MSS1048-152NL [ADI]

Dual 5 A, 20 V Synchronous Step-Down; 双5 A, 20 V同步降压型
MSS1048-152NL
型号: MSS1048-152NL
厂家: ADI    ADI
描述:

Dual 5 A, 20 V Synchronous Step-Down
双5 A, 20 V同步降压型

文件: 总32页 (文件大小:831K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 5 A, 20 V Synchronous Step-Down  
Regulator with Integrated High-Side MOSFET  
Data Sheet  
ADP2325  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
Input voltage: 4.5 V to 20 V  
1% output accuracy  
V
R
IN  
TOP1  
C
C
IN1  
C1  
Integrated 48 mΩ typical high-side MOSFET  
Flexible output configuration  
Dual output: 5 A/5 A  
C
SS1  
R
BOT1  
R
C1  
C
BST1  
L1  
INTVCC  
MODE  
C
V
OUT1  
INT  
Parallel single output: 10 A  
SW1  
SCFG  
TRK2  
TRK1  
Programmable switching frequency: 250 kHz to 1.2 MHz  
External synchronization input with programmable phase  
shift or internal clock output  
M1  
M2  
C
OUT1  
DL1  
PGND  
DL2  
VDRV  
C
DRV  
ADP2325  
GND  
Selectable PWM or PFM mode operation  
Adjustable current limit for small inductors  
External compensation and soft start  
Startup into precharged output  
C
OUT2  
L2  
PGOOD2  
V
OUT2  
PGOOD1  
SYNC  
RT  
SW2  
C
BST2  
Supported by ADIsimPowerTM design tool  
R
OSC  
R
C2  
R
BOT2  
V
APPLICATIONS  
IN  
C
C
C
IN2  
C2  
SS2  
Communications infrastructure  
Networking and servers  
R
TOP2  
Industrial and instrumentation  
Healthcare and medical  
Figure 1.  
Intermediate power rail conversion  
GENERAL DESCRIPTION  
The ADP2325 is a full featured, dual output, step-down dc-to-dc  
regulator based on a current mode architecture. The ADP2325  
integrates two high-side power MOSFETs and two low-side drivers  
for the external N-channel MOSFETs. The two pulse-width mod-  
ulation (PWM) channels can be configured to deliver dual 5 A  
outputs or a parallel-to-single 10 A output. The regulator operates  
from input voltages of 4.5 V to 20 V, and the output voltage can  
be as low as 0.6 V.  
Independent enable inputs and power-good outputs provide  
reliable power sequencing. To enhance system reliability, the device  
includes undervoltage lockout (UVLO), overvoltage protection  
(OVP), overcurrent protection, and thermal shutdown.  
The ADP2325 operates over the −40°C to +125°C junction  
temperature range and is available in a 32-lead LFCSP_WQ  
package.  
100  
V
V
= 5.0V  
= 3.3V  
OUT  
OUT  
The switching frequency can be programmed from 250 kHz to  
1.2 MHz, or it can be synchronized to an external clock to  
minimize interference in multirail applications. The dual PWM  
channels run 180° out of phase, thereby reducing input current  
ripple as well as reducing the size of the input capacitor.  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
The bidirectional synchronization pin can be programmed at  
a 60°, 90°, or 120° phase shift to provide for a stackable, multi-  
phase power solution.  
The ADP2325 can be configured to operate in pulse frequency  
modulation (PFM) mode at a light load for higher efficiency or  
in forced PWM mode for noise sensitive applications. External  
compensation and soft start provide design flexibility.  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
OUTPUT CURRENT (A)  
Figure 2. Efficiency vs. Output Current at VIN = 12 V, fSW = 600 kHz  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADP2325  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Overvoltage Protection.............................................................. 19  
Undervoltage Lockout ............................................................... 19  
Thermal Shutdown .................................................................... 19  
Applications Information .............................................................. 20  
Input Capacitor Selection.......................................................... 20  
Output Voltage Setting .............................................................. 20  
Voltage Conversion Limitations............................................... 20  
Current-Limit Setting ................................................................ 20  
Inductor Selection ...................................................................... 20  
Output Capacitor Selection....................................................... 21  
Low-Side Power Device Selection............................................ 22  
Programming UVLO Input ...................................................... 22  
Compensation Components Design ....................................... 22  
Design Example.............................................................................. 24  
Output Voltage Setting .............................................................. 24  
Current-Limit Setting ................................................................ 24  
Frequency Setting....................................................................... 24  
Inductor Selection ...................................................................... 24  
Output Capacitor Selection....................................................... 24  
Low-Side MOSFET Selection ................................................... 25  
Compensation Components..................................................... 25  
Soft Start Time Programming .................................................. 26  
Input Capacitor Selection.......................................................... 26  
External Components Recommendations.................................. 27  
Typical Application Circuits ......................................................... 28  
Packaging and Ordering Information ......................................... 32  
Outline Dimensions................................................................... 32  
Ordering Guide .......................................................................... 32  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Absolute Maximum Ratings ....................................................... 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 16  
Control Scheme .......................................................................... 16  
PWM Mode................................................................................. 16  
PFM Mode................................................................................... 16  
Precision Enable/Shutdown ...................................................... 16  
Separate Input Voltages ............................................................. 16  
Internal Regulator (INTVCC).................................................. 16  
Bootstrap Circuitry .................................................................... 17  
Low-Side Driver.......................................................................... 17  
Oscillator ..................................................................................... 17  
Synchronization.......................................................................... 17  
Soft Start ...................................................................................... 17  
Peak Current-Limit and Short-Circuit Protection................. 17  
Voltage Tracking......................................................................... 18  
Parallel Operation....................................................................... 18  
Power Good................................................................................. 19  
REVISION HISTORY  
2/12—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
 
Data Sheet  
ADP2325  
FUNCTIONAL BLOCK DIAGRAM  
ADP2325  
UVLO  
PVIN1  
1.2V  
EN1_BUF  
+
A
EN1  
CS1  
1µA 4µA  
BOOST  
REGULATOR  
+
HICCUP  
MODE  
OCP  
SLOPE RAMP1  
I1  
MAX  
BST1  
SW1  
Σ
COMP1  
NFET1  
0.6V  
DRIVER  
I
+
+
SS1  
+
SS1  
TRK1  
FB1  
CMP1  
AMP1  
OVP  
+
SKIP  
+
CMP1  
CONTROL  
VDRV  
LOGIC  
SKIP MODE  
THRESHOLD  
AND MOSFET  
DRIVER WITH  
ANTICROSS  
PROTECTION  
DRIVER  
DL1  
MODE_BUF  
CLK1  
0.7V  
PGND  
+
LOW-SIDE  
CURRENT  
SENSE  
+
0.54V  
+
PGOOD1  
MODE  
CURRENT-  
LIMIT  
I1  
MAX  
SELECTION  
VDRV  
PVIN1  
MODE_BUF  
CLK1  
EN1_BUF  
EN2_BUF  
INTVCC  
GND  
5V REGULATOR  
SCFG  
SYNC  
RT  
SLOPE RAMP1  
CLK2  
OSCILLATOR  
SLOPE RAMP2  
UVLO  
PVIN2  
1.2V  
EN2_BUF  
+
A
EN2  
CS2  
1µA 4µA  
BOOST  
REGULATOR  
+
HICCUP  
MODE  
OCP  
SLOPE RAMP2  
I2  
BST2  
SW2  
MAX  
Σ
COMP2  
NFET2  
0.6V  
+
DRIVER  
I
SS2  
+
SS2  
TRK2  
FB2  
+
CMP2  
AMP2  
+
SKIP  
CMP2  
CONTROL  
LOGIC  
AND MOSFET  
DRIVER WITH  
ANTICROSS  
PROTECTION  
+
VDRV  
SKIP MODE  
THRESHOLD  
DRIVER  
DL2  
OVP  
MODE_BUF  
CLK2  
0.7V  
+
LOW-SIDE  
CURRENT  
SENSE  
+
0.54V  
+
PGOOD2  
CURRENT-  
I2  
MAX  
LIMIT  
SELECTION  
Figure 3.  
Rev. 0 | Page 3 of 32  
 
ADP2325  
Data Sheet  
SPECIFICATIONS  
PVIN1 = PVIN2 = 12 V at TJ = −40°C to +125°C, unless otherwise noted.  
Table 1.  
Parameters  
Symbol Test Conditions/Comments  
Min  
Typ Max  
Unit  
POWER INPUT (PVINx PINS)  
Power Input Voltage Range  
Quiescent Current (PVIN1 + PVIN2)  
Shutdown Current (PVIN1 + PVIN2)  
PVINx Undervoltage Lockout Threshold  
PVINx Rising  
VPVIN  
IQ  
ISHDN  
UVLO  
4.5  
20  
5
40  
V
mA  
μA  
MODE = GND, no switching  
EN1 = EN2 = GND  
3
30  
4.2  
3.7  
4.4  
V
V
PVINx Falling  
3.5  
FEEDBACK (FBx PINS)  
FBx Regulation Voltage1  
FBx Bias Current  
VFB  
IFB  
PVINx = 4.5 V to 20 V  
0.594 0.6  
0.606  
V
μA  
0.01 0.1  
ERROR AMPLIFIER (COMPx PINS)  
Transconductance  
Error Amplifier Source Current  
Error Amplifier Sink Current  
INTERNAL REGULATOR (INTVCC PIN)  
INTVCC Voltage  
gm  
ISOURCE  
ISINK  
370  
40  
45  
500 630  
μS  
μA  
μA  
65  
65  
90  
85  
4.75  
80  
5
5.25  
V
mV  
mA  
Dropout Voltage  
IINTVCC = 30 mA  
300  
100 120  
Regulator Current Limit  
SWITCH NODE (SWx PINS)  
High-Side On Resistance2  
High-Side Peak Current Limit  
VBST to VSW = 5 V  
RILIM = floating, VBST to VSW = 5 V  
RILIM = 47 kΩ, VBST to VSW = 5 V  
48  
8
4.8  
50  
80  
9.6  
6.2  
mΩ  
A
A
6.4  
3.4  
Low-Side Negative Current-Limit Threshold  
Voltage3  
mV  
SWx Minimum On Time3  
SWx Minimum Off Time3  
LOW-SIDE DRIVER (DLx PINS)  
Rising Time3  
tMIN_ON  
tMIN_OFF  
130  
150  
ns  
ns  
tR  
tF  
CDL = 2.2 nF, see Figure 23  
CDL = 2.2 nF, see Figure 26  
20  
10  
4
ns  
ns  
Ω
Falling Time3  
Sourcing Resistor  
Sinking Resistor  
6
3
1.4  
Ω
OSCILLATOR (RT PIN)  
PWM Switching Frequency  
PWM Frequency Range  
SYNCHRONIZATION (SYNC PIN)  
SYNC Input  
fSW  
ROSC = 100 kΩ  
510  
250  
600 690  
kHz  
1200 kHz  
SYNC configured as input  
Synchronization Range  
Minimum On Pulse Width  
Minimum Off Pulse Width  
High Threshold  
300  
100  
100  
1.3  
1200 kHz  
ns  
ns  
V
Low Threshold  
SYNC Output  
Frequency on SYNC Pin  
Positive Pulse Time  
SOFT START (SSx PINS)  
SSx Pin Source Current  
0.4  
4.5  
V
SYNC configured as output  
fCLKOUT  
fSW  
kHz  
ns  
100  
2.5  
ISS  
3.5  
μA  
Rev. 0 | Page 4 of 32  
 
Data Sheet  
ADP2325  
Parameters  
Symbol Test Conditions/Comments  
Min  
Typ Max  
Unit  
TRACKING INPUT (TRKx PINS)  
TRKx Input Voltage Range  
TRKx-to-FBx Offset Voltage  
TRKx Input Bias Current  
POWER GOOD (PGOODx PINS)  
Power-Good Rising Threshold  
Power-Good Hysteresis  
Power-Good Deglitch Time  
PGOODx Leakage Current  
PGOODx Output Low Voltage  
ENABLE (ENx PINS)  
0
−12  
600  
+12  
100  
mV  
mV  
nA  
TRKx = 0 mV to 500 mV  
87  
90  
5
16  
0.1  
50  
93  
%
%
From FBx to PGOODx  
VPGOOD = 5 V  
IPGOOD = 1 mA  
Clock cycles  
µA  
mV  
1
100  
ENx Rising Threshold  
ENx Falling Threshold  
ENx Source Current  
1.2  
1.1  
5
1.28  
V
V
µA  
1.02  
1.3  
EN voltage below falling  
threshold  
EN voltage above rising  
threshold  
1
µA  
MODE (MODE PIN)  
Input High Voltage  
Input Low Voltage  
V
V
0.4  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
150  
15  
°C  
°C  
1 Tested in a feedback loop that adjusts VFB to achieve a specified voltage on the COMPx pin.  
2 Pin-to-pin measurements.  
3 Guaranteed by design.  
Rev. 0 | Page 5 of 32  
 
ADP2325  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Parameter  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Rating  
PVIN1, PVIN2, EN1, EN2  
SW1, SW2  
BST1, BST2  
FB1, FB2, SS1, SS2, COMP1, COMP2,  
PGOOD1, PGOOD2, TRK1, TRK2, SCFG,  
SYNC, RT, MODE  
−0.3 V to +22 V  
−1 V to +22 V  
VSW + 6 V  
Boundary Condition  
θJA is measured using natural convection on a JEDEC 4-layer  
board, and the exposed pad is soldered to the printed circuit  
board (PCB) with thermal vias.  
−0.3 V to +6 V  
INTVCC, VDRV, DL1, DL2  
PGND to GND  
−0.3 V to +6 V  
−0.3 V to +0.3 V  
Table 3. Thermal Resistance  
Package Type  
θJA  
Unit  
Temperature Range  
Operating (Junction)  
Storage  
32-Lead LFCSP_WQ  
32.7  
°C/W  
−40°C to +125°C  
−65°C to +150°C  
JEDEC J-STD-020  
ESD CAUTION  
Soldering Conditions  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 6 of 32  
 
 
 
Data Sheet  
ADP2325  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PGOOD1  
SCFG  
SYNC  
GND  
INTVCC  
RT  
1
2
3
4
5
6
7
8
24 SW1  
23  
22 DL1  
BST1  
ADP2325  
TOP VIEW  
(Not to Scale)  
21 PGND  
20  
19  
VDRV  
DL2  
MODE  
PGOOD2  
18 BST2  
17 SW2  
NOTES  
1. THE EXPOSED PAD SHOULD BE SOLDERED  
TO AN EXTERNAL GND PLANE.  
Figure 4. Pin Configuration (Top View)  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
PGOOD1  
SCFG  
Power-Good Output (Open Drain) for Channel 1. A pull-up resistor of 10 kΩ to 100 kΩ is recommended.  
Synchronization Configuration Input. The SCFG pin configures the SYNC pin as an input or an output. Connect  
SCFG to INTVCC to configure SYNC as an output. Connecting a pull-down resistor to GND configures SYNC as an  
input with various phase shift degrees.  
3
SYNC  
Synchronization. This pin can be configured as an input or an output. When configured as an output, it provides a  
clock at the switching frequency. When configured as an input, this pin accepts an external clock to which the  
regulators are synchronized. The phase shift is configured by SCFG. Note that when SYNC is configured as an input,  
the PFM mode is disabled and the device works in continuous conduction mode (CCM) only.  
4
5
GND  
INTVCC  
Analog Ground. Connect to the ground plane.  
Internal 5 V Regulator Output. The IC control circuits are powered from this voltage. Place a 1 μF ceramic capacitor  
between INTVCC and GND.  
6
7
RT  
MODE  
Connect a resistor between RT and GND to program the switching frequency from 250 kHz to 1.2 MHz.  
Mode Selection. When this pin is connected to INTVCC, the PFM mode is disabled and the regulator works only in  
CCM. When this pin is connected to ground, the PFM mode is enabled. If the low-side device is a diode, the MODE  
pin must be connected to ground.  
8
9
PGOOD2  
FB2  
Power-Good Output (Open Drain) for Channel 2. A pull-up resistor of 10 kΩ to 100 kΩ is recommended.  
Feedback Voltage Sense Input for Channel 2. Connect FB2 to a resistor divider from the Channel 2 output voltage,  
V
OUT2. Connect FB2 to INTVCC for parallel applications.  
10  
COMP2  
SS2  
Error Amplifier Output for Channel 2. Connect an RC network from COMP2 to GND. Connect COMP1 and COMP2  
together for parallel applications.  
Soft Start Control for Channel 2. To program the soft start time, connect a capacitor from SS2 to GND. For parallel  
applications, SS2 remains open.  
11  
12  
TRK2  
EN2  
Tracking Input for Channel 2. To track a master voltage, connect this pin to a resistor divider from the master  
voltage. If the tracking function is not used, connect TRK2 to INTVCC.  
Enable Pin for Channel 2. An external resistor divider can be used to set the turn-on threshold. When not using the  
enable pin, connect EN2 to PVIN2.  
13  
14, 15  
PVIN2  
Power Input for Channel 2. Connect PVIN2 to the input power source, and connect a bypass capacitor between  
PVIN2 and ground.  
16, 17  
18  
19  
SW2  
BST2  
DL2  
Switch Node for Channel 2.  
Supply Rail for the Gate Drive of Channel 2. Place a 0.1 ꢀF capacitor between SW2 and BST2.  
Low-Side Gate Driver Output for Channel 2. Connect a resistor between DL2 and PGND to program the current-  
limit threshold of Channel 2.  
20  
21  
22  
VDRV  
PGND  
DL1  
Low-Side Driver Supply Input. Connect VDRV to INTVCC. Place a 1 ꢀF ceramic capacitor between the VDRV pin and PGND.  
Driver Power Ground. Connect to the source of the synchronous N-channel MOSFET.  
Low-Side Gate Driver Output for Channel 1. Connect a resistor between DL1 and PGND to program the current-  
limit threshold of Channel 1.  
23  
BST1  
Supply Rail for the Gate Drive of Channel 1. Place a 0.1 ꢀF capacitor between SW1 and BST1.  
Rev. 0 | Page 7 of 32  
 
ADP2325  
Data Sheet  
Pin No. Mnemonic Description  
24, 25  
26, 27  
SW1  
PVIN1  
Switch Node for Channel 1.  
Power Input for Channel 1. These pins are the power inputs for Channel 1 and provide power for the internal  
regulator. Connect to the input power source and connect a bypass capacitor between PVIN1 and ground.  
28  
29  
EN1  
Enable Pin for Channel 1. An external resistor divider can be used to set the turn-on threshold. When not using  
the enable pin, connect EN1 to PVIN1.  
Tracking Input for Channel 1. To track a master voltage, connect this pin to a resistor divider from the master  
voltage. If the tracking function is not used, connect TRK1 to INTVCC.  
TRK1  
30  
31  
SS1  
COMP1  
Soft Start Control for Channel 1. To program the soft start time, connect a capacitor from SS1 to GND.  
Error Amplifier Output for Channel 1. Connect an RC network from COMP1 to GND. Connect COMP1 and COMP2  
together for parallel applications.  
32  
N/A1  
FB1  
EP  
Feedback Voltage Sense Input for Channel 1. Connect FB1 to a resistor divider from the Channel 1 output voltage, VOUT1  
Exposed Pad. Solder the exposed pad to an external GND plane.  
.
1 N/A means not applicable.  
Rev. 0 | Page 8 of 32  
 
Data Sheet  
ADP2325  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VIN = 12 V, VOUT = 3.3 V, L = 2.2 µH, COUT = 2 × 100 µF, fSW = 600 kHz, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
INDUCTOR: FDVE1040-4R7M  
MOSFET: FDS8880  
INDUCTOR: FDVE1040-2R2M  
MOSFET: FDS8880  
V
V
V
V
V
V
= 5.0V  
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
V
V
V
V
= 5.0V  
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 5. Efficiency at VIN = 12 V, fSW = 600 kHz, FPWM  
Figure 8. Efficiency at VIN = 12 V, fSW = 300 kHz, FPWM  
100  
100  
INDUCTOR: FDVE1040-4R7M  
MOSFET: FDS8880  
INDUCTOR: FDVE1040-2R2M  
MOSFET: FDS8880  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
= 5.0V, FPWM  
V
V
V
V
= 5.0V, FPWM  
= 3.3V, FPWM  
= 5.0V, PFM  
= 3.3V, PFM  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 3.3V, FPWM  
= 5.0V, PFM  
= 3.3V, PFM  
0.01  
0.1  
OUTPUT CURRENT (A)  
1
0.01  
0.1  
OUTPUT CURRENT (A)  
1
Figure 6. Efficiency at VIN = 12 V, fSW = 600 kHz, FPWM and PFM  
Figure 9. Efficiency at VIN = 12 V, fSW = 300 kHz, FPWM and PFM  
100  
100  
INDUCTOR: FDVE1040-1R5M  
MOSFET: FDS8880  
INDUCTOR: FDVE1040-4R7M  
MOSFET: FDS8880  
95  
95  
90  
85  
80  
75  
70  
65  
90  
85  
80  
75  
70  
65  
V
V
V
V
V
V
= 5.0V  
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
V
V
V
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
OUT  
OUT  
OUT  
OUT  
OUT  
60  
55  
50  
60  
55  
50  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 10. Efficiency at VIN = 18 V, fSW = 300 kHz, FPWM  
Figure 7. Efficiency at VIN = 5 V, fSW = 600 kHz, FPWM  
Rev. 0 | Page 9 of 32  
 
ADP2325  
Data Sheet  
40  
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
2.80  
T
J
= –40°C  
= +25°C  
= +125°C  
T
T
T
= –40°C  
= +25°C  
= +125°C  
J
J
J
T
J
T
J
35  
30  
25  
20  
15  
10  
4
6
8
10  
12  
(V)  
14  
16  
18  
20  
4
6
8
10  
12  
(V)  
14  
16  
18  
20  
V
V
IN  
IN  
Figure 11. Shutdown Current vs. VIN  
Figure 14. Quiescent Current vs. VIN  
4.5  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
RISING  
RISING  
FALLING  
FALLING  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. UVLO Threshold vs. Temperature  
Figure 15. EN Threshold vs. Temperature  
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
4.70  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. EN Source Current vs. Temperature at VEN = 1.5 V  
Figure 16. EN Source Current vs. Temperature at VEN = 1 V  
Rev. 0 | Page 10 of 32  
Data Sheet  
ADP2325  
604  
603  
602  
601  
600  
599  
598  
597  
596  
600  
580  
560  
540  
520  
500  
480  
460  
440  
420  
400  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Feedback Voltage vs. Temperature  
Figure 20. Transconductance (gm) vs. Temperature  
660  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
R
= 100k  
OSC  
640  
620  
600  
580  
560  
540  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
4
6
8
10  
12  
(V)  
14  
16  
18  
20  
TEMPERATURE (°C)  
V
IN  
Figure 18. Frequency vs. Temperature  
Figure 21. INTVCC Voltage vs. VIN  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. MOSFET RDSON vs. Temperature  
Figure 22. SSx Pin Source Current vs. Temperature  
Rev. 0 | Page 11 of 32  
ADP2325  
Data Sheet  
SW  
SW  
1
1
DL  
DL  
2
2
CH1 5V  
CH2 2V  
M20ns  
A CH1  
4V  
CH1 5V  
CH2 2V  
M20ns  
40.4%  
A CH2  
4.04V  
T
40.4%  
T
Figure 23. Low-Side Driver Rising Edge Waveform, CDL = 2.2 nF  
Figure 26. Low-Side Driver Falling Edge Waveform, CDL = 2.2 nF  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 24. Peak Current-Limit Threshold vs. Temperature, RILIM = Floating  
Figure 27. Peak Current-Limit Threshold vs. Temperature, RILIM = 47 kΩ  
V
(AC)  
V
(AC)  
OUT  
OUT  
1
1
I
L
I
L
4
2
SW  
SW  
4
2
B
B
W
CH2 10V  
CH4 1A Ω  
CH1 10mV  
CH2 10V  
CH4 2A Ω  
M 1µs  
42.6%  
A CH2  
4.6V  
CH1 10mV  
M 1µs  
47.2%  
A CH2  
8.4V  
W
T
T
Figure 25. Continuous Conduction Mode (CCM)  
Figure 28. Discontinuous Conduction Mode (DCM)  
Rev. 0 | Page 12 of 32  
 
 
Data Sheet  
ADP2325  
V
(AC)  
OUT  
SW1  
1
4
2
1
2
SW2  
I
L
I
I
L1  
L2  
SW  
4
B
CH2 10V  
CH4 1A   
M 1µs  
50.4%  
A CH2  
5.6V  
CH1 100mV  
M 1ms  
47.2%  
A CH2  
8.4V  
CH1 10V  
CH3 2A  
CH2 10V  
CH4 2A  
W
B
B
W
T
T
W
Figure 29. Power Saving Mode  
Figure 32. Dual Phase, Single Output, VOUT = 3.3 V, IOUT = 10 A  
EN  
EN  
3
3
V
OUT  
V
OUT  
1
2
1
2
PGOOD  
PGOOD  
I
I
L
OUT  
4
4
B
B
CH1 2V  
CH3 10V  
CH2 5V  
CH4 2A   
M 1ms  
20.2%  
A CH3  
3.4V  
CH1 2V  
CH3 10V  
CH2 5V  
CH4 5A   
M 1ms  
20.2%  
A CH3  
3.4V  
W
W
T
T
Figure 33. Soft Start with Precharged Output  
Figure 30. Soft Start with Full Load  
V
(AC)  
V
(AC)  
OUT  
OUT  
1
1
V
IN  
I
OUT  
4
3
B
B
B
CH1 100mV  
M 200µs  
20.2%  
A CH4  
3.4A  
CH1 20mV  
CH3 5V  
M 400µs  
73.8%  
A CH3  
11.5V  
W
W
W
CH4 2A  
T
T
Figure 31. Load Transient Response, 1 A to 4 A  
Figure 34. Line Transient Response, VIN from 8 V to 14 V, IOUT = 5 A  
Rev. 0 | Page 13 of 32  
ADP2325  
Data Sheet  
V
V
OUT  
OUT  
1
2
1
2
4
SW  
SW  
I
I
L
L
4
B
B
CH2 10V  
CH4 5A Ω  
CH1 2V  
CH1 2V  
M 10ms  
19.8%  
A CH1  
1.32V  
CH2 10V  
CH4 5A Ω  
M 10ms  
60.2%  
A CH1  
1.32V  
W
W
T
T
Figure 35. Output Short  
Figure 38. Output Short Recovery  
SYNC  
SYNC  
3
3
SW1  
SW1  
1
2
1
2
SW2  
SW2  
CH1 10V  
CH3 5V  
CH2 10V  
M 1µs  
50.4%  
A CH3  
2.8V  
CH1 10V  
CH3 5V  
CH2 10V  
M 1µs  
50.4%  
A CH3  
2.8V  
T
T
Figure 36. External Synchronization with 60° Phase Shift  
Figure 39. External Synchronization with 90° Phase Shift  
SYNC  
SYNC  
3
3
SW1  
SW1  
1
2
1
2
SW2  
SW2  
CH1 10V  
CH3 5V  
CH2 10V  
M 1µs  
50.0%  
A CH3  
2.5V  
CH1 10V  
CH3 5V  
CH2 10V  
M 1µs  
50.4%  
A CH3  
2.8V  
T
T
Figure 37. External Synchronization with 120° Phase Shift  
Figure 40. SYNC Pin Configured as Output  
Rev. 0 | Page 14 of 32  
Data Sheet  
ADP2325  
V
MASTER  
V
MASTER  
V
SLAVE  
V
SLAVE  
2
2
B
B
B
B
W
CH1 1V  
CH1 1V  
CH2 1V  
M 1ms  
50.4%  
A CH1  
1.56V  
CH2 1V  
M 1ms  
49.8%  
A CH1  
1.58V  
W
W
W
T
T
Figure 41. Coincident Tracking  
Figure 43. Ratiometric Tracking  
6
6
V
= 1.2V  
= 3.3V  
= 500kHz  
V
V
= 1.2V  
OUT1  
OUT2  
OUT1  
OUT2  
V
f
= 3.3V  
f
= 500kHz  
SW  
SW  
5
4
3
2
1
0
5
4
3
2
1
0
CH2 = 0A  
CH2 = 1A  
CH2 = 2A  
CH2 = 3A  
CH2 = 4A  
CH2 = 5A  
CH1 = 0A  
CH1 = 1A  
CH1 = 2A  
CH1 = 3A  
CH1 = 4A  
CH1 = 5A  
25  
40  
55  
70  
85  
100  
25  
40  
55  
70  
85  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 42. Thermal Derating Performance at 110°C Case Temperature Based  
on ADP2325-EVALZ Board  
Figure 44. Thermal Derating Performance at 110°C Case Temperature Based  
on ADP2325-EVALZ Board  
Rev. 0 | Page 15 of 32  
ADP2325  
Data Sheet  
THEORY OF OPERATION  
The ADP2325 is a full featured, dual output, step-down dc-to-dc  
regulator based on a current mode architecture. It integrates two  
high-side power MOSFETs and two low-side drivers for external  
MOSFETs. The ADP2325 is designed for high performance  
applications that require high efficiency and design flexibility.  
PRECISION ENABLE/SHUTDOWN  
The ADP2325 has two independent enable pins (EN1 and  
EN2), one for each channel. The ENx pin has an internal pull-  
down current source of 5 μA to provide a default turn-off whenever  
an ENx pin is open.  
The ADP2325 can operate with an input voltage from 4.5 V  
to 20 V and can regulate the output voltage to as low as 0.6 V.  
Additional features for flexible design include programmable  
switching frequency, programmable soft start, external compen-  
sation, independent enable inputs, and power-good outputs.  
When the voltage on the EN1 or EN2 pin exceeds 1.2 V (typical),  
Channel 1 (per the EN1 pin) or Channel 2 (per the EN2 pin) is  
enabled and the internal pull-down current source at the EN1  
or EN2 pin is reduced to 1 μA, which allows the user to program  
the UVLO lockout of the input voltage.  
CONTROL SCHEME  
When the voltage on the EN1 or EN2 pin drops below 1.1 V  
(typical), Channel 1 or Channel 2 turns off. When EN1 and  
EN2 are both below 1.1 V, all of the internal circuits turn off  
and the device enters the shutdown mode.  
The ADP2325 uses a fixed frequency, current mode PWM control  
architecture during medium to full loads, but shifts to a power  
save mode (PFM) at light loads when the PFM mode is enabled.  
The power save mode reduces switching losses and boosts effi-  
ciency under light loads.  
SEPARATE INPUT VOLTAGES  
The ADP2325 supports two separate input voltages. This means  
that the PVIN1 and PVIN2 voltages can be connected to two  
different supply voltages. In these types of applications, because  
the PVIN1 voltage provides the power supply for the internal regu-  
lator and control circuitry, the PVIN1 voltage must be above the  
UVLO voltage before the PVIN2 voltage begins to rise.  
When operating in the fixed frequency PWM mode, the duty  
cycle of the integrated N-channel MOSFET (referred to inter-  
changeably as NFET or MOSFET) is adjusted, this, in turn,  
regulates the output voltage. When the device operates in  
power save mode, the switching frequency is adjusted to regu  
late the output voltage.  
This feature allows for a cascading supply operation, as shown in  
Figure 45 where PVIN2 is sourced from the Channel 1 output.  
In this configuration, the Channel 1 output voltage needs to be high  
enough to maintain Channel 2 in regulation, and the Channel 1  
output voltage must be higher than the input voltage UVLO  
threshold.  
PWM MODE  
In PWM mode, the ADP2325 operates at a fixed frequency  
set by an external resistor. At the start of each oscillator cycle, the  
high-side NFET turns on, placing a positive voltage across the  
inductor. The inductor current increases until the current sense  
signal crosses the peak inductor current threshold, turning off the  
high-side NFET and turning on the low-side NFET (diode). This  
places a negative voltage across the inductor, causing a reduction in  
the inductor current. The low-side NFET (diode) stays on for the  
remainder of the cycle or until the inductor current reaches zero.  
V
PVIN1  
PVIN2  
IN  
ADP2325  
L1  
L2  
V
V
OUT2  
OUT1  
SW1  
SW2  
PFM MODE  
To enable the PFM mode, pull the MODE pin to ground. When  
the COMPx voltage is below the PFM threshold voltage, the  
device enters the PFM mode.  
C
C
OUT2  
OUT1  
M2  
M1  
DL1  
DL2  
PGND  
When the device enters the PFM mode, it monitors the FBx voltage  
to regulate the output voltage. Because the high-side and low-  
side NFETs are turned off, the load current discharges the output  
capacitor causing the output voltage to drop. When the FBx  
voltage drops below 0.605 V, the device starts switching and the  
output voltage increases as the output capacitor is charged by the  
inductor current. When the FBx voltage exceeds 0.62 V, the device  
turns off both the high-side and low-side NFETs until the FBx  
voltage drops to 0.605 V. In the PFM mode, the output voltage  
ripple is larger than the ripple in the PWM mode.  
Figure 45. Cascading Supply Operation  
INTERNAL REGULATOR (INTVCC)  
The internal regulator provides a stable voltage supply for the  
internal control circuits and a bias voltage for the low-side gate  
drivers. It is recommended that a 1 μF ceramic capacitor be placed  
between INTVCC and GND. The internal regulator also includes a  
current-limit circuit for protection.  
The internal regulator is active when either of the channels is  
enabled. The PVIN1 pin provides power for the internal regulator,  
which is used by both channels.  
Rev. 0 | Page 16 of 32  
 
 
 
 
 
 
 
 
Data Sheet  
ADP2325  
When the SYNC pin is configured as an input, the ADP2325 syn-  
chronizes to the external clock that is applied to the SYNC pin, and  
the internal clock must be programmed lower than the external  
clock. The phase shift can be programmed by the SCFG pin.  
BOOTSTRAP CIRCUITRY  
The ADP2325 integrates the boot regulators to provide the gate  
drive voltage for the high-side NFETs. The regulators generate  
5 V bootstrap voltages between the BSTx and the SWx pins.  
When working in synchronization mode, the ADP2325 disables  
the PFM mode and works only in the CCM mode.  
It is recommended that an X7R or X5R, 0.1 μF ceramic  
capacitor be placed between the BSTx and the SWx pins.  
SOFT START  
LOW-SIDE DRIVER  
Use the SSx pins to program the soft start time. Place a capacitor  
between SSx and GND; an internal current charges this capacitor  
to establish the soft start ramp. The soft start time can be calculated  
using the following equation:  
The DLx pin provides the gate drive for the low-side N-channel  
MOSFET. Internal circuitry monitors the gate driver signal to  
ensure break-before-make switching to prevent crossconduction.  
The VDRV pin provides the power supply to the low-side drivers.  
It is limited to a 5.5 V maximum input; placing a 1 μF ceramic  
capacitor close to this pin is recommended.  
0.6 VCSS  
t
SS   
ISS  
OSCILLATOR  
where:  
SS is the soft start capacitance.  
SS is the soft start pull-up current (3.5 μA).  
C
I
A resistor from RT to GND programs the switching frequency  
according to the following equation:  
If the output voltage is precharged prior to power-up, the ADP2325  
prevents the low-side MOSFET from turning on until the soft  
start voltage exceeds the voltage on the FBx pin.  
60,000  
f
SW [kHz] =  
ROSC[kΩ]  
A 200 kꢀ resistor sets the frequency to 300 kHz, and a 100 kꢀ  
resistor sets the frequency to 600 kHz. Figure 46 shows the  
typical relationship between fSW and ROSC  
During soft start, the ADP2325 uses frequency foldback to  
prevent output current runaway. The switching frequency is  
reduced according to the voltage present at the FBx pin, which  
allows more time for the inductor to discharge. The correlation  
between the switching frequency and the FBx pin voltage is listed  
in Table 6.  
.
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
Table 6. FBx Pin Voltage and Switching Frequency  
FBx Pin Voltage  
Switching Frequency  
VFB ≥ 0.4 V  
fSW  
0.4 V > VFB ≥ 0.2 V  
VFB < 0.2 V  
1/2 fSW  
1/4 fSW  
PEAK CURRENT-LIMIT AND SHORT-CIRCUIT  
PROTECTION  
The ADP2325 uses a peak current-limit protection circuit to  
prevent current runaway. Place a resistor between DLx and PGND  
to program the peak current-limit value, as listed in Table 7.  
The programmable peak current-limit threshold feature allows  
for the use of a small size inductor for low current applications.  
50  
70  
90  
110 130 150 170 190 210 230 250  
(k)  
R
OSC  
Figure 46. fSW vs. ROSC  
SYNCHRONIZATION  
The SYNC pin can be configured as an input or an output by  
setting the SCFG pin, as shown in Table 5.  
Table 7. Peak Current-Limit Threshold Setting  
RILIM  
Peak Current-Limit Threshold  
Table 5. SCFG Configuration  
Floating  
47 kΩ  
8 A  
4.8 A  
SCFG  
SYNC  
Output  
Input  
Input  
Input  
Phase Shift  
INTVCC  
GND  
0°  
The ADP2325 uses hiccup mode for overcurrent protection.  
When the peak inductor current reaches the current-limit  
threshold, the high-side MOSFET turns off and the low-side  
driver turns on until the next cycle while the overcurrent counter  
is incremented.  
90°  
120°  
60°  
180 kΩ to GND  
100 kΩ to GND  
When the SYNC pin is configured as an output, it generates a  
clock with a frequency that is equal to the internal switching  
frequency.  
Rev. 0 | Page 17 of 32  
 
 
 
 
 
 
 
 
 
 
ADP2325  
Data Sheet  
If the overcurrent counter reaches 10, or if the FBx pin voltage  
falls to 0.2 V after the soft start, the device enters hiccup mode.  
During this mode, the high-side MOSFET and low-side driver are  
both turned off. The device remains in this mode for seven soft  
start cycles and then attempts to restart from soft start. If the  
current-limit fault is cleared, the device resumes normal  
operation; otherwise, it reenters hiccup mode.  
Coincident Tracking  
A common application is coincident tracking, which is shown in  
Figure 48. Coincident tracking limits the slave output voltage to  
be the same as the master voltage until it reaches regulation. To  
enable coincident tracking, set RTRK_TOP = RTOP and RTRK_BOT = RBOT  
.
V
V
MASTER  
The ADP2325 provides a negative current limit. When the low-side  
FET voltage exceeds the negative current-limit threshold voltage  
(50 mV typical), the low-side FET turns off immediately for the  
remainder of this cycle. Both the high-side and low-side FETs  
turn off until the next cycle.  
SLAVE  
TIME  
In some cases, the input voltage (PVIN) ramp rate is too slow  
or the output capacitor is too large to support the set regulation  
voltage during the soft start, causing the device to enter the  
hiccup mode. To prevent such cases, use a resistor divider at the  
ENx pin to program the UVLO of the input voltage or use a  
longer soft start time.  
Figure 48. Coincident Tracking  
Ratiometric Tracking  
In ratiometric tracking, the slave output voltage is limited to a frac-  
tion of the master voltage. In this application, the slave and master  
voltages reach their final values at the same time (see Figure 49).  
V
MASTER  
VOLTAGE TRACKING  
The ADP2325 has a tracking input, TRKx, that allows the output  
voltage to track an external (master) voltage. Voltage tracking  
allows power sequencing applicable for FPGAs, DSPs, and ASICs,  
which may require a power sequence between the core and the I/O  
voltages.  
V
SLAVE  
TIME  
Figure 49. Ratiometric Tracking  
The internal error amplifier includes three positive inputs: the  
internal reference voltage, the soft start voltage, and the tracking  
input voltage. The error amplifier regulates the feedback voltage  
to the lowest of the three voltages. To track a master voltage,  
connect the TRKx pin to a resistor divider from the master  
voltage, as shown in Figure 47.  
The ratio of the slave output voltage to the master voltage is a  
function of the two dividers, as follows:  
RTOP  
RBOT  
1+  
VSLAVE  
VMASTER  
=
RTRK _TOP  
RTRK _ BOT  
V
MASTER  
1+  
R
TRK_TOP  
V
SLAVE  
The final TRKx pin voltage must be higher than 0.54 V. If the  
tracking function is not used, connect the TRKx pin to INTVCC.  
TRKx  
SWx  
ADP2325  
PARALLEL OPERATION  
R
R
R
TRK_BOT  
TOP  
The ADP2325 supports a 2-phase parallel operation to provide  
a single output of 10 A. To configure the ADP2325 as a 2-phase  
single output  
FBx  
BOT  
1. Connect the FB2 pin to INTVCC, thereby disabling the  
Channel 2 error amplifier.  
Figure 47. Voltage Tracking  
2. Connect COMP1 to COMP2 and connect EN1 to EN2.  
3. Use SS1 to set the soft start time and keep SS2 open.  
During parallel operation, the voltages of PVIN1 and PVIN2  
should be the same.  
Rev. 0 | Page 18 of 32  
 
 
 
 
 
Data Sheet  
ADP2325  
driver turn off until the voltage at the FBx pin is reduced to  
0.63 V, at which time the ADP2325 resumes normal operation.  
POWER GOOD  
The power-good (PGOODx) pin is an active high, open-drain  
output that indicates whether the regulator output voltage is  
within regulation. Logic high indicates that the voltage at the  
FBx pin (and, therefore, the output voltage) is above 90% of the  
reference voltage. Logic low indicates that the voltage at the FBx  
pin (and, therefore, the output voltage) is below 85% of the  
reference voltage. There is a 16-cycle deglitch time between FBx  
and PGOODx.  
UNDERVOLTAGE LOCKOUT  
The UVLO threshold is 4.2 V with 0.5 V hysteresis to prevent  
power-on glitches on the device. When the PVIN1 or PVIN2  
voltage rises above 4.2 V, Channel 1 or Channel 2 is enabled and the  
soft start period initiates. When either PVIN1 or PVIN2 drops  
below 3.7 V, it turns off Channel 1 or Channel 2, respectively.  
THERMAL SHUTDOWN  
OVERVOLTAGE PROTECTION  
In the event that the ADP2325 junction temperature exceeds  
150°C, the thermal shutdown circuit turns off the regulator. A  
15°C hysteresis is included so that the ADP2325 does not recover  
from thermal shutdown until the on-chip temperature drops  
below 135°C. Upon recovery, soft start initiates prior to normal  
operation.  
The ADP2325 provides an OVP feature to protect the system  
against an output shorting to a higher voltage supply or for  
when a strong load transient occurs. If the feedback voltage  
increases to 0.7 V, the internal high-side MOSFET and low-side  
Rev. 0 | Page 19 of 32  
 
 
 
 
ADP2325  
Data Sheet  
APPLICATIONS INFORMATION  
The maximum output voltage for a given input voltage and  
INPUT CAPACITOR SELECTION  
switching frequency is also limited by the minimum off time  
and the maximum duty cycle. The minimum off time is typically  
150 ns and the maximum duty is typically 90% in the ADP2325.  
The input decoupling capacitor attenuates high frequency noise  
on the input and acts as an energy reservoir. This capacitor should  
be a ceramic capacitor in the range of 10 µF to 47 µF and must  
be placed close to the PVINx pin. The loop composed of this  
input capacitor, high-side NFET, and low-side NFET must be  
kept as small as possible. The voltage rating of the input capacitor  
must be greater than the maximum input voltage. Ensure that the  
rms current rating of the input capacitor is larger than that  
expressed in following equation:  
The maximum output voltage that is limited by the minimum off  
time at a given input voltage and frequency can be calculated  
using the following equation:  
V
OUT_MAX = VIN × (1 − tMIN_OFF × fSW) − (RDSON1 RDSON2) ×  
OUT_MAX × (1 − tMIN_OFF × fSW) − (RDSON2 + RL) × IOUT_MAX  
where:  
OUT_MAX is the maximum output voltage.  
MIN_OFF is the minimum off time.  
I
ICIN  
= IOUT × D×  
(1D  
)
V
t
_rms  
OUTPUT VOLTAGE SETTING  
IOUT_MAX is the maximum output current.  
The output voltage of the ADP2325 can be set by an external  
resistor divider using the following equation:  
The maximum output voltage that is limited by the maximum  
duty cycle at a given input voltage can be calculated using the  
following equation:  
RTOP  
RBOT  
VOUT = 0.6× 1+  
VOUT_MAX = DMAX × VIN  
where DMAX is the maximum duty cycle.  
To limit output voltage accuracy degradation due to FBx pin  
bias current (0.1 µA maximum) to less than 0.5% (maximum),  
ensure that RBOT is less than 30 kΩ. Table 8 provides the recom-  
mended resistor divider for various output voltage options.  
As the previous equations demonstrate, reducing the switching  
frequency alleviates the minimum on time and minimum off time  
limitation.  
Table 8. Resistor Divider for Various Output Voltages  
CURRENT-LIMIT SETTING  
VOUT (V)  
RTOP  
,
1% (kΩ)  
RBOT, 1% (kΩ)  
The ADP2325 has two selectable current-limit thresholds. Make  
sure that the selected current-limit value is larger than the peak  
1.0  
10  
15  
1.2  
10  
10  
current of the inductor, IPEAK  
.
1.5  
15  
10  
INDUCTOR SELECTION  
1.8  
20  
10  
The inductor value is determined by the operating frequency,  
input voltage, output voltage, and inductor ripple current. Using  
a small inductor provides faster transient response but degrades  
efficiency due to larger inductor ripple current, whereas a large  
inductor value provides smaller ripple current and better effi-  
ciency but results in a slower transient response. Thus, there is a  
trade-off between the transient response and efficiency. As a  
guideline, the inductor ripple current, ΔIL, is typically set to  
one-third of the maximum load current. The inductor value can  
be calculated by using the following equation:  
2.5  
3.3  
5.0  
47.5  
10  
22  
15  
2.21  
3
VOLTAGE CONVERSION LIMITATIONS  
The minimum output voltage for a given input voltage and  
switching frequency is limited by the minimum on time. The  
minimum on time of the ADP2325 is typically 130 ns. The  
minimum output voltage in CCM mode at a given input voltage  
and frequency can be calculated using the following equation:  
V
t
OUT_MIN = VIN × tMIN_ON × fSW − (RDSON1 RDSON2) × IOUT_MIN  
MIN_ON × fSW − (RDSON2 + RL) × IOUT_MIN  
where:  
OUT_MIN is the minimum output voltage.  
MIN_ON is the minimum on time.  
×
(
VIN  
VOUT  
)
×D  
L
=
IL × fSW  
where:  
V
t
I
V
V
IN is the input voltage.  
OUT is the output voltage.  
ΔIL is the inductor ripple current.  
SW is the switching frequency.  
OUT_MIN is the minimum output current.  
SW is the switching frequency.  
DSON1 is the high-side MOSFET on resistance.  
DSON2 is the low-side MOSFET on resistance.  
f
R
R
f
D is the duty cycle.  
VOUT  
D =  
RL is the series resistance of the output inductor.  
VIN  
Rev. 0 | Page 20 of 32  
 
 
 
 
 
 
 
Data Sheet  
ADP2325  
The ADP2325 uses adaptive slope compensation in the current  
loop to prevent subharmonic oscillations when the duty cycle is  
larger than 50%. The internal slope compensation limits the min-  
imum inductor value.  
OUTPUT CAPACITOR SELECTION  
The output capacitor selection affects both the output voltage  
ripple and the loop dynamics of the regulator. For example,  
during load step transient on the output, when the load is sud-  
denly increased, the output capacitor supplies the load until the  
control loop can ramp up the inductor current, which causes an  
undershoot of the output voltage. Use the following equation to  
calculate the output capacitance that is required to meet the voltage  
droop requirement:  
For a duty cycle that is larger than 50%, the minimum inductor  
value is determined by the following equation:  
VOUT   
1D  
2fSW  
The inductor peak current is calculated by  
K
UV ISTEP 2 L  
VIN VOUT VOUT_UV  
COUT_UV  
IL  
IPEAK IOUT   
2
2  
where:  
ΔISTEP is the load step.  
ΔVOUT_UV is the allowable undershoot on the output voltage.  
The saturation current of the inductor must be larger than the  
peak inductor current. For the ferrite core inductors with a  
quick saturation characteristic, the saturation current rating of the  
inductor should be higher than the current-limit threshold of the  
switch to prevent the inductor from entering saturation.  
KUV is a factor, typically setting KUV = 2.  
Another example is when a load is suddenly removed from the  
output and the energy stored in the inductor rushes into the  
output capacitor, which causes the output to overshoot. The  
output capacitance required to meet the overshoot requirement  
can be calculated using the following equation:  
The rms current of the inductor can be calculated by  
2
IL  
12  
IRMS  
IOUT 2   
K
OV  ISTEP2 L  
Shielded ferrite core materials are recommended for low core  
loss and low EMI.  
COUT_OV  
2 VOUT  
2
VOUT  VOUT _OV  
where:  
Table 9. Recommended Inductors  
ΔVOUT_OV is the allowable overshoot on the output voltage.  
KOV is a factor, typically setting KOV = 2.  
Value ISAT  
(A)  
IRMS  
(A)  
DCR  
(mΩ)  
Vendor  
Part No.  
(μH)  
0.8  
1.5  
2.2  
3.3  
4.7  
6.8  
1.5  
2.2  
3.3  
4.7  
6.8  
1.1  
1.8  
3.0  
4.7  
6.2  
The output ripple is determined by the ESR of the output  
capacitor and its capacitance value. Use the following equation to  
select a capacitor that can meet the output ripple requirements:  
Sumida  
CDRH105RNP-0R8N  
CDRH105RNP-1R5N  
CDRH105RNP-2R2N  
CDRH105RNP-3R3N  
CDRH105RNP-4R7N  
CDRH105RNP-6R8N  
MSS1048-152NL  
MSS1048-222NL  
MSS1048-332NL  
MSS1048-472NL  
MSS1048-682NL  
7447797110  
13.5 9.5  
10.5 8.3  
9.25 7.5  
7.8  
6.4  
5.4  
4.3  
5.8  
7.2  
10.4  
12.3  
18  
6.5  
6.1  
5.4  
IL  
COUT_RIPPLE  
8 fSW  VOUT_RIPPLE  
Coilcraft  
10.5 10.8 5.1  
8.4 9.78 7.2  
7.38 7.22 10.1  
6.46 6.9 11.4  
5.94 6.01 15.4  
VOUT_RIPPLE  
IL  
RESR  
where:  
ΔVOUT_RIPPLE is the allowable output voltage ripple.  
RESR is the equivalent series resistance of the output capacitor.  
Wurth  
Elektronik  
16  
7.6  
14  
16  
18  
27  
30  
7447797180  
7447797300  
7447797470  
7447797620  
13.3 7.3  
10.5 7.0  
8.0  
7.5  
Select the largest output capacitance given by COUT_UV, COUT_OV  
and COUT_RIPPLE to meet both load transient and output ripple  
performance.  
,
5.8  
5.5  
The selected output capacitor voltage rating must be greater  
than the output voltage. The minimum rms current rating of  
the output capacitor is determined by the following equation:  
IL  
12  
IC  
OUT _rms  
Rev. 0 | Page 21 of 32  
 
ADP2325  
Data Sheet  
LOW-SIDE POWER DEVICE SELECTION  
PROGRAMMING THE UVLO INPUT  
The ADP2325 has integrated low-side MOSFET drivers, which  
can drive the low-side N-channel MOSFETs (NFETs). The selec-  
tion of the low-side N-channel MOSFET affects the dc-to-dc  
regulator performance.  
The precision enable input can be used to program the UVLO  
threshold and hysteresis of the input voltage, as shown in Figure 50.  
PVINx  
R
The selected MOSFET must meet the following requirements:  
TOP_EN  
EN CMP  
ENx  
Drain source voltage (VDS) must be higher than 1.2 × VIN.  
Drain current (ID) must be greater than 1.2 × ILIMIT_MAX, where  
1.2V  
R
BOT_EN  
I
LIMIT_MAX is the selected maximum current-limit threshold.  
1µA 4µA  
The ADP2325 low-side gate drive voltage is 5 V. Make sure that  
the selected MOSFET can be fully turned on at 5 V.  
Figure 50. Programming the UVLO Input  
Total gate charge (Qg at 5 V) must be less than 50 nC. Lower Qg  
characteristics constitute higher efficiency.  
Use the following equation to calculate RTOP_EN and RBOT_EN  
:
1.1V ×VIN_RISING 1.2V ×VIN_FALLING  
RTOP_EN  
=
When the high-side MOSFET is turned off, the low-side MOSFET  
carries the inductor current. For low duty cycle applications, the  
low-side MOSFET carries the current for most of the period. To  
achieve higher efficiency, it is important to select a low on-resist-  
ance MOSFET. The power conduction loss for the low-side  
MOSFET can be calculated by  
1.1 V×5 μA 1.2 V×1 μA  
1.2 V×RTOP _ EN  
RBOT _ EN  
=
VIN _ RISING RTOP _ EN ×5 μΑ −1.2 V  
where:  
V
V
IN_RISING is the VIN rising threshold.  
IN_FALLING is the VIN falling threshold.  
P
FET_LOW = IOUT2 × RDSON × (1 − D)  
where RDSON is the on resistance of the low-side MOSFET.  
COMPENSATION COMPONENTS DESIGN  
Make sure that the MOSFET can handle the thermal dissipation  
due to the power loss.  
In peak current mode control, the power stage can be simplified  
to a voltage controlled current source supplying current to the  
output capacitor and load resistor. It is composed of one domain  
pole and a zero contributed by the output capacitor ESR. The  
control-to-output transfer function is shown in the following  
equations:  
In some cases, efficiency is not critical for the system; therefore,  
the diode can be selected as the low-side power device. The  
average current of the diode can be calculated by  
IDIODE (AVG) = (1 − D) × IOUT  
s
The reverse breakdown voltage rating of the diode must be  
greater than the input voltage with an appropriate margin to  
allow for ringing, which may be present at the SWx node. A  
Schottky diode is recommended because it has a low forward  
voltage drop and a fast switching speed.  
1+  
1+  
2×π × fZ  
V
OUT (s)  
GVD (s) =  
= AVI × R×  
VCOMP (s)  
s
2×π × fP  
1
If a diode is used for the low-side device, the ADP2325 must  
enable the PFM mode by connecting the MODE pin to ground.  
fZ =  
2×π × RESR ×COUT  
1
Table 10. Recommended MOSFETs  
fP =  
2×π ×  
(
R + RESR ×COUT  
)
Vendor  
Fairchild  
Fairchild  
Fairchild  
Vishay  
Vishay  
AOS  
Part No.  
VDS  
ID  
RDSON  
Qg  
FDS8880  
FDMS7578  
FDS6898A  
Si4804CDY  
SiA430DJ  
AON7402  
AO4884L  
30 V 10.7 A 12 mΩ  
12 nC  
8 nC  
16 nC  
7 nC  
5.3 nC  
7.1 nC  
13.6 nC  
where:  
VI = 8.33 A/V.  
R is the load resistance.  
OUT is the output capacitance.  
ESR is the equivalent series resistance of the output capacitor.  
25 V 14 A  
20 V 9.4 A  
30 V 7.9 A  
20 V 10.8 A 18.5 mΩ  
30 V 39 A  
40 V 10 A  
8 mΩ  
14 mΩ  
27 mΩ  
A
C
R
15 mΩ  
16 mΩ  
AOS  
Rev. 0 | Page 22 of 32  
 
 
 
 
Data Sheet  
ADP2325  
The ADP2325 uses a transconductance amplifier for the error  
amplifier to compensate the system. Figure 51 shows the  
simplified peak current mode control small signal circuit.  
The following design guidelines show how to select the compen-  
sation components, RC, CC, and CCP, for ceramic output capacitor  
applications.  
V
V
OUT  
OUT  
4. Determine the cross frequency (fC). Generally, the fC is  
between fSW/12 and fSW/6.  
R
TOP  
5. RC can be calculated by using the following equation:  
V
C
R
COMP  
C
OUT  
gm  
+
A
VI  
2×π ×VOUT ×COUT × fC  
RC =  
+
R
R
BOT  
R
C
0.6V × gm × AVI  
CP  
ESR  
C
C
6. Place the compensation zero at the domain pole (fP).  
CC can be determined by  
(
R + RESR ×COUT  
)
Figure 51. Simplified Peak Current Mode Control Small Signal Circuit  
CC =  
RC  
The compensation components, RC and CC, contribute a zero,  
and the optional CCP and RC contribute an optional pole.  
7. CCP is optional. It can be used to cancel the zero caused by  
the ESR of the output capacitor.  
The closed-loop transfer equation is as follows:  
R
ESR ×COUT  
1+ RC ×CC× s  
RC ×CC ×CCP  
RBOT  
BOT + RTOP CC+ CCP  
gm  
CCP  
=
TV(s) =  
×
×
×GVD(s)  
RC  
R
s × 1+  
× s  
CC +CCP  
The ADP2325 has an internal 10 pF capacitor at the COMPx  
pin; therefore, if CCP is smaller than 10 pF, no external capacitor  
is required.  
Rev. 0 | Page 23 of 32  
 
ADP2325  
Data Sheet  
DESIGN EXAMPLE  
This section describes the design procedure and component  
selection for the example application shown in Figure 54, and  
Table 11 provides a list of the required settings.  
Calculate the peak-to-peak inductor ripple current as follows:  
VIN VOUT × D  
(
)
IL =  
L × fSW  
Table 11. Dual Step-Down DC-to-DC Regulator Requirements  
For VOUT1 = 1.2 V, ΔIL1 = 1.44 A. For VOUT2 = 3.3 V, ΔIL2 = 1.45 A.  
Find the peak inductor current using the following equation:  
IL  
Parameter  
Specification  
Channel 1  
Input Voltage  
VIN1 = 12.0 V 10%  
VOUT1 = 1.2 V  
IOUT1 = 5 A  
ΔVOUT1_RIPPLE = 12 mV  
5%, 1 A to 4 A, 1 A/µs  
IPEAK = IOUT  
+
Output Voltage  
Output Current  
Output Voltage Ripple  
Load Transient  
Channel 2  
2
For the 1.2 V rail, the peak inductor current is 5.73 A, and for  
the 3.3 V rail, the peak inductor current is 5.73 A.  
The rms current through the inductor can be estimated by  
Input Voltage  
VIN2 = 12.0 V 10%  
VOUT2 = 3.3 V  
IOUT2 = 5 A  
ΔVOUT2_RIPPLE = 33 mV  
5%, 1 A to 4 A, 1 A/µs  
fSW = 500 kHz  
2
IL  
12  
2
IRMS  
=
IOUT  
+
Output Voltage  
Output Current  
Output Voltage Ripple  
Load Transient  
Switching Frequency  
The rms current of the inductor for both the 1.2 V and 3.3 V  
rails is approximately 5.02 A.  
For the 1.2 V rail, select an inductor with a minimum rms  
current rating of 5.01 A and a minimum saturation current  
rating of 5.73 A. For the 3.3 V rail, select an inductor with a  
minimum rms current rating of 5.02 A and a minimum  
saturation current rating of 5.73 A.  
OUTPUT VOLTAGE SETTING  
Choose a 10 kΩ top feedback resistor (RTOP); calculate the  
bottom feedback resistor using the following equation:  
Based on these requirements, for the 1.2 V rail, select a  
1.5 µH inductor, such as the Sumida CDRH105RNP-1R5N,  
with a DCR = 5.8 mΩ; for the 3.3 V rail, select a 3.3 µH  
inductor, such as the Sumida CDRH105RNP-3R3N, with a  
DCR = 10.4 mΩ.  
0.6  
VOUT 0.6  
RBOT = RTOP  
×
To set the output voltage to 1.2 V, the resistor values are RTOP1  
10 kΩ and RBOT1 = 10 kΩ. To set the output voltage to 3.3 V,  
the resistors values are RTOP2 = 10 kΩ and RBOT2 = 2.21 kΩ.  
=
OUTPUT CAPACITOR SELECTION  
CURRENT-LIMIT SETTING  
The output capacitor is required to meet the output voltage  
ripple and load transient requirements. To meet the output  
voltage ripple requirement, use the following equation to  
calculate the capacitance and ESR:  
For 5 A output current operation, the typical peak current  
limit is 8 A. In this case, no RILIM is required.  
FREQUENCY SETTING  
IL  
COUT_RIPPLE  
=
To set the switching frequency to 500 kHz, use the following  
equation to calculate the resistor value, ROSC  
8× fSW ×VOUT _ RIPPLE  
:
VOUT _ RIPPLE  
60,000  
RESR  
=
ROSC =  
( )  
IL  
fSW  
kHz  
( )  
For VOUT1 = 1.2 V, COUT_RIPPLE1 = 30 µF and RESR1 = 8.3 mΩ. For  
OUT2 = 3.3 V, COUT_RIPPLE2 = 11 µF and RESR2 = 23 mΩ.  
Therefore, ROSC =120 kΩ.  
V
INDUCTOR SELECTION  
The peak-to-peak inductor ripple current, ΔIL, is set to 30%  
of the maximum output current. Use the following equation  
to estimate the value of the inductor:  
(
VIN VOUT × D  
)
L =  
IL × fSW  
For VOUT1 = 1.2 V, Inductor L1 = 1.4 µH, and for VOUT2 = 3.3 V,  
Inductor L2 = 3.2 µH.  
Select the standard inductor value of 1.5 µH and 3.3 µH for  
the 1.2 V and 3.3 V rails.  
Rev. 0 | Page 24 of 32  
 
 
 
 
 
 
 
Data Sheet  
ADP2325  
To meet the 5% overshoot and undershoot requirement, use  
the following equation to calculate the capacitance:  
Figure 52 shows the 1.2 V rail bode plot at 5 A. The cross  
frequency is 42 kHz and the phase margin is 50°.  
60  
180  
144  
108  
72  
K
OV ×ISTEP 2 ×L  
COUT_OV  
=
=
48  
36  
(
VOUT + ∆VOUT _OV  
)
2VOUT  
2
KUV × ∆ISTEP 2 × L  
24  
COUT_UV  
2×  
(
VIN VOUT × ∆VOUT _UV  
)
12  
36  
For estimation purposes, use KOV = KUV = 2. For VOUT1 = 1.2 V,  
use COUT_OV1 = 188 µF and COUT_UV1 = 21 µF. For VOUT2 = 3.3 V,  
use COUT_OV2 = 55 µF and COUT_UV2 = 21 µF.  
0
0
–12  
–24  
–36  
–48  
–60  
–36  
–72  
–108  
–144  
–180  
For the 1.2 V rail, ESR of the output capacitor must be smaller  
than 8.3 mΩ, and the output capacitance must be larger than  
188 µF. It is recommend that three 100 µF, X5R, 6.3 V ceramic  
capacitors be used, such as the GRM32ER60J107ME20 from  
Murata, with an ESR = 2 mΩ.  
1
2
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
Figure 52. Bode Plot for 1.2 V Rail  
For the 3.3 V rail, the ESR of the output capacitor must be  
smaller than 23 mΩ, and the output capacitance must be  
larger than 55 µF. It is recommended that two 47 µF, X5R,  
6.3 V ceramic capacitors be used, such as the Murata  
GRM32ER60J476ME20, with an ESR = 2 mΩ.  
For the 3.3 V rail, the 47 µF ceramic output capacitor has a  
derated value of 32 µF.  
2×π ×3.3V×2×32 μF×50 kHz  
RC2  
CC2  
CCP2  
=
= 26.5 kΩ  
0.6 V×500 μS×8.33 A/V  
0.66Ω + 0.001Ω ×2×32μF  
26.5kΩ  
LOW-SIDE MOSFET SELECTION  
(
)
=
=
1594pF  
A low RDSON N-channel MOSFET is selected for high efficiency  
solutions. The MOSFET breakdown voltage must be greater  
than 1.2 V × VIN, and the drain current must be greater than  
0.001 Ω×2×32μF  
=
= 2.4 pF  
1.2 V × ILIMIT  
.
26.5kΩ  
It is recommended that a 30 V, N-channel MOSFET be used, such  
as the FDS8880 from Fairchild. The RDSON of the FDS8880 at a  
4.5 V driver voltage is 12 mΩ, and the total gate charge is 12 nC.  
By using standard component values of RC2 = 27 kΩ and  
C2 = 1500 pF, no CCP2 is needed.  
C
Figure 53 shows the 3.3 V rail bode plot at 5 A. The cross  
frequency is 55 kHz and phase margin is 67°.  
COMPENSATION COMPONENTS  
60  
180  
144  
108  
72  
For better load transient and stability performance, set the  
cross frequency, fC, to fSW/10. In this case, fSW runs at 500 kHz;  
therefore, the fC is set to 50 kHz.  
48  
36  
For the 1.2 V rail, the 100 µF ceramic output capacitor has  
a derated value of 64 µF.  
24  
12  
36  
2×π ×1.2V ×3×64 μF×50 kHz  
0
0
RC1  
CC1  
=
=
= 28.9 kΩ  
0.6 V  
0.24Ω + 0.001Ω  
28.9kΩ  
×
500 μS  
×
8.33 A/V  
–12  
–24  
–36  
–48  
–60  
–36  
–72  
–108  
–144  
–180  
(
)
×3×64μF  
= 1598pF  
0.001Ω×3×64μF  
CCP1  
=
= 6.6pF  
1
2
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
28.9kΩ  
By choosing standard components where RC1 = 28 kΩ and CC1  
1500 pF, no CCP1 is needed.  
=
Figure 53. Bode Plot for 3.3 V Rail  
Rev. 0 | Page 25 of 32  
 
 
 
 
ADP2325  
Data Sheet  
SOFT START TIME PROGRAMMING  
INPUT CAPACITOR SELECTION  
The soft start feature allows the output voltage to ramp up in  
a controlled manner, eliminating output voltage overshoot  
during soft start and limiting inrush current. The soft start  
time is set to 3 ms.  
A minimum 10 µF ceramic capacitor is required, placed near  
the PVINx pin. In this application, one X5R ceramic capacitor of  
10 µF and 25 V is recommended.  
3.5 μA×3 ms  
I
SS ×tSS  
0.6 V  
CSS  
=
=
=17.5 nF  
0.6 V  
Choose a standard component value of CSS1 = CSS2 = 22 nF.  
Rev. 0 | Page 26 of 32  
 
 
Data Sheet  
ADP2325  
EXTERNAL COMPONENTS RECOMMENDATIONS  
Table 12. Recommended External Components for Typical Applications with 5 A Output Current  
fSW (kHz)  
VIN (V)  
12  
12  
12  
12  
12  
12  
12  
5
5
5
5
5
VOUT (V)  
L (µH)  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
6.8  
1.5  
2.2  
2.2  
2.2  
2.2  
2.2  
1.5  
1.5  
2.2  
2.2  
3.3  
1
1
1
1.5  
1.5  
1.5  
1
1
1.5  
2
0.56  
0.56  
0.68  
0.8  
0.8  
0.8  
COUT F)1  
2 × 330  
2 × 330  
2 × 330  
330  
RTOP (kΩ)  
RBOT (kΩ)  
RC (kΩ)  
47  
59  
75  
43  
62  
33  
36  
49  
59  
37  
43  
22  
15  
75  
53  
47  
47  
47  
49  
59  
27  
33  
33  
30  
56  
39  
53  
39  
47  
37  
47  
43  
43  
27  
CC (pF)  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
2700  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
820  
CCP (pF)  
56  
56  
47  
68  
300  
1
10  
10  
15  
20  
47.5  
10  
22  
10  
10  
15  
20  
47.5  
10  
15  
10  
10  
10  
15  
2.21  
3
15  
10  
10  
10  
15  
2.21  
10  
10  
15  
2.21  
3
15  
10  
10  
10  
15  
2.21  
10  
15  
2.21  
3
15  
1.2  
1.5  
1.8  
2.5  
3.3  
5
330  
56  
2 × 100  
100 + 47  
2 × 330  
2 × 330  
330  
330  
2 × 100  
100  
3.3  
3.3  
68  
56  
82  
1
1.2  
1.5  
1.8  
2.5  
3.3  
1.5  
1.8  
2.5  
3.3  
5
68  
4.7  
4.7  
47  
2.2  
2.2  
2.2  
2.2  
68  
5
600  
12  
12  
12  
12  
12  
5
5
5
5
5
330  
15  
20  
47.5  
10  
22  
10  
10  
15  
20  
3 × 100  
2 × 100  
100 + 47  
100  
330  
330  
2 × 100  
2 × 100  
100 + 47  
100  
1
1.2  
1.5  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
5
56  
4.7  
3.3  
2.2  
4.7  
2.2  
2.2  
2.2  
2.2  
2.2  
6.8  
4.7  
4.7  
4.7  
2.2  
47.5  
10  
5
1000  
12  
12  
12  
12  
5
5
5
5
5
2 × 100  
100  
100  
20  
47.5  
10  
22  
10  
10  
15  
20  
47.5  
10  
820  
820  
820  
820  
820  
820  
820  
820  
47  
1
3 × 100  
2 × 100  
2 × 100  
100 + 47  
100  
1.2  
1.5  
1.8  
2.5  
3.3  
10  
10  
10  
15  
5
47  
2.21  
820  
1 330 µF: 6.3 V, Sanyo 6TPD330M; 100 µF: 6.3 V, X5R, Murata GRM32ER60J107ME20; 47 µF: 6.3 V, X5R, Murata GRM32ER60J476ME20.  
Rev. 0 | Page 27 of 32  
 
 
ADP2325  
Data Sheet  
TYPICAL APPLICATION CIRCUITS  
C
C1  
1500pF  
C
V
R
10kΩ  
IN  
12V  
TOP1  
C
10µF,  
25V  
IN1  
SS1  
22nF  
R
BOT1  
10kΩ  
R
C1  
28kΩ  
C
BST1  
0.1µF  
L1  
1.5µH  
INTVCC  
C
INT  
1µF  
V
OUT1  
MODE  
SW1  
1.2V  
5A  
SCFG  
TRK2  
TRK1  
M1  
C
100µF  
C
100µF  
C
OUT1  
OUT2  
OUT3  
100µF  
FDS8880  
DL1  
PGND  
DL2  
VDRV  
C
DRV  
1µF  
ADP2325  
M2  
FDS8880  
GND  
C
C
47µF  
OUT4  
OUT5  
47µF  
PGOOD2  
V
OUT2  
3.3V  
5A  
PGOOD1  
SYNC  
RT  
SW2  
L2  
3.3µH  
C
R
BST2  
0.1µF  
OSC  
120kΩ  
R
27kΩ  
R
C2  
BOT2  
V
2.21kΩ  
IN  
12V  
C
C
C
10µF,  
25V  
C2  
SS2  
22nF  
IN2  
1500pF  
R
TOP2  
10kΩ  
Figure 54. Using an External MOSFET Application, VIN1 = VIN2 = 12 V, VOUT1 = 1.2 V, IOUT1 = 5 A, VOUT2 = 3.3 V, IOUT2 = 5 A, fSW = 500 kHz  
C
C1  
2.2nF  
C
V
R
IN  
12V  
TOP1  
22kΩ  
C
10µF,  
25V  
IN1  
SS1  
10nF  
R
BOT1  
R
C1  
3kΩ  
20kΩ  
C
BST1  
0.1µF  
L1  
INTVCC  
C
INT  
1µF  
4.7µH  
V
OUT1  
SW1  
5V  
SCFG  
TRK2  
TRK1  
VDRV  
3A  
D1  
B320B  
C
C
OUT1  
22µF  
OUT2  
22µF  
DL1  
PGND  
DL2  
R
ILIM1  
47kΩ  
C
DRV  
1µF  
ADP2325  
R
GND  
MODE  
ILIM2  
47kΩ  
C
C
OUT3  
22µF  
OUT4  
22µF  
D2  
B220A  
PGOOD2  
V
OUT2  
PGOOD1  
SYNC  
RT  
SW2  
3.3V  
1.5A  
L2  
8.2µH  
C
BST2  
R
OSC  
0.1µF  
100kΩ  
R
R
C2  
BOT2  
18kΩ  
V
2.21kΩ  
IN  
12V  
C
C
C
C2  
4.7nF  
SS2  
10nF  
IN2  
10µF,  
25V  
R
TOP2  
10kΩ  
Figure 55. Using an External Diode Application, VIN1 = VIN2 = 12 V, VOUT1 = 5 V, IOUT1 = 3 A, VOUT2 = 3.3 V, IOUT2 = 1.5 A, fSW = 600 kHz  
Rev. 0 | Page 28 of 32  
 
 
Data Sheet  
ADP2325  
R
TOP1  
10kΩ  
C
C1  
1200pF  
R
C
BOT1  
10kΩ  
SS1  
22nF  
R
59kΩ  
C1  
V
IN  
12V  
C
CP1  
56pF  
C
10µF,  
25V  
IN1  
C
BST1  
0.1µF  
V
OUT1  
1.2V,  
10A  
TRK1  
SW1  
SW1  
L1  
1µH  
PGOOD1  
SCFG  
SYNC  
C
INT  
1µF  
C
C
C
M1  
FDS8880  
OUT1  
330µF  
OUT2  
330µF  
OUT3  
10µF  
INTVCC  
DL1  
ADP2325  
RT  
R
OSC  
PGND  
MODE  
200kΩ  
DL2  
PGOOD2  
TRK2  
M2  
C
DRV  
1µF  
FDS8880  
SW2  
SW2  
VDRV  
GND  
L2  
1µH  
C
BST2  
0.1µF  
V
IN  
12V  
C
IN2  
10µF,  
25V  
Figure 56. Parallel Single Output Application, VIN = 12 V, VOUT = 1.2 V, IOUT = 10 A, fSW = 300 kHz  
R
TOP1  
15kΩ  
C
C1  
1200pF  
V
IN  
12V  
R
C
BOT1  
10kΩ  
SS1  
22nF  
R
47kΩ  
C
10µF,  
25V  
C1  
IN1  
C
BST1  
0.1µF  
INTVCC  
SCFG  
TRK2  
V
1.5V,  
5A  
OUT1  
C
INT  
1µF  
SW1  
L1  
1.5µH  
TRK1  
C
C
C
OUT3  
100µF  
M1  
FDS8880  
OUT1  
100µF  
OUT2  
100µF  
VDRV  
C
DRV  
1µF  
DL1  
ADP2325  
GND  
MODE  
PGND  
PGOOD2  
PGOOD1  
SYNC  
DL2  
C
C
C
OUT4  
47µF  
OUT5  
47µF  
OUT6  
47µF  
M2  
FDS8880  
V
OUT1  
RT  
SW2  
2.5V,  
5A  
R
OSC  
L2  
100kΩ  
C
2.2µH  
BST2  
0.1µF  
R
39kΩ  
C2  
V
IN  
12V  
R
BOT2  
C
22nF  
SS2  
15kΩ  
R
C
TOP2  
C2  
C
10µF,  
25V  
IN2  
47.5kΩ  
1200pF  
Figure 57. Enable PFM Mode with the MODE Pin Pulled to GND, VIN1 = VIN2 = 12 V, VOUT1 = 1.5 V, IOUT1 = 5 A, VOUT2 = 2.5 V, IOUT2 = 5 A, fSW = 600 kHz  
Rev. 0 | Page 29 of 32  
ADP2325  
Data Sheet  
R
TOP1  
20kΩ  
C
C1  
1200pF  
V
IN  
12V  
R
BOT1  
10kΩ  
C
IN1  
R
53kΩ  
C
C1  
SS1  
22nF  
10µF,  
25V  
C
BST1  
SYNC  
0.1µF  
V
OUT1  
1.8V,  
SW1  
SCFG  
INTVCC  
MODE  
TRK2  
TRK1  
VDRV  
L1  
3A  
1.5µH  
C
INT1  
1µF  
C
100µF  
C
100µF  
C
M1  
OUT1  
OUT2  
OUT3  
100µF  
FDS8880  
DL1  
ADP2325  
C
DRV1  
1µF  
PGND  
GND  
C
100µF  
C
100µF  
DL2  
OUT4  
OUT5  
M2  
FDS8880  
PGOOD2  
PGOOD1  
V
OUT2  
3.3V,  
5A  
SW2  
RT  
L2  
2.2µH  
C
R
BST2  
0.1µF  
OSC1  
100kΩ  
R
C
C2  
62kΩ  
SS2  
22nF  
V
IN  
12V  
R
C
10µF,  
25V  
BOT2  
IN2  
C
C2  
1200pF  
2.21kΩ  
R
TOP2  
10kΩ  
R
TOP3  
20kΩ  
C
C3  
V
1200pF  
IN  
12V  
R
10kΩ  
C
SS3  
22nF  
BOT3  
C
10µF,  
25V  
R
IN3  
C3  
53kΩ  
C
0.1µF  
BST3  
SYNC  
SCFG  
V
OUT3  
1.8V,  
3A  
SW1  
L3  
1.5µH  
INTVCC  
MODE  
TRK2  
C
INT2  
1µF  
M3  
FDS8880  
C
100µF  
C
100µF  
C
OUT6  
OUT7  
OUT8  
100µF  
DL1  
ADP2325  
TRK1  
VDRV  
PGND  
C
DRV2  
1µF  
GND  
C
100µF  
C
100µF  
DL2  
OUT9  
OUT10  
M4  
FDS8880  
PGOOD2  
PGOOD1  
V
3.3V,  
5A  
OUT4  
SW2  
RT  
L4  
2.2µH  
C
R
BST4  
0.1µF  
OSC2  
120kΩ  
C
SS4  
22nF  
R
C4  
62kΩ  
V
IN  
12V  
R
BOT4  
C
10µF,  
25V  
IN4  
C
C4  
1200pF  
2.21kΩ  
R
TOP4  
10kΩ  
Figure 58. Synchronization with 90° Phase Shift Between Each Channel  
Rev. 0 | Page 30 of 32  
Data Sheet  
ADP2325  
R
R
EN_BOT  
68kΩ  
EN_TOP  
330kΩ  
R
V
TOP1  
10kΩ  
IN  
12V  
C
10µF,  
25V  
IN1  
C
C1  
2200pF  
R
C
22nF  
BOT1  
2.21kΩ  
SS1  
R
C1  
47kΩ  
C
0.1µF  
BST1  
SYNC  
V
OUT1  
PGOOD2  
PGOOD1  
3.3V,  
5A  
SW1  
L1  
4.7µH  
R
PGOOD1  
100kΩ  
M1  
C
C
C
OUT1  
100µF  
OUT2  
100µF  
OUT3  
100µF  
INTVCC  
MODE  
SCFG  
TRK2  
FDS8880  
C
INT  
1µF  
DL1  
ADP2325  
PGND  
TRK1  
DL2  
C
C
OUT4  
330µF  
OUT5  
330µF  
M2  
FDS8880  
VDRV  
C
DRV  
1µF  
GND  
RT  
V
OUT2  
1.8V,  
5A  
SW2  
R
L2  
3.3µH  
OSC  
C
200kΩ  
BST2  
0.1µF  
V
12V  
R
82kΩ  
IN  
C2  
C
SS2  
22nF  
R
10kΩ  
C
36pF  
BOT2  
CP2  
C
10µF,  
25V  
IN2  
R
TOP2  
20kΩ  
C
C2  
2200pF  
Figure 59. Programmable VIN_RISING = 8.7 V, VIN_FALLING = 6.7 V, 3.3 V Startup Prior to 1.8 V,  
VIN1 = VIN2 = 12 V, VOUT1 = 3.3 V, IOUT1 = 5 A, VOUT2 = 1.8 V, IOUT2 = 5 A, fSW = 300 kHz  
V
IN  
12V  
R
TOP1  
C
10µF,  
25V  
IN1  
47.5kΩ  
C
C1  
1200pF  
R
15kΩ  
C
BOT1  
SS1  
22nF  
R
33kΩ  
C1  
R
R
TRK_TOP  
47.5kΩ  
C
0.1µF  
BST1  
TRK2  
V
2.5V,  
5A  
TRK_BOT  
15kΩ  
PGOOD2  
PGOOD1  
SYNC  
OUT1  
SW1  
L1  
2.2µH  
M1  
FDS8880  
C
47µF  
C
47µF  
C
OUT3  
47µF  
INTVCC  
TRK1  
OUT1  
OUT2  
C
1µF  
INT  
DL1  
ADP2325  
MODE  
SCFG  
VDRV  
PGND  
C
DL2  
C
330µF  
C
10µF  
DRV  
1µF  
OUT4  
OUT5  
M2  
GND  
RT  
FDS8880  
V
OUT2  
1.25V,  
5A  
SW2  
R
OSC  
120kΩ  
L2  
1.5µH  
C
BST2  
0.1µF  
C
SS2  
10nF  
R
49kΩ  
C2  
V
IN  
12V  
R
C
BOT2  
12kΩ  
CP2  
56pF  
C
IN2  
10µF,  
25V  
R
C
TOP2  
C2  
13kΩ  
1500pF  
Figure 60. Channel 2 Tracking with Channel 1  
IN1 = VIN2 = 12 V, VOUT1 = 2.5 V, IOUT1 = 5 A, VOUT2 = 1.25 V, IOUT2 = 5 A, fSW = 500 kHz  
V
Rev. 0 | Page 31 of 32  
ADP2325  
Data Sheet  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
24  
32  
1
0.50  
BSC  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
17  
16  
8
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.  
Figure 61. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad  
(CP-32-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Output Voltage  
Package Description2  
Package Option  
CP-32-7  
ADP2325ACPZ-R7  
ADP2325-EVALZ  
ADP2325-BL1-EVZ  
ADP2325-BL2-EVZ  
−40°C to +125°C  
Adjustable  
32-Lead LFCSP_WQ  
Evaluation Board  
Blank Dual Output Evaluation Board  
Blank Single Output Evaluation Board  
1 Z = RoHS Compliant Part.  
2 For the blank evaluation boards, users can request an unpopulated board from Analog Devices, Inc., through the ADIsimPower tool found at  
www.analog.com/ADIsimPower, as well as generate schematics and a bill of materials from the tool.  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
www.analog.com/ADP2325  
D10036-0-2/12(0)  
Rev. 0 | Page 32 of 32  
 
 
 
 

相关型号:

MSS1048-152NLB

Shielded Power Inductors - MSS1048
COILCRAFT

MSS1048-152NLC

Shielded Power Inductors - MSS1048
COILCRAFT

MSS1048-152NLD

Shielded Power Inductors - MSS1048
COILCRAFT

MSS1048-153ML

SMT Power Inductors
COILCRAFT

MSS1048-153MLB

Shielded Power Inductors – MSS1048
COILCRAFT

MSS1048-153MLC

Shielded Power Inductors - MSS1048
COILCRAFT

MSS1048-153MLD

Shielded Power Inductors - MSS1048
COILCRAFT

MSS1048-153MTB

General Purpose Inductor, 15uH, 20%, 1 Element, Ferrite-Core, SMD, 4039, CHIP, 4039
COILCRAFT

MSS1048-154KL

SMT Power Inductors
COILCRAFT

MSS1048-154KLB

Shielded Power Inductors - MSS1048
COILCRAFT

MSS1048-154KLC

Shielded Power Inductors - MSS1048
COILCRAFT

MSS1048-154KLD

Shielded Power Inductors - MSS1048
COILCRAFT