MLT04GPZ [ADI]

IC ANALOG MULTIPLIER OR DIVIDER, 8 MHz BAND WIDTH, PDIP18, PLASTIC, DIP-18, Analog Computational Function;
MLT04GPZ
型号: MLT04GPZ
厂家: ADI    ADI
描述:

IC ANALOG MULTIPLIER OR DIVIDER, 8 MHz BAND WIDTH, PDIP18, PLASTIC, DIP-18, Analog Computational Function

文件: 总12页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Four-Channel, Four-Quadrant  
Analog Multiplier  
a
MLT04  
FUNCTIO NAL BLO CK D IAGRAM  
18-Lead Epoxy D IP (P Suffix)  
FEATURES  
Four Independent Channels  
Voltage IN, Voltage OUT  
18-Lead Wide Body SO IC (S Suffix)  
No External Parts Required  
8 MHz Bandw idth  
W4  
1
2
18  
17  
W1  
Four-Quadrant Multiplication  
Voltage Output; W = (X × Y)/ 2.5 V  
0.2% Typical Linearity Error on X or Y Inputs  
Excellent Tem perature Stability: 0.005%  
±2.5 V Analog Input Range  
Operates from ±5 V Supplies  
Low Pow er Dissipation: 150 m W typ  
Spice Model Available  
GND1  
GND4  
X4  
X1  
Y1  
3
4
16  
15  
Y4  
MLT04  
5
V
14  
13  
V
CC  
EE  
Y2  
X2  
6
7
Y3  
X3  
12  
APPLICATIONS  
GND2  
W2  
8
9
11 GND3  
W3  
Geom etry Correction in High-Resolution CRT Displays  
Waveform Modulation & Generation  
Voltage Controlled Am plifiers  
Autom atic Gain Control  
10  
W = (X Y)/2.5V  
Modulation and Dem odulation  
GENERAL D ESCRIP TIO N  
Fabricated in a complementary bipolar process, the MLT 04  
includes four 4-quadrant multiplying cells which have been laser-  
trimmed for accuracy. A precision internal bandgap reference  
normalizes signal computation to a 0.4 scale factor. Drift over  
temperature is under 0.005%/°C. Spot noise voltage of 0.3 µV/Hz  
results in a T HD + Noise performance of 0.02% (LPF = 22 kHz)  
for the lower distortion Y channel. T he four 8 MHz channels  
consume a total of 150 mW of quiescent power.  
T he MLT 04 is a complete, four-channel, voltage output analog  
multiplier packaged in an 18-pin DIP or SOIC-18. T hese complete  
multipliers are ideal for general purpose applications such as voltage  
controlled amplifiers, variable active filters, “zipper” noise free  
audio level adjustment, and automatic gain control. Other applica-  
tions include cost-effective multiple-channel power calculations  
(I × V), polynomial correction generation, and low frequency  
modulation. T he MLT 04 multiplier is ideally suited for generating  
complex, high-order waveforms especially suitable for geometry  
correction in high-resolution CRT display systems.  
T he MLT 04 is available in 18-pin plastic DIP, and SOIC-18  
surface mount packages. All parts are offered in the extended  
industrial temperature range (–40°C to +85°C).  
100  
40  
V
V
T
= +5V  
= –5V  
V
V
= +5V  
= –5V  
CC  
EE  
CC  
EE  
10  
1
= +25°C  
T
= +25°C  
A
A
90  
0
20  
0
8.9MHz  
–3dB  
Av (X OR Y)  
LPF = 500kHz  
THDX: X = 2.5VP, Y = +2.5V DC  
Ø (X OR Y)  
–90  
–20  
–40  
0.1  
X & Y MEASUREMENTS  
SUPERIMPOSED:  
X = 100mV RMS, Y = 2.5V DC  
Y = 100mV RMS, X = 2.5V DC  
THDY: Y = 2.5VP, X = +2.5V DC  
0.01  
10  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 1. Gain & Phase vs. Frequency Response  
Figure 2. THD + Noise vs. Frequency  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood. MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
(V = +5 V, V = 5 V, V = ±2.5 V , R = 2 k, T = +25°C unless otherwise noted.)  
MLT04–SPECIFICATIONS  
CC  
EE  
IN  
P
L
A
P aram eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Units  
MULTIPLIER PERFORMANCE1  
Total Error2 X  
EX  
EY  
–2.5 V < X < +2.5 V, Y = +2.5 V  
–2.5 V < Y < +2.5 V, X = +2.5 V  
–2.5 V < X < +2.5 V, Y = +2.5 V  
–2.5 V < Y < +2.5 V, X = +2.5 V  
X = –2.5 V, Y = 2.5 V, T A = –40°C to +85°C  
Y = –2.5 V, X = 2.5 V, T A = –40°C to +85°C  
X = ±2.5 V, Y = ±2.5 V, T A = –40°C to +85°C  
X = 0 V, Y = 0 V, T A= –40°C to +85°C  
X = 0 V, Y = 0 V, T A= –40°C to +85°C  
X = 0 V, Y = ±2.5 V, T A = –40°C to +85°C  
Y = 0 V, X = ±2.5 V, T A = –40°C to +85°C  
–5  
–5  
–1  
–1  
±2  
±2  
5
5
+1  
+1  
% FS  
% FS  
% FS  
% FS  
%/°C  
%/°C  
1/V  
mV  
µV/°C  
mV  
Total Error2 Y  
Linearity Error2 X  
Linearity Error2 Y  
Total Error Drift  
LEX  
LEY  
TCEX  
TCEY  
K
ZOS  
TCZOS  
XOS  
±0.2  
±0.2  
0.005  
0.005  
0.40  
±10  
50  
Total Error Drift  
Scale Factor3  
0.38  
–50  
0.42  
50  
Output Offset Voltage  
Output Offset Drift  
Offset Voltage, X  
Offset Voltage, Y  
–50  
–50  
±10.5 50  
±10.5 50  
YOS  
mV  
DYNAMIC PERFORMANCE  
Small Signal Bandwidth  
Slew Rate  
BW  
SR  
tS  
FT AC  
CT AC  
VOUT = 0.1 V rms  
VOUT = ±2.5 V  
VOUT = 2.5 V to 1% Error Band  
X = 0 V, Y = 1 V rms @ f = 100 kHz  
X = Y = 1 V rms Applied to Adjacent Channel  
8
53  
1
–65  
–90  
MHz  
V/µs  
µs  
dB  
dB  
30  
Settling Time  
AC Feedthrough  
Crosstalk @ 100 kHz  
OUTPUTS  
Audio Band Noise  
Wide Band Noise  
Spot Noise Voltage  
Total Harmonic Distortion  
EN  
EN  
eN  
THDX  
THDY  
ROUT  
VPK  
f = 10 Hz to 50 kHz  
Noise BW = 1.9 MHz  
f = 1 kHz  
f = 1 kHz, LPF = 22 kHz, Y = 2.5 V  
f = 1 kHz, LPF = 22 kHz, X = 2.5 V  
76  
µV rms  
µV rms  
µV/Hz  
%
%
380  
0.3  
0.1  
0.02  
40  
Open Loop Output Resistance  
Voltage Swing  
Short Circuit Current  
VCC = +5 V, VEE = –5 V  
±3.0  
±3.3  
30  
VP  
mA  
ISC  
INPUTS  
Analog Input Range  
Bias Current  
Resistance  
IVR  
IB  
RIN  
CIN  
GND = 0 V  
X = Y = 0 V  
–2.5  
+2.5  
10  
V
2.3  
1
3
µA  
MΩ  
pF  
Capacitance  
SQUARE PERFORMANCE  
Total Square Error  
ESQ  
X = Y = 1  
5
% FS  
POWER SUPPLIES  
Positive Current  
ICC  
IEE  
PDISS  
PSSR  
VRANGE  
VCC = 5.25 V, VEE = –5.25 V  
VCC = 5.25 V, VEE = –5.25 V  
Calculated = 5 V × ICC + 5 V × IEE  
X = Y = 0 V, VCC = 5% or VEE = 5%  
For VCC & VEE  
15  
15  
150  
20  
20  
200  
10  
±5.25  
mA  
mA  
mW  
mV/V  
V
Negative Current  
Power Dissipation  
Supply Sensitivity  
Supply Voltage Range  
±4.75  
NOTES  
1Specifications apply to all four multipliers.  
2Error is measured as a percent of the ±2.5 V full scale, i.e., 1% FS = 25 mV.  
3Scale Factor K is an internally set constant in the multiplier transfer equation W = K × X × Y.  
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS*  
O RD ERING INFO RMATIO N*  
Supply Voltages VCC, VEE to GND  
Inputs XI, YI  
Outputs WI  
±7 V  
VCC, VEE  
VCC, VEE  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model  
Operating Temperature Range  
Maximum Junction Temperature (T J max)  
Storage Temperature  
Lead Temperature (Soldering, 10 sec)  
Package Power Dissipation  
Thermal Resistance θJA  
PDIP-18 (N-18)  
–40°C to +85°C  
+150°C  
–65°C to +150°C  
+300°C  
MLT 04GP  
MLT 04GS  
MLT 04GS-REEL –40°C to +85°C  
MLT 04GBC +25°C  
–40°C to +85°C  
–40°C to +85°C  
18-Pin P-DIP N-18  
18-Lead SOIC SOL-18  
18-Lead SOIC SOL-18  
Die  
(TJ max–TA)/θJA  
*For die specifications contact your local Analog sales office. The MLT04  
contains 211 transistors.  
74°C/W  
89°C/W  
SOIC-18 (SOL-18)  
*Stresses above those listed under “Absolute Maximum Ratings” may cause perma-  
nent damage to the device. This is a stress rating only and functional operation of  
the device at these or any other conditions above those indicated in the operational  
section of this specification are not implied.  
REV. B  
–2–  
MLT04  
FUNCTIO NAL D ESCRIP TIO N  
ANALO G MULTIP LIER ERRO R SO URCES  
T he MLT 04 is a low cost quad, 4-quadrant analog multiplier with  
single-ended voltage inputs and voltage outputs. T he functional  
block diagram for each of the multipliers is illustrated in Figure 3.  
Due to packaging constraints, access to internal nodes for externally  
adjusting scale factor, output offset voltage, or additional summing  
signals is not provided.  
Multiplier errors consist primarily of input and output offsets, scale  
factor errors, and nonlinearity in the multiplying core. An expres-  
sion for the output of a real analog multiplier is given by:  
VO = ( K + ∆K ){(VX + X OS )(V Y + Y OS ) + ZOS + f ( X , Y )}  
where:  
K
K  
VX  
XOS  
VY  
YOS  
ZOS  
ƒ(X, Y)  
=
=
=
=
=
=
=
=
Multiplier Scale Factor  
Scale Factor Error  
X-Input Signal  
X-Input Offset Voltage  
Y-Input Signal  
Y-Input Offset Voltage  
Multiplier Output Offset Voltage  
Nonlinearity  
+V  
S
MLT04  
X1, X2, X3, X4  
0.4  
W1, W2, W3, W4  
G1, G2, G3, G4  
Y1, Y2, Y3, Y4  
Executing the algebra to simplify the above expression yields  
expressions for all the errors in an analog multiplier:  
–V  
S
Figure 3. Functional Block Diagram of Each MLT04  
Multiplier  
Ter m  
D escr iption  
D ependence on Input  
KVXVY  
T rue Product  
Goes to Zero As Either or  
Both Inputs Go to Zero  
Each of the MLT 04s analog multipliers is based on a Gilbert cell  
multiplier configuration, a 1.23 V bandgap reference, and a unity-  
connected output amplifier. Multiplier scale factor is determined  
through a differential pair/trimmable resistor network external to  
the core. An equivalent circuit for each of the multipliers is shown  
in Figure 4.  
KVYVY Scale-Factor Error  
Goes to Zero at VX, VY = 0  
Proportional to VX  
VXYOS  
VYXOS  
XOSYOS  
Linear “X” Feedthrough  
Due to Y-Input Offset  
Linear “Y” Feedthrough  
Due to X-Input Offset  
Proportional to VY  
V
CC  
Output Offset Due to X-, Independent of VX, VY  
Y-Input Offsets  
W
INTERNAL  
BIAS  
OUT  
ZOS  
Output Offset  
Nonlinearity  
Independent of VX, VY  
ƒ(X, Y)  
Depends on Both VX, VY.  
Contains T erms Dependent  
on VX, VY, T heir Powers  
and Cross Products  
22k  
X
IN  
22k  
22k  
SCALE  
FACTOR  
GND  
Y
IN  
200µA  
200µA  
200µA  
200µA  
200µA  
200µA  
V
EE  
As shown in the table, the primary static errors in an analog  
multiplier are input offset voltages, output offset voltage, scale  
factor, and nonlinearity. Of the four sources of error, only two are  
externally trimmable in the MLT 04: the X- and Y-input offset  
voltages. Output offset voltage in the MLT 04 is factory-trimmed to  
±50 mV, and the scale factor is internally adjusted to ±2.5% of full  
scale. Input offset voltage errors can be eliminated by using the  
optional trim circuit of Figure 6. T his scheme then reduces the net  
error to output offset, scale-factor (gain) error, and an irreducible  
nonlinearity component in the multiplying core.  
Figure 4. Equivalent Circuit for the MLT04  
Details of each multiplier’s output-stage amplifier are shown in  
Figure 5. T he output stages idles at 200 µA, and the resistors in  
series with the emitters of the output stage are 25 . T he output  
stage can drive load capacitances up to 500 pF without oscillation.  
For loads greater than 500 pF, the outputs of the MLT 04 should  
be isolated from the load capacitance with a 100 resistor.  
V
CC  
+V  
S
I
50k  
±100mV  
50kΩ  
FOR X , Y TRIM  
OS OS  
25  
W
CONNECT TO SUM  
NODE OF AN EXT OP AMP  
OUT  
–V  
25Ω  
S
Figure 6. Optional Offset Voltage Trim Configuration  
V
EE  
Figure 5. Equivalent Circuit for MLT04 Output Stages  
REV. B  
–3–  
MLT04  
Feedthr ough  
In the ideal case, the output of the multiplier should be zero if  
either input is zero. In reality, some portion of the nonzero input  
will “feedthrough” the multiplier and appear at the output. T his is  
caused by the product of the nonzero input and the offset voltage of  
the “zero” input. Introducing an offset equal to and opposite of the  
“zero” input offset voltage will null the linear component of the  
feedthrough. Residual feedthrough at the output of the multiplier  
is then irreducible core nonlinearity.  
100  
90  
X-INPUT: ±2.5V @ 10Hz  
Y-INPUT: +2.5V  
10  
Y
T
NULLED  
= +25°C  
0%  
OS  
A
T ypical X- and Y-input feedthrough curves for the MLT 04 are  
shown in Figures 7 and 8, respectively. T hese curves illustrate  
MLT 04 feedthrough after “zero” input offset voltage trim.  
Residual X-input feedthrough measures 0.08% of full scale,  
whereas residual Y-input feedthrough is almost immeasurable.  
HORIZONTAL – 0.5V/DIV  
Figure 9. X-Input Nonlinearity @ Y = +2.5 V  
X-INPUT: ±2.5V @ 10Hz  
100  
90  
Y
NULLED  
100  
90  
OS  
T
= +25°C  
A
X-INPUT: ±2.5V @ 10Hz  
Y-INPUT: –2.5V  
10  
10  
Y
T
NULLED  
= +25°C  
0%  
0%  
OS  
A
HORIZONTAL – 0.5V/DIV  
HORIZONTAL – 0.5V/DIV  
Figure 10. X-Input Nonlinearity @ Y = –2.5 V  
Figure 7. X-Input Feedthrough with YOS Nulled  
Y-INPUT: ±2.5V @ 10Hz  
X-INPUT: +2.5V  
Y-INPUT: ±2.5V @ 10Hz  
100  
100  
90  
X
NULLED  
OS  
X
NULLED  
90  
OS  
T
= +25°C  
A
T
= +25°C  
A
10  
10  
0%  
0%  
HORIZONTAL – 0.5V/DIV  
HORIZONTAL – 0.5V/DIV  
Figure 11. Y-Input Nonlinearity @ X = +2.5 V  
Figure 8. Y-Input Feedthrough with XOS Nulled  
Nonlinear ity  
Y-INPUT: ±2.5V @ 10Hz  
Multiplier core nonlinearity is the irreducible component of error.  
It is the difference between actual performance and “best-straight-  
line” theoretical output, for all pairs of input values. It is expressed  
as a percentage of full scale with all other dc errors nulled. T ypical  
X- and Y-input nonlinearities for the MLT 04 are shown in Figures  
9 through 12. Worst-case X-input nonlinearity measured less than  
0.2%, and Y-input nonlinearity measured better than 0.06%. For  
modulator/demodulator or mixer applications it is, therefore,  
recommended that the carrier be connected to the X-input while  
the signal is applied to the Y-input.  
X-INPUT: –2.5V  
100  
X
NULLED  
= +25°C  
90  
OS  
T
A
10  
0%  
HORIZONTAL – 0.5V/DIV  
Figure 12. Y-Input Nonlinearity @ X = –2.5 V  
–4–  
REV. B  
Typical Performance Characteristics – MLT04  
12  
9
180  
135  
90  
T
V
= +25°C  
= ±5V  
A
S
V
V
= 100mV  
= +2.5V  
X
Y
6
3
45  
NBW = 10Hz –50kHz  
= +25°C  
T
GAIN  
100  
90  
A
0
0
–3  
–45  
PHASE  
–6  
–9  
–90  
PHASE = 68.3  
@ 7.142 MHz  
°
–135  
10  
0%  
–12  
–180  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
TIME = 10ms/DIV  
Figure 13. Broadband Noise  
Figure 16. X-Input Gain and Phase vs. Frequency  
12  
180  
135  
90  
T
V
V
V
= +25°C  
= ±5V  
A
S
X
Y
9
6
= +2.5V  
= 100mV  
NBW = 1.9MHz  
3
45  
T
= +25°C  
100  
90  
A
GAIN  
0
0
–3  
–45  
PHASE  
–6  
–9  
–90  
10  
–135  
PHASE = 68.1  
°
0%  
@ 8.064 MHz  
–12  
–180  
10k  
100k  
1M  
10M  
TIME = 10ms/DIV  
FREQUENCY – Hz  
Figure 14. Broadband Noise  
Figure 17. Y-Input Gain and Phase vs. Frequency  
8
6
10000  
1000  
100  
0
C = 320pF  
L
V
T
= ±5V  
S
C = 560pF  
L
= +25  
°
C
4
A
C = 220pF  
L
2
0
–2  
NO C  
L
C = 100pF  
–4  
L
–6  
–8  
V
= ±5V  
= 2k  
S
R
T
L
= +25°C  
A
–10  
–12  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 15. Noise Density vs. Frequency  
Figure 18. Am plitude Response vs. Capacitive Load  
–5–  
REV. B  
MLT04 – Typical Performance Characteristics  
0
X-INPUT = +2.5V  
V
T
= ±5V  
S
R
= 10kΩ  
L
100  
90  
= +25°C  
A
–20  
–40  
T
= +25°C  
A
V
V
= 0V  
= 1V  
X
Y
pk  
10  
–60  
–80  
0%  
V
= 0V  
= 1V  
Y
X
V
pk  
TIME – 100ns/DIV  
–100  
Figure 22. Y-Input Sm all-Signal Transient Response,  
CL = 30 pF  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
3M  
Figure 19. Feedthrough vs. Frequency  
X-INPUT = +2.5V  
R
T
= 10kΩ  
= +25°C  
100  
90  
L
A
0
–20  
–40  
–60  
T
= 25°C  
= ±5V  
A
V
V
S
= ±2.5V  
X
pk  
10  
V
= +2.5VDC  
Y
0%  
TIME – 100ns/DIV  
Figure 23. Y-Input Sm all-Signal Transient Response,  
CL = 100 pF  
–80  
–100  
–120  
100  
90  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
Figure 20. Crosstalk vs. Frequency  
X-INPUT: +2.5V  
10  
R
= 10kΩ  
0%  
L
2.0  
1.5  
T
= +25°C  
A
V = ±5V  
S
R
T
= 2kΩ  
= +25°C  
L
TIME = 100ns/DIV  
1.0  
A
Y = 100mV RMS  
X = 2.5VDC  
0.5  
Figure 24. Y-Input Large-Signal Transient Re-  
sponse, CL = 30 pF  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
X = 100mV RMS  
Y = 2.5VDC  
100  
90  
1k  
10k  
100k  
1M  
10M  
100M  
X-INPUT: +2.5V  
FREQUENCY – Hz  
10  
R
= 10kΩ  
L
0%  
T
= +25°C  
A
Figure 21. Gain Flatness vs. Frequency  
TIME = 100ns/DIV  
Figure 25. Y-Input Large-Signal Transient Response,  
CL = 100 pF  
–6–  
REV. B  
MLT04  
1
9
8
7
6
5
80  
V
V
= ±5V  
S
X
= +2.5V  
X-INPUT  
Y = +2.5VDC  
V
= 100mV  
Y
75  
70  
65  
60  
–3dB BW  
0.1  
V = ±5V  
S
R
T
= 2kΩ  
= +25°C  
L
0.01  
0.001  
A
PHASE @ –3dB BW  
f
= 1kHz  
O
FLPF = 22kHz  
Y-INPUT  
X = +2.5VDC  
0.1  
1
10  
0
–75  
–50  
–25  
25  
50  
75  
100  
125  
INPUT SIGNAL LEVEL – Volts  
TEMPERATURE –  
°
C
P-P  
Figure 26. THD + Noise vs. Input Signal Level  
Figure 29. Y-Input Gain Bandwidth vs. Tem perature  
8
7
0.3  
V = +2.5V, –2.5V V +2.5V  
X
Y
Y
V = ±5V  
s
V
= +2.5V, –2.5V V +2.5V  
X
0.2  
0.1  
6
1%  
DISTORTION  
5
0
–0.1  
–0.2  
–0.3  
4
3
2
1
0
T = +25°C  
A
R
V
= 2kΩ  
= ±5V  
L
S
–75  
–50  
–25  
25  
50  
75  
100  
125  
1k  
10k  
100k  
1M  
10M  
0
TEMPERATURE –  
°
C
FREQUENCY – Hz  
Figure 27. Linearity Error vs. Tem perature  
Figure 30. Maxim um Output Swing vs. Frequency  
80  
75  
70  
65  
60  
9
4.5  
4.0  
V
V
= ±5V  
= 100mV  
S
X
V
= +2.5V  
Y
POSITIVE SWING  
3.5  
3.0  
8
7
6
5
–3dB BW  
2.5  
2.0  
1.5  
1.0  
NEGATIVE SWING  
PHASE @ –3dB BW  
V
T
= ±5V  
S
0.5  
0
= +25°C  
A
10  
100  
1k  
10k  
0
–75  
–50  
–25  
25  
50  
75  
100  
125  
LOAD RESISTANCE – Ω  
TEMPERATURE –  
°C  
Figure 28. X-Input Gain Bandwidth vs. Tem perature  
Figure 31. Maxim um Output Swing vs. Resistive Load  
–7–  
REV. B  
MLT04  
0.407  
0.406  
300  
250  
200  
150  
V
= ±5V  
T
V
= +25°C  
= ±5V  
S
SS = 1000 MULTIPLIERS  
A
NO LOAD  
S
X = ±2.5V  
Y
@ X = ±2.5V  
OS  
0.405  
X
@ Y = ±2.5V  
OS  
0.404  
0.403  
100  
50  
0
0.402  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–12.5 –10 –7.5 –5 –2.5  
0
2.5  
5
7.5  
10 12.5  
TEMPERATURE –  
°
C
OFFSET VOLTAGE – mV  
Figure 35. Scale Factor vs. Tem perature  
Figure 32. Offset Voltage Distribution  
400  
6
4
T
= +25°C  
= ±5V  
A
V
= ±5V  
S
SS = 1000  
MULTIPLIERS  
350  
300  
V
S
X
V
= V = 0V  
Y
X
, Y = ±2.5V  
OS  
2
0
250  
200  
150  
100  
–2  
–4  
–6  
Y
, X = ±2.5V  
OS  
50  
0
–15 –12  
–9  
–6  
–3  
0
3
6
9
12  
15  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE –  
°C  
OUTPUT OFFSET VOLTAGE – mV  
Figure 33. Offset Voltage vs. Tem perature  
Figure 36. Output Offset Voltage (ZOS) Distribution  
400  
10  
SS = 1000 MULTIPLIERS  
T
= +25°C  
= ±5V  
V
= ±5V  
A
350  
300  
250  
200  
s
V
S
5
0
150  
100  
–5  
50  
0
–10  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
0.395 0.3975 0.400 0.4025 0.405 0.4075 0.410 0.4125 0.415  
SCALE FACTOR – 1/V  
TEMPERATURE –  
°C  
Figure 34. Scale Factor Distribution  
Figure 37. Output Offset Voltage (ZOS) vs. Tem perature  
–8–  
REV.B  
MLT04  
17  
16  
15  
15  
12  
V
= ±5V  
S
NO LOAD  
V
σX +3σ  
= V = 0  
Y
X
9
6
3
0
X
–3  
–6  
14  
13  
–9  
σX –3σ  
–12  
–15  
0
200  
400  
600  
800  
1000  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE –  
°C  
HOURS OF OPERATION AT +125°C  
Figure 38. Supply Current vs. Tem perature  
Figure 41. Output Voltage Offset (ZOS) Distribution  
Accelerated by Burn-in  
0.424  
0.420  
0.416  
100  
80  
T
= +25°C  
= ±5V  
A
V
S
σX +3σ  
0.412  
+PSRR  
0.408  
60  
X
0.404  
–PSRR  
0.400  
40  
20  
0.396  
σX –3σ  
0.392  
0.388  
0.384  
0
0
200  
400  
600  
800  
1000  
100  
1k  
10k  
FREQUENCY – Hz  
100k  
1M  
HOURS OF OPERATION AT +125  
°
C
Figure 39. Power Supply Rejection vs. Frequency  
Figure 42. Scale Factor (K) Distribution Acceler-  
ated by Burn-in  
1.25  
1.0  
σX +3σ  
0.75  
0.50  
0.25  
X
0
–0.25  
–0.50  
–0.75  
σX –3σ  
–1.0  
–1.25  
0
200  
400  
600  
800  
1000  
HOURS OF OPERATION AT +125  
°
C
Figure 40. Linearity Error (LE) Distribution Accelerated  
by Burn-in  
REV. B  
–9–  
MLT04  
AP P LICATIO NS  
T he equation shows a dc term at the output which will vary  
strongly with the amplitude of the input, VIN. T he output dc offset  
can be eliminated by capacitively coupling the MLT 04’s output  
with a high-pass filter. For optimal spectral performance, the  
filter’s cutoff frequency should be chosen to eliminate the input  
fundamental frequency.  
T he MLT 04 is well suited for such applications as modulation/  
demodulation, automatic gain control, power measurement, analog  
computation, voltage-controlled amplifiers, frequency doublers,  
and geometry correction in CRT displays.  
Multiplier Connections  
A source of error in this configuration is the offset voltages of the X  
and Y inputs. T he input offset voltages produce cross products  
with the input signal to distort the output waveform. T o circum-  
vent this problem, Figure 45 illustrates the use of inverting  
amplifiers configured with an OP285 to provide a means by which  
the X- and Y-input offsets can be trimmed.  
Figure 43 llustrates the basic connections for multiplication. Each  
of the four independent multipliers has single-ended voltage inputs  
(X, Y) and a low impedance voltage output (W). Also, each  
multiplier has its own dedicated ground connection (GND) which  
is connected to the circuit’s analog common. For best perfor-  
mance, circuit layout should be compact with short component  
leads and well-bypassed supply voltage feeds. In applications where  
fewer than four multipliers are used, all unused analog inputs must  
be returned to the analog common.  
P1  
50kΩ  
+5V  
–5V  
X
TRIM  
OS  
R2  
R5  
500kΩ  
10k  
1
W4  
R1  
W1  
W1  
18  
GND4 17  
X4  
W4  
1/4 MLT04  
+
3
2
10k  
2
GND1  
1
2
3
A1  
C1  
3
+
100pF  
W1  
X1  
Y1  
X1  
Y1  
16  
X4  
Y4  
0.4  
1
V
V
O
IN  
A1, A2 = 1/2 OP285  
R  
L
4
5
Y4 15  
10kΩ  
MLT04  
+
A2  
5
V
14  
EE  
V
7
+
–5V  
+5V  
4
CC  
6
R3  
10k  
Y2  
X2  
0.1µF  
Y2  
X2  
0.1µF  
6
7
Y3 13  
X3 12  
Y3  
X3  
R4  
10k  
R6  
500kΩ  
Y
TRIM  
OS  
GND2  
W2  
GND3  
8
9
11  
+5V  
–5V  
P2  
50kΩ  
W2  
W3 10  
W3  
W
= 0.4 (X1–4 Y  
)
1–4  
1–4  
Figure 45. Frequency Doubler with Input Offset Voltage  
Trim s  
Figure 43. Basic Multiplier Connections  
Feedback D ivider Connections  
T he most commonly used analog divider circuit is the “inverted  
multiplier” configuration. As illustrated in Figure 46, an “inverted  
multiplier” analog divider can be configured with a multiplier  
operating in the feedback loop of an operational amplifier. T he  
general form of the transfer function for this circuit configuration is  
given by:  
Squar ing and Fr equency D oubling  
As shown in Figure 44, squaring of an input signal, VIN, is achieved  
by connecting the X-and Y-inputs in parallel to produce an output  
of VIN2/2.5 V. T he input may have either polarity, but the output  
will be positive.  
+5V  
0.1µF  
R2  
R1  
V
IN  
V
= −2. 5 V ×  
×
O
V
X
X
1/4 MLT04  
+
+
V
IN  
Here, the multiplier operates as a voltage-controlled potentiometer  
that adjusts the loop gain of the op amp relative to a control signal,  
VX. As the control signal to the multiplier decreases, the output of  
the multiplier decreases as well. T his has the effect of reducing  
negative feedback which, in turn, decreases the amplifier’s loop  
gain. T he result is higher closed-loop gain and reduced circuit  
bandwidth. As VX is increased, the output of the multiplier  
increases which generates more negative feedback — closed-loop  
gain drops and circuit bandwidth increases. An example of an  
“inverted multiplier” analog divider frequency response is shown in  
Figure 47.  
W
GND  
Y
0.4  
2
W = 0.4 V  
IN  
0.1µF  
–5V  
Figure 44. Connections for Squaring  
When the input is a sine wave given by VIN sin ωt, the squaring  
circuit behaves as a frequency doubler because of the trigonometric  
identity:  
(V sin ωt )2  
V
1
2
2
IN  
IN  
=
(1 cos 2 ωt )  
2.5V  
2.5V  
–10–  
REV. B  
MLT04  
X1  
X1  
1/4 MLT04  
1/4 MLT04  
3
2
3
2
+
+
V
X
D1  
1N4148  
W1  
W1  
GND1  
Y1  
1
1
0.4  
0.4  
R2  
10k  
R2  
10k  
Y1  
+
4
4
R1  
10k  
R1  
10k  
V
2
V
2
IN  
IN  
6
6
OP113  
OP113  
V
V
O
O
3
3
+
+
VIN  
VX  
VO  
=
–2.5V • VIN  
VO = –2.5V •  
Figure 46. “Inverted-Multiplier” Configuration for  
Analog Division  
Voltage-Contr olled Low-P ass Filter  
T he circuit in Figure 49 illustrates how to construct a voltage-  
controlled low-pass filter with an analog multiplier. T he advantage  
with this approach over conventional active-filter configurations is  
that the overall characteristic cut-off frequency, ωO, will be directly  
proportional to a multiplying input voltage. T his permits the  
construction of filters in which the capacitors are adjustable  
(directly or inversely) by a control voltage. Hence, the frequency  
scale of a filter can be manipulated by means of a single voltage  
without affecting any other parameters. T he general form of the  
circuit’s transfer function is given by:  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
A
VOL  
OP113  
V
= 0.025V  
X
V
= 0.25V  
X
V
R2  
R1  
1
O
= −  
V
= 2.5V  
1k  
X
V
R2 + R1 2. 5RC  
IN  
s
+ 1  
R1  
V
X
100  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
In this circuit, the ratio of R2 to R1 sets the passband gain, and the  
break frequency of the filter, ωLP, is given by:  
Figure 47. Signal-Dependent Feedback Makes Variables  
Out of Am plifier Bandwidth and Stability  
R1  
V
X
ωLP  
=
R1 + R2 2. 5RC  
Although this technique works well with almost any operational  
amplifier, there is one caveat: for best circuit stability, the unity-  
gain crossover frequency of the operational amplifier should be  
equal to or less than the MLT 04’s 8 MHz bandwidth.  
X1  
1/4 MLT04  
3
2
+
+
Connection for Squar e Rooting  
V
X
C
80pF  
R
10k  
Another application of the “inverted multiplier” configuration is the  
square-root function. As shown in Figure 48, both inputs of the  
MLT 04 are wired together and are used as the output of the  
circuit. Because the circuit configuration exhibits the following  
generalized transfer function:  
W1  
GND1  
1
0.4  
2
3
1
V
A1  
+
O
+
R1  
10k  
4
R2  
A1 = 1/2 OP285  
Y1  
10k  
R2  
VO  
=
2.5 ×  
×V  
IN  
V
IN  
R1  
VO  
1
= –  
5RC  
VX  
VIN  
the input signal voltage is limited to the range –2.5 V VIN < 0. T o  
prevent circuit latchup due to positive feedback or input signal  
polarity reversal, a 1N4148-type junction diode is used in series  
with the output of the multiplier.  
1 + S  
VX  
fLP  
=
; fLP = MAX @ VX = 2.5V  
π10πRC  
Figure 49. A Voltage-Controlled Low-Pass Filter  
For example, if R1 = R2 = 10 k, R = 10 k, and C = 80 pF,  
Figure 48. Connections for Square Rooting  
REV. B  
–11–  
MLT04  
then the output of the circuit has a pole at frequencies from 1 kHz  
to 100 kHz for VX ranging from 25 mV to 2.5 V. T he performance  
of this low-pass filter is illustrated in Figure 20.  
O UTLINE D IMENSIO NS  
Dimensions shown in inches and (mm).  
18-Lead Epoxy D IP (P Suffix)  
30  
20  
10  
18  
10  
0.280 (7.11)  
PIN 1  
0.240 (6.10)  
9
1
0.325 (8.25)  
0.300 (7.62)  
0.925 (23.49)  
0.845 (21.47)  
0.015  
(0.38)  
MIN  
0.210  
(5.33)  
MAX  
0
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
15°  
0°  
0.25V  
V
= 0.025V  
2.5V  
– 10  
0.015 (0.38)  
0.008 (0.20)  
X
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
– 20  
– 30  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
18-Lead Wide-Body SO L (S Suffix)  
Figure 50. Low-Pass Cutoff Frequency vs. Control  
Voltage, VX  
18  
10  
With this approach, it is possible to construct parametric biquad  
filters whose parameters (center frequency, passband gain, and Q)  
can be adjusted with dc control voltages.  
0.2992 (7.60)  
0.2914 (7.40)  
0.4193 (10.65)  
0.3937 (10.00)  
PIN 1  
9
1
0.1043 (2.65)  
0.0926 (2.35)  
0.4625 (11.75)  
0.4469 (11.35)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45°  
0.0500 (1.27)  
0.0157 (0.40)  
8
0
°
°
0.0118 (0.30)  
0.0040 (0.10)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0500 (1.27)  
BSC  
0.0125 (0.32)  
0.0091 (0.23)  
–12–  
REV. B  

相关型号:

MLT04GS

Four-Channel, Four-Quadrant Analog Multiplier
ADI

MLT04GS-REEL

Four-Channel, Four-Quadrant Analog Multiplier
ADI

MLT04GSZ

IC ANALOG MULTIPLIER OR DIVIDER, 8 MHz BAND WIDTH, PDSO18, SOIC-18, Analog Computational Function
ADI

MLT10002BJT10K0

PTC Thermistor, 10000ohm, Surface Mount, MELF
KOA

MLT10002BJT11K0

PTC Thermistor, 11000ohm, Surface Mount, MELF
KOA

MLT10002BJT15K0

PTC Thermistor, 15000ohm, Surface Mount, MELF
KOA

MLT10002BJT16K0

PTC Thermistor, 16000ohm, Surface Mount, MELF
KOA

MLT10002BJT18K0

PTC Thermistor, 18000ohm, Surface Mount, MELF
KOA

MLT10002BJT20K0

PTC Thermistor, 20000ohm, Surface Mount, MELF
KOA

MLT10002BJT22K0

PTC Thermistor, 22000ohm, Surface Mount, MELF
KOA

MLT10002BJT24K0

PTC Thermistor, 24000ohm, Surface Mount, MELF
KOA

MLT10002BJT27K0

PTC Thermistor, 27000ohm, Surface Mount, MELF
KOA