OP162HRU [ADI]

15 MHz Rail-to-Rail Operational Amplifiers; 15 MHz的轨至轨运算放大器
OP162HRU
型号: OP162HRU
厂家: ADI    ADI
描述:

15 MHz Rail-to-Rail Operational Amplifiers
15 MHz的轨至轨运算放大器

运算放大器
文件: 总16页 (文件大小:557K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
15 MHz Rail-to-Rail  
Operational Amplifiers  
a
OP162/OP262/OP462  
FEATURES  
PIN CONFIGURATIONS  
Wide Bandwidth: 15 MHz  
Low Offset Voltage: 325 V max  
Low Noise: 9.5 nV/÷Hz @ 1 kHz  
Single-Supply Operation: +2.7 V to +12 V  
Rail-to-Rail Output Swing  
Low TCVOS: 1 V/؇C typ  
High Slew Rate: 13 V/s  
No Phase Inversion  
8-Lead Narrow-Body SO  
(S Suffix)  
1
8
NULL  
V+  
OUT A  
NC  
NULL  
–IN A  
+IN A  
V–  
OP162  
4
5
NC = NO CONNECT  
Unity Gain Stable  
8-Lead TSSOP  
(RU Suffix)  
APPLICATIONS  
Portable Instrumentation  
Sampling ADC Amplifier  
Wireless LANs  
Direct Access Arrangement  
Office Automation  
NULL  
NULL  
8
5
1
–IN A  
+IN A  
V–  
V+  
OP162  
OUT A  
NC  
4
NC = NO CONNECT  
8-Lead Narrow-Body SO  
(S Suffix)  
GENERAL DESCRIPTION  
1
8
V+  
OUT A  
–IN A  
+IN A  
V–  
The OP162 (single), OP262 (dual), OP462 (quad) rail-to-rail  
15 MHz amplifiers feature the extra speed new designs require,  
with the benefits of precision and low power operation. With  
their incredibly low offset voltage of 45 mV (typ) and low noise,  
they are perfectly suited for precision filter applications and  
instrumentation. The low supply current of 500 mA (typ) is  
critical for portable or densely packed designs. In addition, the  
rail-to-rail output swing provides greater dynamic range and  
control than standard video amplifiers provide.  
OUT B  
–IN B  
+IN B  
OP262  
4
5
8-Lead TSSOP  
(RU Suffix)  
OUT A  
–IN A  
+IN A  
V–  
V+  
8
5
1
OUT B  
–IN B  
+IN B  
OP262  
4
These products operate from single supplies as low as +2.7 V to  
dual supplies of ± 6 V. The fast settling times and wide output  
swings recommend them for buffers to sampling A/D converters.  
The output drive of 30 mA (sink and source) is needed for  
many audio and display applications; more output current can  
be supplied for limited durations.  
14-Lead Narrow-Body SO  
(S Suffix)  
1
14  
OUT D  
OUT A  
–IN A  
+IN A  
V+  
+IN B  
–IN B  
–IN D  
+IN D  
V–  
+IN C  
–IN C  
OUT C  
The OP162 family is specified over the extended industrial  
temperature range (–40C to +125C). The single OP162  
and dual OP262 are available in 8-lead SOIC and TSSOP  
packages. The quad OP462 is available in 14-lead narrow-body  
SOIC and TSSOP packages.  
OP462  
8
OUT B  
7
14-Lead TSSOP  
(RU Suffix)  
OUT A  
OUT D  
1
14  
OP462  
–IN A  
+IN A  
V+  
–IN D  
+IN D  
V–  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
7
8
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
OP162/OP262/OP462–SPECIFICATIONS  
(@ V = +5.0 V, VCM = 0 V, TA = +25؇C, unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
S
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP162G, OP262G, OP462G,  
–40C £ TA £ +125C  
45  
325  
800  
1
3
5
600  
650  
± 25  
± 40  
+4  
mV  
mV  
mV  
mV  
mV  
nA  
nA  
nA  
nA  
V
H Grade, –40C £ TA £ +125C  
D Grade, –40C £ TA £ +125C  
0.8  
Input Bias Current  
Input Offset Current  
IB  
360  
± 2.5  
–40C £ TA £ +125C  
–40C £ TA £ +125C  
IOS  
Input Voltage Range  
VCM  
0
Common-Mode Rejection  
CMRR  
0 V £ VCM £ +4.0 V,  
–40C £ TA £ +125C  
RL = 2 kW, 0.5 £ VOUT £ 4.5 V  
RL = 10 kW, 0.5 £ VOUT £ 4.5 V  
RL = 10 kW, –40C £ TA £ +125C  
G Grade1  
70  
110  
30  
88  
dB  
Large Signal Voltage Gain  
AVO  
V/mV  
V/mV  
V/mV  
mV  
mV/C  
pA/C  
65  
40  
Long-Term Offset Voltage  
Offset Voltage Drift  
Bias Current Drift  
VOS  
DVOS/DT  
DIB/DT  
600  
Note 2  
1
250  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
VOL  
IL = 250 mA, –40C £ TA £ +125C  
IL = 5 mA  
IL = 250 mA, –40C £ TA £ +125C  
IL = 5 mA  
4.95  
4.85  
4.99  
4.94  
14  
65  
± 80  
± 30  
V
V
mV  
mV  
mA  
mA  
Output Voltage Swing Low  
50  
150  
Short Circuit Current  
Maximum Output Current  
ISC  
IOUT  
Short to Ground  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = +2.7 V to +7 V  
120  
600  
500  
dB  
dB  
mA  
mA  
mA  
mA  
–40C £ TA £ +125C  
OP162, VOUT = 2.5 V  
–40C £ TA £ +125C  
OP262, OP462, VOUT = 2.5 V  
–40C £ TA £ +125C  
90  
Supply Current/Amplifier  
750  
1
700  
850  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
SR  
tS  
GBP  
1 V < VOUT < 4 V, RL = 10 kW  
To 0.1%, AV = –1, VO = 2 V Step  
10  
540  
15  
V/ms  
ns  
Gain Bandwidth Product  
MHz  
Phase Margin  
f
61  
Degrees  
m
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
e p-p  
n
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.5  
9.5  
0.4  
mV p-p  
nV/÷Hz  
pA/÷Hz  
e
n
i
n
NOTES  
1Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125C, with an LTPD of 1.3.  
2Offset voltage drift is the average of the –40C to +25C delta and the +25C to +125C delta.  
Specifications subj]ect to change without notice.  
REV. D  
–2–  
OP162/OP262/OP462  
(@ V = +3.0 V, VCM = 0 V, TA = +25؇C, unless otherwise noted)  
OP162/OP262/OP462–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
S
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP162G, OP262G, OP462G  
H Grade, –40C £ TA £ +125C  
D Grade, –40C £ TA £ +125C  
50  
325  
1
3
mV  
mV  
mV  
mV  
nA  
nA  
V
0.8  
5
Input Bias Current  
IB  
IOS  
VCM  
CMRR  
360  
± 2.5  
600  
± 25  
+2  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection  
0
0 V £ VCM £ +2.0 V,  
–40C £ TA £ +125C  
RL = 2 kW, 0.5 V £ VOUT £ 2.5 V  
RL = 10 kW, 0.5 V £ VOUT £ 2.5 V  
G Grade1  
70  
20  
110  
20  
30  
dB  
Large Signal Voltage Gain  
Long-Term Offset Voltage  
AVO  
VOS  
V/mV  
V/mV  
mV  
600  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
VOL  
IL = 250 mA  
IL = 5 mA  
IL = 250 mA  
IL = 5 mA  
2.95  
2.85  
2.99  
2.93  
14  
V
V
mV  
mV  
Output Voltage Swing Low  
50  
150  
66  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = +2.7 V to +7 V,  
–40C £ TA £ +125C  
OP162, VOUT = 1.5 V  
–40C £ TA £ +125C  
OP262, OP462, VOUT = 1.5 V  
–40C £ TA £ +125C  
60  
110  
600  
dB  
mA  
mA  
mA  
mA  
Supply Current/Amplifier  
700  
1
650  
850  
500  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
SR  
tS  
RL = 10 kW  
To 0.1%, AV = –1, VO = 2 V Step  
10  
575  
V/ms  
ns  
Gain Bandwidth Product  
Phase Margin  
GBP  
15  
59  
MHz  
Degrees  
f
m
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
e p-p  
n
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.5  
9.5  
0.4  
mV p-p  
nV/÷Hz  
pA/÷Hz  
e
n
Current Noise Density  
i
n
NOTES  
1Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125C, with an LTPD of 1.3.  
Specifications subject to change without notice.  
REV. D  
–3–  
OP162/OP262/OP462–SPECIFICATIONS  
(@ V = ؎5.0 V, VCM = 0 V, TA = +25؇C, unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
S
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP162G, OP262G, OP462G  
–40C £ TA £ +125C  
25  
325  
800  
1
3
5
500  
650  
± 25  
± 40  
+4  
mV  
mV  
mV  
mV  
mV  
nA  
nA  
nA  
nA  
V
H Grade, –40C £ TA £ +125C  
D Grade, –40C £ TA £ +125C  
0.8  
Input Bias Current  
Input Offset Current  
IB  
260  
± 2.5  
–40C £ TA £ +125C  
–40C £ TA £ +125C  
IOS  
Input Voltage Range  
Common-Mode Rejection  
VCM  
CMRR  
–5  
70  
–4.9 V £ VCM £ +4.0 V,  
–40C £ TA £ +125C  
RL = 2 kW, –4.5 V £ VOUT £ 4.5 V  
RL = 10 kW, –4.5 V £ VOUT £ 4.5 V  
–40C £ TA £ +125C  
G Grade1  
110  
35  
120  
dB  
Large Signal Voltage Gain  
AVO  
V/mV  
V/mV  
V/mV  
mV  
mV/C  
pA/C  
75  
25  
Long-Term Offset Voltage  
Offset Voltage Drift  
Bias Current Drift  
VOS  
DVOS/DT  
DIB/DT  
600  
Note 2  
1
250  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
VOL  
IL = 250 mA, –40C £ TA £ +125C 4.95  
4.99  
4.94  
–4.99  
–4.94  
± 80  
V
V
V
V
mA  
mA  
IL = 5 mA  
4.85  
Output Voltage Swing Low  
IL = 250 mA, –40C £ TA £ +125C  
IL = 5 mA  
Short to Ground  
–4.95  
–4.85  
Short Circuit Current  
Maximum Output Current  
ISC  
IOUT  
± 30  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = ± 1.35 V to ± 6 V,  
–40C £ TA £ +125C  
OP162, VOUT = 0 V  
60  
110  
650  
dB  
mA  
mA  
mA  
mA  
V
Supply Current/Amplifier  
800  
1.15  
775  
–40C £ TA £ +125C  
OP262, OP462, VOUT = 0 V  
–40C £ TA £ +125C  
550  
1
Supply Voltage Range  
VS  
+3.0 (± 1.5)  
+12 (± 6)  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
SR  
tS  
–4 V < VOUT < 4 V, RL = 10 kW  
To 0.1%, AV = –1, VO = 2 V Step  
13  
475  
V/ms  
ns  
Gain Bandwidth Product  
Phase Margin  
GBP  
15  
64  
MHz  
Degrees  
f
m
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
e p-p  
n
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.5  
9.5  
0.4  
mV p-p  
nV/÷Hz  
pA/÷Hz  
e
n
Current Noise Density  
i
n
NOTES  
1Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125C, with an LTPD of 1.3.  
2Offset voltage drift is the average of the –40C to +25C delta and the +25C to +125C delta.  
Specifications subject to change without notice.  
–4–  
REV. D  
OP162/OP262/OP462  
ABSOLUTE MAXIMUM RATINGS  
ORDERING GUIDE  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 6 V  
Input Voltage1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 6 V  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . ± 0.6 V  
Internal Power Dissipation  
SOIC (S) . . . . . . . . . . . . . . . . . . . Observe Derating Curves  
TSSOP (RU) . . . . . . . . . . . . . . . . Observe Derating Curves  
Output Short-Circuit Duration . . . . Observe Derating Curves  
Storage Temperature Range . . . . . . . . . . . . –65C to +150C  
Operating Temperature Range . . . . . . . . . . –40C to +125C  
Junction Temperature Range . . . . . . . . . . . . –65C to +150C  
Lead Temperature Range (Soldering, 10 sec) . . . . . . . +300C  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
OP162GS  
–40C to +125C 8-Lead SOIC  
RN-8  
RU-8  
RU-8  
RU-8  
RN-8  
RU-8  
RU-14  
RN-14  
RN-14  
RU-14  
OP162DRU –40C to +125C 8-Lead TSSOP  
OP162HRU –40C to +125C 8-Lead TSSOP  
OP262DRU –40C to +125C 8-Lead TSSOP  
–40C to +125C 8-Lead SOIC  
OP262HRU –40C to +125C 8-Lead TSSOP  
OP462DRU –40C to +125C 14-Lead TSSOP  
–40C to +125C 14-Lead SOIC  
–40C to +125C 14-Lead SOIC  
OP462HRU –40C to +125C 14-Lead TSSOP  
OP262GS  
OP462DS  
OP462GS  
3
Package Type  
JA  
Units  
JC  
8-Lead SOIC (S)  
158  
240  
120  
180  
43  
43  
36  
35  
C/W  
C/W  
C/W  
C/W  
8-Lead TSSOP (RU)  
14-Lead SOIC (S)  
14-Lead TSSOP (RU)  
NOTES  
1For supply voltages greater than 6 volts, the input voltage is limited to less than or  
equal to the supply voltage.  
2For differential input voltages greater than 0.6 volts the input current should be  
limited to less than 5 mA to prevent degradation or destruction of the input devices.  
3qJA is specified for the worst case conditions, i.e., qJA is specified for device soldered  
in circuit board for SOIC and TSSOP packages.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the OP162/OP262/OP462 features proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. D  
–5–  
OP162/OP262/OP462–Typical Performance Characteristics  
420  
340  
260  
180  
100  
250  
200  
150  
100  
100  
V
= 5V  
V
= 5V  
= 25؇C  
S
S
V
= 5V  
= 25؇C  
S
T
A
T
A
80  
COUNT =  
COUNT =  
720 OP AMPS  
360 OP AMPS  
60  
40  
50  
0
20  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
COMMON-MODE VOLTAGE – Volts  
–200 140 –80 –20  
40  
100 160  
0.2 0.3 0.5 0.7 0.9 1.1 1.3 1.5  
INPUT OFFSET VOLTAGE – V  
INPUT OFFSET DRIFT, TCV V/؇C  
OS  
Figure 3. OP462 Input Bias Current  
vs. Common-Mode Voltage  
Figure 1. OP462 Input Offset Voltage  
Distribution  
Figure 2. OP462 Input Offset Voltage  
Drift (TCVOS  
)
125  
0
–100  
–200  
–300  
–400  
15  
V
= 5V  
V = 5V  
S
S
V
= 5V  
S
100  
75  
10  
5
50  
25  
0
–500  
0
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE –  
–50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE – ؇C  
؇
C
TEMPERATURE – ؇C  
Figure 4. OP462 Input Offset Voltage  
vs. Temperature  
Figure 6. OP462 Input Offset Current  
vs. Temperature  
Figure 5. OP462 Input Bias Current  
vs. Temperature  
5.12  
100  
0.100  
V
= 5V  
S
V
= 5V  
S
R
= 10k  
L
5.06  
5.00  
4.94  
4.88  
4.82  
80  
60  
40  
20  
0.080  
0.060  
0.040  
0.020  
0.000  
I
= 5mA  
OUT  
V
= 5V  
S
I
= 250A  
OUT  
R
= 2k⍀  
I
= 5mA  
L
OUT  
R
= 600⍀  
L
I
= 250A  
OUT  
0
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE – ؇C  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
Figure 9. OP462 Open-Loop Gain  
vs. Temperature  
Figure 7. OP462 Output High Voltage  
vs. Temperature  
Figure 8. OP462 Output Low Voltage  
vs. Temperature  
–6–  
REV. D  
OP162/OP262/OP462  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
80  
60  
40  
20  
0
0.7  
T
= 25؇C  
A
V
= 10V  
S
V
= 5V  
S
0.6  
0.5  
0.4  
V
= 3V  
S
V
= 10V  
S
V
= 3V  
S
0
2
4
6
8
10  
12  
0
1
2
3
4
5
6
7
–75 –50 –25  
0
25 50 75 100 125 150  
LOAD CURRENT – mA  
SUPPLY VOLTAGE – Volts  
TEMPERATURE – ؇C  
Figure 10. Output Low Voltage to  
Supply Rail vs. Load Current  
Figure 12. OP462 Supply Current/  
Amplifier vs. Supply Voltage  
Figure 11. Supply Current/Amplifier  
vs. Temperature  
50  
5
4
3
60  
V
T
= 5V  
= 25؇C  
S
A
40  
30  
V
T
R
= 5V  
= +25؇C  
GAIN  
S
40  
20  
A
45  
= 830⍀  
5pF  
L
L
C
20  
10  
0
90  
PHASE  
135  
180  
225  
270  
V
= 5V  
S
2
0
A
R
C
= 1  
= 10k⍀  
= 15pF  
VCL  
L
L
–10  
–20  
–30  
1
0
–20  
–40  
T
= 25°C  
A
DISTORTION < 1%  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 13. Open-Loop Gain and  
Phase vs. Frequency (No Load)  
Figure 15. Maximum Output Swing  
vs. Frequency  
Figure 14. Closed-Loop Gain vs.  
Frequency  
4
3
70  
60  
50  
V
T
= 5V  
= 25؇C  
S
A
60  
50  
40  
30  
20  
10  
0
0.1%  
0.01%  
V
T
= 5V  
= 25؇C  
S
A
V
= 5V  
2
1
S
T
= 25؇C  
= ؎50mV  
= 10k⍀  
A
40  
30  
20  
10  
0
V
IN  
R
+OS  
L
0
–OS  
–1  
–2  
–3  
–4  
0.1%  
0.01%  
800  
0
200  
400  
600  
1000  
1
10  
100  
1k  
10  
100  
CAPACITANCE – pF  
1000  
SETTLING TIME – ns  
FREQUENCY – Hz  
Figure 16. Settling Time vs. Step Size  
Figure 17. Small-Signal Overshoot  
vs. Capacitance  
Figure 18. Voltage Noise Density vs.  
Frequency  
REV. D  
–7–  
OP162/OP262/OP462  
300  
250  
200  
150  
100  
7
90  
80  
70  
60  
50  
40  
30  
20  
V
T
= 5V  
= 25؇C  
V
T
= 5V  
= 25؇C  
V
= 5V  
S
= 25؇C  
S
S
6
5
4
3
2
T
A
A
A
A
= 10  
VCL  
A
= 1  
VCL  
50  
0
1
0
100k  
1M  
FREQUENCY – Hz  
10M  
1
10  
100  
1k  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 20. Output Impedance vs.  
Frequency  
Figure 19. Current Noise Density vs.  
Frequency  
Figure 21. CMRR vs. Frequency  
90  
2V  
V
T
= 5V  
= 25؇C  
20mV  
2s  
S
A
V
V
A
= 12V p-p  
= ؎5V  
= 1  
IN  
S
80  
70  
60  
100  
90  
100  
90  
V
+PSRR  
–PSRR  
50  
10  
0%  
10  
0%  
V
A
= 5V  
= 100k  
= 0.5V p-p  
40  
30  
20  
S
V
2V  
20s  
e
n
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
Figure 22. PSRR vs. Frequency  
Figure 23. 0.1 Hz to 10 Hz Noise  
Figure 24. No Phase Reversal; [VIN =  
12 V p-p, VS = ±5 V, AV = 1]  
V
= 5V  
= 1  
= 25؇C  
= 100pF  
S
V
= 5V  
= 1  
= 25؇C  
= 100pF  
S
A
V
A
100  
90  
100  
90  
A
V
A
T
T
C
L
C
L
10  
10  
0%  
0%  
500mV  
100s  
20mV  
200ns  
Figure 26. Large Signal Transient  
Response  
Figure 25. Small Signal Transient  
Response  
–8–  
REV. D  
OP162/OP262/OP462  
VCC. It is important to avoid accidentally connecting the wiper  
to VEE, as this will damage the device. The recommended value  
for the potentiometer is 20 kW.  
APPLICATIONS SECTION  
Functional Description  
The OPx62 family is fabricated using Analog Devices’ high  
speed complementary bipolar process, also called XFCB. The  
process includes trench isolating each transistor to lower para-  
sitic capacitances thereby allowing high speed performance.  
This high speed process has been implemented without trading  
off the excellent transistor matching and overall dc performance  
characteristic of Analog Devices’ complementary bipolar pro-  
cess. This makes the OPx62 family an excellent choice as an  
extremely fast and accurate low voltage op amp.  
+5V  
20k  
1
8
3
7
6
OP162  
V
OS  
4
2
Figure 27 shows a simplified equivalent schematic for the OP162.  
A PNP differential pair is used at the input of the device. The  
cross connecting of the emitters is used to lower the transcon-  
ductance of the input stage, which improves the slew rate of the  
device. Lowering the transconductance through cross connect-  
ing the emitters has another advantage in that it provides a  
lower noise factor than if emitter degeneration resistors were  
used. The input stage can function with the base voltages taken  
all the way to the negative power supply, or up to within 1 V of  
the positive power supply.  
–5V  
Figure 28. Schematic Showing Offset Adjustment  
Rail-to-Rail Output  
The OP162/OP262/OP462 has a wide output voltage range that  
extends to within 60 mV of each supply rail with a load current  
of 5 mA. Decreasing the load current will extend the output  
voltage range even closer to the supply rails. The common-  
mode input range extends from ground to within 1 V of the  
positive supply. It is recommended that there be some minimal  
amount of gain when a rail-to-rail output swing is desired. The  
minimum gain required is based on the supply voltage and can  
be found as:  
V
CC  
VS  
VS 1  
AV,min  
=
where VS is the positive supply voltage. With a single supply  
voltage of +5 V, the minimum gain to achieve rail-to-rail output  
should be 1.25.  
+IN  
–IN  
V
OUT  
Output Short-Circuit Protection  
To achieve a wide bandwidth and high slew rate, the output of  
the OP162/OP262/OP462 is not short-circuit protected. Short-  
ing the output directly to ground or to a supply rail may destroy  
the device. The typical maximum safe output current is ± 30 mA.  
Steps should be taken to ensure the output of the device will not  
be forced to source or sink more than 30 mA.  
V
EE  
Figure 27. Simplified Schematic  
In applications where some output current protection is needed,  
but not at the expense of reduced output voltage headroom, a  
low value resistor in series with the output can be used. This is  
shown in Figure 29. The resistor is connected within the feed-  
back loop of the amplifier so that if VOUT is shorted to ground  
and VIN swings up to +5 V, the output current will not exceed  
30 mA.  
Two complementary transistors in a common-emitter configura-  
tion are used for the output stage. This allows the output of the  
device to swing to within 50 mV of either supply rail at load  
currents less than 1 mA. As load current increases, the maxi-  
mum voltage swing of the output will decrease. This is due to  
the collector-to-emitter saturation voltages of the output transis-  
tors increasing. The gain of the output stage, and consequently  
the open-loop gain of the amplifier, is dependent on the load  
resistance connected at the output. And because the dominant  
pole frequency is inversely proportional to the open-loop gain,  
the unity-gain bandwidth of the device is not affected by the  
load resistance. This is typically the case in rail-to-rail output  
devices.  
For single +5 V supply applications, resistors less than 169 W  
are not recommended.  
+5V  
V
IN  
169⍀  
V
OPx62  
OUT  
Offset Adjustment  
Because the OP162/OP262/OP462 has such an exceptionally  
low typical offset voltage, adjustment to correct offset voltage  
may not be needed. However, the OP162 does have pinouts  
where a nulling resistor can be attached. Figure 28 shows how  
the OP162 offset voltage can be adjusted by connecting a poten-  
tiometer between Pins 1 and 8, and connecting the wiper to  
Figure 29. Output Short-Circuit Protection  
REV. D  
–9–  
OP162/OP262/OP462  
Figures 30 and 31 provide a convenient way to see if the device  
is being overheated. The maximum safe power dissipation can  
be found graphically, based on the package type and the ambi-  
ent temperature around the package. By using the previous  
equation, it is a simple matter to see if PDISS exceeds the device’s  
power derating curve. To ensure proper operation, it is impor-  
tant to observe the recommended derating curves shown in  
Figures 30 and 31.  
Input Overvoltage Protection  
The input voltage should be limited to ± 6 V or damage to the  
device can occur. Electrostatic protection diodes placed in the  
input stage of the device help protect the amplifier from static  
discharge. Diodes are connected between each input as well as  
from each input to both supply pins as shown in the simplified  
equivalent circuit in Figure 27. If an input voltage exceeds  
either supply voltage by more than 0.6 V, or if the differential  
input voltage is greater than 0.6 V, these diodes begin to ener-  
gize and overvoltage damage could occur. The input current  
should be limited to less than 5 mA to prevent degradation or  
destruction of the device.  
2.0  
1.5  
This can be done by placing an external resistor in series with  
the input that could be overdriven. The size of the resistor can  
be calculated by dividing the maximum input voltage by 5 mA.  
For example, if the differential input voltage could reach 5 V,  
the external resistor should be 5 V/5 mA = 1 kW. In practice,  
this resistance should be placed in series with both inputs to  
balance any offset voltages created by the input bias current.  
1.0  
0.5  
0
8-PIN SOIC  
PACKAGE  
8-PIN TSSOP  
PACKAGE  
Output Phase Reversal  
The OP162/OP262/OP462 is immune to phase reversal as long  
as the input voltage is limited to ± 6 V. Figure 24 shows a photo  
of the output of the device with the input voltage driven beyond  
the supply voltages. Although the device’s output will not  
change phase, large currents due to input overvoltage could  
result, damaging the device. In applications where the possibility  
of an input voltage exceeding the supply voltage exists, over-  
voltage protection should be used, as described in the previous  
section.  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE – ؇C  
Figure 30. Maximum Power Dissipation vs. Temperature  
for 8-Pin Package Types  
2.0  
1.5  
Power Dissipation  
14-PIN SOIC  
PACKAGE  
The maximum power that can be safely dissipated by the  
OP162/OP262/OP462 is limited by the associated rise in junc-  
tion temperature. The maximum safe junction temperature is  
150C, and should not be exceeded or device performance  
could suffer. If this maximum is momentarily exceeded, proper  
circuit operation will be restored as soon as the die temperature  
is reduced. Leaving the device in an “overheated” condition for  
an extended period can result in permanent damage to the device.  
1.0  
14-PIN TSSOP  
PACKAGE  
0.5  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
To calculate the internal junction temperature of the OPx62,  
the following formula can be used:  
AMBIENT TEMPERATURE –  
؇C  
Figure 31. Maximum Power Dissipation vs. Temperature  
for 14-Pin Package Types  
TJ = PDISS ¥ qJA + TA  
where: TJ = OPx62 junction temperature;  
Unused Amplifiers  
P
DISS = OPx62 power dissipation;  
It is recommended that any unused amplifiers in a dual or a  
quad package be configured as a unity gain follower with a 1 kW  
feedback resistor connected from the inverting input to the  
output and the noninverting input tied to the ground plane.  
q
JA = OPx62 package thermal resistance, junction-to-  
ambient; and  
TA = Ambient temperature of the circuit.  
Power On Settling Time  
The power dissipated by the device can be calculated as:  
The time it takes for the output of an op amp to settle after a  
supply voltage is delivered can be an important consideration in  
some power-up sensitive applications. An example of this  
would be in an A/D converter where the time until valid data  
can be produced after power-up is important.  
P
DISS = ILOAD ¥ (VS VOUT  
LOAD is the OPx62 output load current;  
VS is the OPx62 supply voltage; and  
OUT is the OPx62 output voltage.  
)
where:  
I
V
The OPx62 family has a rapid settling time after power-up.  
Figure 32 shows the OP462 output settling times for a single  
supply voltage of VS = +5 V. The test circuit in Figure 33 was  
used to find the power on settling times for the device.  
–10–  
REV. D  
OP162/OP262/OP462  
2V  
500ns  
V
= 5V  
S
A
C
R
= 1  
= 300pF  
= 10k⍀  
100  
90  
V
L
L
100  
90  
WITH SNUBBER:  
R
C
= 140⍀  
= 10nF  
X
X
V
A
R
= 5V  
= 1  
= 10k⍀  
S
10  
0%  
V
L
10  
0%  
50mV  
50mV  
1s  
Figure 32. Oscilloscope Photo of VS and VOUT  
Figure 36. A Photo of a Nice Square Wave at the Output  
The network operates in parallel with the load capacitor, CL,  
and provides compensation for the added phase lag. The actual  
values of the network resistor and capacitor are determined  
empirically to minimize overshoot while maximizing unity-gain  
bandwidth. Table I shows a few sample snubber networks for  
large load capacitors:  
+1  
+
0 TO +5V  
SQUARE  
V
OUT  
OP462  
10k⍀  
Table I. Snubber Networks for Large Capacitive Loads  
CLOAD  
RX  
CX  
Figure 33. Test Circuit for Power On Settling Time  
Capacitive Load Drive  
<300 pF  
500 pF  
1 nF  
140 W  
100 W  
80 W  
10 nF  
10 nF  
10 nF  
47 nF  
The OP162/OP262/OP462 is a high speed, extremely accurate  
device and can tolerate some capacitive loading at its output.  
As load capacitance increases, however, the unity-gain band-  
width of the device will decrease. There will also be an increase  
in overshoot and settling time for the output. Figure 35 shows  
an example of this with the device configured for unity gain and  
driving a 10 kW resistor and 300 pF capacitor placed in parallel.  
10 nF  
10 W  
Obviously, higher load capacitance will also reduce the unity-  
gain bandwidth of the device. Figure 37 shows a plot of unity-  
gain bandwidth versus capacitive load. The snubber network  
will not provide any increase in bandwidth, but it will substan-  
tially reduce ringing and overshoot, as shown in the difference  
between Figures 35 and 36.  
By connecting a series R-C network, commonly called a “snub-  
ber” network, from the output of the device to ground, this  
ringing can be eliminated and overshoot can be significantly  
reduced. Figure 34 shows how to set up the snubber network,  
and Figure 36 shows the improvement in output response with  
the network added.  
10  
9
8
+5V  
7
6
5
V
OPx62  
OUT  
4
V
C
R
IN  
L
X
3
C
X
2
Figure 34. Snubber Network Compensation for Capacitive  
Loads  
1
0
10pF  
100pF  
1nF  
10nF  
C
Figure 37. Unity GainLBOAaDndwidth vs. CLOAD  
V
= 5V  
S
A
C
R
= 1  
Total Harmonic Distortion and Crosstalk  
V
L
L
100  
90  
= 300pF  
= 10k⍀  
The OPx62 device family offers low total harmonic distortion.  
This makes it an excellent device choice for audio applications.  
Figure 38 shows a graph of THD plus noise figures at 0.001%  
for the OP462.  
10  
Figure 39 shows a graph of the worst case crosstalk between two  
amplifiers in the OP462 device. A 1 V rms signal is applied to  
one amplifier while measuring the output of an adjacent ampli-  
fier. Both amplifiers are configured for unity gain and supplied  
with ± 2.5 V.  
0%  
50mV  
1s  
Figure 35. A Photo of a Ringing Square Wave  
REV. D  
–11–  
OP162/OP262/OP462  
The audio signal is ac coupled to each noninverting input  
through a 10 mF capacitor. The gain of the amplifier is con-  
trolled by the feedback resistors and is: (R2/R1) + 1. For this  
example, the gain is 6. By removing R1 altogether, the amplifier  
would have unity gain. A 169 W resistor is placed at the output  
in the feedback network to short-circuit protect the output of  
the device. This would prevent any damage to the device from  
occurring if the headphone output became shorted. A 270 mF  
capacitor is used at the output to couple the amplifier to the  
headphone. This value is much larger than that used for the  
input because of the low impedance of headphones, which can  
range from 32 W to 600 W or more.  
0.010  
V
A
= ؎2.5V  
= 1  
= 1.0V rms  
= 10k⍀  
S
V
V
IN  
R
L
BANDWIDTH:  
<10Hz TO 22kHz  
0.001  
0.0001  
R1 = 10k  
10F  
R2 = 50k⍀  
20  
100  
1k  
10k 20k  
FREQUENCY – Hz  
5V  
Figure 38. THD+N vs. Frequency Graph  
LEFT IN  
10F  
10k⍀  
270F  
47k⍀  
L VOLUME  
CONTROL  
169⍀  
HEADPHONE  
LEFT  
OP262-A  
–40  
–50  
–60  
–70  
A
= 1  
V
V
= 1.0V rms  
5V  
IN  
(0dBV)  
100k⍀  
100k⍀  
10F  
R
= 10k  
= ؎2.5V  
L
S
V
–80  
5V  
–90  
–100  
–110  
10k⍀  
10F  
270F  
47k⍀  
169⍀  
HEADPHONE  
RIGHT  
OP262-B  
R VOLUME  
CONTROL  
RIGHT IN  
–120  
R2 = 50k⍀  
–130  
–140  
R1 = 10k⍀  
20  
100  
1k  
10k 20k  
FREQUENCY – Hz  
10F  
Figure 39. Crosstalk vs. Frequency Graph  
Figure 40. Headphone Output Amplifier  
PCB Layout Considerations  
Because the OP162/OP262/OP462 can provide gain at high  
frequency, careful attention to board layout and component  
selection is recommended. As with any high speed application,  
a good ground plane is essential to achieve the optimum perfor-  
mance. This can significantly reduce the undesirable effects of  
ground loops and I¥R losses by providing a low impedance refer-  
ence point. Best results are obtained with a multilayer board  
design with one layer assigned to ground plane.  
Instrumentation Amplifier  
Because of its high speed, low offset voltages and low noise  
characteristics, the OP162/OP262/OP462 can be used in a wide  
variety of high speed applications, including a precision instru-  
mentation amplifier. Figure 41 shows an example of such an  
application.  
–V  
IN  
Chip capacitors should be used for supply bypassing, with one  
end of the capacitor connected to the ground plane and the  
other end connected within 1/8 inch of each power pin. An  
additional large tantalum electrolytic capacitor (4.7 mF–10 mF)  
should be connected in parallel. This capacitor does not need to  
be placed as close to the supply pins, as it is to provide current  
for fast large-signal changes at the device’s output.  
OP462-A  
2k⍀  
1k⍀  
2k⍀  
10k⍀  
2k⍀  
OP462-D  
OP462-C  
OUTPUT  
R
G
1k⍀  
1.9k⍀  
10k⍀  
OP462-B  
200⍀  
APPLICATION CIRCUITS  
Single Supply Stereo Headphone Driver  
10 TURN  
(OPTIONAL)  
+V  
IN  
Figure 40 shows a stereo headphone output amplifier that can  
be run from a single +5 V supply. The reference voltage is  
derived by dividing the supply voltage down with two 100 kW  
resistors. A 10 mF capacitor prevents power supply noise from  
contaminating the audio signal and establishes an ac ground for  
the volume control potentiometers.  
Figure 41. A High Speed Instrumentation Amplifier  
–12–  
REV. D  
OP162/OP262/OP462  
Direct Access Arrangement  
The differential gain of the circuit is determined by RG, where:  
Figure 44 shows a schematic for a +5 V single supply transmit/  
receive telephone line interface for 600 W transmission systems.  
It allows full duplex transmission of signals on a transformer  
coupled 600 W line. Amplifier A1 provides gain that can be  
adjusted to meet the modem output drive requirements. Both  
A1 and A2 are configured so as to apply the largest possible  
differential signal to the transformer. The largest signal available  
on a single +5 V supply is approximately 4.0 V p-p into a 600 W  
transmission system. Amplifier A3 is configured as a difference  
amplifier to extract the receive information from the transmis-  
sion line for amplification by A4. A3 also prevents the transmit  
signal from interfering with the receive signal. The gain of A4  
can be adjusted in the same manner as A1’s to meet the modem’s  
input signal requirements. Standard resistor values permit the  
use of SIP (Single In-line Package) format resistor arrays. Couple  
this with the OP462 14-lead SOIC or TSSOP package and this  
circuit can offer a compact solution.  
2
ADIFF = 1+  
RG  
with the RG resistor value in kW. Removing RG will set the cir-  
cuit gain to unity.  
The fourth op amp, OP462-D, is optional and is used to im-  
prove CMRR by reducing any input capacitance to the ampli-  
fier. By shielding the input signal leads and driving the shield  
with the common-mode voltage, input capacitance is eliminated  
at common-mode voltages. This voltage is derived from the  
midpoint of the outputs of OP462-A and OP462-B by using two  
10 kW resistors followed by OP462-D as a unity gain buffer.  
It is important to use 1% or better tolerance components for the  
2 kW resistors, as the common-mode rejection is dependent on  
their ratios being exact. A potentiometer should also be con-  
nected in series with the OP462-C noninverting input resistor to  
ground to optimize common-mode rejection.  
P1  
The circuit in Figure 41 was implemented to test its settling  
time. The instrumentation amp was powered with ± 5 V, so the  
input step voltage went from –5 V to +4 V to keep the OP462  
within its input range. Therefore, the 0.05% settling range is  
when the output is within 4.5 mV. Figure 42 shows the positive  
slope settling time to be 1.8 ms, and Figure 43 shows a settling  
time of 3.9 ms for the negative slope.  
TX GAIN  
ADJUST  
R2  
9.09k⍀  
C1  
R1  
TRANSMIT  
TXA  
TO TELEPHONE  
LINE  
0.1F  
2k⍀  
10k⍀  
R3  
2
360⍀  
1
7
1:1  
A1  
3
R5  
6.2V  
6.2V  
Z
O
10k⍀  
600⍀  
5V DC  
T1  
R6  
6
5
R7  
10k⍀  
MIDCOM  
10k⍀  
5mV  
2V  
671-8005  
A2  
100  
90  
R8  
10F  
10k⍀  
R9  
R10  
10k⍀  
10k⍀  
P2  
RX GAIN  
ADJUST  
R13  
R14  
RECEIVE  
RXA  
2
3
10k14.3k⍀  
R11  
10k⍀  
1
10  
A3  
0%  
2k⍀  
C2  
0.1F  
6
R12  
7
1s  
A4  
10k⍀  
5
A1, A2 = 1/2 AD8532  
A3, A4 = 1/2 AD8532  
Figure 42. Positive Slope Settling Time  
Figure 44. A Single-Supply Direct Access Arrangement for  
Modems  
5mV  
2V  
100  
90  
10  
0%  
1s  
Figure 43. Negative Slope Settling Time  
REV. D  
–13–  
OP162/OP262/OP462  
Spice Macro-Model  
* OP162/OP262/OP462 SPICE Macro-model  
* 7/96, Ver. 1  
* Troy Murphy / ADSC  
E1 23  
R6 23  
R7 24  
C5 23  
*
98 (21, 98)  
24 53E+3  
98 53E+3  
24 1E-12  
2
*
* Copyright 1996 by Analog Devices  
*
* SECOND GAIN STAGE  
*
* Refer to “README.DOC” file for License Statement. Use of this model  
* indicates your acceptance of the terms and provisions in the License  
* Statement  
*
G3 25  
R8 25  
D3 25  
D4 50  
*
98 (24, 98) 40E-6  
98 1.65E+6  
99 DX  
25 DX  
* Node Assignments  
*
*
*
*
*
*
*
noninverting input  
* OUTPUT STAGE  
*
|
|
|
|
|
|
1
inverting input  
|
|
|
|
|
2
positive supply  
GSY 99  
R9 99  
R10 20  
Q3 45  
Q4 45  
EB1 99  
EB2 42  
RB1 40  
RB2 42  
CF 45  
D5 46  
D6 47  
V3 46  
V4 47  
.
50 POLY (1)  
(99, 50) 277.5E-6 7.5E-6  
|
|
|
negative supply  
|
|
20 100E3  
50 100E3  
41 99 POUT  
43 50 NOUT  
40 POLY (1)  
50 POLY (1)  
41 500  
43 500  
25 11E-12  
99 DX  
output  
|
|
4
2
|
|
.SUBCKT OP162  
*
*INPUT STAGE  
*
Q1  
Q2  
Ios  
I1  
EOS 7  
RC1 5  
RC2 6  
RE1 3  
RE2 4  
99  
50  
45  
(98, 25) 0.70366  
(25, 98) 0.73419  
1
1
5
6
1
7
2
2
3
4
PIX 5  
PIX 5  
1.25E-9  
43 DX  
41 0.7  
50 0.7  
99 15 85E-6  
POLY(1) (14, 20) 45E-6 1  
1
50 3.035E+3  
50 3.035E+3  
15 607  
MODEL PIX  
PNP (Bf=117.7)  
.MODEL POUT PNP (BF=119, IS=2.782E-17, VAF=28, KF=3E-7)  
.MODEL NOUT NPN (BF=110, IS=1.786E-17, VAF=90, KF=3E-7)  
15 607  
C1  
D1  
D2  
V1 99  
V2 99  
*
5
3
4
6
8
9
8
9
600E-15  
DX  
DX  
DC 1  
DC 1  
.MODEL DX  
.ENDS  
D()  
* 1st GAIN STAGE  
*
EREF 98  
0
(20, 0)  
98 10 (5, 6)  
10 98  
10 98 3.3E-9  
1
10.5  
G1  
R1  
C2  
*
1
* COMMON-MODE STAGE WITH ZERO AT 4kHz  
*
ECM 13 98 POLY (2) (1, 98) (2, 98)  
0
0.5 0.5  
R2  
R3  
C3  
*
13 14 1E+6  
14 98 70  
13 14 80E-12  
* POLE AT 1.5MHz, ZERO AT 3MHz  
*
G2 21 98 (10, 98) .588E-6  
R4 21 98 1.7E6  
R5 21 22 1.7E6  
C4 22 98 31.21E-15  
*
* POLE AT 6MHz, ZERO AT 3MHz  
*
–14–  
REV. D  
OP162/OP262/OP462  
OUTLINE DIMENSIONS  
14-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(RN-14)  
(RN-8)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters and (inches)  
8.75 (0.3445)  
8.55 (0.3366)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
14  
1
8
7
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.75 (0.0689)  
1.35 (0.0531)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
؋
 45؇  
؋
 45؇  
0.25 (0.0098)  
0.10 (0.0039)  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
8؇  
0؇  
0.10 (0.0040)  
0.51 (0.0201)  
0.33 (0.0130)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
8؇  
0.25 (0.0098)  
0.19 (0.0075)  
COPLANARITY  
0.10  
0.51 (0.0201)  
0.33 (0.0130)  
0؇ 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.19 (0.0075)  
SEATING  
PLANE  
0.41 (0.0160)  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
8-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-8)  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
3.10  
3.00  
2.90  
5.10  
5.00  
4.90  
8
5
4
14  
8
7
4.50  
4.40  
4.30  
4.50  
4.40  
4.30  
6.40 BSC  
6.40  
BSC  
1
1
PIN 1  
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.65  
BSC  
0.15  
0.05  
0.20  
0.09  
1.20  
1.20  
0.75  
0.60  
0.45  
MAX  
MAX  
8؇  
0؇  
8؇  
0؇  
0.15  
0.05  
0.30  
0.19  
0.75  
0.60  
0.45  
0.30  
0.19  
SEATING  
PLANE  
0.20  
0.09  
SEATING  
PLANE  
COPLANARITY  
0.10  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AA  
COMPLIANT TO JEDEC STANDARDS MO-153AB-1  
REV. D  
–15–  
OP162/OP262/OP462  
Revision History  
Location  
Page  
10/02Data Sheet changed from REV. C to REV. D.  
Deleted 8-Lead Plastic DIP (N-8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal  
Deleted 14-Lead Plastic DIP (N-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Edits to Figure 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Edits to Figure 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
–16–  
REV. D  

相关型号:

OP162HRU-REEL

15 MHz Rail-to-Rail Operational Amplifiers
ADI

OP162HRUZ-REEL

15 MHz Rail-to-Rail Operational Amplifiers
ADI

OP162_05

15 MHz Rail-to-Rail Operational Amplifiers
ADI

OP16421000J0G

Strip Terminal Block
AMPHENOL

OP16422000J0G

Strip Terminal Block
AMPHENOL

OP16632000J0G

Strip Terminal Block
AMPHENOL

OP166P

Analog IC
ETC

OP166S

Analog IC
ETC

OP166SO

IC OP-AMP, 5000 uV OFFSET-MAX, 280 MHz BAND WIDTH, PDSO8, SO-8, Operational Amplifier
ADI

OP166Z

IC OP-AMP, 5000 uV OFFSET-MAX, 280 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERAMIC, DIP-8, Operational Amplifier
ADI

OP16AH/883

OP16AH/883
Linear

OP16AJ

IC OP-AMP, 900 uV OFFSET-MAX, 8 MHz BAND WIDTH, MBCY8, TO-99, 8 PIN, Operational Amplifier
ADI