. The LTM8051 is neverthe-  
less a switching power supply, and care must be taken to  
minimize EMI and ensure proper operation. Even with the  
high level of integration, you may fail to achieve specified  
operation with a haphazard or poor layout. See Figure 3  
for a suggested layout. Ensure that the grounding and  
heat sinking are acceptable.  
grammed by R to about 20% higher than that value. The  
T
modulation frequency is about 7kHz. For example, when  
the LTM8051 is programmed to 2MHz, the frequency will  
vary from 2MHz to 2.4MHz at a 7kHz rate. When spread  
spectrum operation is selected, Burst Mode operation is  
disabled, and the part may run in discontinuous mode.  
Rev. 0  
20  
For more information www.analog.com  
LTM8051  
APPLICATIONS INFORMATION  
A few rules to keep in mind are:  
1. Place the R and R resistors as close as possible to  
FB  
T
COUT2  
COUT4  
their respective pins.  
2. Place the C capacitor as close as possible to the V  
IN  
IN  
and GND connection of the LTM8051.  
3. Place the C  
capacitor as close as possible to the  
OUT  
COUT3  
COUT1  
V
and GND connection of the LTM8051.  
OUT  
4. Place the CIN and COUT capacitors such that their  
ground current flow directly adjacent to or underneath  
the LTM8051.  
Figure 3. Layout Showing Suggested External Components,  
GND Plane and Vias  
5. Connect all of the GND connections to as large a cop-  
per pour or plane area as possible on the top layer.  
Avoid breaking the ground connection between the  
external components and the LTM8051.  
of the LTM8051 can ring to more than twice the nominal  
input voltage, possibly exceeding the LTM8051’s rating  
and damaging the part. If the input supply is poorly con-  
trolled or the LTM8051 is hot-plugged into an energized  
supply, the input network should be designed to prevent  
this overshoot. This can be accomplished by installing  
a small resistor in series to VIN, but the most popular  
method of controlling input voltage overshoot is add an  
6. Use vias to connect the GND copper area to the  
board’s internal ground planes. Liberally distribute  
these GND vias to provide both a good ground con-  
nection and thermal path to the internal planes of the  
printed circuit board. Pay attention to the location and  
density of the thermal vias in Figure 3. The LTM8051  
can benefit from the heat sinking afforded by vias that  
connect to internal GND planes at these locations,  
due to their proximity to internal power handling  
components. The optimum number of thermal vias  
depends upon the printed circuit board design. For  
example, a board might use very small via holes. It  
should employ more thermal vias than a board that  
uses larger holes.  
electrolytic bulk cap to the V net. This capacitor’s rela-  
IN  
tively high equivalent series resistance damps the circuit  
and eliminates the voltage overshoot. The extra capacitor  
improves low frequency ripple filtering and can slightly  
improve the efficiency of the circuit, though it is likely to  
be the largest component in the circuit.  
Thermal Considerations  
The LTM8051 output current may need to be derated if  
it is required to operate in a high ambient temperature.  
The amount of current derating is dependent upon the  
input voltage, output power and ambient temperature.  
The derating curves given in the Typical Performance  
Characteristics section can be used as a guide. These  
curves were generated by the LTM8051 mounted to  
Hot-Plugging Safely  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LTM8051. However, these capacitors  
can cause problems if the LTM8051 is plugged into a  
live supply (see Application Note 88 for a complete dis-  
cussion). The low loss ceramic capacitor combined with  
stray inductance in series with the power source forms an  
underdamped tank circuit, and the voltage at the V pin  
IN  
Rev. 0  
21  
For more information www.analog.com  
LTM8051  
APPLICATIONS INFORMATION  
a 74cm2 4-layer FR4 printed circuit board. Boards of  
other sizes and layer count can exhibit different thermal  
behavior, so it is incumbent upon the user to verify proper  
operation over the intended system’s line, load and envi-  
ronmental operating conditions.  
3. θJCtop is determined with nearly all of the compo-  
nent power dissipation flowing through the top of the  
package. As the electrical connections of the typical  
µModule regulator are on the bottom of the package,  
it is rare for an application to operate such that most  
of the heat flows from the junction to the top of the  
part. As in the case of θJCbot, this value may be useful  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
For increased accuracy and fidelity to the actual applica-  
tion, many designers use FEA (Finite Element Analysis) or  
CFD (Computational Fluid Dynamics) to predict thermal  
performance. To that end, the Pin Configuration typically  
gives three dominant thermal coefficients:  
Given these definitions, it should now be apparent that  
none of these thermal coefficients reflects an actual physi-  
cal operating condition of a µModule regulator. Thus, none  
of them can be individually used to accurately predict the  
thermal performance of the product. Likewise, it would  
be inappropriate to attempt to use any one coefficient to  
correlate to the junction temperature vs load graphs given  
in the product’s data sheet. The only appropriate way to  
use the coefficients is when running a detailed thermal  
analysis, such as FEA, which considers all of the thermal  
resistances simultaneously.  
1. θ – Thermal resistance from junction to ambient  
JA  
2. θ  
– Thermal resistance from junction to the bot-  
JCbot  
tom of the product case  
3. θ  
– Thermal resistance from junction to top of  
JCtop  
the product case  
While the meaning of each of these coefficients may seem  
to be intuitive, JEDEC has defined each to avoid confusion  
and inconsistency. These definitions are given in JESD  
51-12, and are quoted or paraphrased below:  
A graphical approximation of these dominant thermal  
resistances is given in Figure 4. Some thermal resis-  
tance elements, such as heat flow out the side of the  
package, are not defined by the JEDEC standard, and are  
not shown. The blue resistances are contained within the  
µModule regulator, and the green are outside.  
1. θJA is the natural convection junction-to-ambient  
air thermal resistance measured in a one cubic foot  
sealed enclosure. This environment is sometimes  
referred to as “still air” although natural convection  
causes the air to move. This value is determined with  
the part mounted to a JESD 51-9 defined test board,  
which does not reflect an actual application or viable  
operating condition.  
The die temperature of the LTM8051 must be lower than  
the maximum rating, so care should be taken in the layout  
of the circuit to ensure good heat sinking of the LTM8051.  
The bulk of the heat flow out of the LTM8051 is through  
the bottom of the package and the pads into the printed  
circuit board. Consequently a poor printed circuit board  
design can cause excessive heating, resulting in impaired  
performance or reliability. Please refer to the PCB Layout  
section for printed circuit board design suggestions.  
2. θJCbot is the junction-to-board thermal resistance  
with all of the component power dissipation flow-  
ing through the bottom of the package. In the typical  
µModule regulator, the bulk of the heat flows out the  
bottom of the package, but there is always heat flow  
out into the ambient environment. As a result, this  
thermal resistance value may be useful for compar-  
ing packages but the test conditions don’t generally  
match the user’s application.  
Rev. 0  
22  
For more information www.analog.com  
LTM8051  
APPLICATIONS INFORMATION  
ꢅꢆꢇꢈꢉꢊe ꢋꢌꢍꢎꢏꢌ  
θ
ꢐꢓꢔꢏꢕꢎꢖꢔꢗꢕꢖꢗꢘꢆꢝꢎꢌꢔꢕ Rꢌꢙꢎꢙꢕꢘꢔꢏꢌ  
ꢐꢘ  
θ
ꢐꢓꢔꢏꢕꢎꢖꢔꢗꢕꢖꢗꢏꢘꢙꢌ  
ꢏꢘꢙꢌ ꢚꢕꢖꢛꢜꢗꢕꢖꢗꢘꢆꢝꢎꢌꢔꢕ  
ꢐꢏꢑꢇꢒ  
ꢚꢕꢖꢛꢜ Rꢌꢙꢎꢙꢕꢘꢔꢏꢌ  
Rꢌꢙꢎꢙꢕꢘꢔꢏꢌ  
ꢐꢓꢔꢏꢕꢎꢖꢔ  
ꢘꢆꢝꢎꢌꢔꢕ  
θ
ꢐꢏꢞꢇꢑ  
ꢐꢓꢔꢏꢕꢎꢖꢔꢗꢕꢖꢗꢏꢘꢙꢌ  
ꢏꢘꢙꢌ ꢚꢝꢖꢕꢕꢖꢆꢜꢗꢕꢖꢗꢝꢖꢘRꢋ  
Rꢌꢙꢎꢙꢕꢘꢔꢏꢌ  
ꢝꢖꢘRꢋꢗꢕꢖꢗꢘꢆꢝꢎꢌꢔꢕ  
Rꢌꢙꢎꢙꢕꢘꢔꢏꢌ  
ꢚꢝꢖꢕꢕꢖꢆꢜ Rꢌꢙꢎꢙꢕꢘꢔꢏꢌ  
ꢀ0ꢁꢂ ꢃ0ꢄ  
Figure 4. Graphical Representation of Thermal Coefficients, Including JESD51-12 Terms  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ ꢂꢃ ꢄ0ꢁ  
Rꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ.ꢀꢂ  
ꢀ ꢁ.ꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂRꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ.ꢁꢂ  
ꢀꢁꢁꢂꢃ  
ꢀꢁ  
ꢀ00ꢁꢂ  
ꢀ00ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁ.ꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
Rꢀꢁꢂ  
ꢀ.ꢀꢁ  
ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ00ꢁꢂ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂRꢃꢄꢅ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃ  
ꢀ00ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ0ꢁꢂ ꢃ0ꢁ  
ꢀꢁꢂꢃ ꢂꢄꢅ ꢆꢃꢇꢈꢉ ꢅRꢃꢃꢊꢋ ꢅRꢃꢃꢌꢋ ꢅRꢃꢃꢍꢋ ꢅRꢃꢃꢎꢋ ꢀꢏꢊꢋ ꢀꢏꢌꢋ ꢀꢏꢍꢋ ꢀꢏꢎꢋ ꢐꢑꢒꢄꢆꢅꢊꢎꢋ ꢐꢑꢒꢄꢆꢅꢌꢍ  
Figure 5. 7V to 40V Input to 5V at 1A, 1.8V at 2A, and Paralleled 3.3V at 2.5A  
Rev. 0  
23  
For more information www.analog.com  
LTM8051  
TYPICAL APPLICATIONS  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ ꢂꢃ ꢄ0ꢁ  
Rꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁ.ꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ00ꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀ00ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂRꢃꢄꢅ  
ꢀꢁꢂRꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁ.ꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁ  
ꢀ00ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ00ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
0
0
ꢀꢁꢂꢃ ꢂꢄꢅ ꢆꢃꢇꢈꢉ ꢅRꢃꢃꢊꢋ ꢅRꢃꢃꢌꢋ ꢅRꢃꢃꢍꢋ ꢅRꢃꢃꢎꢋ ꢀꢏꢊꢋ ꢀꢏꢌꢋ ꢀꢏꢍꢋ ꢀꢏꢎꢋ ꢃꢐꢂꢑꢊꢎꢋ ꢑꢒꢓꢄꢆꢅꢌꢍꢋ ꢔꢑꢑꢊꢎꢋ ꢔꢑꢑꢌꢍ  
Figure 6. 5V to 40V Input to Paralleled 3.3V at 5A, frequency is synchronized.  
ꢀꢁꢂ  
ꢀꢁ.ꢀꢂ  
ꢀ ꢁ.ꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ00ꢁꢂ  
ꢀ00ꢁ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀ.ꢁꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂRꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ ꢂꢃ ꢄ0ꢁ  
ꢀꢁꢂ  
Rꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁ.ꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ00ꢁꢂ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂRꢃꢄꢅ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃ  
ꢀ00ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
0
0
ꢀꢁꢂꢃ ꢂꢄꢅ ꢆꢃꢇꢈꢉ ꢅRꢃꢃꢊꢋ ꢅRꢃꢃꢌꢋ ꢅRꢃꢃꢍꢋ ꢅRꢃꢃꢎꢋ ꢀꢏꢊꢋ ꢀꢏꢌꢋ ꢀꢏꢍꢋ ꢀꢏꢎꢋ ꢐꢑꢒꢄꢆꢅꢊꢎꢋ ꢐꢑꢒꢄꢆꢅꢌꢍ  
Figure 7. 7V to 40V Input to Cascaded 1.8V at 1.5A and Paralleled 3.3V at 2.5A  
Rev. 0  
24  
For more information www.analog.com  
LTM8051  
TYPICAL APPLICATIONS  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ ꢂꢃ ꢄ0ꢁ  
Rꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
Rꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁ.ꢂꢃꢄꢅ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁ.ꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ0ꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ.ꢂꢃ  
ꢀꢁ.ꢂꢃ  
ꢀꢁꢂRꢃꢄꢅ  
ꢀꢁꢂRꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂRꢃꢄꢅ  
ꢀꢁꢂRꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
Rꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁ.ꢂꢃꢄꢅ  
ꢀꢁ.ꢂꢃ  
ꢀ ꢁ.ꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ00ꢁꢂ ꢃ ꢄ  
ꢀ00ꢁꢂ ꢃ ꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ0ꢁꢂ ꢃ0ꢀ  
ꢀꢁꢂꢃ ꢂꢄꢅ ꢆꢃꢇꢈꢉ ꢅRꢃꢃꢊꢋ ꢅRꢃꢃꢌꢋ ꢅRꢃꢃꢍꢋ ꢅRꢃꢃꢎꢋ ꢀꢏꢊꢋ ꢀꢏꢌꢋ ꢀꢏꢍꢋ ꢀꢏꢎꢋ ꢐꢑꢑꢊꢎꢋ ꢐꢑꢑꢌꢍ  
Figure 8. Two LTM8051 are Paralleled to Supply 3.3V/10A  
Rev. 0  
25  
For more information www.analog.com  
LTM8051  
PACKAGE DESCRIPTION  
Table 6. LTM8051 Pinout (Sorted by Pin Number)  
Pin  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
Pin  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
Pin Name  
Pin  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
Pin  
J1  
Pin Name  
Pin  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
Pin  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
Pin Name  
TRSS3  
TRSS2  
GND  
Pin  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Pin  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
Pin Name  
FB3  
Pin  
E1  
Pin Name  
GND  
Pin  
F1  
Pin Name  
GND  
Pin  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
Pin Name  
V
V
V
OUT3  
V
OUT3  
V
IN23  
OUT3  
OUT3  
FB2  
E2  
GND  
F2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
SHARE23  
GND  
GND  
GND  
GND  
E3  
GND  
F3  
GND  
V
GND  
GND  
E4  
GND  
F4  
GND  
CC23  
BIAS23  
GND  
GND  
E5  
GND  
F5  
GND  
V
OUT2  
V
OUT2  
V
CLKOUT23  
RUN23  
Pin Name  
RT14  
CLKOUT14  
RUN14  
Pin Name  
FB4  
E6  
SYNC23  
F6  
SYNC14  
OUT2  
OUT2  
V
E7  
V
F7  
V
IN4  
IN1  
Pin Name  
Pin Name  
RT23  
TRSS1  
GND  
Pin  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
Pin Name  
Pin  
N1  
N2  
N3  
N4  
N5  
N6  
N7  
Pin Name  
V
V
OUT1  
V
OUT1  
V
OUT1  
V
OUT1  
IN23  
GND  
GND  
GND  
GND  
GND  
GND  
J2  
TRSS4  
GND  
FB1  
J3  
GND  
GND  
GND  
GND  
BIAS14  
J4  
GND  
GND  
GND  
V
CC14  
J5  
GND  
GND  
GND  
SHARE14  
J6  
GND  
PG2  
PG1  
V
V
OUT4  
V
OUT4  
OUT4  
OUT4  
J7  
GND  
PG3  
PG4  
V
PACKAGE PHOTO  
Rev. 0  
26  
For more information www.analog.com  
LTM8051  
PACKAGE DESCRIPTION  
BGA Package  
91-Lead (11.25mm × 6.25mm × 2.22mm)  
ꢡReꢢeꢣeꢤꢥe ꢂꢕꢊ ꢉꢙꢆꢦ 0ꢑꢧ0ꢨꢧꢍꢒ0ꢨ Rev ꢩꢪ  
ꢠꢈꢈ ꢀꢖꢕꢈꢠ  
ꢉꢈꢕꢌꢘꢂ ꢌ  
ꢎꢷ  
ꢞꢞꢞ ꢟ  
ꢌꢎ  
ꢠꢈꢈ ꢀꢖꢕꢈꢠ  
ꢌꢍ  
ꢔꢘꢀ ꢚꢌꢍꢛ  
ꢊꢖRꢀꢈR  
ꢥꢥꢥ  
ꢔꢘꢀ ꢍ  
ꢯꢍ  
ꢁꢖꢂꢉ  
ꢊꢌꢔ  
ꢠꢮꢋꢠꢕRꢌꢕꢈ  
ꢅꢍ  
ꢅꢎ  
ꢉꢈꢕꢌꢘꢂ ꢋ  
ꢩꢯ ꢡꢫꢍ ꢔꢂꢌꢊꢈꢠꢪ  
e
ꢰꢰꢰ  
eee  
ꢝ ꢜ  
ꢎꢷ  
ꢞꢞꢞ ꢟ  
e
ꢔꢌꢊꢃꢌꢆꢈ ꢕꢖꢔ ꢗꢘꢈꢙ  
ꢉꢈꢕꢌꢘꢂ ꢋ  
ꢔꢌꢊꢃꢌꢆꢈ ꢠꢘꢉꢈ ꢗꢘꢈꢙ  
ꢔꢌꢊꢃꢌꢆꢈ ꢋꢖꢕꢕꢖꢁ ꢗꢘꢈꢙ  
ꢉꢈꢕꢌꢘꢂ ꢌ  
ꢀꢖꢕꢈꢠꢬ  
ꢍ. ꢉꢘꢁꢈꢀꢠꢘꢖꢀꢘꢀꢆ ꢌꢀꢉ ꢕꢖꢂꢈRꢌꢀꢊꢘꢀꢆ ꢔꢈR ꢌꢠꢁꢈ ꢜꢍꢐ.ꢑꢁꢧꢍꢫꢫꢐ  
ꢐ.ꢨ00  
ꢐ.000  
ꢏ.ꢎ00  
ꢎ.ꢐ00  
ꢍ.ꢒ00  
0.ꢨ00  
0.000  
0.ꢨ00  
ꢍ.ꢒ00  
ꢎ.ꢐ00  
ꢏ.ꢎ00  
ꢐ.000  
ꢐ.ꢨ00  
ꢎ. ꢌꢂꢂ ꢉꢘꢁꢈꢀꢠꢘꢖꢀꢠ ꢌRꢈ ꢘꢀ ꢁꢘꢂꢂꢘꢁꢈꢕꢈRꢠ  
DIMENSIONS  
ꢋꢌꢂꢂ ꢉꢈꢠꢘꢆꢀꢌꢕꢘꢖꢀ ꢔꢈR ꢄꢈꢔꢫꢑ  
SYMBOL  
MIN  
ꢎ.0ꢏ  
0.ꢏ0  
ꢍ.ꢓꢏ  
0.ꢐꢑ  
0.ꢏꢓ  
NOM  
ꢎ.ꢎꢎ  
0.ꢐ0  
ꢍ.ꢨꢎ  
0.ꢑ0  
0.ꢐ0  
ꢍꢍ.ꢎꢑ  
ꢒ.ꢎꢑ  
0.ꢨ0  
ꢫ.ꢒ0  
ꢐ.ꢨ0  
0.ꢏꢎ  
ꢍ.ꢑ0  
MAX  
NOTES  
ꢉꢈꢕꢌꢘꢂꢠ ꢖꢇ ꢔꢘꢀ ꢦꢍ ꢘꢉꢈꢀꢕꢘꢇꢘꢈR ꢌRꢈ ꢖꢔꢕꢘꢖꢀꢌꢂꢭ  
ꢋꢮꢕ ꢁꢮꢠꢕ ꢋꢈ ꢂꢖꢊꢌꢕꢈꢉ ꢙꢘꢕꢅꢘꢀ ꢕꢅꢈ ꢟꢖꢀꢈ ꢘꢀꢉꢘꢊꢌꢕꢈꢉ.  
ꢕꢅꢈ ꢔꢘꢀ ꢦꢍ ꢘꢉꢈꢀꢕꢘꢇꢘꢈR ꢁꢌꢜ ꢋꢈ ꢈꢘꢕꢅꢈR ꢌ ꢁꢖꢂꢉ ꢖR  
ꢁꢌRꢃꢈꢉ ꢇꢈꢌꢕꢮRꢈ  
ꢌꢍ  
ꢌꢎ  
ꢯꢍ  
e
ꢅꢍ  
ꢅꢎ  
ꢞꢞꢞ  
ꢯꢯꢯ  
ꢥꢥꢥ  
ꢰꢰꢰ  
eee  
ꢎ.ꢐꢍ  
0.ꢑ0  
ꢍ.ꢫꢍ  
0.ꢑꢑ  
0.ꢐꢏ  
ꢋꢌꢂꢂ ꢅꢕ  
0.ꢐ00 0.0ꢎꢑ ꢩ ꢫꢍꢵ  
ꢋꢌꢂꢂ ꢉꢘꢁꢈꢀꢠꢘꢖꢀ  
ꢔꢌꢉ ꢉꢘꢁꢈꢀꢠꢘꢖꢀ  
ꢑ. ꢔRꢘꢁꢌRꢜ ꢉꢌꢕꢮꢁ ꢧꢟꢧ ꢘꢠ ꢠꢈꢌꢕꢘꢀꢆ ꢔꢂꢌꢀꢈ  
ꢔꢌꢊꢃꢌꢆꢈ Rꢖꢙ ꢌꢀꢉ ꢊꢖꢂꢮꢁꢀ ꢂꢌꢋꢈꢂꢘꢀꢆ ꢁꢌꢜ ꢗꢌRꢜ  
!
ꢌꢁꢖꢀꢆ ꢱꢁꢲꢰꢳꢴe ꢔRꢖꢉꢮꢊꢕꢠ. Rꢈꢗꢘꢈꢙ ꢈꢌꢊꢅ ꢔꢌꢊꢃꢌꢆꢈ  
ꢂꢌꢜꢖꢮꢕ ꢊꢌRꢈꢇꢮꢂꢜ  
ꢠꢮꢋꢠꢕRꢌꢕꢈ ꢕꢅꢃ  
ꢁꢖꢂꢉ ꢊꢌꢔ ꢅꢕ  
0.ꢍꢑ  
0.ꢍ0  
0.ꢎ0  
0.ꢍꢑ  
0.0ꢨ  
ꢁꢝꢝꢝꢝꢝꢝ  
ꢱꢁꢲꢰꢳꢴe  
ꢊꢖꢁꢔꢖꢀꢈꢀꢕ  
ꢔꢘꢀ ꢚꢌꢍꢛ  
ꢠꢮꢆꢆꢈꢠꢕꢈꢉ ꢔꢊꢋ ꢂꢌꢜꢖꢮꢕ  
ꢕꢖꢔ ꢗꢘꢈꢙ  
ꢕꢖꢕꢌꢂ ꢀꢮꢁꢋꢈR ꢖꢇ ꢋꢌꢂꢂꢠꢬ ꢫꢍ  
ꢕRꢌꢜ ꢔꢘꢀ ꢍ  
ꢋꢈꢗꢈꢂ  
ꢔꢌꢊꢃꢌꢆꢈ ꢘꢀ ꢕRꢌꢜ ꢂꢖꢌꢉꢘꢀꢆ ꢖRꢘꢈꢀꢕꢌꢕꢘꢖꢀ  
ꢋꢆꢌ ꢫꢍ 0ꢍꢍꢨ Rꢈꢗ ꢩ  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
27  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTM8051  
DESIGN RESOURCES  
SUBJECT  
DESCRIPTION  
µModule Design and Manufacturing Resources  
Design:  
Manufacturing:  
• Selector Guides  
• Quick Start Guide  
• Demo Boards and Gerber Files  
• Free Simulation Tools  
• PCB Design, Assembly and Manufacturing Guidelines  
• Package and Board Level Reliability  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
Digital Power System Management  
Analog Devices’ family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTM8074  
LTM8063  
40V, 1.2A Silent Switcher µModule Regulator  
3.2V ≤ V ≤ 40V, 0.8V ≤ V  
≤ 12V, 4mm × 4mm × 1.82mm BGA  
IN  
OUT  
40V, 2A Step-Down Silent Switcher µModule Regulator  
40V, 2.5A Step-Down Silent Switcher µModule Regulator  
40V, 3.5A Step-Down μModule Regulator  
3.2V ≤ V ≤ 40V, 0.8V ≤ V  
≤ 15V, 4mm × 6.25mm × 2.22mm BGA  
IN  
OUT  
Package  
LTM8065  
3.4V ≤ V ≤ 40V, 0.97V ≤ V  
≤ 18V, 6.25mm × 6.25mm × 2.32mm  
IN  
OUT  
BGA Package  
LTM8053  
LTM8003  
3.4V ≤ V ≤ 40V, 0.97V ≤ V  
≤ 15V, 6.25mm × 9mm × 3.32mm BGA  
IN  
OUT  
40V, 3.5A, H-Grade, 150°C Operation, FMAE-Compliant Pinout 3.4V ≤ V ≤ 40V, 0.97V ≤ V  
≤ 15V, I  
= 3.5A, 6.25mm × 9mm ×  
IN  
OUT  
OUT  
3.32mm BGA  
LTM8052  
LTM4613  
36V, 5A CVCC Step-Down μModule Regulator  
36V, 8A Low EMI Step-Down μModule Regulator  
6V ≤ V ≤ 36V, 1.2V ≤ V  
≤ 24V, Constant Voltage Constant Current,  
IN  
OUT  
11.25mm × 15mm × 2.82mm LGA, 11.25mm × 15mm × 3.42mm BGA  
5V ≤ V ≤ 36V, 3.3V ≤ V ≤ 15V, EN55022B Compliant, 15mm ×  
IN  
OUT  
15mm × 4.32mm LGA, 15mm × 15mm × 4.92mm BGA.  
LTM8073  
LTM8071  
LTM4622  
60V, 3A Step-Down µModule Regulator  
60V, 5A Silent Switcher µModule Regulator  
Dual 2.5A, 20V Step-Down µModule Regulator  
3.4V ≤ V ≤ 60V, 0.85V ≤ V  
≤ 15V, 6.25mm × 9mm × 3.32mm BGA  
≤ 15V, 9mm × 11.25mm × 3.32mm BGA  
≤ 5.5V, 6.25mm × 6.25mm × 1.82mm  
IN  
OUT  
OUT  
OUT  
3.6V ≤ V ≤ 60V, 0.97V ≤ V  
IN  
3.6V ≤ V ≤ 20V, 0.6V ≤ V  
IN  
LGA, 6.25mm × 6.25mm × 2.42mm BGA  
LTM4642  
LTM4643  
Dual 4A, 20V Step-Down µModule Regulator  
Quad 3A, 20V Step-Down µModule Regulator  
4.5V ≤ V ≤ 20V, 0.6V ≤ V ≤ 5.5V, 9mm × 11.25mm × 4.92mm BGA  
IN  
OUT  
4V ≤ V ≤ 20V, 0.6V ≤ V  
≤ 3.3V, 9mm × 15mm × 1.82mm LGA,  
IN  
OUT  
9mm × 15mm × 2.42mm BGA  
LTM4644  
Quad 4A, 14V Step-Down µModule Regulator  
4V ≤ V ≤ 14V, 0.6V ≤ V ≤ 5.5V, 9mm × 15mm × 5.01mm BGA  
IN  
OUT  
Rev. 0  
10/20  
www.analog.com  
ANALOG DEVICES, INC. 2020  
28  

相关型号:

LTM8051IY

Quad 40VIN Silent Switcher μModule Regulator with Configurable 1.2A Output Array
ADI

LTM8052

36VIN, 5A, 2-Quadrant CVCC Step-Down
Linear

LTM8052

Quad 40VIN Silent Switcher μModule Regulator with Configurable 1.2A Output Array
ADI

LTM8052AIV#PBF

LTM8052/LTM8052A - 36VIN, 5A, 2-Quadrant CVCC Step-Down &#181;Module (Power Module) Regulator; Package: LGA; Pins: 81; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8052AIY#PBF

LTM8052/LTM8052A - 36VIN, 5A, 2-Quadrant CVCC Step-Down &#181;Module (Power Module) Regulator; Package: BGA; Pins: 81; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8052AMPV#PBF

LTM8052/LTM8052A - 36VIN, 5A, 2-Quadrant CVCC Step-Down &#181;Module (Power Module) Regulator; Package: LGA; Pins: 81; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8052EV#PBF

LTM8052/LTM8052A - 36VIN, 5A, 2-Quadrant CVCC Step-Down &#181;Module (Power Module) Regulator; Package: LGA; Pins: 81; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8052EY#PBF

暂无描述
Linear

LTM8052MPV#PBF

LTM8052/LTM8052A - 36VIN, 5A, 2-Quadrant CVCC Step-Down &#181;Module (Power Module) Regulator; Package: LGA; Pins: 81; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8052MPY

LTM8052/LTM8052A - 36VIN, 5A, 2-Quadrant CVCC Step-Down &#181;Module (Power Module) Regulator; Package: BGA; Pins: 81; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8053

Dual SEPIC or Inverting Module DC DC Converter
Linear System

LTM8053

60VIN, 3A Silent Switcher μModule Regulator
Linear