OP113FS [ADI]

Low Noise, Low Drift Single-Supply Operational Amplifiers; 低噪声,低漂移,单电源运算放大器
OP113FS
型号: OP113FS
厂家: ADI    ADI
描述:

Low Noise, Low Drift Single-Supply Operational Amplifiers
低噪声,低漂移,单电源运算放大器

运算放大器
文件: 总16页 (文件大小:331K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise, Low Drift  
a
Single-Supply Operational Amplifiers  
OP113/OP213/OP413  
P IN CO NNECTIO NS  
FEATURES  
Single- or Dual-Supply Operation  
Low Noise: 4.7 nV/ Hz @ 1 kHz  
Wide Bandw idth: 3.4 MHz  
Low Offset Voltage: 100 V  
Very Low Drift: 0.2 V/ ؇C  
Unity Gain Stable  
8-Lead Nar r ow-Body SO  
8-Lead P lastic D IP  
NULL  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
NC  
1
NULL  
–IN A  
+IN A  
V–  
8
NC  
V+  
OP113  
V+  
OUT A  
NULL  
No Phase Reversal  
OUT A  
NULL  
5
4
NC = NO CONNECT  
APPLICATIONS  
Digital Scales  
OP113  
NC = NO CONNECT  
Multim edia  
Strain Gages  
Battery Pow ered Instrum entation  
Tem perature Transducer Am plifier  
8-Lead P lastic D IP  
8-Lead Nar r ow-Body SO  
OUT A  
1
2
3
4
8
7
6
5
V+  
OUT A  
–IN A  
+IN A  
V–  
1
8
V+  
OUT B  
–IN B  
+IN B  
OP213  
–IN A  
+IN A  
V–  
OUT B  
–IN B  
+IN B  
GENERAL D ESCRIP TIO N  
5
4
T he OP113 family of single supply operational amplifiers fea-  
tures both low noise and drift. It has been designed for sys-  
tems with internal calibration. Often these processor-based  
systems are capable of calibrating corrections for offset and  
gain, but they cannot correct for temperature drifts and noise.  
Optimized for these parameters, the OP113 family can be used  
to take advantage of superior analog performance combined  
with digital correction. Many systems using internal calibration  
operate from unipolar supplies, usually either +5 volts or +12  
volts. T he OP113 family is designed to operate from single  
supplies from +4 volts to +36 volts, and to maintain its low  
noise and precision performance.  
OP213  
14-Lead P lastic D IP  
16-Lead Wide-Body SO  
1
16  
OUT A  
–IN A  
+IN A  
V+  
OUT D  
–IN D  
+IN D  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
OUT D  
–IN D  
14  
13  
V–  
12 +IN D  
OP413  
+IN C  
+IN B  
–IN B  
OUT B  
NC  
OP413  
V–  
11  
10  
9
–IN C  
T he OP113 family is unity gain stable and has a typical gain  
bandwidth product of 3.4 MHz. Slew rate is in excess of 1 V/µs.  
Noise density is a very low 4.7 nV/Hz, and noise in the 0.1 Hz  
to 10 Hz band is 120 nV p-p. Input offset voltage is guaranteed  
and offset drift is guaranteed to be less than 0.8 µV/°C. Input  
common-mode range includes the negative supply and to within  
1 volt of the positive supply over the full supply range. Phase  
reversal protection is designed into the OP113 family for cases  
where input voltage range is exceeded. Output voltage swings  
also include the negative supply and go to within 1 volt of the  
positive rail. T he output is capable of sinking and sourcing  
current throughout its range and is specified with 600 loads.  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
5
6
OUT C  
NC  
8
9
NC = NO CONNECT  
7
8
D/A sigma-delta converters. Often these converters have high  
resolutions requiring the lowest noise amplifier to utilize their  
full potential. Many of these converters operate in either single  
supply or low supply voltage systems, and attaining the greater  
signal swing possible increases system performance.  
T he OP113 family is specified for single +5 volt and dual ±15  
volt operation over the XIND—extended industrial (–40°C to  
+85°C) temperature range. T hey are available in plastic and  
SOIC surface mount packages.  
Digital scales and other strain gage applications benefit from the  
very low noise and low drift of the OP113 family. Other appli-  
cations include use as a buffer or amplifier for both A/D and  
REV. C  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-4700  
Fax: 781/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1998  
OP113/OP213/OP413–SPECIFICATIONS  
(@ V = ؎15.0 V, T = +25؇C unless otherwise noted)  
S
A
ELECTRICAL CHARACTERISTICS  
E Grade  
Typ  
F Grade  
P aram eter  
Sym bol  
Conditions  
Min  
Max  
Min  
Typ  
Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
VOS  
OP113  
–40°C T A  
OP213  
–40°C T A  
OP413  
–40°C T A  
VCM = 0 V,  
–40°C T A  
VCM = 0 V  
–40°C T A  
75  
150  
225  
250  
325  
275  
350  
600  
700  
µV  
µV  
µV  
µV  
µV  
µV  
nA  
nA  
+85°C  
+85°C  
+85°C  
+85°C  
+85°C  
125  
100  
150  
125  
175  
600  
700  
Input Bias Current  
Input Offset Current  
IB  
240  
IOS  
50  
+14  
50  
+14  
nA  
V
dB  
Input Voltage Range  
Common-Mode Rejection  
VCM  
CMR  
–15  
100  
–15  
96  
–15 V VCM +14 V  
–15 V VCM +14 V,  
–40°C T A  
OP113, OP213, RL = 600 ,  
–40°C T A +85°C  
OP413, RL = 1 k,  
–40°C T A  
RL = 2 k,  
–40°C T A  
Note 1  
116  
116  
2.4  
2.4  
8
+85°C  
97  
1
94  
1
dB  
Large Signal Voltage Gain  
AVO  
V/µV  
V/µV  
+85°C  
1
1
+85°C  
2
2
V/µV  
µV  
µV/°C  
Long-T erm Offset Voltage1  
Offset Voltage Drift  
VOS  
VOS/T  
150  
0.8  
300  
1.5  
Note 2  
0.2  
O
UT PUT CHARACT ERIST ICS  
Output Voltage Swing High  
VOH  
RL = 2 kΩ  
RL = 2 k,  
–40°C T A  
RL = 2 kΩ  
RL = 2 k,  
–40°C TA  
+14  
+14  
V
+85°C  
+13.9  
+13.9  
V
V
Output Voltage Swing Low  
Short Circuit Limit  
VOL  
–14.5  
–14.5  
–14.5  
–14.5  
+85°C  
V
mA  
ISC  
±40  
±40  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
VS = ±2 V to ±18 V  
VS = ±2 V to ±18 V  
103  
100  
120  
120  
100  
97  
dB  
dB  
–40°C T A  
+85°C  
Supply Current/Amplifier  
ISY  
VOUT = 0 V, RL = ,  
VS = ±18 V  
3
3.8  
±18  
3
3.8  
±18  
mA  
mA  
V
–40°C T A  
+85°C  
Supply Voltage Range  
VS  
+4  
+4  
AUDIO PERFORMANCE  
T HD + Noise  
VIN = 3 V rms, RL = 2 kΩ  
f = 1 kHz,  
0.0009  
9
4.7  
0.4  
120  
0.0009  
9
4.7  
0.4  
120  
%
Voltage Noise Density  
en  
f = 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
nV/Hz  
nV/Hz  
pA/Hz  
nV p-p  
Current Noise Density  
Voltage Noise  
in  
en p-p  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Channel Separation  
SR  
GBP  
RL = 2 kΩ  
0.8  
1.2  
3.4  
0.8  
1.2  
3.4  
V/µs  
MHz  
VOUT = 10 V p-p  
RL = 2 k, f = 1 kHz  
to 0.01%, 0 V to 10 V Step  
105  
9
105  
9
dB  
µs  
Settling T ime  
NOT ES  
tS  
1Long-term offset voltage is guaranteed by a 1000-hour life test performed on three independent lots at 125 °C, with an LT PD of 1.3.  
2Guaranteed specifications, based on characterization data.  
Specifications subject to change without notice.  
–2–  
REV. C  
OP113/OP213/OP413  
(@ V = +5.0 V, T = +25؇C unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
S
A
E Grade  
Typ  
F Grade  
P aram eter  
Sym bol  
Conditions  
Min  
Max  
Min Typ  
Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
VOS  
OP113  
–40°C T A  
OP213  
–40°C T A  
OP413  
–40°C T A  
VCM = 0 V, VOUT = 2  
–40°C T A +85°C  
VCM = 0 V, VOUT = 2  
–40°C T A +85°C  
125  
175  
150  
225  
175  
250  
650  
750  
175  
250  
300  
375  
325  
400  
650  
750  
µV  
µV  
µV  
µV  
µV  
µV  
nA  
nA  
+85°C  
+85°C  
+85°C  
Input Bias Current  
Input Offset Current  
IB  
300  
106  
IOS  
50  
+4  
50  
+4  
nA  
V
dB  
Input Voltage Range  
Common-Mode Rejection  
VCM  
CMR  
0
93  
0 V VCM 4 V  
0 V VCM 4 V,  
–40°C T A  
OP113, OP213, RL = 600 , 2 kΩ  
0.01 V VOUT 3.9 V  
OP413, RL = 600, 2 k,  
90  
87  
2
+85°C  
90  
2
dB  
Large Signal Voltage Gain  
AVO  
V/µV  
0.01 V VOUT  
Note 1  
Note 2  
3.9 V  
1
1
V/µV  
µV  
µV/°C  
Long-T erm Offset Voltage1  
Offset Voltage Drift  
VOS  
VOS/T  
200  
1.0  
350  
1.5  
0.2  
O
UT PUT CHARACT ERIST ICS  
Output Voltage Swing High  
VOH  
RL = 600 kΩ  
RL = 100 k, –40°C T A +85°C  
RL = 600 , –40°C TA +85°C  
4.0  
4.1  
3.9  
4.0  
4.1  
3.9  
V
V
V
Output Voltage Swing Low  
Short Circuit Limit  
VOL  
ISC  
RL = 600 , –40°C TA  
RL = 100 k, –40°C TA  
+85°C  
8
8
8
8
mV  
mV  
mA  
+85°C  
±30  
±30  
POWER SUPPLY  
Supply Current  
Supply Current  
ISY  
ISY  
VOUT = 2.0 V, No Load  
1.6  
2.7  
3.0  
2.7  
3.0  
mA  
mA  
–40°C T A  
+85°C  
AUDIO PERFORMANCE  
T HD + Noise  
Voltage Noise Density  
VOUT = 0 dBu, f = 1 kHz  
f = 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
0.001  
9
4.7  
0.45  
120  
0.001  
9
4.7  
0.45  
120  
%
en  
nV/Hz  
nV/Hz  
pA/Hz  
nV p-p  
Current Noise Density  
Voltage Noise  
in  
en p-p  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Settling T ime  
SR  
GBP  
tS  
RL = 2 kΩ  
0.6  
0.9  
3.5  
5.8  
0.6  
V/µs  
MHz  
µs  
3.5  
5.8  
to 0.01%, 2 V Step  
NOT ES  
1Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125 °C, with an LT PD of 1.3.  
2Guaranteed specifications, based on characterization data.  
Specifications subject to change without notice.  
REV. C  
–3–  
OP113/OP213/OP413  
ABSO LUTE MAXIMUM RATINGS1  
O RD ERING GUID E  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . ±10 V  
Output Short-Circuit Duration to GND . . . . . . . . . . Indefinite  
Storage T emperature Range  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ptions  
Model  
OP113EP  
OP113ES  
OP113FP  
OP113FS  
–40°C to +85°C 8-Lead Plastic DIP N-8  
–40°C to +85°C 8-Lead SOIC  
–40°C to +85°C 8-Lead Plastic DIP N-8  
–40°C to +85°C 8-Lead SOIC  
SO-8  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating T emperature Range  
SO-8  
OP113/OP213/OP413E, F . . . . . . . . . . . . . . –40°C to +85°C  
Junction T emperature Range  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature Range (Soldering, 60 sec) . . . . . . . +300°C  
OP213EP  
OP213ES  
OP213FP  
OP213FS  
–40°C to +85°C 8-Lead Plastic DIP N-8  
–40°C to +85°C 8-Lead SOIC  
SO-8  
–40°C to +85°C 8-Lead Plastic DIP N-8  
–40°C to +85°C 8-Lead SOIC  
SO-8  
2
OP413EP  
OP413ES  
OP413FP  
OP413FS  
–40°C to +85°C 14-Lead Plastic DIP N-14  
–40°C to +85°C 16-Lead Wide SOIC R-16  
–40°C to +85°C 14-Lead Plastic DIP N-14  
–40°C to +85°C 16-Lead Wide SOIC R-16  
P ackage Type  
Units  
JA  
JC  
8-Lead Plastic DIP (P)  
8-Lead SOIC (S)  
14-Lead Plastic DIP (P)  
16-Lead SOIC (S)  
103  
158  
83  
43  
43  
39  
27  
°C/W  
°C/W  
°C/W  
°C/W  
92  
NOT ES  
1Absolute maximum ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
2θJA is specified for the worst case conditions, i.e., θJA is specified for device in socket  
for cerdip, P-DIP, and LCC packages; θJA is specified for device soldered in circuit  
board for SOIC package.  
REV. C  
–4–  
OP113/OP213/OP413  
AP P LICATIO NS  
2 mV trim range may be somewhat excessive. Reducing the  
trimming potentiometer to a 2 kvalue will give a more reason-  
able range of ±400 µV.  
T he OP113, OP213 and OP413 form a new family of high  
performance amplifiers that feature precision performance in  
standard dual supply configurations and, more importantly,  
maintain precision performance when a single power supply is  
used. In addition to accurate dc specifications, it is the lowest  
+15V  
–15V  
2
16  
R5  
1k  
+10.000V  
8
14  
15  
8
1
3
9
3
2
noise single supply amplifier available with only 4.7 nV/  
typical noise density.  
Hz  
1
2N2219A  
A2  
AD588BD  
6
11 12 13  
1/2  
OP213  
Single supply applications have special requirements due to the  
generally reduced dynamic range of the output signal. Single  
supply applications are often operated at voltages of +5 volts or  
+12 volts, compared to dual supply applications with supplies of  
±12 volts or ±15 volts. T his results in reduced output swings.  
Where a dual supply application may often have 20 volts of  
signal output swing, single supply applications are limited to, at  
most, the supply range and, more commonly, several volts be-  
low the supply. In order to attain the greatest swing the single  
supply output stage must swing closer to the supply rails than in  
dual supply applications.  
10  
4
7
+10.000V  
10F  
R3  
R4  
500⍀  
17.2k⍀  
0.1%  
350⍀  
LOAD  
CELL  
CMRR TRIM  
10-TURN  
T.C. LESS THAN 50ppm/؇C  
6
100mV  
F.S.  
A1  
5
7
OUTPUT  
0
10V  
4
1/2  
OP213  
F.S.  
–15V  
R1  
R2  
17.2k301⍀  
0.1% 0.1%  
T he OP113 family has a new patented output stage that allows  
the output to swing closer to ground, or the negative supply,  
than previous bipolar output stages. Previous op amps had  
outputs that could swing to within about ten millivolts of the  
negative supply in single supply applications. However, the  
OP113 family combines both a bipolar and a CMOS device in  
the output stage, enabling it to swing to within a few hundred  
microvolts of ground.  
Figure 1. Precision Load Cell Scale Am plifier  
AP P LICATIO N CIRCUITS  
A H igh P r ecision Industr ial Load-Cell Scale Am plifier  
T he OP113 family makes an excellent amplifier for conditioning  
a load-cell bridge. Its low noise greatly improves the signal reso-  
lution, allowing the load cell to operate with a smaller output  
range, thus reducing its nonlinearity. Figure 1 shows one half of  
the OP113 family used to generate a very stable 10.000 V bridge  
excitation voltage while the second amplifier provides a differen-  
tial gain. R4 should be trimmed for maximum common-mode  
rejection.  
When operating with reduced supply voltages, the input range is  
also reduced. T his reduction in signal range results in reduced  
signal-to-noise ratio, for any given amplifier. T here are only two  
ways to improve this: increase the signal range or reduce the  
noise. T he OP113 family addresses both of these parameters.  
Input signal range is from the negative supply to within one  
volt of the positive supply over the full supply range. Com-  
petitive parts have input ranges that are a half a volt to five  
volts less than this. Noise has also been optimized in the OP113  
family. At 4.7 nV/Hz, it is less than one fourth that of competi-  
tive devices.  
A Low Voltage Single Supply, Str ain-Gage Am plifier  
T he true zero swing capability of the OP113 family allows the  
amplifier in Figure 2 to amplify the strain-gage bridge accurately  
even with no signal input while being powered by a single +5  
volt supply. A stable 4.000 V bridge voltage is made possible by  
the rail-to-rail OP295 amplifier, whose output can swing to  
within a millivolt of either rail. T his high voltage swing greatly  
increases the bridge output signal without a corresponding in-  
crease in bridge input.  
P hase Rever sal  
T he OP113 family is protected against phase reversal as long as  
both of the inputs are within the supply ranges. However, if there  
is a possibility of either input going below the negative supply  
(or ground in the single supply case), the inputs should be pro-  
tected with a series resistor to limit input current to 2 mA.  
+5V  
2
IN  
2.500V  
8
6
REF43  
3
2
OUT  
1/2  
OP295  
4
O P 113 O ffset Adjust  
2N2222A  
1
GND  
4
T he OP113 has the facility for external offset adjustment, using  
the industry standard arrangement. Pins 1 and 5 are used in  
conjunction with a potentiometer of 10 ktotal resistance,  
connected with the wiper to V– (or ground in single supply  
applications). T he total adjustment range is about ±2 mV using  
this configuration.  
4.000V  
+5V  
8
350⍀  
35mV  
F.S.  
R8  
12.0k⍀  
R7  
20.0k⍀  
OUTPUT  
0V 3.5V  
5
1/2  
7
OP295  
6
4
Adjusting the offset to zero has minimal effect on offset  
drift (assuming the potentiometer has a tempco of less than  
1000 ppm/°C). Adjustment away from zero, however, (like all  
bipolar amplifiers) will result in a T CVOS of approximately  
3.3 µV/°C for every millivolt of induced offset.  
R3  
20k⍀  
3
2
1/2  
OP213  
1
R4  
100k⍀  
R2  
20k⍀  
R1  
100k⍀  
R5  
2.10k⍀  
R6  
27.4⍀  
It is therefore not generally recommended that this trim be used  
to compensate for system errors originating outside of the  
OP113. T he initial offset of the OP113 is low enough that  
external trimming is almost never required but, if necessary, the  
R
= 2,127.4⍀  
G
Figure 2. Single Supply Strain-Gage Am plifier  
REV. C  
–5–  
OP113/OP213/OP413  
A H igh Accur acy Linear ized RTD Ther m om eter Am plifier  
Zero suppressing the bridge facilitates simple linearization of the  
RT D by feeding back a small amount of the output signal to the  
RT D (Resistor T emperature Device). In Figure 3 the left leg of  
the bridge is servoed to a virtual ground voltage by amplifier  
A1, while the right leg of the bridge is also servoed to zero-volt  
by amplifier A2. T his eliminates any error resulting from  
common-mode voltage change in the amplifier. A three-wire  
RT D is used to balance the wire resistance on both legs of the  
bridge, thereby reducing temperature mismatch errors. T he  
5.000 V bridge excitation is derived from the extremely stable  
AD588 reference device with 1.5 ppm/°C drift performance.  
A H igh Accur acy Ther m ocouple Am plifier  
Figure 4 shows a popular K-type thermocouple amplifier with  
cold-junction compensation. Operating from a single +12 volt  
supply, the OP113 family’s low noise allows temperature mea-  
surement to better than 0.02°C resolution from 0°C to 1000°C  
range. T he cold-junction error is corrected by using an inexpen-  
sive silicon diode as a temperature measuring device. It should  
be placed as close to the two terminating junctions as physically  
possible. An aluminum block might serve well as an isothermal  
system.  
+5.000V  
2
REF02EZ  
4
6
+12V  
Linearization of the RT D is done by feeding a fraction of the  
output voltage back to the RT D in the form of a current. With  
just the right amount of positive feedback, the amplifier output  
will be linearly proportional to the temperature of the RT D.  
R9  
0.1F  
124k⍀  
R1  
R5  
10.7k40.2k⍀  
+12V  
1N4148  
D1  
10F  
+
0.1F  
R8  
453⍀  
R2  
2.74k⍀  
–15V +15V  
+
8
2
K-TYPE  
THERMOCOUPLE  
40.7V/؇C  
2
16  
1/2  
1
+
OP213  
11  
12  
13  
R6  
0V TO 10.00V  
(0؇C TO 1000؇C)  
3
14  
15  
4
200⍀  
R4  
5.62k⍀  
R3  
53.6⍀  
AD588BD  
4
6
1
3
R3  
50⍀  
R
FULL SCALE ADJUST  
G
R2  
R5  
R7  
8
10  
7
9
8.25k⍀  
4.02k⍀  
100⍀  
Figure 4. Accurate K-Type Therm ocouple Am plifier  
R1  
8.25k⍀  
10F  
R6 should be adjusted for a zero-volt output with the thermo-  
couple measuring tip immersed in a zero-degree ice bath. When  
calibrating, be sure to adjust R6 initially to cause the output to  
swing in the positive direction first. T hen back off in the nega-  
tive direction until the output just stops changing.  
+15V  
R
W1  
8
6
5
R4  
100⍀  
A2  
7
V
(10mV/؇C)  
100⍀  
RTD  
OUT  
–1.50V = –150؇C  
+5.00V = +500؇C  
4
1/2  
R
R
W2  
OP213  
–15V  
R9  
An Ultr alow Noise, Single Supply Instr um entation Am plifier  
Extremely low noise instrumentation amplifiers can be built  
using the OP113 family. Such an amplifier that operates off a  
single supply is shown in Figure 5. Resistors R1–R5 should be  
of high precision and low drift type to maximize CMRR perfor-  
mance. Although the two inputs are capable of operating to zero  
volt, the gain of –100 configuration will limit the amplifier input  
common mode to not less than 0.33 V.  
W3  
5k⍀  
R8  
49.9k⍀  
LINEARITY  
ADJUST  
@1/2 F.S.  
2
3
A1  
1
1/2  
OP213  
Figure 3. Ultraprecision RTD Am plifier  
+5V TO +36V  
T o calibrate the circuit, first immerse the RT D in a zero-degree  
ice bath or substitute an exact 100 resistor in place of the  
RT D. Adjust the ZERO ADJUST potentiometer for a 0.000 V  
output, then set R9 LINEARIT Y ADJUST potentiometer to  
the middle of its adjustment range. Substitute a 280.9 resistor  
(equivalent to 500°C) in place of the RT D, and adjust the  
FULL-SCALE ADJUST potentiometer for a full-scale voltage  
of 5.000 V.  
+
1/2  
OP213  
V
V
IN  
OUT  
1/2  
OP213  
*R1  
10k⍀  
*R2  
10k⍀  
*R3  
10k⍀  
*R4  
10k⍀  
*R  
G
20k⍀  
GAIN =  
+ 6  
(200+ 12.7)  
R
G
T o calibrate out the nonlinearity, substitute a 194.07 resistor  
(equivalent to 250°C) in place of the RT D, then adjust the  
LINEARIT Y ADJUST potentiometer for a 2.500 V output.  
Check and readjust the full-scale and half-scale as needed.  
*ALL RESISTORS ؎0.1%, ؎25ppm/؇C  
Figure 5. Ultralow Noise, Single Supply Instrum entation  
Am plifier  
Once calibrated, the amplifier outputs a 10 mV/°C temperature  
coefficient with an accuracy better than ±0.5°C over an RT D  
measurement range of –150°C to +500°C. Indeed the amplifier  
can be calibrated to a higher temperature range, up to 850°C.  
REV. C  
–6–  
OP113/OP213/OP413  
Supply Splitter Cir cuit  
Low Noise Voltage Refer ence  
T he OP113 family has excellent frequency response characteris-  
tic that makes it an ideal pseudo-ground reference generator as  
shown in Figure 6. T he OP113 family serves as a voltage fol-  
lower buffer. In addition, it drives a large capacitor that serves  
as a charge reservoir to minimize transient load changes, as well  
as a low impedance output device at high frequencies. T he  
circuit easily supplies 25 mA load current with good settling  
characteristics.  
Few reference devices combine low noise and high output drive  
capabilities. Figure 7 shows the OP113 family used as a two-  
pole active filter that band limits the noise of the 2.500 V refer-  
ence. T otal noise measures 3 µV p-p.  
+5V  
+5V  
10F  
+
8
+
V
= +5V +12V  
S
2
2
OUTPUT  
+2.500V  
1
IN  
1/2 OP113  
4
R3  
2.5k⍀  
10k⍀  
10k⍀  
OUT  
6
3
+
C2  
3V p-p NOISE  
REF43  
C1  
0.1F  
10F  
GND  
4
R1  
5k⍀  
Figure 7. Low Noise Voltage Reference  
8
1/2 OP113  
4
2
3
R4  
100⍀  
+
+5 V O nly Ster eo D AC for Multim edia  
V
S
2
1
OUTPUT  
+
T he OP113 family’s low noise and single supply capability are  
ideally suited for stereo DAC audio reproduction or sound  
synthesis applications such as multimedia systems. Figure 8  
shows an 18-bit stereo DAC output setup that is powered from a  
single +5 volt supply. The low noise preserves the 18-bit dynamic  
range of the AD1868. For DACs that operate on dual supplies,  
the OP113 family can also be powered from the same supplies.  
C2  
1F  
R2  
5k⍀  
Figure 6. False Ground Generator  
+5V SUPPLY  
AD1868  
VBL  
VOL  
1
2
3
4
5
6
7
8
V
L
16  
15  
18-BIT  
DAC  
8
LL  
220F  
LEFT  
1
CHANNEL  
OUTPUT  
47k⍀  
1/2 OP213  
+
7.68k⍀  
330pF  
9.76k⍀  
18-BIT  
DL SERIAL  
14  
13  
12  
11  
10  
9
REG.  
100pF  
V
V
REF  
CK  
DR  
7.68k⍀  
7.68k⍀  
AGND  
VOR  
18-BIT  
SERIAL  
REG.  
LR  
REF  
DGND  
18-BIT  
DAC  
100pF  
7.68k9.76k⍀  
330pF  
6
V
S
220F  
RIGHT  
VBR  
CHANNEL  
OUTPUT  
47k⍀  
7
1/2 OP213  
+
5
Figure 8. +5 V Only 18-Bit Stereo DAC  
SoundPort is a registered trademark of Analog Devices, Inc.  
REV. C  
–7–  
OP113/OP213/OP413  
P r ecision Voltage Com par ator  
Low Voltage H eadphone Am plifier s  
With its PNP inputs and zero volt common-mode capability, the  
OP113 family can make useful voltage comparators. T here is  
only a slight penalty in speed in comparison to IC comparators.  
However, the significant advantage is its voltage accuracy. For  
example, VOS can be a few hundred microvolts or less, combined  
with CMRR and PSRR exceeding 100 dB, while operating on  
5 V supply. Standard comparators like the 111/311 family oper-  
ate on 5 volts, but not with common-mode at ground, nor with  
offset below 3 mV. Indeed, no commercially available single  
supply comparator has a VOS less than 200 µV.  
Figure 9 shows a stereo headphone output amplifier for the  
AD1849 16-bit SoundPort® Stereo Codec device. T he pseudo-  
reference voltage is derived from the common-mode voltage  
generated internally by the AD1849, thus providing a conve-  
nient bias for the headphone output amplifiers.  
OPTIONAL  
GAIN  
1k⍀  
5k⍀  
V
REF  
+5V  
10F  
10k⍀  
31  
LOUT1L  
220F  
Figure 11 shows the OP113 family response to a 10 mV over-  
drive signal when operating in open loop. T he top trace shows  
the output rising edge has a 15 µs propagation delay, while the  
bottom trace shows a 7 µs delay on the output falling edge. T his  
ac response is quite acceptable in many applications.  
16⍀  
1/2  
OP213  
+
L VOLUME  
CONTROL  
HEADPHONE  
LEFT  
47k⍀  
+5V  
AD1849  
؎10mV OVERDRIVE  
1/2  
OP213  
+5V  
V
REF  
+2.5V  
25k⍀  
0V  
1/2  
OP113  
–2.5V  
= t = 5ms  
100⍀  
19  
29  
CMOUT  
LOUT1R  
t
r
f
10k⍀  
10F  
220F  
16⍀  
1/2  
OP213  
+
HEADPHONE  
RIGHT  
47k⍀  
R VOLUME  
CONTROL  
5s  
2V  
5k⍀  
1k⍀  
100  
90  
OPTIONAL  
GAIN  
V
REF  
Figure 9. Headphone Output Am plifier for Multim edia  
Sound Codec  
Low Noise Micr ophone Am plifier for Multim edia  
10  
0%  
T he OP113 family is ideally suited as a low noise microphone  
preamp for low voltage audio applications. Figure 10 shows a  
gain of 100 stereo preamp for the AD1849 16-bit SoundPort  
Stereo Codec chip. T he common-mode output buffer serves as  
a “phantom power” driver for the microphones.  
2V  
Figure 11. Precision Com parator  
T he low noise and 250 µV (maximum) offset voltage enhance  
the overall dc accuracy of this type of comparator. Note that  
zero crossing detectors and similar ground referred comparisons  
can be implemented even if the input swings to –0.3 volts below  
ground.  
10k⍀  
+5V  
1/2  
OP213  
17  
MINL  
10F  
50⍀  
LEFT  
ELECTRET  
CONDENSER  
MIC  
20⍀  
10k⍀  
100⍀  
AD1849  
CMOUT  
INPUT  
+5V  
19  
1/2  
OP213  
100⍀  
20⍀  
10F  
10k⍀  
50⍀  
1/2  
OP213  
15  
MINR  
RIGHT  
ELECTRET  
CONDENSER  
MIC  
INPUT  
10k⍀  
Figure 10. Low Noise Stereo Microphone Am plifier for  
Multim edia Sound Codec  
SoundPort is a registered trademark of Analog Device, Inc.  
REV. C  
–8–  
OP113/OP213/OP413  
100  
80  
60  
40  
20  
0
150  
120  
90  
60  
30  
0
V
T
= ؎15V  
= +25؇C  
V
= ؎15V  
S
S
–40؇C  
400 
؋
 OP AMPS  
PLASTIC PKG  
T
+85؇C  
A
A
400 
؋
 OP AMPS  
PLASTIC PKG  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
INPUT OFFSET VOLTAGE, V V  
TCV – V  
OS  
OS  
Figure 12a. OP113 Input Offset (VOS) Distribution  
Figure 13a. OP113 Tem perature Drift (TCVOS  
)
@ ±15 V  
Distribution @ ±15 V  
500  
400  
300  
200  
100  
0
500  
V
= ؎15V  
= +25؇C  
S
V
= ؎15V  
S
T
A
400  
300  
200  
100  
0
–40؇C  
T
+85؇C  
A
896 (PLASTIC) 
؋
 OP AMPS  
896 (PLASTIC) 
؋
 OP AMPS  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
TCV – V  
INPUT OFFSET VOLTAGE, V V  
OS  
OS  
Figure 12b. OP213 Input Offset (VOS) Distribution  
Figure 13b. OP213 Tem perature Drift (TCVOS  
)
@ ±15 V  
Distribution @ ±15 V  
500  
600  
500  
400  
300  
200  
100  
0
V
= ؎15V  
= +25؇C  
S
T
A
V
= ؎15V  
S
400  
300  
200  
100  
0
1220 
؋
 OP AMPS  
PLASTIC PKG  
–40؇C  
T
+85؇C  
A
1220 
؋
 OP AMPS  
PLASTIC PKG  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TCV – V  
INPUT OFFSET VOLTAGE, V V  
OS  
OS  
Figure 13c. OP413 Tem perature Drift (TCVOS  
)
Figure 12c. OP413 Input Offset (VOS) Distribution  
Distribution @ ±15 V  
@ ±15 V  
REV. C  
–9–  
OP113/OP213/OP413  
500  
400  
300  
200  
100  
0
1000  
800  
600  
V
= 0V  
V
= +5.0V  
CM  
S
V
= ؎15V  
S
V
V
= 5.0V  
S
400  
200  
0
= 2.5V  
CM  
V
V
= ؎15V  
S
= 0V  
CM  
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
TEMPERATURE –  
C
TEMPERATURE – ؇C  
Figure 14. OP113 Input Bias Current vs. Tem perature  
Figure 17. OP213 Input Bias Current vs. Tem perature  
2.0  
1.5  
5.0  
4.5  
4.0  
15.0  
V
= ؎15V  
V
= +5.0V  
S
S
+SWING  
= 2k⍀  
14.5  
14.0  
13.5  
13.0  
12.5  
R
L
+SWING  
= 2k⍀  
R
L
+SWING  
R
= 600⍀  
L
–SWING  
= 2k⍀  
1.0  
R
L
+SWING  
R
= 600⍀  
L
–SWING  
= 2k⍀  
–13.5  
–14.0  
–14.5  
–15.0  
R
3.5  
3.0  
L
0.5  
0
–SWING  
–SWING  
R
= 600⍀  
L
R
= 600⍀  
L
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
Figure 15. Output Swing vs. Tem perature and RL @ +5 V  
Figure 18. Output Swing vs. Tem perature and RL @ ±15 V  
60  
20  
V
V
= +5.0V  
= 3.9V  
S
V
= ؎15V  
= +25؇C  
S
40  
20  
18  
O
T
A
16  
14  
12  
R
= 2k⍀  
L
0
–20  
–40  
10  
8
–60  
R
= 600⍀  
L
–80  
6
–100  
–120  
4
2
0
105  
10  
100  
1k  
10k  
100k  
1M  
10M  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – ؇C  
FREQUENCY – Hz  
Figure 16. Channel Separation  
Figure 19. Open-Loop Gain vs. Tem perature @ +5 V  
REV. C  
–10–  
OP113/OP213/OP413  
12.5  
10  
9
V
V
= ؎15V  
= ؎10V  
V
V
= ؎15V  
= ؎10V  
S
D
S
R
= 2k⍀  
L
O
10.0  
7.5  
8
7
6
R
= 2k⍀  
L
R
= 1k⍀  
L
5
4
3
5.0  
R
= 600⍀  
L
R
= 600⍀  
L
2.5  
0
2
1
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
Figure 20. OP413 Open-Loop Gain vs. Tem perature  
Figure 23. OP213 Open-Loop Gain vs. Tem perature  
100  
100  
V+ = 5V  
V– = 0V  
T
= +25؇C  
= ؎15V  
A
V
S
T
= +25؇C  
A
80  
60  
40  
20  
0
80  
60  
40  
20  
0
45  
45  
GAIN  
GAIN  
90  
90  
PHASE  
PHASE  
m = 57؇  
135  
180  
225  
m = 72؇  
135  
180  
225  
0
0
–20  
–20  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
Figure 24. Open-Loop Gain, Phase vs. Frequency @ ±15 V  
Figure 21. Open-Loop Gain, Phase vs. Frequency @ +5 V  
50  
50  
V+ = 5V  
V– = 0V  
T
= +25؇C  
= ؎15V  
A
40  
30  
40  
T
= +25؇C  
V
A
S
A
= +100  
A
A
A
= +100  
= +10  
= +1  
V
V
V
V
30  
20  
20  
10  
A
A
= +10  
= +1  
V
10  
0
0
V
–10  
–20  
–10  
–20  
1k  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 22. Closed-Loop Gain vs. Frequency @ +5 V  
Figure 25. Closed-Loop Gain vs. Frequency @ ±15 V  
REV. C  
–11–  
OP113/OP213/OP413  
70  
5
4
3
70  
65  
60  
55  
50  
5
4
3
V+ = 5V  
V– = 0V  
V
= ؎15V  
S
65  
GBW  
GBW  
m  
60  
m  
55  
50  
2
1
2
1
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
Figure 26. Gain Bandwidth Product and Phase Margin vs.  
Tem perature @ +5 V  
Figure 29. Gain Bandwidth Product and Phase Margin vs.  
Tem perature @ ±15 V  
30  
3.0  
T
= +25؇C  
= ؎15V  
T
= +25؇C  
= ؎15V  
A
A
V
V
S
S
25  
20  
15  
10  
5
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
1
10  
100  
FREQUENCY – Hz  
1k  
1
10  
100  
FREQUENCY – Hz  
1k  
Figure 27. Voltage Noise Density vs. Frequency  
Figure 30. Current Noise Density vs. Frequency  
140  
140  
T
= +25؇C  
= ؎15V  
V+ = 5V  
V– = 0V  
A
V
S
120  
100  
T
= +25؇C  
120  
100  
A
80  
60  
80  
60  
40  
20  
0
40  
20  
0
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 28. Com m on-Mode Rejection vs. Frequency @ +5 V  
Figure 31. Com m on-Mode Rejection vs. Frequency  
@ ±15 V  
REV. C  
–12–  
OP113/OP213/OP413  
140  
40  
30  
20  
T
= +25؇C  
= ؎15V  
T
= +25؇C  
= ؎15V  
A
A
V
V
S
S
120  
100  
+PSRR  
80  
60  
–PSRR  
A
= +100  
V
40  
20  
0
10  
0
A
= +10  
100k  
V
A
= +1  
V
100  
1k  
10k  
FREQUENCY – Hz  
100k  
1M  
100  
1k  
10k  
FREQUENCY – Hz  
1M  
Figure 32. Power Supply Rejection vs. Frequency  
@ ±15 V  
Figure 35. Closed-Loop Output Im pedance vs. Frequency  
@ ±15 V  
6
30  
V
= ؎15V  
= 2k⍀  
= +25؇C  
= +1  
V
= +5V  
= 2k⍀  
= +25؇C  
= +1  
S
S
R
T
R
T
L
L
5
4
3
2
25  
20  
15  
10  
A
A
A
A
VOL  
VCL  
1
0
5
0
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 33. Maxim um Output Swing vs. Frequency @ +5 V  
Figure 36. Maxim um Output Swing vs. Frequency  
@ ±15 V  
20  
50  
V
= ؎15V  
S
V
= +5V  
S
18  
45  
R
V
= 2k⍀  
= 100mV p-p  
= +25؇C  
L
R
V
= 2k⍀  
= 100mV p-p  
= +25؇C  
L
IN  
IN  
16  
14  
12  
40  
35  
30  
T
A
T
A
A
= +1  
POSITIVE  
EDGE  
VCL  
A
= +1  
VCL  
NEGATIVE  
EDGE  
NEGATIVE  
EDGE  
10  
8
25  
20  
15  
POSITIVE  
EDGE  
6
4
2
0
10  
5
0
100  
200  
300  
400  
500  
100  
200  
300  
400  
500  
0
0
LOAD CAPACITANCE – pF  
LOAD CAPACITANCE – pF  
Figure 34. Sm all Signal Overshoot vs. Load Capacitance  
@ +5 V  
Figure 37. Sm all Signal Overshoot vs. Load Capacitance  
@ ±15 V  
REV. C  
–13–  
OP113/OP213/OP413  
2.0  
2.0  
1.5  
1.0  
0.5  
0
V
V
= ؎15V  
V
= +5, 0  
S
S
+SLEW RATE  
+0.5V  
V
+4.0V  
= ؎10V  
OUT  
OUT  
1.5  
1.0  
0.5  
0
–SLEW RATE  
+SLEW RATE  
–SLEW RATE  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
Figure 41. Slew Rate vs. Tem perature @ ±15 V  
(–10 V VOUT +10.0 V)  
Figure 38. Slew Rate vs. Tem perature @ +5 V  
(0.5 V VOUT +4.0 V)  
1s  
1s  
100  
100  
90  
90  
10  
10  
0%  
0%  
20mV  
20mV  
Figure 42. Input Voltage Noise @ +5 V  
(20 nV/ div)  
Figure 39. Input Voltage Noise @ ±15 V  
(20 nV/div)  
5
909⍀  
4
100⍀  
0.1 – 10Hz  
= 1000  
V
= ؎18V  
S
A
V
V
= ؎15V  
S
3
2
V
= +5.0V  
S
A
= 100  
tOUT  
V
Figure 40. Noise Test Diagram  
1
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – ؇C  
Figure 43. Supply Current vs. Tem perature  
REV. C  
–14–  
OP113/OP213/OP413  
* SECOND CURRENT NOISE SOURCE  
DN5 27 28 DIN  
DN6 28 29 DIN  
VN5 27  
0
DC 2  
+IN  
–IN  
VN6  
*
0
29 DC 2  
9V 9V  
OUT  
* GAIN ST AGE & DOMINANT POLE AT .2000E+01 HZ  
G2  
R7  
V3  
D4  
34 36 19 20 2.65E–04  
34 36 39E+06  
35  
4
DC 6  
36 35 DX  
VB2 34  
*
4
1.6  
* SUPPLY/2 GENERAT OR  
ISY  
R10  
R11  
C3  
*
7
7
60  
60  
4
0.2E–3  
60 40E+3  
4
0
40E+3  
1E–9  
* CMRR ST AGE & POLE AT 6 kHZ  
ECM 50 POLY(2) 3 60  
CCM 50 51 26.5E–12  
RCM1 50 51 1E6  
4
2
60  
0
1.6  
0
1.6  
Figure 44. OP213 Sim plified Schem atic  
RCM2 51  
4
1
*
*
*OP113 Family SPICE Macro-Model  
*
OUT PUT ST AGE  
*Copyright 1992 by Analog Devices, Inc.  
*
*Node Assignments  
*
R12  
R13  
C4  
37 36 1E3  
38 36 500  
37  
6
20E–12  
C5  
38 39 20E–12  
*
*
*
*
Noninverting Input  
Inverting Input  
Positive Supply  
Negative Supply  
M1  
M2  
D5  
D6  
Q3  
VB  
R14  
Q4  
R17  
Q5  
Q6  
R18  
Q7  
M3  
*
39 36 4 4 MN L=9E–6 W=1000E–6 AD=15E–9 AS=15E–9  
45 36 4 4 MN L=9E–6 W=1000E–6 AD=15E–9 AS=15E–9  
39 47 DX  
47 45 DX  
39 40 41 QPA 8  
7
7
40 DC 0.861  
41 375  
*
*
Output  
6
41  
7
7
43 QNA 1  
43 15  
.SUBCKT OP113 Family  
3
2
7
4
43 39  
46 45  
6
6
QNA 20  
QPA 20  
*
* INPUT ST AGE  
46  
36 46  
4
15  
4
R3  
R4  
4
4
19 1.5E3  
20 1.5E3  
QNA 1  
6
36 4 4 MN L = 9E–6 W=2000E–6 AD=30E–9 AS=30E–9  
C1  
19 20 5.31E–12  
I1  
7
18 106E–6  
* NONLINEAR MODELS USED  
*
.MODEL DX D (IS=1E–15)  
.MODEL DY D (IS=1E–15 BV=7)  
IOS  
EOS  
Q1  
2
12  
19  
3
5
3
25E–09  
POLY(1)  
51  
4
25E–06  
1
18  
PNP1  
Q2  
20 12 18  
PNP1  
.MODEL PNP1 PNP (BF=220)  
CIN  
D1  
D2  
EN  
GN1  
GN2  
*
3
3
2
5
0
0
2
1
1
2
2
3
3E–12  
DY  
DY  
22  
25  
28  
.MODEL DEN D(IS=1E–12 RS=1016 KF=3.278E–15 AF=1)  
.MODEL DIN D(IS=1E–12 RS=100019 KF=4.173E–15 AF=1)  
.MODEL QNA NPN(IS=1.19E–16 BF=253 VAF=193 VAR=15 RB=2.0E3  
+ IRB=7.73E–6 RBM=132.8 RE=4 RC=209 CJE=2.1E–13 VJE=0.573  
+ MJE=0.364 CJC=1.64E–13 VJC=0.534 MJC=0.5 CJS=1.37E–12  
+ VJS=0.59 MJS=0.5 T F=0.43E–9 PT F=30)  
0
0
0
1
1E–5  
1E–5  
.MODEL QPA PNP(IS=5.21E–17 BF=131 VAF=62 VAR= 15 RB=1.52E3  
+ IRB=1.67E–5 RBM=368.5 RE=6.31 RC=354.4 CJE=1.1E–13  
+ VJE=0.745 MJE=0.33 CJC=2.37E–13 VJC=0.762 MJC=0.4  
+ CJS=7.11E–13 VJS=0.45 MJS=0.412 T F=1.0E–9 PT F=30)  
.MODEL MN NMOS(LEVEL=3 VT O=1.3 RS=0.3 RD=0.3 T OX=8.5E–8  
+ LD=1.48E–6 WD=1E–6 NSUB=1.53E16 UO=650 DELTA=10 VMAX=2E5  
+ XJ=1.75E–6 KAPPA=0.8 ET A=0.066 T HET A=0.01 T PG=1 CJ=2.9E–4  
+ PB=0.837 MJ=0.407 CJSW=0.5E–9 MJSW=0.33)  
*
* VOLT AGE NOISE SOURCE WIT H FLICKER NOISE  
DN1  
DN2  
VN1  
VN2  
*
21 22 DEN  
22 23 DEN  
21  
0
0
DC 2  
23 DC 2  
* CURRENT NOISE SOURCE WIT H FLICKER NOISE  
DN3  
DN4  
VN3  
VN4  
*
24 25 DIN  
25 26 DIN  
.ENDS OP113 Family  
24  
0
0
DC 2  
26 DC 2  
REV. C  
–15–  
OP113/OP213/OP413  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
8-Lead P lastic D IP  
14-Lead P lastic D IP  
(N-14)  
(N-8)  
0.430 (10.92)  
0.348 (8.84)  
0.795 (20.19)  
0.725 (18.41)  
14  
8
7
8
5
4
0.280 (7.11)  
0.240 (6.10)  
0.280 (7.11)  
0.240 (6.10)  
1
0.325 (8.25)  
0.300 (7.62)  
1
0.195 (4.95)  
0.115 (2.93)  
0.325 (8.25)  
0.300 (7.62)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.210 (5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.92)  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.38)  
SEATING  
PLANE  
0.022 (0.558) 0.100 0.070 (1.77)  
0.015 (0.381)  
0.008 (0.204)  
0.008 (0.20)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
(2.54)  
BSC  
0.014 (0.36)  
0.045 (1.15)  
8-Lead Nar r ow-Body P lastic D IP  
(SO -8)  
16-Lead Wide Body SO IC  
(R-16)  
0.4133 (10.50)  
0.3977 (10.00)  
16  
9
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
1
8
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
0.0099 (0.25)  
0.1043 (2.65)  
0.0926 (2.35)  
PIN 1  
0.0291 (0.74)  
0.0098 (0.25)  
x 45°  
x 45؇  
0.0098 (0.25)  
0.0040 (0.10)  
0.0118 (0.30)  
0.0040 (0.10)  
8°  
0°  
0.0500 (1.27)  
0.0157 (0.40)  
8؇  
0؇  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
0.0138 (0.35)  
REV. C  
–16–  

相关型号:

OP113FS-REEL

Low Noise, Low Drift Single-Supply Operational Amplifiers
ADI

OP113FS-REEL

OP-AMP, 225 uV OFFSET-MAX, 3.4 MHz BAND WIDTH, PDSO8, MS-012AA, SOIC-8
ROCHESTER

OP113FS-REEL7

Low Noise, Low Drift Single-Supply Operational Amplifiers
ADI

OP113FS-REEL7

OP-AMP, 225 uV OFFSET-MAX, 3.4 MHz BAND WIDTH, PDSO8, MS-012AA, SOIC-8
ROCHESTER

OP113FSZ

Low Noise, Low Drift Single-Supply Operational Amplifiers
ADI

OP113FSZ-REEL

Low Noise, Low Drift Single-Supply Operational Amplifiers
ADI

OP113FSZ-REEL

OP-AMP, 225 uV OFFSET-MAX, 3.4 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

OP113FSZ-REEL7

Low Noise, Low Drift Single-Supply Operational Amplifiers
ADI

OP113FSZ-REEL7

OP-AMP, 225 uV OFFSET-MAX, 3.4 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

OP113GBC

IC OP-AMP, 150 uV OFFSET-MAX, 3.4 MHz BAND WIDTH, UUC5, 0.064 X 0.0627 INCH, DIE-5, Operational Amplifier
ADI

OP113GP

IC OP-AMP, 150 uV OFFSET-MAX, 3 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier
ADI

OP113GS

IC OP-AMP, 150 uV OFFSET-MAX, 3 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier
ADI