OP193_02 [ADI]

Precision, Micropower Operational Amplifiers; 高精度,微功耗运算放大器
OP193_02
型号: OP193_02
厂家: ADI    ADI
描述:

Precision, Micropower Operational Amplifiers
高精度,微功耗运算放大器

运算放大器
文件: 总16页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Micropower  
Operational Amplifiers  
a
OP193/OP293/OP493*  
PIN CONFIGURATIONS  
FEATURES  
Operates from +1.7 V to ؎18 V  
Low Supply Current: 15 A/Amplifier  
Low Offset Voltage: 75 V  
Outputs Sink and Source: ؎8 mA  
No Phase Reversal  
Single- or Dual-Supply Operation  
High Open-Loop Gain: 600 V/mV  
Unity-Gain Stable  
8-Lead SO  
(S Suffix)  
8-Lead Epoxy DIP  
(P Suffix)  
NULL  
IN A  
+IN A  
V–  
NC  
NULL  
IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
NC  
OP193  
V+  
OP193  
V+  
OUT A  
NULL  
OUT A  
NULL  
APPLICATIONS  
Digital Scales  
NC = NO CONNECT  
Strain Gages  
Portable Medical Equipment  
Battery-Powered Instrumentation  
Temperature Transducer Amplifier  
8-Lead SO  
(S Suffix)  
8-Lead Epoxy DIP  
(P Suffix)  
OUT A  
IN A  
+IN A  
V–  
V+  
GENERAL DESCRIPTION  
V+  
OUT A  
IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
OP293  
OUT B  
IN B  
+IN B  
The OP193 family of single-supply operational amplifiers fea-  
tures a combination of high precision, low supply current and  
the ability to operate at low voltages. For high performance in  
single-supply systems the input and output ranges include  
ground, and the outputs swing from the negative rail to within  
600 mV of the positive supply. For low voltage operation the  
OP193 family can operate down to 1.7 volts or 0.85 volts.  
OP293  
OUT B  
–IN B  
+IN B  
16-Lead Wide Body SOL  
(S Suffix)  
14-Lead Epoxy DIP  
(P Suffix)  
The combination of high accuracy and low power operation  
make the OP193 family useful for battery-powered equipment.  
Its low current drain and low voltage operation allow it to  
continue performing long after other amplifiers have ceased  
functioning either because of battery drain or headroom.  
OUT A  
OUT D  
OUT A  
1
2
3
4
5
6
7
OUT D  
IN D  
+IN D  
V–  
14  
13  
12  
11  
10  
9
IN A  
+IN A  
V+  
IN D  
+IN D  
V–  
IN A  
+IN A  
V+  
The OP193 family is specified for single +2 volt through dual  
15 volt operation over the HOT (–40°C to +125°C) temperature  
range. They are available in plastic DIPs, plus SOIC surface-  
mount packages.  
OP493  
+IN B  
IN B  
OUT B  
NC  
+IN C  
IN C  
OUT C  
NC  
OP493  
+IN B  
IN B  
OUT B  
+IN C  
IN C  
OUT C  
8
NC = NO CONNECT  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
OP193/OP293/OP493–SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS (@ VS = ؎15.0 V, TA = 25؇C unless otherwise noted)  
“E” Grade  
“F” Grade  
Min Typ Max  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP193  
75  
150  
250  
250  
350  
275  
375  
µV  
µV  
µV  
µV  
µV  
µV  
OP193, –40°C TA +125°C  
OP293  
OP293, –40°C TA +125°C  
OP493  
OP493, –40°C TA +125°C  
VCM = 0 V,  
–40°C TA +125°C  
VCM = 0 V,  
–40°C TA +125°C  
175  
100  
200  
125  
225  
Input Bias Current  
Input Offset Current  
IB  
15  
2
20  
nA  
IOS  
4
nA  
V
dB  
Input Voltage Range  
Common-Mode Rejection  
VCM  
CMRR  
–14.9  
100  
+13.5 –14.9  
+13.5  
–14.9 VCM +14 V  
–14.9 VCM +14 V,  
–40°C TA +125°C  
RL = 100 k,  
–10 V VOUT +10 V  
–40°C TA +85°C  
–40°C TA +125°C  
RL = 10 k,  
–10 V VOUT +10 V  
–40°C TA +85°C  
–40°C TA +125°C  
RL = 2 k,  
–10 V VOUT +10 V  
–40°C TA +85°C  
–40°C TA +125°C  
Note 1  
116  
97  
116  
97  
94  
dB  
Large Signal Voltage Gain  
Large Signal Voltage Gain  
Large Signal Voltage Gain  
AVO  
AVO  
AVO  
VOS  
500  
300  
500  
300  
V/mV  
V/mV  
V/mV  
300  
150  
100  
300  
150  
100  
350  
200  
350  
200  
V/mV  
V/mV  
V/mV  
200  
125  
200  
125  
V/mV  
V/mV  
V/mV  
µV  
Long Term Offset Voltage  
Offset Voltage Drift  
150  
0.2 1.75  
300  
VOS/T Note 2  
µV/°C  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH IL = 1 mA  
14.1  
14.2  
14.1  
14.2  
14.1  
V
IL = 1 mA,  
–40°C TA +125°C  
IL = 5 mA  
14.0  
13.9  
14.0  
13.9  
V
V
V
14.1  
–14.7 –14.6  
Output Voltage Swing Low  
VOL  
IL = –1 mA  
–14.7 –14.6  
IL = –1 mA,  
–40°C TA +125°C  
IL = –5 mA  
–14.4  
+14.2 –14.1  
25  
–14.4  
+14.2 –14.1  
25  
V
V
mA  
Short Circuit Current  
ISC  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
VS = 1.5 V to 18 V  
VS = 1.5 V to 18 V,  
–40°C TA +125°C  
–40°C TA +125°C, RL = ∞  
VOUT = 0 V, VS = 18 V  
100  
97  
120  
97  
94  
120  
dB  
dB  
µA  
Supply Current/Amplifier  
ISY  
30  
30  
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
Voltage Noise  
en  
in  
en p-p  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
65  
0.05  
3
65  
0.05  
3
nV/Hz  
pA/Hz  
µV p-p  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
SR  
GBP  
RL = 2 kΩ  
15  
35  
15  
35  
V/ms  
kHz  
Channel Separation  
V
OUT = 10 V p-p,  
RL = 2 k, f = 1 kHz  
120  
120  
dB  
NOTES  
1Long term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3.  
2Offset voltage drift is the average of the –40°C to +25°C delta and the +25°C to +125°C delta.  
Specifications subject to change without notice.  
–2–  
REV. B  
OP193/OP293/OP493  
ELECTRICAL SPECIFICATIONS (@ VS = 5.0 V, VCM = 0.1 V, TA = 25؇C unless otherwise noted)  
“E” Grade  
“F” Grade  
Parameter  
Symbol  
Conditions  
Min Typ Max  
Min Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP193  
75  
150  
250  
250  
350  
275  
375  
20  
µV  
µV  
µV  
µV  
µV  
µV  
nA  
nA  
V
OP193, –40°C TA +125°C  
OP293  
175  
100  
200  
125  
225  
15  
OP293, –40°C TA +125°C  
OP493  
OP493, –40°C TA +125°C  
–40°C TA +125°C  
–40°C TA +125°C  
Input Bias Current  
IB  
IOS  
VCM  
CMRR  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection  
2
4
4
4
0
0
96  
0.1 VCM 4 V  
0.1 VCM 4 V,  
–40°C TA +125°C  
RL = 100 k,  
0.03 VOUT 4.0 V  
–40°C TA +85°C  
–40°C TA +125°C  
RL = 10 k,  
0.03 VOUT 4.0 V  
–40°C TA +85°C  
–40°C TA +125°C  
Note 1  
100 116  
116  
dB  
92  
92  
dB  
Large Signal Voltage Gain  
Large Signal Voltage Gain  
AVO  
AVO  
VOS  
200  
125  
130  
200  
125  
V/mV  
V/mV  
V/mV  
130  
70  
75  
50  
70  
75  
50  
V/mV  
V/mV  
V/mV  
µV  
Long Term Offset Voltage  
Offset Voltage Drift  
150  
0.2 1.25  
300  
VOS/T Note 2  
µV/°C  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
IL = 100 µA  
IL = 1 mA  
4.4  
4.1 4.4  
4.4  
4.1 4.4  
V
V
IL = 1 mA,  
–40°C TA +125°C  
IL = 5 mA  
4.0  
4.0 4.4  
4.0  
4.0 4.4  
V
V
Output Voltage Swing Low  
VOL  
IL = –100 µA  
IL = –100 µA,  
–40°C TA +125°C  
No Load  
140 160  
140 160  
mV  
220  
220  
5
280 400  
mV  
mV  
mV  
5
IL = –1 mA  
280 400  
IL = –1 mA,  
–40°C TA +125°C  
IL = –5 mA  
500  
700 900  
8
500  
700 900  
8
mV  
mV  
mA  
Short Circuit Current  
ISC  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
VS = 1.7 V to 6.0 V  
VS = 1.5 V to 18 V,  
–40°C TA +125°C  
VCM = 2.5 V, RL = ∞  
100 120  
94  
97  
90  
120  
dB  
dB  
µA  
Supply Current/Amplifier  
ISY  
14.5  
14.5  
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
Voltage Noise  
en  
in  
en p-p  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
65  
0.05  
3
65  
0.05  
3
nV/Hz  
pA/Hz  
µV p-p  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
SR  
GBP  
RL = 2 kΩ  
12  
35  
12  
35  
V/ms  
kHz  
NOTES  
1Long term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3.  
2Offset voltage drift is the average of the –40°C to +25°C delta and the +25°C to +125°C delta.  
Specifications subject to change without notice.  
–3–  
REV. B  
OP193/OP293/OP493  
ELECTRICAL SPECIFICATIONS (@ VS = 3.0 V, VCM = 0.1 V, TA = 25؇C unless otherwise noted)  
“E” Grade  
“F” Grade  
Parameter  
Symbol Conditions  
Min Typ Max  
Min Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP193  
75  
150  
250  
250  
350  
275  
375  
20  
µV  
µV  
µV  
µV  
µV  
µV  
nA  
nA  
V
OP193, –40°C TA +125°C  
OP293  
175  
100  
200  
125  
225  
15  
OP293, –40°C TA +125°C  
OP493  
OP493, –40°C TA +125°C  
–40°C TA +125°C  
–40°C TA +125°C  
Input Bias Current  
IB  
IOS  
VCM  
CMRR  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection  
2
2
4
2
0
97  
0
94  
0.1 VCM 2 V  
0.1 VCM 2 V,  
–40°C TA +125°C  
RL = 100 k, 0.03 VOUT 2 V  
–40°C TA +85°C  
–40°C TA +125°C  
Note 1  
116  
100  
116  
100  
dB  
90  
100  
75  
87  
100  
75  
dB  
Large Signal Voltage Gain  
AVO  
VOS  
V/mV  
V/mV  
V/mV  
µV  
Long Term Offset Voltage  
Offset Voltage Drift  
150  
0.2 1.25  
300  
VOS/T Note 2  
µV/°C  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
VOL  
ISC  
IL = 1 mA  
IL = 1 mA,  
–40°C TA +125°C  
IL = 5 mA  
IL = –1 mA  
IL = –1 mA  
–40°C TA +125°C  
IL = –5 mA  
2.1 2.14  
2.1 2.14  
V
1.9  
1.9 2.1  
1.9  
1.9 2.1  
V
V
mV  
Output Voltage Swing Low  
280 400  
280 400  
500  
700 900  
8
500  
700 900  
8
mV  
mV  
mA  
Short Circuit Current  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = +1.7 V to +6 V,  
–40°C TA +125°C  
VCM = 1.5 V, RL = ∞  
–40°C TA +125°C  
100  
94  
97  
90  
dB  
µA  
µA  
V
Supply Current/Amplifier  
Supply Voltage Range  
14.5 22  
14.5 22  
22  
18  
22  
18  
VS  
+2  
+2  
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
Voltage Noise  
en  
in  
en p-p  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
65  
0.05  
3
65  
0.05  
3
nV/Hz  
pA/Hz  
µV p-p  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Channel Separation  
SR  
GBP  
RL = 2 kΩ  
10  
25  
10  
25  
V/ms  
kHz  
V
OUT = 10 V p-p,  
RL = 2 k, f = 1 kHz  
120  
120  
dB  
NOTES  
1Long term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125°C, with an LTPD of 1.3.  
2Offset voltage drift is the average of the –40°C to +25°C delta and the +25°C to +125°C delta.  
Specifications subject to change without notice.  
–4–  
REV. B  
OP193/OP293/OP493  
ELECTRICAL SPECIFICATIONS (@ VS = 2.0 V, VCM = 0.1 V, TA = 25؇C unless otherwise noted)  
“E” Grade  
“F” Grade  
Parameter  
Symbol  
Conditions  
Min Typ Max  
Min Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP193  
75  
150  
250  
250  
350  
275  
375  
20  
µV  
OP193, –40°C TA +125°C  
OP293  
175  
100  
175  
125  
225  
15  
µV  
µV  
OP293, –40°C TA +125°C  
OP493  
OP493, –40°C TA +125°C  
–40°C TA +125°C  
–40°C TA +125°C  
µV  
µV  
µV  
Input Bias Current  
IB  
nA  
nA  
V
Input Offset Current  
Input Voltage Range  
Large Signal Voltage Gain  
IOS  
VCM  
AVO  
2
1
4
1
0
60  
0
60  
RL = 100 k, 0.03 VOUT 1 V  
–40°C TA +125°C  
Note 1  
V/mV  
V/mV  
µV  
70  
70  
Long Term Offset Voltage  
POWER SUPPLY  
VOS  
150  
300  
Power Supply Rejection Ratio PSRR  
VS = 1.7 V to 6 V,  
100  
94  
97  
90  
–40°C TA +125°C  
VCM = 1.0 V, RL = ∞  
–40°C TA +125°C  
dB  
µA  
µA  
V
Supply Current/Amplifier  
Supply Voltage Range  
ISY  
VS  
13.2 20  
25  
13.2 20  
25  
+2  
18  
+2  
18  
NOISE PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
Voltage Noise  
en  
in  
en p-p  
f = 1 kHz  
f = 1 kHz  
0.1 Hz to 10 Hz  
65  
0.05  
3
65  
0.05  
3
nV/Hz  
pA/Hz  
µV p-p  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
SR  
GBP  
RL = 2 kΩ  
10  
25  
10  
25  
V/ms  
kHz  
Specifications subject to change without notice.  
–5–  
REV. B  
OP193/OP293/OP493  
ABSOLUTE MAXIMUM RATINGS1  
ORDERING GUIDE  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Output Short-Circuit Duration to Gnd . . . . . . . . . . Indefinite  
Storage Temperature Range  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
OP193/OP293/OP493E, F . . . . . . . . . . . . –40°C to +125°C  
Junction Temperature Range  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C  
Temperature  
Range  
Package  
Package  
Option  
Model  
Description  
OP193ES*  
OP193ES-REEL*  
–40°C to +125°C  
–40°C to +125°C  
8-Pin SOIC  
8-Pin SOIC  
8-Pin SOIC  
8-Pin Plastic DIP  
8-Pin SOIC  
8-Pin SOIC  
8-Pin SOIC  
8-Pin SOIC  
8-Pin SOIC  
8-Pin SOIC  
8-Pin Plastic DIP  
8-Pin SOIC  
8-Pin SOIC  
8-Pin SOIC  
16-Pin SOL  
16-Pin SOL  
SO-8  
SO-8  
SO-8  
N-8  
SO-8  
SO-8  
SO-8  
SO-8  
SO-8  
SO-8  
N-8  
SO-8  
SO-8  
SO-8  
SOL-16  
SOL-16  
OP193ES-REEL7* –40°C to +125°C  
OP193FP*  
OP193FS  
OP193FS-REEL  
OP193FS-REEL7  
OP293ES  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
OP293ES-REEL  
OP293ES-REEL7  
OP293FP*  
OP293FS  
OP293FS-REEL  
OP293FS-REEL7  
OP493ES*  
3
Package Type  
θJA  
θJC  
Unit  
8-Pin Plastic DIP (P)  
8-Pin SOIC (S)  
14-Pin Plastic DIP (P)  
16-Pin SOL (S)  
103  
158  
83  
43  
43  
39  
27  
°C/W  
°C/W  
°C/W  
°C/W  
OP493ES-REEL*  
OP493FP*  
14-Pin Plastic DIP N-14  
16-Pin SOL  
16-Pin SOL  
OP493FS*  
SOL-16  
SOL-16  
OP493FS-REEL*  
92  
*Not for new design, obsolete April 2002.  
NOTES  
1Absolute maximum ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
2For supply voltages less than 18 V, the input voltage is limited to the supply  
voltage.  
3θJA is specified for the worst case conditions; i.e., θJA is specified for device in socket  
for PDIP, and θJA is specified for device soldered in circuit board for SOIC package.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the OP193/OP293/OP493 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–6–  
REV. B  
Typical Performance CharacteristicsOP193/OP293/OP493  
200  
160  
120  
80  
150  
200  
160  
120  
80  
V
T
؍
15V  
V
V
T
؍
 3V  
S
V
V
؍
 3V  
S
S
؍
 25°C  
؍
 0.1V  
A
؍
 0.1V  
CM  
؍
 25°C  
CM  
120  
40°C Յ T Յ +125°C  
A
A
450 
؋
 PDIPS  
450 
؋
 PDIPS  
450 
؋
 PDIPS  
90  
60  
40  
40  
0
30  
0
0
75 6045 30 15  
0
15 30  
60 75  
45  
75 6045 30 15  
0
15 30 45 60  
75  
0
0.2  
0.4  
TCV  
0.6  
0.8  
1.0  
OFFSET V  
OFFSET V  
Vր°C  
OS  
TPC 1. OP193 Offset Distribution,  
VS = 15 V  
TPC 2. OP193 Offset Distribution,  
VS = +3 V  
TPC 3. OP193 TCVOS Distribution,  
VS = +3 V  
1
150  
120  
5V Յ V Յ 30V  
T 
؍
 25°C  
A
S
V
؍
 ؎15V  
S
V
ϭ 5V  
S
PSRR  
40°C Յ T Յ +125°C  
A
100  
0
1  
2  
3  
4  
120  
90  
450 
؋
 PDIPS  
40°C  
80  
60  
40  
20  
0
+PSRR  
+125°C  
60  
+25°C  
30  
0
0
0.2  
0.4  
TCV  
0.6  
0.8  
0
1
2
3
4
5
1.0  
10  
100  
1k  
10k  
COMMON-MODE VOLTAGE V  
Vր°C  
FREQUENCY Hz  
OS  
TPC 4. OP193 TCVOS Distribution,  
VS = 15 V  
TPC 5. Input Bias Current vs.  
Common-Mode Voltage  
TPC 6. PSRR vs. Frequency  
40  
25  
120  
T
؍
 25°C  
A
100  
80  
60  
40  
20  
0
+ISC  
S
20  
V
؍
15V  
30  
20  
10  
0
+SR 
؍
 SR  
S
V
؍
 15V  
S
V
؍
 15V  
| ISC |  
15V  
V
؍
15  
10  
S
+SR 
؍
 SR  
؍
 +5V  
V
S
V
؍
 +5V  
S
5
0
+ISC  
| ISC |  
؍
 +5V  
V
؍
 +5V  
S
V
S
50 25  
0
25  
50  
75 100 125  
50 25  
0
25  
50  
75 100 125  
10  
100  
1k  
10k  
FREQUENCY Hz  
TEMPERATURE – °C  
TEMPERATURE – °C  
TPC 7. CMRR vs. Frequency  
TPC 8. Slew Rate vs. Temperature  
TPC 9. Short Circuit Current vs.  
Temperature  
–7–  
REV. B  
OP193/OP293/OP493  
25  
20  
15  
10  
5
0
1  
2  
3  
4  
5  
0
V
؍
18V  
S
0.5  
V
؍
 15V  
S
0.10  
V
V
؍
 +2V  
S
V
V
؍
 +2V  
S
؍
 0.1V  
CM  
؍
 1V  
CM  
0.15  
0.20  
0.25  
V
V
؍
 +2V  
S
؍
 0.1V  
CM  
V
؍
 15V  
S
0
50 25  
0
25  
50  
75 100 125  
50 25  
0
25  
50  
75 100 125  
50 25  
0
25  
50  
75 100 125  
TEMPERATURE – °C  
TEMPERATURE – °C  
TEMPERATURE – °C  
TPC 10. Input Offset Current vs.  
Temperature  
TPC 11. Input Bias Current vs.  
Temperature  
TPC 12. Supply Current vs.  
Temperature  
1000  
10000  
1000  
5V Յ V Յ 30V  
S
5V Յ V Յ 30V  
5V Յ V Յ 30V  
S
S
T
؍
 25°C  
A
T
؍
 25°C  
T
؍
 25°C  
A
A
1000  
100  
10  
100  
10  
100  
10  
1
DELTA  
FROM V  
CC  
DELTA  
FROM V  
EE  
1
0.1  
1
1
10  
100  
1k  
0.1  
1
10  
100  
1k  
0.1  
1
10  
100  
1000 10000  
FREQUENCY Hz  
FREQUENCY Hz  
LOAD CURRENT A  
TPC 13. Voltage Noise Density vs.  
Frequency  
TPC 14. Current Noise Density vs.  
Frequency  
TPC 15. Delta Output Swing from  
Either Rail vs. Current Load  
1000  
800  
2500  
2000  
60  
T
؍
 25°C  
؍
 5V  
A
V
S
V
؍
15V  
V
؍
15V  
S
40  
20  
S
10V Յ V  
Յ +10V  
10V Յ V  
Յ +10V  
OUT  
OUT  
600  
400  
200  
0
1500  
1000  
500  
0
V
؍
 +5V  
0.03V Յ V  
V
؍
 +5V  
0.03V Յ V  
S
S
Յ 4V  
Յ 4V  
OUT  
OUT  
0
20  
50 25  
0
25  
50  
75 100 125  
50 25  
0
25  
50  
75 100 125  
10  
100  
1k  
10k  
100k  
TEMPERATURE – °C  
TEMPERATURE – °C  
FREQUENCY Hz  
TPC 16. Voltage Gain  
(RL = 100 k) vs. Temperature  
TPC 17. Voltage Gain  
(RL = 10 k) vs. Temperature  
TPC 18. Closed-Loop Gain vs.  
Frequency, VS = 5 V  
–8–  
REV. B  
OP193/OP293/OP493  
60  
40  
20  
0
60  
50  
40  
30  
20  
10  
0
60  
T
V
؍
 25°C  
V
A
؍
 5V T 
؍
 25°C  
؍
 1  
V
؍
 5V  
A
S
A
S
+OS 
؍
 
|
OS  
|
؍
15V  
S
V
PHASE  
R
؍
 50k⍀  
50mV Յ V Յ 150mV  
LOADS TO GND  
L
IN  
40  
20  
90  
45  
GAIN  
+OS  
R
؍
ؕ
L
0
0
45  
90  
20  
40  
+OS 
؍
 
|
OS  
|
R
؍
 10k⍀  
OS  
L
R
؍
ؕ
L
20  
10  
10  
100  
1000  
10000  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
FREQUENCY Hz  
CAPACITIVE LOAD pF  
FREQUENCY Hz  
TPC 19. Closed-Loop Gain vs.  
Frequency, VS = 15 V  
TPC 20. Small Signal Overshoot  
vs. Capacitive Load  
TPC 21. Open-Loop, Gain and  
Phase vs. Frequency  
V+  
60  
V
؍
 15V  
S
I
1
I
2
I
3
I4  
+INPUT  
40  
20  
90  
45  
0
2k  
2k⍀  
PHASE  
Q5  
Q1  
Q2  
INPUT  
Q6  
GAIN  
0
OP293,  
Q4  
OP493  
ONLY  
Q3  
TO  
OUTPUT  
STAGE  
Q7  
20  
40  
45  
Q8  
D1  
90  
R1  
R2  
A
A
100  
1k  
10k  
100k  
1M  
FREQUENCY Hz  
I
5
I6  
TPC 22. Open-Loop, Gain and  
Phase vs. Frequency  
R1  
R2  
B
B
V–  
NULLING  
TERMINALS  
(OP193 ONLY)  
FUNCTIONAL DESCRIPTION  
Figure 1. OP193/OP293/OP493 Equivalent Input Circuit  
The OP193 family of operational amplifiers are single-supply,  
micropower, precision amplifiers whose input and output ranges  
both include ground. Input offset voltage (VOS) is only 75 µV  
maximum, while the output will deliver 5 mA to a load. Sup-  
ply current is only 17 µA.  
V+  
Q4  
FROM  
INPUT  
STAGE  
A simplified schematic of the input stage is shown in Figure 1.  
Input transistors Q1 and Q2 are PNP devices, which permit the  
inputs to operate down to ground potential. The input transis-  
tors have resistors in series with the base terminals to protect the  
junctions from over voltage conditions. The second stage is an  
NPN cascode which is buffered by an emitter follower before  
driving the final PNP gain stage.  
Q1  
Q5  
OUTPUT  
Q3  
Q2  
I
2
I
3
I1  
V–  
The OP193 includes connections to taps on the input load  
resistors, which can be used to null the input offset voltage, VOS  
.
Figure 2. OP193/OP293/OP493 Equivalent Output Circuit  
The OP293 and OP493 have two additional transistors, Q7 and  
Q8. The behavior of these transistors is discussed in the Output  
Phase Reversal section of this data sheet.  
By operating as an emitter follower, Q1 offers a high impedance  
load to the final PNP collector of the input stage. Base drive to  
Q2 is derived by monitoring Q1’s collector current. Transistor  
Q5 tracks the collector current of Q1. When Q1 is on, Q5 keeps  
Q4 off, and current source I1 keeps Q2 turned off. When Q1 is  
driven to cutoff (i.e., the output must move toward V–), Q5  
allows Q4 to turn on. Q4’s collector current then provides the  
base drive for Q3 and Q2, and the output low voltage swing is  
set by Q2’s VCE,SAT which is about 5 mV.  
The output stage, shown in Figure 2, is a noninverting NPN  
“totem-pole” configuration. Current is sourced to the load by  
emitter follower Q1, while Q2 provides current sink capability.  
When Q2 saturates, the output is pulled to within 5 mV of  
ground without an external pull-down resistor. The totem-pole  
output stage will supply a minimum of 5 mA to an external  
load, even when operating from a single 3.0 V power supply.  
REV. B  
–9–  
OP193/OP293/OP493  
Driving Capacitive Loads  
weight, and high energy density relative to older primary cells.  
Most lithium cells have a nominal output voltage of 3 V and are  
noted for a flat discharge characteristic. The low supply voltage  
requirement of the OP193, combined with the flat discharge  
characteristic of the lithium cell, indicates that the OP193 can  
be operated over the entire useful life of the cell. Figure 3 shows  
the typical discharge characteristic of a 1 AH lithium cell power-  
ing the OP193, OP293, and OP493, with each amplifier, in  
turn, driving 2.1 Volts into a 100 kload.  
OP193 family amplifiers are unconditionally stable with capacitive  
loads less than 200 pF. However, the small signal, unity-gain  
overshoot will improve if a resistive load is added. For example,  
transient overshoot is 20% when driving a 1000 pF/ 10 kload.  
When driving large capacitive loads in unity-gain configurations,  
an in-the-loop compensation technique is recommended as  
illustrated in Figure 6.  
Input Overvoltage Protection  
As previously mentioned, the OP193 family of op amps use a  
PNP input stage with protection resistors in series with the  
inverting and noninverting inputs. The high breakdown of the  
PNP transistors, coupled with the protection resistors, provides  
a large amount of input protection from over voltage conditions.  
The inputs can therefore be taken 20 V beyond either supply  
without damaging the amplifier.  
4
3
2
Output Phase Reversal—OP193  
OP193  
OP493  
OP293  
The OP193’s input PNP collector-base junction can be forward-  
biased if the inputs are brought more than one diode drop (0.7 V)  
below ground. When this happens to the noninverting input, Q4  
of the cascode stage turns on and the output goes high. If the  
positive input signal can go below ground, phase reversal can be  
prevented by clamping the input to the negative supply (i.e.,  
GND) with a diode. The reverse leakage of the diode will, of  
course, add to the input bias current of the amplifier. If input bias  
current is not critical, a 1N914 will add less than 10 nA of leak-  
age. However, its leakage current will double for every 10°C  
increase in ambient temperature. For critical applications, the  
collector-base junction of a 2N3906 transistor will add only about  
10 pA of additional bias current. To limit the current through the  
diode under fault conditions, a 1 kresistor is recommended in  
series with the input. (The OP193’s internal current limiting  
resistors will not protect the external diode.)  
1
0
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
HOURS  
Figure 3. Lithium Sulfur Dioxide Cell Discharge Character-  
istic with OP193 Family and 100 kLoads  
Input Offset Voltage Nulling  
The OP193 provides two offset nulling terminals that can be  
used to adjust the OP193’s internal VOS. In general, operational  
amplifier terminals should never be used to adjust system offset  
voltages. The offset null circuit of Figure 4 provides about  
7 mV of offset adjustment range. A 100 kresistor placed in  
series with the wiper arm of the offset null potentiometer, as  
shown in Figure 5, reduces the offset adjustment range to 400 µV  
and is recommended for applications requiring high null resolu-  
tion. Offset nulling does not adversely affect TCVOS performance,  
providing that the trimming potentiometer temperature coeffi-  
cient does not exceed 100 ppm/°C.  
Output Phase Reversal—OP293 and OP493  
The OP293 and OP493 include lateral PNP transistors Q7 and  
Q8 to protect against phase reversal. If an input is brought more  
than one diode drop (0.7 V) below ground, Q7 and Q8 com-  
bine to level shift the entire cascode stage, including the bias to  
Q3 and Q4, simultaneously. In this case Q4 will not saturate  
and the output remains low.  
V+  
The OP293 and OP493 do not exhibit output phase reversal for  
inputs up to –5 V below V– at +25°C. The phase reversal limit  
at +125°C is about –3 V. If the inputs can be driven below these  
levels, an external clamp diode, as discussed in the previous  
section, should be added.  
7
2
6
OP193  
4
3
Battery-Powered Applications  
5
1
OP193 series op amps can be operated on a minimum supply  
voltage of 1.7 V, and draw only 13 µA of supply current per  
amplifier from a 2.0 V supply. In many battery-powered circuits,  
OP193 devices can be continuously operated for thousands of  
hours before requiring battery replacement, thus reducing  
equipment downtime and operating cost.  
100k  
V–  
Figure 4. Offset Nulling Circuit  
High performance portable equipment and instruments fre-  
quently use lithium cells because of their long shelf life, light  
–10–  
REV. B  
OP193/OP293/OP493  
V+  
V+  
R1  
240k  
R2  
1.5M⍀  
(2.5V TO 36V)  
7
2
3
7
C1  
1000pF  
2
6
OP193  
6
OP193  
4
V
OUT  
5
5
3
(1.23V @ 25°C)  
1
4
100k  
100k⍀  
MAT-01AH  
Q1  
6
1
3
7
5
V–  
2
Q2  
Figure 5. High Resolution Offset Nulling Circuit  
V
V
BE2  
BE1  
A Micropower False-Ground Generator  
Some single-supply circuits work best when inputs are biased  
above ground, typically at 1/2 of the supply voltage. In these  
cases a false ground can be created by using a voltage divider  
buffered by an amplifier. One such circuit is shown in Figure 6.  
V1  
R3 68k⍀  
V  
BE  
R4  
130k⍀  
R5 20k⍀  
OUTPUT  
ADJUST  
This circuit will generate a false-ground reference at 1/2 of the  
supply voltage, while drawing only about 27 µA from a 5 V supply.  
The circuit includes compensation to allow for a 1 µF bypass  
capacitor at the false-ground output. The benefit of a large  
capacitor is that not only does the false ground present a very low  
dc resistance to the load, but its ac impedance is low as well. The  
OP193 can both sink and source more than 5 mA, which improves  
recovery time from transients in the load current.  
Figure 7. A Battery-Powered Voltage Reference  
A Single-Supply Current Monitor  
Current monitoring essentially consists of amplifying the voltage  
drop across a resistor placed in series with the current to be  
measured. The difficulty is that only small voltage drops can be  
tolerated, and with low precision op amps this greatly limits the  
overall resolution. The single-supply current monitor of Figure  
8 has a resolution of 10 µA and is capable of monitoring 30 mA  
of current. This range can be adjusted by changing the current  
sense resistor R1. When measuring total system current, it may  
be necessary to include the supply current of the current moni-  
tor, which bypasses the current sense resistor, in the final result.  
This current can be measured and calibrated (together with the  
residual offset) by adjustment of the offset trim potentiometer,  
R2. This produces a deliberate temperature dependent offset.  
However, the supply current of the OP193 is also proportional  
to temperature, and the two effects tend to track. Current in R4  
and R5, which also bypasses R1, can be adjusted via a gain trim.  
5V OR 12V  
10k⍀  
0.022F  
240k⍀  
7
2
100⍀  
2.5V OR 6V  
6
OP193  
3
4
1F  
1F  
240k⍀  
Figure 6. A Micropower False-Ground Generator  
V+  
A Battery-Powered Voltage Reference  
The circuit of Figure 7 is a battery-powered voltage reference  
that draws only 17 µA of supply current. At this level, two AA  
alkaline cells can power this reference for more than 18 months.  
At an output voltage of 1.23 V @ 25°C, drift of the reference is  
only 5.5 µV/°C over the industrial temperature range. Load  
regulation is 85 µV/mA with line regulation at 120 µV/V.  
TO CIRCUIT  
UNDER TEST  
7
3
6
OP193  
I
TEST  
V
OUT =  
4
2
100mV/mA(I  
)
TEST  
5
1
Design of the reference is based on the Brokaw bandgap core  
technique. Scaling of resistors R1 and R2 produces unequal  
currents in Q1 and Q2. The resulting VBE across R3 creates a  
temperature-proportional voltage (PTAT) which, in turn, pro-  
duces a larger temperature-proportional voltage across R4 and  
R5, V1. The temperature coefficient of V1 cancels (first order)  
the complementary to absolute temperature (CTAT) coefficient  
of VBE1. When adjusted to 1.23 V @ 25°C, output voltage  
tempco is at a minimum. Bandgap references can have start-up  
problems. With no current in R1 and R2, the OP193 is beyond  
its positive input range limit and has an undefined output state.  
Shorting Pin 5 (an offset adjust pin) to ground forces the output  
high under these circumstances and ensures reliable startup  
without significantly degrading the OP193’s offset drift.  
R2  
9.9k⍀  
R2  
100k⍀  
R1  
1⍀  
R3  
100k⍀  
R5  
100⍀  
Figure 8. Single-Supply Current Monitor  
REV. B  
–11–  
OP193/OP293/OP493  
A Single-Supply Instrumentation Amplifier  
R1  
20k  
R2  
1.98M⍀  
Designing a true single-supply instrumentation amplifier with  
zero-input and zero-output operation requires special care.  
The traditional configuration, shown in Figure 9, depends upon  
amplifier A1’s output being at 0 V when the applied common-  
mode input voltage is at 0 V. Any error at the output is multiplied  
by the gain of A2. In addition, current flows through resistor R3  
as A2’s output voltage increases. A1’s output must remain at 0 V  
while sinking the current through R3, or a gain error will result.  
With a maximum output voltage of 4 V, the current through R3  
is only 2 µA, but this will still produce an appreciable error.  
5V  
R3  
20k⍀  
R4  
1.98M⍀  
V+  
A1  
1/2 OP293  
IN  
V–  
5V  
10k⍀  
5V  
Q2  
Q1  
VN2222  
V+  
A2  
V
OUT  
1/2 OP293  
R1  
20k  
R2  
1.98M⍀  
+IN  
V–  
5V  
R3  
20k⍀  
R4  
1.98M⍀  
Figure 10. An Improved Single-Supply, 0 VIN, 0 VOUT  
Instrumentation Amplifier  
V+  
A1  
1/2 OP293  
5V  
IN  
V–  
A Low-Power, Temperature to 4–20 mA Transmitter  
A simple temperature to 4–20 mA transmitter is shown in Fig-  
ure 11. After calibration, this transmitter is accurate to 0.5°C  
over the –50°C to +150°C temperature range. The transmitter  
operates from 8 V to 40 V with supply rejection better than  
3 ppm/V. One half of the OP293 is used to buffer the VTEMP  
pin, while the other half regulates the output current to satisfy  
the current summation at its noninverting input:  
I
SINK  
V+  
V
OUT  
A2  
1/2 OP293  
+IN  
V–  
Figure 9. A Conventional Instrumentation Amplifier  
One solution to this problem is to use a pull-down resistor. For  
example, if R3 = 20 k, then the pull-down resistor must be  
less than 400 . However, the pull-down resistor appears as a  
fixed load when a common-mode voltage is applied. With a 4 V  
common-mode voltage, the additional load current will be 10 mA,  
which is unacceptable in a low power application.  
VTEMP × R6 + R7  
(
)
V  
R2 + R6 + R7  
R2 × R10  
SET   
IOUT  
+
R2 × R10  
The change in output current with temperature is the derivative  
of the transfer function:  
Figure 10 shows a better solution. A1’s sink current is provided  
by a pair of N-channel FET transistors, configured as a current  
mirror. With the values shown, sink current of Q2 is about  
340 µA. Thus, with a common-mode voltage of 4 V, the addi-  
tional load current is limited to 340 µA versus 10 mA with a  
400 resistor.  
VTEMP  
R6 + R7  
(
)
IOUT  
T  
T  
R2 × R10  
=
1N4002  
V+  
8V TO 40V  
SPAN TRIM  
R6  
3k  
R4  
20k⍀  
REF-43BZ  
R7  
2
3
R2  
V
2
6
3
4
IN  
8
1/2 OP293  
4
5k⍀  
1k⍀  
V
1
TEMP  
6
R8  
1k⍀  
V
OUT  
7
2N1711  
1/2 OP293  
V
TEMP  
R3  
100k⍀  
V
R1 10k⍀  
SET  
R5  
5k⍀  
5
R9  
100k⍀  
GND  
ZERO  
TRIM  
R10  
100⍀  
1%, 1/2 W  
ALL RESISTORS 1/4W, 5% UNLESS OTHERWISE NOTED  
I
OUT  
R
LOAD  
Figure 11. Temperature to 4–20 mA Transmitter  
–12–  
REV. B  
OP193/OP293/OP493  
C1  
From the formulas, it can be seen that if the span trim is  
adjusted before the zero trim, the two trims are not interactive,  
which greatly simplifies the calibration procedure.  
5V  
75nF  
R5  
5V  
R1  
200k⍀  
200k⍀  
2
3
8
Calibration of the transmitter is simple. First, the slope of the  
output current versus temperature is calibrated by adjusting the  
span trim, R7. A couple of iterations may be required to be sure  
the slope is correct.  
V
CONTROL  
A1  
1
6
SQUARE  
OUT  
1/2 OP293  
A2  
1/2 OP293  
7
4
R2  
200k⍀  
5
R4  
R3  
100k⍀  
TRIANGLE  
OUT  
Once the span trim has been completed, the zero trim can be made.  
Remember that adjusting the zero trim will not affect the gain.  
200k⍀  
R7  
200k⍀  
R6  
200k⍀  
The zero trim can be set at any known temperature by adjusting  
R5 until the output current equals:  
R8  
200k⍀  
5V  
IFS  
OPERATING   
IOUT  
=
T
(
TMIN + 4 mA  
)
AMBIENT  
CD4066  
T  
1
2
3
4
5
6
7
IN/OUT  
OUT/IN  
OUT/IN  
IN/OUT  
CONT  
14  
V
5V  
DD  
S1  
Table I shows the values of R6 required for various temperature  
ranges.  
CONT 13  
CONT 12  
IN/OUT 11  
OUT/IN 10  
S2  
Table I. R6 Values vs. Temperature  
Temp Range  
R6  
0°C to 70°C  
–40°C to +85°C  
–55°C to +150°C  
10 kΩ  
6.2 kΩ  
3 kΩ  
S3  
S4  
CONT  
OUT/IN  
IN/OUT  
9
8
5V  
A Micropower Voltage Controlled Oscillator  
V
An OP293 in combination with an inexpensive quad CMOS  
analog switch forms the precision VCO of Figure 12. This cir-  
cuit provides triangle and square wave outputs and draws only  
50 µA from a single 5 V supply. A1 acts as an integrator; S1  
switches the charging current symmetrically to yield positive and  
negative ramps. The integrator is bounded by A2 which acts as  
a Schmitt trigger with a precise hysteresis of 1.67 volts, set by  
resistors R5, R6, and R7, and associated CMOS switches. The  
resulting output of A1 is a triangle wave with upper and lower  
levels of 3.33 and 1.67 volts. The output of A2 is a square wave  
with almost rail-to-rail swing. With the components shown,  
frequency of operation is given by the equation:  
SS  
Figure 12. Micropower Voltage Controlled Oscillator  
A Micropower, Single-Supply Quad Voltage Output 8-Bit DAC  
The circuit of Figure 13 uses the DAC8408 CMOS quad 8-bit  
DAC and the OP493 to form a single-supply quad voltage out-  
put DAC with a supply drain of only 140 µA. The DAC8408 is  
used in the voltage switching mode and each DAC has an out-  
put resistance (10 k) independent of the digital input code.  
The output amplifiers act as buffers to avoid loading the DACs.  
The 100 kresistors ensure that the OP493 outputs will swing  
to within 1/2 LSB of ground, i.e.:  
fOUT = VCONTROL V ×10 Hz / V  
but this can easily be changed by varying C1. The circuit oper-  
ates well up to 500 Hz.  
1
2
1.23 V  
256  
×
= 3 mV  
REV. B  
–13–  
OP193/OP293/OP493  
5V  
5V  
A Single-Supply Micropower Quad Programmable-Gain  
Amplifier  
3.6k  
The combination of the quad OP493 and the DAC8408 quad  
8-bit CMOS DAC creates a quad programmable-gain amplifier  
with a quiescent supply drain of only 140 µA (Figure 14). The  
digital code present at the DAC, which is easily set by a micro-  
processor, determines the ratio between the fixed DAC feedback  
resistor and the resistance that the DAC feedback ladder pre-  
sents to the op amp feedback loop. The gain of each amplifier is:  
4
5V  
AD589  
1.23V  
1
2
3
V
DD  
V
A
OUT  
A
1
I
OUT1A  
4
1/4 OP493  
DAC A  
1/4  
DAC8408  
V
REF  
A
2
11  
R1  
100k⍀  
VOUT  
VIN  
256  
=
n
I
5
6
OUT2A/2B  
6
V
B
OUT  
where n equals the decimal equivalent of the 8-bit digital code  
B
7
14  
8
1/4 OP493  
present at the DAC.  
V
REF  
B
DAC B  
1/4  
8
5
R2  
100k⍀  
I
OUT1B  
DAC8408  
If the digital code present at the DAC consists of all zeros, the  
feedback loop will be open causing the op amp to saturate. The  
10 Mresistors placed in parallel with the DAC feedback loop  
eliminates this problem with a very small reduction in gain  
accuracy. The 2.5 V reference biases the amplifiers to the center  
of the linear region providing maximum output swing.  
13  
12  
V
C
OUT  
C
I
25 OUT1C  
1/4 OP493  
DAC C  
1/4  
DAC8408  
V
REF  
C
27  
R3  
100k⍀  
I
OUT2C/2D  
24  
23  
9
V
D
OUT  
D
1/4 OP493  
DAC D  
1/4  
DAC8408  
V
REF  
D
21  
10  
R4  
100k⍀  
I
OUT1D  
OP493  
DAC DATA BUS  
PINS 9(LSB)16(MSB)  
17  
18  
19  
20  
A/B  
R/W  
DS1  
DS2  
DIGITAL  
CONTROL  
SIGNALS  
DAC8408ET  
DGND  
28  
Figure 13. Micropower Single-Supply Quad Voltage-  
Output 8-Bit DAC  
–14–  
REV. B  
OP193/OP293/OP493  
1
V
C1  
0.1F  
DD  
5V  
R
A
3
FB  
4
V
A
IN  
V
A
2
4
REF  
R1  
10M⍀  
I
OUT1A  
2
3
DAC A  
1/4  
DAC8408  
A
1
V
A
OUT  
1/4 OP493  
I
11  
OUT2A/2B  
5
8
C2  
0.1F  
R
B
7
FB  
V
B
IN  
V
B
REF  
R2  
10M⍀  
DAC B  
1/4  
DAC8408  
I
OUT1B  
6
5
6
B
7
V
B
OUT  
1/4 OP493  
C3  
0.1F  
R
C
26  
FB  
V
C
IN  
V
C
REF  
27  
25  
R3  
10M⍀  
I
OUT1C  
9
DAC C  
1/4  
DAC8408  
C
8
V
C
1/4 OP493  
OUT  
10  
I
OUT2C/2D  
24  
21  
C4  
0.1F  
R
D
22  
FB  
V
D
IN  
V
D
REF  
R4  
10M⍀  
DAC D  
1/4  
DAC8408  
I
OUT1D  
23  
13  
12  
D
14  
V
D
1/4 OP493  
OUT  
DAC DATA BUS  
PINS 9(LSB)16(MSB)  
OP493  
17  
18  
19  
20  
A/B  
R/W  
DS1  
DS2  
DIGITAL  
CONTROL  
SIGNALS  
2.5V  
REFERENCE  
VOLTAGE  
DAC8408ET  
DGND  
28  
Figure 14. Single-Supply Micropower Quad Programmable-Gain Amplifier  
REV. B  
–15–  
OP193/OP293/OP493  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Epoxy DIP  
(P Suffix)  
8-Lead SO  
(S Suffix)  
8
5
0.280 (7.11)  
0.240 (6.10)  
8
1
5
PIN 1  
0.1574 (4.00)  
0.1497 (3.80)  
1
4
PIN 1  
0.2440 (6.20)  
0.2284 (5.80)  
4
0.325 (8.25)  
0.300 (7.62)  
0.430 (10.92)  
0.348 (8.84)  
0.1968 (5.00)  
0.1890 (4.80)  
0.0196 (0.50)  
0.0099 (0.25)  
0.060 (1.52)  
0.015 (0.38)  
0.195 (4.95)  
0.115 (2.93)  
x 45°  
0.210  
(5.33)  
MAX  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
8
0
°
°
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0500  
(1.27)  
BSC  
0.0098 (0.25)  
0.0075 (0.19)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
16-Lead Wide Body SOL  
(S Suffix)  
14-Lead Epoxy DIP  
(P Suffix)  
14  
8
0.280 (7.11)  
0.240 (6.10)  
9
16  
PIN 1  
1
0.2992 (7.60)  
0.2914 (7.40)  
7
0.325 (8.25)  
0.300 (7.62)  
0.795 (20.19)  
0.725 (18.42)  
0.4193 (10.65)  
0.3937 (10.00)  
8
PIN 1  
1
0.060 (1.52)  
0.015 (0.38)  
0.195 (4.95)  
0.115 (2.93)  
0.210  
(5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
0.160 (4.06)  
0.115 (2.93)  
0.1043 (2.65)  
0.0926 (2.35)  
0.4133 (10.50)  
0.3977 (10.00)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45°  
SEATING  
PLANE  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
0.100  
(2.54)  
BSC  
0.0500 (1.27)  
0.0157 (0.40)  
8
0
°
°
0.0118 (0.30)  
0.0040 (0.10)  
0.0500 (1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0125 (0.32)  
0.0091 (0.23)  
Revision History  
Location  
Page  
Data Sheet changed from REV. A to REV. B.  
Deletion of WAFER TEST LIMITS Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Deletion of DICE CHARACTERISTICS Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
–16–  
REV. B  

相关型号:

OP196

Micropower, Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP19630000J0G

Strip Terminal Block,
AMPHENOL

OP19631000J0G

Strip Terminal Block
AMPHENOL

OP19632000J0G

Strip Terminal Block
AMPHENOL

OP196GP

Micropower, Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP196GS

Micropower, Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP196GS-REEL

IC OP-AMP, 650 uV OFFSET-MAX, 0.35 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier
ADI

OP196GS-REEL7

IC OP-AMP, 650 uV OFFSET-MAX, 0.35 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier
ADI

OP196GSZ

Micropower RRIO Operational Amplifiers
ADI

OP196GSZ-REEL

Micropower, RRIO Single Op Amp
ADI

OP196GSZ-REEL7

Micropower, RRIO Single Op Amp
ADI