MXO45-80 [ADI]

14-Bit, 80 MSPS/105 MSPS A/D Converter; 14位, 80 MSPS / 105 MSPS A / D转换器
MXO45-80
型号: MXO45-80
厂家: ADI    ADI
描述:

14-Bit, 80 MSPS/105 MSPS A/D Converter
14位, 80 MSPS / 105 MSPS A / D转换器

转换器
文件: 总24页 (文件大小:776K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 80 MSPS/105 MSPS  
A/D Converter  
AD6645  
generation in a wideband ADC family, preceded by the AD9042  
(12-bit, 41 MSPS), the AD6640 (12-bit, 65 MSPS, IF sampling),  
and the AD6644 (14-bit, 40 MSPS/65 MSPS).  
FEATURES  
SNR = 75 dB, fIN 15 MHz, up to 105 MSPS  
SNR = 72 dB, fIN 200 MHz, up to 105 MSPS  
SFDR = 89 dBc, fIN 70 MHz, up to 105 MSPS  
100 dBFS multitone SFDR  
IF sampling to 200 MHz  
Sampling jitter: 0.1 ps  
1.5 W power dissipation  
Differential analog inputs  
Pin compatible to AD6644  
Twos complement digital output format  
3.3 V CMOS compatible  
Designed for multichannel, multimode receivers, the AD6645 is  
part of the Analog Devices, Inc., SoftCell® transceiver chipset.  
The AD6645 maintains 100 dB multitone, spurious-free dynamic  
range (SFDR) through the second Nyquist band. This breakthrough  
performance eases the burden placed on multimode digital  
receivers (software radios) that are typically limited by the ADC.  
Noise performance is exceptional; typical signal-to-noise ratio  
(SNR) is 74.5 dB through the first Nyquist band.  
The AD6645 is built on the Analog Devices extra fast  
complementary bipolar (XFCB) process and uses an innovative,  
multipass circuit architecture. Units are available in thermally  
enhanced 52-lead PowerQuad 4 (LQFP_PQ4) and 52-lead  
exposed pad (TQFP_EP) packages specified from −40°C to  
+85°C at 80 MSPS and −10°C to +85°C at 105 MSPS.  
Data-ready for output latching  
APPLICATIONS  
Multichannel, multimode receivers  
Base station infrastructures  
AMPS, IS-136, CDMA, GSM, W-CDMA  
Single channel digital receivers  
Antenna array processing  
Communications instrumentation  
Radars, infrared imaging  
Instrumentation  
PRODUCT HIGHLIGHTS  
1. IF Sampling. The AD6645 maintains outstanding ac  
performance up to input frequencies of 200 MHz, suitable  
for multicarrier 3G wideband cellular IF sampling receivers.  
2. Pin Compatibility. The ADC has the same footprint and  
pin layout as the AD6644 14-bit, 40 MSPS/65 MSPS ADC.  
3. SFDR Performance and Oversampling. Multitone SFDR  
performance of 100 dBFS can reduce the requirements of  
high end RF components and allows the use of receive  
signal processors, such as the AD6620, AD6624/AD6624A,  
or AD6636.  
GENERAL DESCRIPTION  
The AD6645 is a high speed, high performance, monolithic 14-bit  
analog-to-digital converter (ADC). All necessary functions,  
including track-and-hold (T/H) and reference, are included on the  
chip to provide a complete conversion solution. The AD6645  
provides CMOS-compatible digital outputs. It is the fourth  
FUNCTIONAL BLOCK DIAGRAM  
AV  
DV  
CC  
CC  
AD6645  
AIN  
AIN  
A1  
TH1  
TH2  
A2  
TH3  
TH4  
TH5  
ADC3  
6
ADC1  
DAC1  
ADC2  
DAC2  
VREF  
2.4V  
5
5
ENCODE  
ENCODE  
INTERNAL  
TIMING  
DIGITAL ERROR CORRECTION LOGIC  
GND  
DMID OVR  
DRY  
D13  
MSB  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
Figure 1.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2002–2008 Analog Devices, Inc. All rights reserved.  
 
 
AD6645  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Explanation of Test Levels............................................................7  
ESD Caution...................................................................................7  
Pin Configuration and Function Descriptions..............................8  
Typical Performance Characteristics ..............................................9  
Equivalent Circuits......................................................................... 14  
Terminology.................................................................................... 15  
Theory of Operation ...................................................................... 17  
Applying the AD6645 ................................................................ 17  
Layout Information........................................................................ 19  
Jitter Considerations .................................................................. 19  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
Digital Specifications ................................................................... 4  
AC Specifications.......................................................................... 4  
Switching Specifications .............................................................. 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
REVISION HISTORY  
10/08—Rev. C to Rev. D  
7/03—Rev. A to Rev. B.  
Added TQFP_EP Package............................................ Throughout  
Renamed Thermal Characteristics Section Thermal Resistance  
Section................................................................................................ 7  
Added Table 6; Renumbered Sequentially .................................... 7  
Moved Equivalent Circuits Section.............................................. 14  
Moved Terminology Section......................................................... 15  
Changes to Table 9.......................................................................... 20  
Updated Outline Dimensions....................................................... 24  
Changes to Ordering Guide .......................................................... 24  
Changes to Title ................................................................................1  
Changes to Features ..........................................................................1  
Changes to Product Description .....................................................1  
Changes to Specifications.................................................................3  
Changes to Absolute Maximum Ratings........................................7  
Changes to Ordering Guide.......................................................... 24  
Updated Outline Dimensions....................................................... 20  
6/02—Rev. 0 to Rev. A.  
Change to DC Specifications ...........................................................3  
12/06—Rev. B to Rev. C  
Updated Format..................................................................Universal  
Changes to Specifications................................................................ 3  
Changes to Jitter Considerations Section.................................... 19  
Changes to Table 8, Bill of Materials............................................ 20  
Changes to Figure 43, Evaluation Board Schematic .................. 21  
Changes to Figure 44 and Figure 46............................................. 22  
Updated Outline Dimensions....................................................... 23  
Changes to Ordering Guide .......................................................... 23  
Rev. D | Page 2 of 24  
 
AD6645  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVCC = 5 V, DVCC = 3.3 V; TMIN and TMAX at rated speed grade, unless otherwise noted.  
Table 1.  
AD6645ASQ-80/AD6645ASV-80 AD6645ASQ-105/AD6645ASV-105  
Parameter  
Temp Test Level Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
ACCURACY  
14  
14  
Bits  
No Missing Codes  
Offset Error  
Gain Error  
Full  
Full  
Full  
II  
II  
II  
II  
V
Guaranteed  
+1.2  
0
0.2ꢀ  
0.ꢀ  
Guaranteed  
+1.2  
0
0.ꢀ  
1.ꢀ  
−10  
−10  
−1.0  
+10  
+10  
+1.ꢀ  
−10  
−10  
−1.0  
+10  
+10  
+1.ꢀ  
mV  
% FS  
LSB  
LSB  
Differential Nonlinearity (DNL) Full  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Offset Error  
Full  
Full  
Full  
V
V
V
1.ꢀ  
48  
1.ꢀ  
48  
ppm/°C  
ppm/°C  
mV/V  
Gain Error  
POWER SUPPLY REJECTION RATIO  
(PSRR)  
2ꢀ°C  
1.0  
1.0  
REFERENCE OUT (VREF)1  
Full  
V
2.4  
2.4  
V
ANALOG INPUTS (AIN, AIN)  
Differential Input Voltage Range Full  
Differential Input Resistance Full  
V
V
2.2  
1
2.2  
1
V p-p  
kΩ  
Differential Input Capacitance 2ꢀ°C  
POWER SUPPLY  
1.ꢀ  
1.ꢀ  
pF  
Supply Voltages  
AVCC  
DVCC  
Full  
Full  
II  
II  
4.7ꢀ  
3.0  
ꢀ.0  
3.3  
ꢀ.2ꢀ  
3.6  
4.7ꢀ  
3.0  
ꢀ.0  
3.3  
ꢀ.2ꢀ  
3.6  
V
V
Supply Current  
IAVCC (AVCC = ꢀ.0 V)  
IDVCC (DVCC = 3.3 V)  
Rise Time2  
Full  
Full  
II  
II  
27ꢀ  
32  
320  
4ꢀ  
27ꢀ  
32  
320  
4ꢀ  
mA  
mA  
AVCC  
Full  
Full  
IV  
II  
2ꢀ0  
ꢀ.0  
1.ꢀ  
2ꢀ0  
ms  
W
POWER CONSUMPTION  
1.ꢀ  
1.7ꢀ  
1.7ꢀ  
1 VREF is provided for setting the common-mode offset of a differential amplifier, such as the AD8138, when a dc-coupled analog input is required. VREF should be  
buffered if used to drive additional circuit functions.  
2 Specified for dc supplies with linear rise time characteristics.  
Rev. D | Page 3 of 24  
 
AD6645  
DIGITAL SPECIFICATIONS  
AVCC = 5 V, DVCC = 3.3 V; TMIN and TMAX at rated speed grade, unless otherwise noted.  
Table 2.  
Test  
AD6645ASQ-80/AD6645ASV-80 AD6645ASQ-105/AD6645ASV-105  
Parameter  
Temp Level Min Typ  
Max Min Typ  
Max Unit  
ENCODE INPUTS (ENCODE, ENCODE)  
Differential Input Voltage1  
Differential Input Resistance  
Differential Input Capacitance  
LOGIC OUTPUTS (D13 to D0, DRY, OVR)  
Logic Compatibility  
Full  
2ꢀ°C  
2ꢀ°C  
IV  
V
V
0.4  
0.4  
10  
V p-p  
kΩ  
pF  
10  
2.ꢀ  
2.ꢀ  
CMOS  
CMOS  
Logic 1 Voltage (DVCC = 3.3 V)2  
Logic 0 Voltage (DVCC = 3.3 V)2  
Output Coding  
Full  
Full  
II  
II  
2.8ꢀ DVCC − 2  
0.2  
2.8ꢀ DVCC − 2  
0.2  
V
V
0.ꢀ  
0.ꢀ  
Twos complement  
DVCC/2  
Twos complement  
DVCC/2  
DMID  
Full  
V
V
1
ENCODE  
All ac specifications tested by driving ENCODE and  
differentially.  
2 Digital output logic levels: DVCC = 3.3 V, CLOAD = 10 pF. Capacitive loads >10 pF degrades performance.  
AC SPECIFICATIONS  
ENCODE  
ENCODE  
, TMIN and  
All ac specifications tested by driving ENCODE and  
MAX at rated speed grade, unless otherwise noted.  
differentially. AVCC = 5 V, DVCC = 3.3 V; ENCODE,  
T
Table 3.  
AD6645ASQ-80/  
AD6645ASV-80  
AD6645ASQ-105/  
AD6645ASV-105  
Test  
Parameter  
Temp  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Conditions  
SNR  
Analog Input @ −1 dBFS  
2ꢀ°C  
Full  
2ꢀ°C  
Full  
2ꢀ°C  
2ꢀ°C  
V
II  
I
II  
V
V
7ꢀ.0  
72.ꢀ 74.ꢀ  
7ꢀ.0  
dB  
dB  
dB  
dB  
dB  
dB  
At 1ꢀ.ꢀ MHz  
At 30.ꢀ MHz  
At 37.7 MHz  
At 70.0 MHz  
At 1ꢀ0.0 MHz  
At 200.0 MHz  
72.ꢀ 74.ꢀ  
72.0 73.ꢀ  
73.0  
72.0 73.ꢀ  
73.0  
72.0  
72.0  
SINAD  
Analog Input @ −1 dBFS  
2ꢀ°C  
Full  
2ꢀ°C  
Full  
2ꢀ°C  
2ꢀ°C  
V
II  
I
V
V
V
7ꢀ.0  
72.ꢀ 74.ꢀ  
7ꢀ.0  
dB  
dB  
dB  
dB  
dB  
dB  
At 1ꢀ.ꢀ MHz  
At 30.ꢀ MHz  
At 37.7 MHz  
At 70.0 MHz  
At 1ꢀ0.0 MHz  
At 200.0 MHz  
72.ꢀ 74.ꢀ  
73.0  
73.0  
68.ꢀ  
62.ꢀ  
67.ꢀ  
62.ꢀ  
WORST HARMONIC (SECOND OR THIRD)  
Analog Input @ −1 dBFS  
2ꢀ°C  
Full  
2ꢀ°C  
Full  
2ꢀ°C  
2ꢀ°C  
V
II  
I
V
V
V
93.0  
8ꢀ.0 93.0  
93.1  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
At 1ꢀ.ꢀ MHz  
At 30.ꢀ MHz  
At 37.7 MHz  
At 70.0 MHz  
At 1ꢀ0.0 MHz  
At 200.0 MHz  
8ꢀ.0 93.0  
87.0  
89.0  
70.0  
63.ꢀ  
70.0  
63.ꢀ  
Rev. D | Page 4 of 24  
 
 
AD6645  
AD6645ASQ-80/  
AD6645ASV-80  
AD6645ASQ-105/  
AD6645ASV-105  
Test  
Parameter  
Temp  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Conditions  
WORST HARMONIC (FOURTH OR HIGHER)  
Analog Input @ −1 dBFS  
2ꢀ°C  
Full  
2ꢀ°C  
Full  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
V
II  
I
V
V
V
V
V
V
96.0  
8ꢀ.0 9ꢀ.0  
96.0  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
At 1ꢀ.ꢀ MHz  
At 30.ꢀ MHz  
At 37.7 MHz  
At 70.0 MHz  
At 1ꢀ0.0 MHz  
At 200.0 MHz  
At 30.ꢀ MHz1, 2  
At ꢀꢀ.0 MHz1, 3  
At 70.0 MHz1, 4  
86.0 9ꢀ.0  
90.0  
90.0  
90.0  
88.0  
100  
100  
90.0  
88.0  
TWO-TONE SFDR  
98.0  
98.0  
98.0  
dBFS  
dBFS  
dBFS  
TWO-TONE IMD REJECTION2, 3  
F1, F2 @ −7 dBFS  
2ꢀ°C  
2ꢀ°C  
V
V
90  
90  
dBc  
ANALOG INPUT BANDWIDTH  
270  
270  
MHz  
1 Analog input signal power swept from −10 dBFS to −100 dBFS.  
2 F1 = 30.ꢀ MHz, F2 = 31.ꢀ MHz.  
3 F1 = ꢀꢀ.2ꢀ MHz, F2 = ꢀ6.2ꢀ MHz.  
4 F1 = 69.1 MHz, F2 = 71.1 MHz.  
SWITCHING SPECIFICATIONS  
ENCODE  
AVCC = 5 V, DVCC = 3.3 V; ENCODE,  
, TMIN and TMAX at rated speed grade, unless otherwise noted.  
Table 4.  
AD6645ASQ-80/  
AD6645ASV-80  
AD6645ASQ-105/  
AD6645ASV-105  
Test  
Symbol Temp Level Min  
Parameter  
Typ  
Max  
Min  
Typ  
Max  
Unit  
ENCODE INPUT PARAMETERS1  
Maximum Conversion Rate  
Minimum Conversion Rate  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
II  
80  
10ꢀ  
MSPS  
MSPS  
ns  
ns  
ns  
IV  
IV  
V
IV  
V
30  
30  
2
ENCODE Pulse Width High, tENCH  
ꢀ.62ꢀ  
ꢀ.62ꢀ  
4.286  
4.286  
6.2ꢀ  
4.7ꢀ  
2
ENCODE Pulse Width Low, tENCL  
6.2ꢀ  
12.ꢀ  
4.7ꢀ  
9.ꢀ  
ns  
ns  
ENCODE Period1  
tENC  
V
ENCODE/DATA-READY  
ENCODE Rising to Data-Ready Falling  
ENCODE Rising to Data-Ready Rising  
ꢀ0% Duty Cycle  
tDR  
tE_DR  
Full  
Full  
Full  
V
V
V
1.0  
7.3  
2.0  
tENCH + tDR  
8.3  
3.1  
9.4  
1.0  
ꢀ.7  
2.0  
tENCH + tDR  
6.7ꢀ  
3.1  
7.9  
ns  
ns  
ns  
ENCODE/DATA (D13:0), OVR  
ENCODE to DATA Falling Low  
ENCODE to DATA Rising Low3  
ENCODE to DATA Delay3 (Hold Time)  
ENCODE to DATA Delay (Setup Time)  
tE_FL  
tE_RL  
tH_E  
tS_E  
Full  
Full  
Full  
Full  
V
V
V
V
2.4  
1.4  
1.4  
4.7  
3.0  
3.0  
7.0  
4.7  
4.7  
2.4  
1.4  
1.4  
4.7  
3.0  
3.0  
7.0  
4.7  
4.7  
ns  
ns  
ns  
ns  
tENC  
tENC  
tE_FL(max)  
tE_FL(max)  
tENC  
tE_FL(typ)  
tENC  
tE_FL(typ)  
ns  
ns  
ns  
tENC  
tE_FL(min)  
10.0  
tENC −  
tE_FL(min)  
7.0  
ꢀ0% Duty Cycle  
Full  
V
ꢀ.3  
7.6  
2.3  
4.8  
Rev. D | Page ꢀ of 24  
 
 
 
 
AD6645  
AD6645ASQ-80/  
AD6645ASV-80  
AD6645ASQ-105/  
AD6645ASV-105  
Test  
Parameter  
Symbol Temp Level Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
DATA-READY (DRY4)/DATA(D13:0),, OVR  
Data-Ready to DATA Delay (Hold Time)  
ꢀ0% Duty Cycle  
Data-Ready to DATA Delay (Setup Time) tS_DR  
ꢀ0% Duty Cycle  
tH_DR  
Full  
Full  
Full  
Full  
V
V
V
V
V
V
Note ꢀꢀ  
7.2  
Note ꢀꢀ  
ꢀ.7  
6.6  
2.1  
7.9  
ꢀ.1  
ꢀ.1  
0.6  
0.1  
6.4  
3.ꢀ  
ns  
Note ꢀꢀ  
Note ꢀꢀ  
3.6  
2.1  
ns  
APERTURE DELAY  
tA  
tJ  
2ꢀ°C  
2ꢀ°C  
−ꢀ00  
0.1  
−ꢀ00  
ps  
APERTURE UNCERTAINTY (JITTER)  
ps rms  
1 Several timing parameters are a function of tENC and tENCH  
2 Several timing parameters are a function of tENCL and tENCH  
.
.
3 ENCODE TO DATA Delay (Hold Time) is the absolute minimum propagation delay through the ADC, tE_RL = tH_E  
.
4 DRY is an inverted and delayed version of the encode clock. Any change in the duty cycle of the clock will correspondingly change the duty cycle of DRY.  
Data-ready to DATA Delay (tH_DR and tS_DR) is calculated relative to rated speed grade and is dependent on tENC and duty cycle.  
tA  
N + 3  
N
AIN  
N + 1  
N + 2  
tENCH tENCL  
N + 1  
N + 4  
N + 4  
tENC  
ENCODE,  
ENCODE  
N
N + 2  
tE_DR  
N + 3  
tS_E  
tE_FL  
tE_RL  
tH_E  
D[13:0], OVR  
DRY  
N – 3  
N – 2  
N – 1  
tH_DR  
N
tS_DR  
tDR  
Figure 2. Timing Diagram  
Rev. D | Page 6 of 24  
 
 
 
 
 
AD6645  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Values of θJA are provided for package comparison and PCB  
design considerations. θJA can be used for a first-order  
approximation of TJ by the equation  
Parameter  
Rating  
Electrical  
TJ = TA + (θJA × PD)  
where:  
AVCC Voltage  
DVCC Voltage  
0 V to 7 V  
0 V to 7 V  
0 V to AVCC  
2ꢀ mA  
0 V to AVCC  
4 mA  
Analog Input Voltage  
Analog Input Current  
Digital Input Voltage  
Digital Output Current  
Environmental  
Operating Temperature Range (Ambient)  
AD664ꢀ-80  
AD664ꢀ-10ꢀ  
TA is the ambient temperature (°C).  
PD is the power dissipation (W).  
EXPLANATION OF TEST LEVELS  
I.  
100% production tested.  
−40°C to +8ꢀ°C  
−10°C to +8ꢀ°C  
1ꢀ0°C  
300°C  
−6ꢀ°C to +1ꢀ0°C  
II. 100% production tested at 25°C and guaranteed by design  
and characterization at temperature extremes.  
Maximum Junction Temperature  
Lead Temperature (Soldering, 10 sec)  
Storage Temperature Range (Ambient)  
III. Sample tested only.  
IV. Parameter is guaranteed by design and characterization  
testing.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
V.  
Parameter is a typical value only.  
ESD CAUTION  
THERMAL RESISTANCE  
The heat sink of the AD6645ASVZ, 52-lead TQFP_EP (SV-52-1)  
package must be soldered to the PCB GND plane to meet thermal  
specifications.  
Table 6. Thermal Characteristics  
Package Type  
Rating  
ꢀ2-Lead TQFP_EP  
θJA (0 m/sec airflow)1, 2, 3  
θJMA (1.0 m/sec airflow)2, 3, 4, ꢀ  
θJC  
23°C/W, soldered heat sink  
17°C/W, soldered heat sink  
2°C/W, soldered heat sink  
6, 7  
ꢀ2-Lead LQFP_PQ4  
θJA (0 m/sec airflow)1, 2, 3  
θJMA (1.0 m/sec airflow)2, 3, 4, ꢀ  
θJA (0 m/sec airflow)1, 2, 3  
θJMA (1.0 m/sec airflow)2, 3, 4, ꢀ  
30°C/W, unsoldered heat sink  
24°C/W, unsoldered heat sink  
23°C/W, soldered heat sink  
17°C/W, soldered heat sink  
2°C/W  
6, 7  
θJC  
1 Per JEDEC JESDꢀ1-2 (heat sink soldered to PCB).  
2 2S2P JEDEC test board.  
3 Values of θJA are provided for package comparison and PCB design  
considerations.  
4 Per JEDEC JESDꢀ1-6 (heat sink soldered to PCB).  
Airflow increases heat dissipation, effectively reducing θJA. Furthermore, the  
more metal that is directly in contact with the package leads from metal  
traces, throughholes, ground, and power planes, the more θJA is reduced.  
6 Per MIL-STD-883, Method 1012.1.  
7 Values of θJC are provided for package comparison and PCB design  
considerations when an external heat sink is required.  
Rev. D | Page 7 of 24  
 
AD6645  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
52 51 50 49 48 47 46 45 44 43 42 41 40  
1
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
DV  
D3  
CC  
PIN 1  
IDENTIFIER  
2
3
GND  
VREF  
D2  
D1  
4
GND  
D0 (LSB)  
DMID  
GND  
5
ENCODE  
ENCODE  
GND  
6
AD6645  
TOP VIEW  
7
DV  
CC  
(Not to Scale)  
8
AV  
CC  
OVR  
DNC  
9
AV  
CC  
10  
11  
12  
13  
GND  
AIN  
AV  
CC  
GND  
AV  
AIN  
CC  
GND  
GND  
14 15 16 17 18 19 20 21 22 23 24 25 26  
NOTES  
1. DNC = DO NOT CONNECT.  
2. EXPOSED PAD. CONNECT THE EXPOSED PAD TO GND.  
Figure 3. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin Number  
Mnemonic  
DVCC  
GND  
Description  
1, 33, 43  
3.3 V Power Supply (Digital) Output Stage Only.  
Ground.  
2, 4, 7, 10, 13, 1ꢀ, 17, 19, 21, 23, 2ꢀ,  
27, 29, 34, 42  
3
VREF  
ENCODE  
2.4 V Reference. Bypass to ground with a 0.1 μF microwave chip capacitor.  
Encode Input. Conversion initiated on rising edge.  
6
ENCODE  
ENCODE  
, Differential Input.  
Complement of  
8, 9, 14, 16, 18, 22, 26, 28, 30  
11  
AVCC  
AIN  
ꢀ V Analog Power Supply.  
Analog Input.  
12  
AIN  
Complement of AIN, Differential Analog Input.  
20  
24  
31  
C1  
C2  
DNC  
Internal Voltage Reference. Bypass to ground with a 0.1 μF chip capacitor.  
Internal Voltage Reference. Bypass to ground with a 0.1 μF chip capacitor.  
Do not connect this pin.  
32  
3ꢀ  
36  
OVR  
DMID  
D0 (LSB)  
D1 to Dꢀ, D6 to D12  
D13 (MSB)  
DRY  
Overrange Bit. A logic level high indicates analog input exceeds FS.  
Output Data Voltage Midpoint. Approximately equal to (DVCC)/2.  
Digital Output Bit (Least Significant Bit); Twos Complement.  
Digital Output Bits in Twos Complement.  
Digital Output Bit (Most Significant Bit); Twos Complement.  
Data-Ready Output.  
37 to 41, 44 to ꢀ0  
ꢀ1  
ꢀ2  
ꢀ3 (EPAD)  
Exposed Paddle (EPAD) Exposed Pad. Connect the exposed pad to GND.  
Rev. D | Page 8 of 24  
 
AD6645  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
0
–10  
ENCODE = 80MSPS  
ENCODE = 80MSPS  
–10  
AIN = 69.1MHz @ –1dBFS  
SNR = 73.5dB  
AIN = 2.2MHz @ –1dBFS  
SNR = 75.0dB  
–20  
–20  
SFDR = 89.0dBc  
SFDR = 93.0dBc  
–30  
–40  
–50  
–60  
–70  
–30  
–40  
–50  
–60  
–70  
–80  
–80  
3
3
–90  
–100  
–110  
–120  
–130  
2
–90  
2
5
6
4
–100  
–110  
–120  
–130  
6
4
5
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. Single Tone @ 2.2 MHz  
Figure 7. Single Tone @ 69.1 MHz  
0
–10  
0
–10  
ENCODE = 80MSPS  
AIN = 150MHz @ –1dBFS  
SNR = 73.0dB  
ENCODE = 80MSPS  
AIN = 15.5MHz @ –1dBFS  
SNR = 75.0dB  
–20  
–20  
SFDR = 70.0dBc  
SFDR = 93.0dBc  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
3
–70  
–70  
2
–80  
–80  
5
4
–90  
3
–90  
5
–100  
–110  
–120  
–130  
6
–100  
–110  
–120  
–130  
2
6
4
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. Single Tone @ 150 MHz  
Figure 5. Single Tone @ 15.5 MHz  
0
–10  
0
–10  
ENCODE = 80MSPS  
AIN = 29.5MHz @ –1dBFS  
SNR = 74.5dB  
ENCODE = 80MSPS  
AIN = 200MHz @ –1dBFS  
SNR = 72.0dB  
–20  
–20  
SFDR = 93.0dBc  
SFDR = 64.0dBc  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
3
–70  
–70  
2
–80  
–80  
4
5
–90  
3
–90  
6
2
5
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
6
4
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Single Tone @ 200 MHz  
Figure 6. Single Tone @ 29.5 MHz  
Rev. D | Page 9 of 24  
 
AD6645  
100  
95  
90  
85  
80  
75  
70  
65  
60  
75.5  
75.0  
74.5  
74.0  
73.5  
73.0  
72.5  
T = –40°C  
WORST OTHER SPUR  
T = +85°C  
T = +25°C  
HARMONICS  
(SECOND, THIRD)  
ENCODE = 80MSPS @ AIN = –1dBFS  
TEMP = –40°C, +25°C, +85°C  
ENCODE = 80MSPS @ AIN = –1dBFS  
TEMP = 25°C  
72.0  
0
10  
20  
30  
40  
50  
60  
70  
0
20  
40  
60  
80  
100 120 140 160 180 200  
FREQUENCY (MHz)  
ANALOG FREQUENCY (MHz)  
Figure 10. Signal-to-Noise Ratio (SNR) vs. Frequency  
Figure 13. Harmonics vs. Analog Frequency (IF)  
94  
92  
90  
88  
86  
84  
82  
80  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
dBFS  
ENCODE = 80MSPS  
AIN = 30.5MHz  
T = +25°C  
T = –40°C, +85°C  
dBc  
SFDR = 90dB  
REFERENCE LINE  
ENCODE = 80MSPS @ AIN = –1dBFS  
TEMP = –40°C, +25°C, +85°C  
0
10  
20  
30  
40  
50  
60  
70  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT POWER LEVEL (dBFS)  
Figure 11. Worst-Case Harmonics vs. Analog Input Frequency  
Figure 14. Single-Tone SFDR @ 30.5 MHz  
76  
75  
74  
73  
72  
71  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
dBFS  
ENCODE = 80MSPS  
AIN = 69.1MHz  
dBc  
SFDR = 90dB  
REFERENCE LINE  
ENCODE = 80MSPS @ AIN = –1dBFS  
TEMP = 25°C  
70  
0
20  
40  
60  
80  
100 120 140 160 180 200  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
ANALOG FREQUENCY (MHz)  
ANALOG INPUT POWER LEVEL (dBFS)  
Figure 12. Signal-to-Noise Ratio (SNR) vs. Analog Frequency (IF)  
Figure 15. Single-Tone SFDR @ 69.1 MHz  
Rev. D | Page 10 of 24  
AD6645  
0
–10  
0
–10  
ENCODE = 80MSPS  
AIN = 30.5MHz,  
31.5MHz (–7dBFS)  
NO DITHER  
ENCODE = 80MSPS  
AIN = 55.25MHz,  
56.25MHz (–7dBFS)  
NO DITHER  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. Two-Tone SFDR @ 30.5 MHz and 31.5 MHz  
Figure 19. Two-Tone SFDR @ 55.25 MHz and 56.25 MHz  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
dBFS  
dBFS  
ENCODE = 80MSPS  
F1 = 30.5MHz  
ENCODE = 80MSPS  
F1 = 55.25MHz  
F2 = 31.5MHz  
F2 = 56.25MHz  
dBc  
dBc  
SFDR = 90dB  
REFERENCE LINE  
SFDR = 90dB  
REFERENCE LINE  
–77  
–67  
–57  
–47  
–37  
–27  
–17  
–7  
–77  
–67  
–57  
–47  
–37  
–27  
–17  
–7  
INPUT POWER LEVEL (F1 = F2 dBFS)  
INPUT POWER LEVEL (F1 = F2 dBFS)  
Figure 17. Two-Tone SFDR @ 30.5 MHz and 31.5 MHz  
Figure 20. Two-Tone SFDR @ 55.25 MHz and 56.25 MHz  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
WORST SPUR @ AIN = 69.1MHz  
WORST SPUR @ AIN = 2.2MHz  
SNR @ AIN = 69.1MHz  
SNR @ AIN = 2.2MHz  
15  
30  
45  
60  
75  
90  
105  
15  
30  
45  
60  
75  
90  
105  
ENCODE FREQUENCY (MHz)  
ENCODE FREQUENCY (MHz)  
Figure 21. SNR, Worst-Case Spurious vs. Encode @ 69.1 MHz  
Figure 18. SNR, Worst-Case Spurious vs. Encode @ 2.2 MHz  
Rev. D | Page 11 of 24  
AD6645  
0
0
ENCODE = 80.0MSPS  
ENCODE = 80.0MSPS  
AIN = 30.5MHz @ –29.5dBFS  
NO DITHER  
–10 AIN = 30.5MHz @ –29.5dBFS  
–10  
–20  
WITH DITHER @ –19.2 dBm  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–30  
–40  
–50  
–60  
–70  
–80  
2
–90  
6
–100  
–100  
–110  
–120  
–130  
4
4
3
2
–110  
–120  
–130  
5
6
3
5
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 25. 1 M Sample FFT with Dither  
Figure 22. 1 M Sample FFT Without Dither  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ENCODE = 80.0MSPS  
AIN = 30.5MHz  
ENCODE = 80.0MSPS  
AIN = 30.5MHz  
NO DITHER  
WITH DITHER @ –19.2dBm  
SFDR = 100dB  
REFERENCE LINE  
SFDR = 90dB  
SFDR = 90dB  
REFERENCE LINE  
REFERENCE LINE  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
ANALOG INPUT LEVEL (dBFS)  
ANALOG INPUT LEVEL (dBFS)  
Figure 23. SFDR Without Dither  
Figure 26. SFDR with Dither  
0
0
ENCODE = 76.8MSPS  
ENCODE = 76.8MSPS  
AIN = W-CDMA @ 69.1MHz  
–10  
–20  
AIN = 69.1MHz @ –1dBFS  
SNR = 73.5dB  
–10  
–20  
SFDR = 89.0dBc  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
3
5
–90  
–90  
2
6
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
4
2
3
6
4
5
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 24. Single Tone @ 69.1 MHz, Encode = 76.8 MSPS  
Figure 27. W-CDMA Tone @ 69.1 MHz, Encode = 76.8 MSPS  
Rev. D | Page 12 of 24  
AD6645  
0
–10  
0
–10  
ENCODE = 76.8MSPS  
AIN = W-CDMA @ 140MHz  
ENCODE = 76.8MSPS  
AIN = 2W-CDMA @ 59.6MHz  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
5
4
6
5
2
3
0
5
10  
15  
20  
25  
30  
35  
40  
0
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 28. Two W-CDMA Carriers @ 59.6 MHz, Encode = 76.8 MSPS  
Figure 30. W-CDMA Tone @ 140 MHz, Encode = 76.8 MSPS  
0
0
ENCODE = 61.44MSPS  
AIN = W-CDMA @ 190MHz  
ENCODE = 61.44MSPS  
AIN = 4W-CDMA @ 46.08MHz  
–10  
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
2
3
6
4
5
0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0  
FREQUENCY (MHz)  
0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0  
FREQUENCY (MHz)  
Figure 31. W-CDMA Tone @ 190 MHz, Encode = 61.44 MSPS  
Figure 29. Four W-CDMA Carriers @ 46.08 MHz, Encode = 61.44 MSPS  
Rev. D | Page 13 of 24  
AD6645  
EQUIVALENT CIRCUITS  
DV  
V
AV  
CC  
CC  
CH  
CURRENT  
MIRROR  
AIN  
BUF  
T/H  
500  
500Ω  
V
V
CL  
BUF  
VREF  
T/H  
AV  
CH  
CC  
DV  
AIN  
BUF  
CC  
V
D0 TO D13,  
OVR, DRY  
CL  
V
REF  
Figure 32. Analog Input Stage  
LOADS  
AV  
AV  
CC  
CC  
AV  
AV  
CC  
CC  
10k  
10kΩ  
10kΩ  
10kΩ  
CURRENT  
MIRROR  
ENCODE  
ENCODE  
Figure 35. Digital Output Stage  
AV  
CC  
LOADS  
AV  
CC  
Figure 33. Encode Inputs  
2.4V  
VREF  
AV  
CC  
100µA  
Figure 36. 2.4 V Reference  
V
REF  
AV  
CC  
AV  
CC  
DV  
CC  
10k  
10kΩ  
CURRENT  
MIRROR  
DMID  
C1, C2  
Figure 34. Compensation Pin, C1 or C2  
Figure 37. DMID Reference  
Rev. D | Page 14 of 24  
 
 
AD6645  
TERMINOLOGY  
Harmonic Distortion, Second  
The ratio of the rms signal amplitude to the rms value of the  
second harmonic component, reported in dBc.  
Analog Bandwidth  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Harmonic Distortion, Third  
The ratio of the rms signal amplitude to the rms value of the  
third harmonic component, reported in dBc.  
Aperture Delay  
The delay between the 50% point of the rising edge of the  
encode command and the instant at which the analog input is  
sampled.  
Integral Nonlinearity  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a best straight line  
determined by a least square curve fit.  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
Maximum Conversion Rate  
The encode rate at which parametric testing is performed.  
Differential Analog Input Resistance, Differential Analog  
Input Capacitance, and Differential Analog Input Impedance  
The real and complex impedances measured at each analog  
input port. The resistance is measured statically and the  
capacitance and differential input impedances are measured  
with a network analyzer.  
Minimum Conversion Rate  
The encode rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed limit.  
Noise (for Any Range Within the ADC)  
Differential Analog Input Voltage Range  
FSdBm SNRdBc SignaldBFS  
VNOISE  
=
Z ×0.001×10  
The peak-to-peak differential voltage that must be applied to  
the converter to generate a full-scale response. The peak differential  
voltage is computed by observing the voltage on a single pin and  
subtracting the voltage from the other pin, which is 180° out of  
phase. The peak-to-peak differential is computed by rotating the  
inputs’ phase 180°and taking the peak measurement again. The  
difference is then computed between both peak measurements.  
10  
where:  
Z is the input impedance.  
FS is the full scale of the device for the frequency in question.  
SNR is the value for the particular input level.  
Signal is the signal level within the ADC reported in dB below  
full scale. This value includes both thermal noise and quantiza-  
tion noise.  
Differential Nonlinearity  
The deviation of any code width from an ideal 1 LSB step.  
Encode Pulse Width/Duty Cycle  
Output Propagation Delay  
The delay between a differential crossing of ENCODE and  
Pulse width high is the minimum amount of time that the  
encode pulse should be left in a high state to achieve rated  
performance; pulse width low is the minimum time that  
the encode pulse should be left in a low state. See timing  
implications of changing tENCH in Table 4. At a given clock rate,  
these specifications define an acceptable encode duty cycle.  
ENCODE  
and the time when all output data bits are within  
valid logic levels.  
Power Supply Rejection Ratio (PSSR)  
The ratio of a change in input offset voltage to a change in  
power supply voltage.  
Full-Scale Input Power  
The full-scale input power is expressed in dBm and can be  
calculated by using the following equation:  
Power Supply Rise Time  
The time from when the dc supply is initiated until the supply  
output reaches the minimum specified operating voltage for the  
ADC. The dc level is measured at the supply pin(s) of the ADC.  
2
V
Full Scalerms  
Z
Input  
Signal-to-Noise-and-Distortion (SINAD)  
Power  
Full Scale  
=10log  
0.001  
The ratio of the rms signal amplitude (set at 1 dB below full scale)  
to the rms value of the sum of all other spectral components,  
including harmonics, but excluding dc.  
Signal-to-Noise Ratio (Without Harmonics)  
The ratio of the rms signal amplitude (set at 1 dB below full scale)  
to the rms value of the sum of all other spectral components,  
excluding the first five harmonics and dc.  
Rev. D | Page 1ꢀ of 24  
 
AD6645  
Spurious-Free Dynamic Range (SFDR)  
Two-Tone SFDR  
The ratio of the rms signal amplitude to the rms value of the  
peak spurious spectral component. The peak spurious component  
may or may not be a harmonic. May be reported in dBc (that is,  
degrades as signal level is lowered) or dBFS (always related back  
to converter full scale).  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product, and may be reported in  
dBc (that is, degrades as signal level is lowered) or in dBFS  
(always related back to converter full scale).  
Two-Tone Intermodulation Distortion Rejection  
Worst Other Spur  
The ratio of the rms value of either input tone to the rms value  
of the worst third-order intermodulation product, reported in dBc.  
The ratio of the rms signal amplitude to the rms value of the  
worst spurious component (excluding the second and third  
harmonics), reported in dBc.  
Rev. D | Page 16 of 24  
AD6645  
THEORY OF OPERATION  
T1-4T  
CLOCK  
SOURCE  
ENCODE  
The AD6645 ADC employs a three-stage subrange architecture.  
This design approach achieves the required accuracy and speed  
while maintaining low power and small die size.  
0.1µF  
AD6645  
ENCODE  
HSMS2812  
DIODES  
As shown in the functional block diagram (see Figure 1), the  
AIN  
AD6645 has complementary analog input pins, AIN and  
Each analog input is centered at 2.4 V and should swing 0.55 V  
.
Figure 38. Crystal Clock Oscillator, Differential Encode  
If a low jitter clock is available, another option is to ac-couple a  
differential ECL/PECL signal to the encode input pins, as  
shown in Figure 39. The MC100EL16 (or same family) from  
ON Semiconductor offers excellent jitter performance.  
VT  
AIN  
around this reference (see Figure 32). Because AIN and  
are  
180° out of phase, the differential analog input signal is 2.2 V p-p.  
Both analog inputs are buffered prior to the first track-and-hold,  
TH1. The high state of the encode pulse places TH1 in hold  
mode. The held value of TH1 is applied to the input of a 5-bit  
coarse ADC1. The digital output of ADC1 drives a 5-bit digital-  
to-analog converter, DAC1. DAC1 requires 14 bits of precision  
that is achieved through laser trimming. The output of DAC1 is  
subtracted from the delayed analog signal at the input of TH3 to  
generate a first residue signal. TH2 provides an analog pipeline  
delay to compensate for the digital delay of ADC1.  
0.1µF  
ENCODE  
ECL/  
PECL  
AD6645  
ENCODE  
0.1µF  
VT  
Figure 39. Differential ECL for Encode  
The first residual signal is applied to a second conversion stage  
consisting of a 5-bit ADC2, a 5-bit DAC2, and a pipeline TH4.  
The second DAC requires 10 bits of precision, which is met by  
the process with no trim. The input to TH5 is a second residual  
signal generated by subtracting the quantized output of DAC2  
from the first residual signal held by TH4. TH5 drives a final  
6-bit ADC3.  
Driving the Analog Inputs  
As with most new high speed, high dynamic range ADCs, the  
analog input to the AD6645 is differential. Differential inputs  
improve on-chip performance as signals are processed through  
attenuation and gain stages. Most of the improvement is a result  
of differential analog stages having high rejection of even-order  
harmonics. There are also benefits at the PCB level. First,  
differential inputs have high common-mode rejection of stray  
signals, such as ground and power noise. Second, they provide  
good rejection of common-mode signals, such as local oscillator  
feedthrough.  
The digital outputs from ADC1, ADC2, and ADC3 are added  
together and corrected in the digital error correction logic to  
generate the final output data. The result is a 14-bit parallel  
digital CMOS-compatible word, coded as twos complement.  
APPLYING THE AD6645  
Encoding the AD6645  
The AD6645 analog input voltage range is offset from ground  
by 2.4 V. Each analog input connects through a 500 Ω resistor to  
the 2.4 V bias voltage and to the input of a differential buffer (see  
Figure 32). The resistor network on the input properly biases the  
followers for maximum linearity and range. Therefore, the analog  
source driving the AD6645 should be ac-coupled to the input pins.  
Because the differential input impedance of the AD6645 is 1 kΩ,  
the analog input power requirement is only −2 dBm, simplifying  
the driver amplifier in many cases. To take full advantage of this  
high input impedance, a 20:1 RF transformer is required. This is a  
large ratio and can result in unsatisfactory performance. In this  
case, a lower step-up ratio can be used. The recommended method  
for driving the differential analog input of the AD6645 is to use  
a 4:1 RF transformer. For example, if RT is set to 60.4 Ω and RS is set  
to 25 Ω, along with a 4:1 impedance ratio transformer, the input  
would match to a 50 Ω source with a full-scale drive of 4.8 dBm.  
Series resistors (RS) on the secondary side of the transformer  
should be used to isolate the transformer from the A/D.  
The AD6645 encode signal must be a high quality, extremely  
low phase noise source to prevent degradation of performance.  
Maintaining 14-bit accuracy places a premium on encode clock  
phase noise. SNR performance can easily degrade by 3 dB to  
4 dB with 70 MHz analog input signals when using a high jitter  
clock source. See the AN-501 application note, Aperture  
Uncertainty and ADC System Performance, for complete details.  
For optimum performance, the AD6645 must be clocked  
differentially. The encode signal is usually ac-coupled into the  
ENCODE  
ENCODE and  
pins via a transformer or capacitors.  
These pins are biased internally and require no additional bias.  
Figure 38 shows one preferred method for clocking the AD6645.  
The clock source (low jitter) is converted from single-ended to  
differential using an RF transformer. The back-to-back Schottky  
diodes across the transformer secondary limit excessive amplitude  
swings from the clock into the AD6645 to approximately 0.8 V p-p  
differential. This helps to prevent the large voltage swings of the  
clock from feeding through to other portions of the AD6645  
and limits the noise presented to the encode inputs.  
Rev. D | Page 17 of 24  
 
 
 
AD6645  
This limits the amount of dynamic current from the A/D  
flowing back into the secondary of the transformer. The 50 Ω  
impedance matching can also be incorporated on the secondary  
side of the transformer, as shown in the evaluation board  
schematic (see Figure 43).  
To minimize capacitive loading, there should be only one gate  
on each output pin. An example of this is shown in the evaluation  
board schematic of Figure 43. The digital outputs of the AD6645  
have a constant output slew rate of 1 V/ns. A typical CMOS gate  
combined with a PCB trace have a load of approximately 10 pF.  
Therefore, as each bit switches, 10 mA (10 pF × 1 V ÷ 1 ns) of  
dynamic current per bit flow in or out of the device. A full-scale  
transition can cause up to 140 mA (14 bits × 10 mA/bit) of current  
to flow through the output stages. Place the series resistors as close  
to the AD6645 as possible to limit the amount of current that can  
flow into the output stage. These switching currents are confined  
between ground and DVCC. Standard TTL gates should be avoided  
because they can add appreciably to the dynamic switching  
currents of the AD6645. Note that extra capacitive loading  
increases output timing and invalidates timing specifications.  
Digital output timing is guaranteed for output loads up to  
10 pF. Digital output states for given analog input levels are  
shown in Table 8.  
R
ADT4-1WT  
S
ANALOG INPUT  
SIGNAL  
AIN  
R
T
AD6645  
R
S
AIN  
0.1µF  
Figure 40. Transformer-Coupled Analog Input Circuit  
In applications where dc coupling is required, a differential  
output op amp, such as the AD8138, can be used to drive the  
AD6645 (see Figure 41). The AD8138 op amp provides single-  
ended-to-differential conversion, which reduces overall system  
cost and minimizes layout requirements.  
C
F
Grounding  
5V  
499  
For optimum performance, it is highly recommended that a  
common ground be used between the analog and digital power  
planes. The primary concern with splitting grounds is that  
dynamic currents may be forced to travel significant distances  
in the system before recombining back at the common source  
ground. This can result in a large, undesirable ground loop. The  
most common place for this to occur is on the digital outputs of  
the ADC. Ground loops can contribute to digital noise being  
coupled back onto the ADC front end. This can manifest itself  
as either harmonic spurs, or very high-order spurious products  
that can cause excessive spikes on the noise floor. This noise  
coupling is less likely to occur at lower clock speeds because the  
digital noise has more time to settle between samples. In general,  
splitting the analog and digital grounds can frequently contribute  
to undesirable EMI-RFI and should, therefore, be avoided.  
499Ω  
25Ω  
25Ω  
V
AIN  
IN  
V
OCM  
DIGITAL  
OUTPUTS  
AD8138  
AD6645  
AIN VREF  
499Ω  
499Ω  
C
F
Figure 41. DC-Coupled Analog Input Circuit  
Power Supplies  
Care should be taken when selecting a power source. The use of  
linear dc supplies with rise times of <45 ms is highly recommended.  
Switching supplies tend to have radiated components that can  
be received by the AD6645. Decouple each of the power supply  
pins as close to the package as possible using 0.1 μF chip capacitors.  
Conversely, if not properly implemented, common grounding  
can actually impose additional noise issues because the digital  
ground currents ride on top of the analog ground currents in  
close proximity to the ADC input. To further minimize the  
potential for noise coupling, it is highly recommended that  
multiple ground return traces/vias be placed such that the  
digital output currents do not flow back toward the analog front  
end but are routed quickly away from the ADC. This does not  
require a split in the ground plane and can be accomplished by  
simply placing substantial ground connections directly back to  
the supply at a point between the analog front end and the  
digital outputs. In addition, the judicious use of ceramic chip  
capacitors between the power supply and ground planes helps  
to suppress digital noise. The layout should incorporate enough  
bulk capacitance to supply the peak current requirements  
during switching periods.  
The AD6645 has separate digital and analog power supply pins.  
The analog supplies are AVCC and the digital supply pins are  
DVCC. Although analog and digital supplies can be tied together,  
the best performance is achieved when the supplies are separate  
because the fast digital output swings can couple switching  
currents back into the analog supplies. Note that AVCC must be  
held within 5% of 5 V. The AD6645 is specified for DVCC = 3.3 V, a  
common supply for digital ASICs.  
Digital Outputs  
Care must be taken when designing the data receivers for the  
AD6645. It is recommended that the digital outputs drive a  
series resistor followed by a gate, such as the 74LCX574.  
Rev. D | Page 18 of 24  
 
AD6645  
LAYOUT INFORMATION  
The schematic of the evaluation board (see Figure 43)  
represents a typical implementation of the AD6645. A multi-  
layer board is recommended to achieve best results. It is highly  
recommended that high quality, ceramic chip capacitors be  
used to decouple each supply pin to ground directly at the  
device. The pinout of the AD6645 facilitates ease of use in the  
implementation of high frequency, high resolution design practices.  
All of the digital outputs are segregated to two sides of the chip,  
with the inputs on the opposite side for isolation purposes.  
JITTER CONSIDERATIONS  
The SNR for an ADC can be predicted. When normalized to  
ADC codes, the following equation accurately predicts the SNR  
based on three terms: jitter, average DNL error, and thermal  
noise. Each of these terms contributes to the noise within the  
converter.  
SNR =1.76 −  
1/2  
2
2
2× 2 ×VNOISE rms  
1+ ε  
2
20log  
(
2π× fANALOG ×tj rms  
)
+
+
2n  
2n  
Care should be taken when routing the digital output traces. To  
prevent coupling through the digital outputs into the analog  
portion of the AD6645, minimal capacitive loading should be  
placed on these outputs. It is recommended that a fanout of  
only one gate should be used for all AD6645 digital outputs.  
where:  
f
ANALOG is the analog input frequency.  
t
j rms is the rms jitter of the encode (rms sum of encode source  
The layout of the encode circuit is equally critical. Any noise  
received on this circuitry results in corruption in the digitization  
process and lower overall performance. The encode clock must be  
isolated from the digital outputs and the analog inputs.  
and internal encode circuitry).  
ε is the average DNL of the ADC (typically 0.41 LSB).  
n is the number of bits in the ADC.  
V
NOISE rms is the voltage rms thermal noise that refers to the  
Table 8. Twos Complement Output Coding  
analog input of the ADC (typically 0.9 LSB rms).  
AIN Level  
VREF + 0.ꢀꢀ V VREF − 0.ꢀꢀ V Positive FS  
VREF VREF Midscale  
VREF − 0.ꢀꢀ V VREF + 0.ꢀꢀ V Negative FS  
AIN  
Output State Output Code  
Level  
For a 14-bit ADC, such as the AD6645, aperture jitter can  
greatly affect the SNR performance as the analog frequency is  
increased. Figure 42 shows a family of curves that demonstrate the  
expected SNR performance of the AD6645 as jitter increases.  
The chart is derived from the preceding equation.  
01 1111 1111 1111  
00 … 0/11 … 1  
10 0000 0000 0000  
For a complete discussion of aperture jitter, see the AN-756  
application note, Sampled Systems and the Effects of Clock Phase  
Noise and Jitter. The AN-756 application note can be found on  
www.analog.com.  
80  
AIN = 30MHz  
75  
AIN = 70MHz  
70  
AIN = 110MHz  
65  
AIN = 150MHz  
AIN = 190MHz  
60  
55  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
JITTER (ps)  
Figure 42. SNR vs. Jitter  
Rev. D | Page 19 of 24  
 
 
 
AD6645  
Table 9. AD6645/PCB Bill of Materials  
Quantity Quantity  
80 MSPS  
105 MSPS Reference ID  
Description  
Manufacturer  
Supplier Part No.  
1
1
4
8
9
PCB  
Printed circuit board, AD664ꢀ  
engineering evaluation board  
Capacitor, tantalum, SMT  
BCAPTAJC, 10 μF, 16 V, 10%  
Capacitor, ceramic, SMT 0ꢀ08,  
0.1 μF, 16 V, 10%  
Capacitor, ceramic, SMT 080ꢀ,  
0.1 μF, 2ꢀ V, 10%  
PCSM  
664ꢀEE01D REV D  
4
8
9
C1, C2, C31, C38  
Kemet  
T491C106K016AS  
0ꢀ08X7R104K16VP3  
ECJ-2VB1E104K  
C3, C7 to C10, C16,  
C301, C32  
Presidio Components  
Panasonic  
C4, C1ꢀ, C22 to  
C26, C29, (C33)2, 3  
(C34)2, 3, C39  
,
0
0
(Cꢀ, C6)2, 3  
Capacitor, ceramic, SMT 080ꢀ,  
0.01 μF, 0 V, 10%  
Panasonic  
ECJ-2YB1H103K  
10  
0
10  
0
C11 to C14,  
C17 to C21, C40  
(C27, C28)2  
CR13  
Capacitor, ceramic, SMT 0ꢀ08,  
0.01 μF, 0 V, 0.2%  
Capacitor, ceramic, SMT 080ꢀ, limits  
amp bandwidth as warranted  
Diode, dual Schottky HSMS2812,  
SOT-23, 30 V, 20 mA  
Presidio Components  
0ꢀ08X7R103M2P3  
1
1
Panasonic  
MA716-(TX)  
1
1
E1  
Install jumper wire (across OPT_LAT  
and BUFLAT)  
1
1
1
2
1
1
1
2
F1 to Fꢀ  
J1  
EMI suppression ferrite chip, SMT 080ꢀ  
Header, 6-pin, pin strip, ꢀ mm pitch  
Pin strip, 6-pin, ꢀ mm pitch  
Header, 40-pin, male, right angle  
Connector, gold, female, coax., SMA,  
vertical  
Steward  
Wieland  
Wieland  
Samtec  
HZ080ꢀE601R-00  
Zꢀ.ꢀ30.062ꢀ.0  
2ꢀ.602.26ꢀ3.0  
TSW-120-08-T-D-RA  
142-0701-201  
J1  
J2  
(J3)2, J4, Jꢀ  
Johnson Components  
1
0
1
0
L1  
Inductor, SMT, 1008-ct package, 4.7 nH  
Resistor, thick film, SMT 0402, 100 Ω,  
1/16 W, 1%  
Resistor, thick film, SMT 1206, 60.4 Ω,  
1/4 W, 1%  
Resistor, thick film, SMT 080ꢀ, ꢀ00 Ω,  
1/8 W, 1%  
Resistor, thick film, SMT 080ꢀ, 2ꢀ.ꢀ Ω,  
1/8 W, 1%  
Resistor, thick film, SMT 080ꢀ, 66.ꢀ Ω,  
1/8 W, 1%  
Resistor, thick film, SMT 080ꢀ, 100 Ω,  
1/8W, 1%  
Resistor, thick film, SMT 0402, 178 Ω,  
1/16 W, 1%  
Coilcraft  
Panasonic  
1008CT-040X-J  
ERJ-2RKF1000  
(R1)2, 3  
0
2
2
0
0
1
1
4
2
0
2
2
0
0
1
1
4
2
(R2)2  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Mini-Circuits  
ERJ-8ENF60R4V  
ERJ-6ENF4990V  
ERJ-6ENF2ꢀRꢀV  
ERJ-6ENF66RꢀV  
ERJ-6ENF1000V  
ERJ-2RKF1780X  
ERJ-6ENF49R9V  
EXB2HV101JV  
ADT4-1WT  
(R3 to Rꢀ)1, 2, (R8)1, 2,  
R9, R10  
R6, R7  
(R11)2, 3, (R13)2, 3  
(R12)2, 3, (R14)2, 3  
R1ꢀ1  
R3ꢀ  
Resistor, thick film, SMT 080ꢀ, 49.9 Ω,  
1/8 W, 1%  
Resistor array, SMT 0402; 100 Ω;  
8 ISO RES.,1/4 W; ꢀ%  
Transformer, ADT4-1WT, CDꢀ42,  
2 MHz to 77ꢀ MHz  
RN1 to RN4  
T23, T31  
1
0
2
0
0
1
2
0
U1  
U1  
U2, U7  
(U3)1, 2  
IC, 14-bit, 80 MSPS ADC  
IC, 14-bit, 10ꢀ MSPS ADC  
IC, SOIC-20, Octal D-type flip-flop  
IC, SOIC-8, low distortion differential  
ADC driver  
Analog Devices  
Analog Devices  
Fairchild  
AD664ꢀASQ/ASV-80  
AD664ꢀASQ/ASV-10ꢀ  
74LCXꢀ74WM  
Analog Devices  
AD8138AR  
2
2
U4, U6  
IC, SOT-23, tiny logic UHS 2 input  
OR gate  
Fairchild  
NC7SZ32  
Rev. D | Page 20 of 24  
AD6645  
Quantity Quantity  
80 MSPS  
105 MSPS Reference ID  
Description  
Manufacturer  
Motorola  
CTS Reeves  
AMP/Tyco Electronics  
Richco, Inc.  
Supplier Part No.  
0
1
4
4
0
0
4
4
(U8)2, 3  
Y1  
Y1  
IC, SOIC-8, differential receiver  
Clock oscillator, 80 MHz  
Pin sockets, closed end  
Circuit board support  
MC100LVEL16  
MXO4ꢀ-80  
ꢀ-330808-3  
CBSB-14-01  
1 AC-coupled AIN is standard: R3, R4, Rꢀ, R8, and U3 are not installed. If dc-coupled AIN is required, C30, R1ꢀ, and T3 are not installed.  
2 Reference designators in parentheses are not installed on standard units.  
3 AC-coupled encode is standard: Cꢀ, C6, C33, C34, R1, R11 to R14, and U8 are not installed. If PECL encode is required, CR1 and T2 are not installed.  
Rev. D | Page 21 of 24  
 
 
 
AD6645  
3
0 4 7 - 6 4 0 2  
D 4  
D 5  
C
C
A V C  
G N  
A
A
V
V
+ 5  
D
D
D
D
D
D
D
G N  
D
G N  
D V  
C 2  
V 3 P + 3  
C
C
G N  
D 6  
D 7  
D 8  
D 9  
A V C  
G N  
+ 5  
C 1  
G N  
0
D 1  
C
C
C
A V C  
G N  
A
A
A
V
V
V
+ 5  
+ 5  
+ 5  
1
2
3
D 1  
D 1  
D 1  
A V C  
G N  
T
U O _ D R  
Y
D R  
A V C  
0
0 .  
0 0 .  
Figure 43. Evaluation Board Schematic  
Rev. D | Page 22 of 24  
 
AD6645  
Figure 44. Top Signal Level  
Figure 46. Ground Plane Layer 2 and Ground Plane Layer 5  
Figure 47. Bottom Signal Layer  
Figure 45. 5.0 V Plane Layer 3 and 3.3 V Plane Layer 4  
Rev. D | Page 23 of 24  
AD6645  
OUTLINE DIMENSIONS  
2.35  
2.20 (4 PLCS)  
2.05  
1.60  
MAX  
12.20  
12.00 SQ  
11.80  
2.65  
2.50 (4 PLCS)  
2.35  
40  
0.75  
0.60  
0.45  
52  
40  
52  
1
1
39  
39  
PIN 1  
6.05  
5.90 SQ  
5.75  
EXPOSED  
HEAT SINK  
(CENTERED)  
TOP VIEW  
(PINS DOWN)  
10.20  
10.00 SQ  
9.80  
1.45  
1.40  
1.35  
BOTTOM VIEW  
(PINS UP)  
0.20  
0.08  
13  
13  
27  
27  
26  
26  
14  
14  
7°  
0°  
0.65  
BSC  
LEAD PITCH  
VIEW A  
0.38  
0.32  
0.22  
0.15  
0.05  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
0.10 MAX  
COPLANARITY  
SECTION OF THIS DATA SHEET.  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BCC-HD  
Figure 48. 52-Lead Low Profile Quad Flat Package, PowerQuad [LQFP_PQ4]  
(SQ-52-1)  
Dimensions shown in millimeters  
1.20  
MAX  
0.75  
0.60  
0.45  
12.00 BSC  
SQ  
52  
40  
52  
40  
39  
39  
1
1
SEATING  
PLANE  
PIN 1  
10.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
6.50 BSC  
SQ  
EXPOSED  
PAD  
0° MIN  
1.05  
1.00  
0.95  
0.20  
0.09  
BOTTOM VIEW  
(PINS UP)  
13  
13  
27  
27  
7°  
14  
VIEW A  
26  
26  
14  
3.5°  
0°  
0.15  
0.05  
0.65  
BSC  
LEAD PITCH  
0.38  
0.32  
0.22  
0.08 MAX  
COPLANARITY  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
VIEW A  
ROTATED 90  
°
CCW  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MS-026-ACC  
Figure 49. 52-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
(SV-52-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD664ꢀASQ-80  
AD664ꢀASQZ-801  
AD664ꢀASVZ-801  
AD664ꢀASQ-10ꢀ  
AD664ꢀASQZ-10ꢀ1  
AD664ꢀASVZ-10ꢀ1  
AD664ꢀ-80/PCBZ1  
AD664ꢀ-10ꢀ/PCBZ1  
Temperature Range  
−40°C to +8ꢀ°C  
−40°C to +8ꢀ°C  
−40°C to +8ꢀ°C  
−10°C to +8ꢀ°C  
−10°C to +8ꢀ°C  
−10°C to +8ꢀ°C  
Package Description  
Package Option  
ꢀ2-Lead Low Profile Quad Flat Package, PowerQuad (LQFP_PQ4)  
ꢀ2-Lead Low Profile Quad Flat Package, PowerQuad (LQFP_PQ4)  
ꢀ2-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
ꢀ2-Lead Low Profile Quad Flat Package, PowerQuad (LQFP_PQ4)  
ꢀ2-Lead Low Profile Quad Flat Package, PowerQuad (LQFP_PQ4)  
ꢀ2-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
Evaluation Board  
SQ-ꢀ2-1  
SQ-ꢀ2-1  
SV-ꢀ2-1  
SQ-ꢀ2-1  
SQ-ꢀ2-1  
SV-ꢀ2-1  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2002–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02647-0-10/08(D)  
Rev. D | Page 24 of 24  
 
 
 

相关型号:

MXO45-C

METAL DIP CLOCK OSCILLATOR
CTS

MXO45-I

METAL DIP CLOCK OSCILLATOR
CTS

MXO45HS

METAL DIP CLOCK OSCILLATOR
CTS

MXO45HS-2C

METAL DIP CLOCK OSCILLATOR
CTS

MXO45HS-2C-105M5610

CMOS/TTL Output Clock Oscillator, 1MHz Min, 105.561MHz Max, 105.561MHz Nom, METAL DIP-8/4
CTS

MXO45HS-2C-10M0000

HCMOS/TTL Output Clock Oscillator, 10MHz Nom, GREEN, METAL, DIP-8/4
CTS

MXO45HS-2C-125M000000

HCMOS/TTL Output Clock Oscillator, 125MHz Nom, DIP-8/4
CTS

MXO45HS-2C-14M318180

HCMOS/TTL Output Clock Oscillator, 14.31818MHz Nom, DIP-8/4
CTS

MXO45HS-2C-16M0000

HCMOS/TTL Output Clock Oscillator, 16MHz Nom, DIP-8/4
CTS

MXO45HS-2C-1M0000

CMOS/TTL Output Clock Oscillator, 1MHz Min, 105.561MHz Max, 1MHz Nom, METAL DIP-8/4
CTS

MXO45HS-2C-20M0000

CMOS/TTL Output Clock Oscillator, 20MHz Nom, METAL DIP-8/4
CTS

MXO45HS-2C-25M000000

HCMOS/TTL Output Clock Oscillator, 25MHz Nom, DIP-8/4
CTS