OP2177CRZ [ADI]

暂无描述;
OP2177CRZ
型号: OP2177CRZ
厂家: ADI    ADI
描述:

暂无描述

运算放大器
文件: 总20页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Low Noise, Low Input  
Bias Current Operational Amplifiers  
a
OP1177/OP2177/OP4177  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Low Offset Voltage: 60 V Max  
Very Low Offset Voltage Drift: 0.7 V/؇C Max  
Low Input Bias Current: 2 nA Max  
8-Lead MSOP  
(RM-Suffix)  
8-Lead SOIC  
(R-Suffix)  
Low Noise: 8 nV/Hz  
CMRR, PSRR, and AVO > 120 dB Min  
Low Supply Current: 400 A/Amp  
Dual Supply Operation: ؎2.5 V to ؎15 V  
Unity Gain Stable  
1
8
NC  
؊IN  
؉IN  
V؊  
NC  
V+  
OUT  
NC  
NC  
؊IN  
+IN  
V؊  
NC  
V+  
1
2
3
4
8
7
6
5
OP1177  
4
5
OP1177  
OUT  
NC  
NC = NO CONNECT  
No Phase Reversal  
Inputs Internally Protected Beyond Supply Voltage  
NC = NO CONNECT  
APPLICATIONS  
Wireless Base Station Control Circuits  
Optical Network Control Circuits  
Instrumentation  
8-Lead SOIC  
(R-Suffix)  
8-Lead MSOP  
(RM-Suffix)  
Sensors and Controls  
Thermocouples  
RTDs  
Strain Bridges  
Shunt Current Measurements  
Precision Filters  
V+  
1
8
5
OUT A  
؊IN A  
؉IN A  
V؊  
OUT A  
؊IN A  
+IN A  
V؊  
V+  
1
2
3
4
8
7
6
5
OUT B  
–IN B  
+IN B  
OP2177  
OUT B  
OP2177  
4
؊IN B  
+IN B  
GENERAL DESCRIPTION  
14-Lead SOIC  
(R-Suffix)  
14-Lead TSSOP  
(RU-Suffix)  
The OPx177 family consists of very high-precision, single, dual,  
and quad amplifiers featuring extremely low offset voltage and  
drift, low input bias current, low noise, and low power con-  
sumption. Outputs are stable with capacitive loads of over  
1,000 pF with no external compensation. Supply current is less  
than 500 µA per amplifier at 30 V. Internal 500 series resis-  
tors protect the inputs, allowing input signal levels several volts  
beyond either supply without phase reversal.  
OUT A  
OUT D  
IN D  
+IN D  
V–  
+IN C  
IN C  
OUT C  
1
14  
OUT A  
1
14 OUT D  
IN A  
+IN A  
V+  
+IN B  
IN B  
؊IN D  
2
3
4
13  
12  
؊IN A  
+IN A  
V+  
OP4177  
+IN D  
OP4177  
8
11 V؊  
7
OUT B  
+IN C  
+IN B  
؊IN B  
OUT B  
5
6
7
10  
9
Unlike previous high-voltage amplifiers with very low offset voltages, the  
OP1177 and OP2177 are available in the tiny MSOP 8-lead sur-  
face-mount package, while the OP4177 is available in TSSOP14.  
Moreover, specified performance in the MSOP/TSSOP package is  
identical to performance in the SOIC package.  
؊IN C  
8
OUT C  
OPx177 family offers the widest specified temperature range of  
any high-precision amplifier in surface-mount packaging. All  
versions are fully specified for operation from –40°C to +125°C for  
the most demanding operating environments.  
and controls—thermocouple, RTD, strain-bridge, and other  
sensor signal conditioning—and precision filters.  
The OP1177 (single) and the OP2177 (dual) amplifiers are  
available in the 8-lead MSOP and 8-lead SOIC packages. The  
OP4177 (quad) is available in 14-lead narrow SOIC and 14-lead  
TSSOP packages. MSOP and TSSOP packages are available in  
tape and reel only.  
Applications for these amplifiers include precision diode power  
measurement, voltage and current level setting, and level detec-  
tion in optical and wireless transmission systems. Additional  
applications include line powered and portable instrumentation  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
(@ VS = ؎5.0 V, VCM = 0 V, TA = 25؇C, unless  
otherwise noted.)  
OP1177/OP2177/OP4177–SPECIFICATIONS  
Parameter  
Symbol  
Conditions  
Min  
Typ*  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
OP1177  
OP2177/4177  
OP1177/2177  
OP4177  
Input Bias Current  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection Ratio  
VOS  
VOS  
VOS  
VOS  
IB  
15  
15  
25  
25  
+0.5  
+0.2  
60  
75  
100  
120  
+2  
µV  
µV  
µV  
µV  
nA  
nA  
V
dB  
dB  
V/mV  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
–2  
–1  
–3.5  
120  
118  
IOS  
+1  
+3.5  
CMRR  
AVO  
VCM = –3.5 V to +3.5 V  
–40°C < TA < +125°C  
RL = 2 k, VO = –3.5 V to +3.5 V 1,000  
126  
125  
2,000  
Large Signal Voltage Gain  
Offset Voltage Drift  
OP1177/OP2177  
OP4177  
VOS/T  
VOS/T  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
0.2  
0.3  
0.7  
0.9  
µV/°C  
µV/°C  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
VOH  
VOL  
IOUT  
IL = 1 mA, –40°C < TA < +125°C +4  
IL = 1 mA, –40°C < TA < +125°C  
VDROPOUT < 1.2 V  
+4.1  
–4.1  
10  
V
V
mA  
–4  
Output Current  
POWER SUPPLY  
Power Supply Rejection Ratio  
OP1177  
PSRR  
PSRR  
ISY  
VS = 2.5 V to 15 V,  
–40°C < TA < +125°C  
VS = 2.5 V to 15 V,  
–40°C < TA < +125°C  
VO = 0 V  
120  
115  
118  
114  
130  
125  
121  
120  
400  
500  
dB  
dB  
dB  
dB  
µA  
µA  
OP2177/OP4177  
Supply Current/Amplifier  
500  
600  
–40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
SR  
GBP  
RL = 2 kΩ  
0.7  
1.3  
V/µs  
MHz  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.4  
7.9  
0.2  
µV p-p  
nV/Hz  
pA/Hz  
8.5  
Current Noise Density  
MULTIPLE AMPLIFIERS  
CHANNEL SEPARATION  
CS  
DC  
f = 100 kHz  
0.01  
–120  
µV/V  
dB  
*Typical values cover all parts within one standard deviation of the average value. Average values, given in many competitors ’ data sheets as “typical,” give unrealistically  
low estimates for parameters that can have both positive and negative values.  
Specifications subject to change without notice.  
–2–  
REV. B  
OP1177/OP2177/OP4177  
ELECTRICAL CHARACTERISTICS  
(@ VS = ؎15 V, VCM = 0 V, TA = 25؇C, unless otherwise noted.)  
Parameter  
Symbol  
Conditions  
Min  
Typ*  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
OP1177  
VOS  
VOS  
VOS  
VOS  
IB  
15  
15  
25  
25  
+0.5  
+0.2  
60  
75  
100  
120  
+2  
+1  
+13.5  
µV  
µV  
µV  
µV  
nA  
nA  
V
OP2177/OP4177  
OP1177/OP2177  
OP4177  
Input Bias Current  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection Ratio  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
–2  
–1  
–13.5  
IOS  
CMRR  
AVO  
VCM = –13.5 V to +13.5 V  
–40°C < TA < +125°C  
RL = 2 k, VO = –13.5 V to +13.5 V 1,000  
120  
125  
3,000  
dB  
V/mV  
Large Signal Voltage Gain  
Offset Voltage Drift  
OP1177/OP2177  
OP4177  
VOS/T  
VOS/T  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
0.2  
0.3  
0.7  
0.9  
µV/°C  
µV/°C  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Output Current  
Short Circuit Current  
VOH  
VOL  
IOUT  
ISC  
IL = 1 mA, –40°C < TA < +125°C +14  
IL = 1 mA, –40°C < TA < +125°C  
VDROPOUT < 1.2 V  
+14.1  
–14.1  
10  
V
V
mA  
mA  
–14  
35  
POWER SUPPLY  
Power Supply Rejection Ratio  
OP1177  
PSRR  
PSRR  
ISY  
VS = 2.5 V to 15 V,  
–40°C < TA < +125°C  
VS = 2.5 V to 15 V,  
–40°C < TA < +125°C  
VO = 0 V  
120  
115  
118  
114  
130  
125  
121  
120  
400  
500  
dB  
dB  
dB  
dB  
µA  
µA  
OP2177/OP4177  
Supply Current/Amplifier  
500  
600  
–40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
SR  
GBP  
RL = 2 kΩ  
0.7  
1.3  
V/µs  
MHz  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.4  
7.9  
0.2  
µV p-p  
nV/Hz  
pA/Hz  
8.5  
MULTIPLE AMPLIFIERS  
CHANNEL SEPARATION  
CS  
DC  
f = 100 kHz  
0.01  
–120  
µV/V  
dB  
*Typical values cover all parts within one standard deviation of the average value. Average values, given in many competitors ’ data sheets as “typical,” give unrealistically  
low estimates for parameters that can have both positive and negative values.  
Specifications subject to change without notice.  
–3–  
REV. B  
OP1177/OP2177/OP4177  
ABSOLUTE MAXIMUM RATINGS*  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VS– to VS+  
Differential Input Voltage . . . . . . . . . . . . . .  
Storage Temperature Range  
R, RM, and RU Packages . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
OP1177/OP2177/OP4177 . . . . . . . . . . . –40°C to +125°C  
Junction Temperature Range  
1
Package Type  
8-Lead MSOP (RM)2  
8-Lead SOIC (R)  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
Unit  
JA  
JC  
190  
158  
120  
240  
44  
43  
36  
43  
°C/W  
°C/W  
°C/W  
°C/W  
Supply Voltage  
NOTES  
1θJA is specified for worst-case conditions, i.e., θJA is specified for device soldered  
in circuit board for surface-mount packages.  
2MSOP is only available in tape and reel.  
R, RM, and RU Packages . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 10 sec) . . . . . . . 300°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Branding  
Information  
Model  
OP1177ARM  
OP1177AR  
OP2177ARM  
OP2177AR  
OP4177AR  
OP4177ARU  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
8-Lead MINI_SOIC  
8-Lead SOIC  
8-Lead MINI_SOIC  
8-Lead SOIC  
14-Lead SOIC  
RM-8  
SO-8  
RM-8  
SO-8  
R-14  
AZA  
B2A  
14-Lead TSSOP  
RU-14  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the OP1177/OP2177/OP4177 features proprietary ESD protection circuitry, permanent damage  
may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. B  
Typical Performance Characteristics–  
OP1177/OP2177/OP4177  
50  
90  
140  
V
SY  
= ؎15V  
V
= ؎15V  
SY  
V
SY  
= ؎15V  
45  
40  
35  
30  
25  
20  
15  
10  
5
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
0
0
10 20 30 40  
؊40 ؊30 ؊20 ؊10  
0.05 0.15 0.25 0.35  
TCV V/؇C  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7  
0.45 0.55  
INPUT OFFSETVOLTAGE V  
INPUT BIAS CURRENT nA  
OS  
TPC 3. Input Bias Current  
Distribution  
TPC 1. Input Offset Voltage  
Distribution  
TPC 2. Input Offset Voltage  
Drift Distribution  
60  
50  
40  
30  
20  
10  
0
0
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3
V
C
R
= ؎15V  
= 0  
=
SY  
V
= ؎15V  
SY  
V
= ؎15V  
= 25؇C  
SY  
L
L
T
2
1
A
45  
GAIN  
90  
0
SOURCE  
SINK  
PHASE  
؊1  
؊2  
؊3  
135  
180  
؊10  
؊20  
0.001  
0.01  
0.1  
1
10  
100k  
1M  
10M  
؊50  
0
50  
100  
150  
LOAD CURRENT mA  
FREQUENCY Hz  
TEMPERATURE ؇C  
TPC 4. Output Voltage to Supply  
Rail vs. Load Current  
TPC 5. Input Bias Current vs.  
Temperature  
TPC 6. Open-Loop Gain and  
Phase Shift vs. Frequency  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
120  
V
= ؎15V  
= 300pF  
= 2k⍀  
= 4V  
V
= ؎15V  
= 4mV p-p  
= 0  
V
= ؎15V  
= 50mV p-p  
SY  
SY  
SY  
100  
80  
C
R
V
V
V
L
L
IN  
IN  
C
R
L
L
=
IN  
A
= 1  
V
60  
A
= 10  
V
A
= 100  
= 10  
V
A
= 1  
V
40  
A
V
20  
A
= 100  
V
0
A
= 1  
V
؊20  
؊40  
؊60  
؊80  
GND  
0
100  
1k  
10k  
100k  
FREQUENCY Hz  
1M  
1k  
10k  
100k  
1M  
10M  
100M  
TIME 100s/DIV  
FREQUENCY Hz  
TPC 8. Output Impedance vs.  
Frequency  
TPC 7. Closed-Loop Gain vs.  
Frequency  
TPC 9. Large Signal Transient  
Response  
–5–  
REV. B  
OP1177/OP2177/OP4177  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= ؎15V  
= 10k⍀  
= ؊100  
V
= ؎15V  
= 1,000pF  
= 2k⍀  
= 100mV  
= 1  
V
= ؎15V  
= 2k⍀  
= 100mV p-p  
SY  
SY  
SY  
R
A
V
C
R
V
R
V
L
V
L
L
L
IN  
= 200mV  
0V  
IN  
IN  
A
V
؊15V  
OUTPUT  
+OS  
GND  
+200mV  
0V  
؊OS  
INPUT  
0
1
10  
100  
1k  
10k  
TIME 10s/DIV  
TIME 100s/DIV  
CAPACITANCE pF  
TPC 10. Small Signal Transient  
Response  
TPC 12. Positive Overvoltage  
Recovery  
TPC 11. Small Signal Overshoot vs.  
Load Capacitance  
140  
120  
100  
80  
140  
V
= ؎15V  
V
= ؎15V  
SY  
SY  
15V  
120  
100  
80  
؊PSRR  
0V  
OUTPUT  
V
= ؎15V  
= 10k⍀  
= ؊100  
SY  
+PSRR  
R
A
L
V
V
= 200mV  
IN  
60  
60  
0V  
40  
20  
0
40  
20  
0
؊200mV  
INPUT  
10  
100  
1k  
10k 100k  
1M  
10M  
10  
100  
1k  
10k 100k  
1M  
10M  
TIME 4s/DIV  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 13. Negative Overvoltage  
Recovery  
TPC 15. PSRR vs. Frequency  
TPC 14. CMRR vs. Frequency  
18  
16  
14  
35  
30  
25  
20  
15  
10  
5
V
= ؎15V  
V
= ؎15V  
SY  
SY  
V
= ؎15V  
SY  
؉I  
؊I  
SC  
12  
10  
8
SC  
6
4
2
0
؊50  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
TIME 1s/DIV  
FREQUENCY Hz  
TEMPERATURE ؇C  
TPC 16. 0.1 Hz to 10 Hz Input  
Voltage Noise  
TPC 17. Voltage Noise Density  
TPC 18. Short Circuit Current vs.  
Temperature  
–6–  
REV. B  
OP1177/OP2177/OP4177  
0.5  
0.4  
14.40  
14.35  
14.30  
14.25  
14.20  
14.15  
14.10  
14.05  
14.00  
18  
V
= ؎15V  
SY  
V = ؎15V  
SY  
V
= ؎15V  
SY  
16  
14  
12  
10  
8
0.3  
0.2  
؉V  
OH  
0.1  
؊V  
OL  
0
؊0.1  
؊0.2  
؊0.3  
؊0.4  
؊0.5  
6
4
2
0
؊50  
0
20  
40  
60  
80  
100 120 140  
؊50  
0
50  
100  
150  
0
50  
100  
150  
TIME FROM POWER SUPPLY TURN-ON Sec  
TEMPERATURE ؇C  
TEMPERATURE ؇C  
TPC 19. Output Voltage Swing vs.  
Temperature  
TPC 21. |VOS| vs. Temperature  
TPC 20. Warm-Up Drift  
133  
50  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
V =؎5V
V
= ؎15V  
SY  
SY  
V
= ؎15V  
SY  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
10 20 30 40  
؊40 ؊30 ؊20 ؊10  
؊50  
0
50  
100  
150  
؊50  
0
50  
100  
150  
INPUT OFFSETVOLTAGE V  
TEMPERATURE ؇C  
TEMPERATURE ؇C  
TPC 22. CMRR vs. Temperature  
TPC 23. PSRR vs. Temperature  
TPC 24. Input Offset Voltage  
Distribution  
1.4  
60  
50  
120  
100  
80  
V
C
R
= ؎5V  
= 0  
=
V
= ؎5V  
= 4mV p-p  
= 0  
SY  
SY  
V
= ؎5V  
= 25؇C  
SY  
V
L
L
0
IN  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
C
R
A
L
L
=
45  
40  
60  
A
= 100  
= 10  
V
90  
30  
40  
SINK  
GAIN  
A
V
135  
180  
225  
270  
20  
20  
SOURCE  
PHASE  
0
10  
A
= 1  
V
؊20  
؊40  
؊60  
؊80  
0
؊10  
؊20  
0.001  
0.01  
0.1  
1
10  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
100M  
LOAD CURRENT mA  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 25. Output Voltage to  
Supply Rail vs. Load Current  
TPC 26. Open-Loop Gain and Phase  
Shift vs. Frequency  
TPC 27. Closed-Loop Gain vs.  
Frequency  
–7–  
REV. B  
OP1177/OP2177/OP4177  
500  
V
= ؎5V  
= 50mV p-p  
V
C
R
= ؎5V  
= 300pF  
= 2k⍀  
= 1V  
SY  
SY  
V
C
R
= ؎5V  
= 1,000pF  
= 2k⍀  
= 100mV  
= 1  
SY  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
IN  
L
L
L
L
V
IN  
V
IN  
A = 1  
A
= 10  
V
A
V
V
A
= 1  
V
A
= 100  
V
GND  
GND  
0
100  
1k  
10k  
100k  
1M  
TIME 100s/DIV  
TIME 10s/DIV  
FREQUENCY Hz  
TPC 28. Output Impedance vs.  
Frequency  
TPC 29. Large Signal  
Transient Response  
TPC 30. Small Signal  
Transient Response  
50  
V
= ؎5V  
= 2k⍀  
= 100mV  
V
R
A
= ؎5V  
SY  
SY  
V
R
A
= ؎5V  
= 10k⍀  
= ؊100  
= 200mV  
SY  
45  
40  
35  
30  
25  
20  
15  
10  
5
R
V
= 10k⍀  
= ؊100  
= 200mV  
L
L
V
L
V
OUTPUT  
IN  
0V  
V
5V  
0V  
IN  
V
IN  
؊5V  
OUTPUT  
+OS  
+200mV  
0V  
0V  
؊OS  
؊200mV  
INPUT  
INPUT  
0
1
10  
100  
1k  
10k  
TIME 4s/DIV  
TIME 4s/DIV  
CAPACITANCE pF  
TPC 31. Small Signal Overshoot vs.  
Load Capacitance  
TPC 32. Positive Overvoltage  
Recovery  
TPC 33. Negative Overvoltage  
Recovery  
140  
200  
V
A
R
= ؎5V  
= 1  
= 10k⍀  
V
= ؎5V  
S
INPUT  
SY  
V
= ؎5V  
180  
160  
140  
120  
100  
80  
SY  
V
L
120  
100  
80  
؊PSRR  
GND  
60  
+PSRR  
60  
40  
20  
0
40  
20  
OUTPUT  
TIME 200s/DIV  
0
10  
100  
1k  
10k 100k  
1M  
10M  
10  
100  
1k  
10k 100k  
FREQUENCY Hz  
1M  
10M  
FREQUENCY Hz  
TPC 34. No Phase Reversal  
TPC 35. CMRR vs. Frequency  
TPC 36. PSRR vs. Frequency  
–8–  
REV. B  
OP1177/OP2177/OP4177  
18  
16  
14  
35  
V
= ؎5V  
V
= ؎5V  
SY  
SY  
V
= ؎5V  
SY  
30  
25  
20  
15  
10  
5
؉I  
SC  
SC  
12  
10  
8
؊I  
6
4
2
0
؊50  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
TIME 1s/DIV  
FREQUENCY Hz  
TEMPERATURE ؇C  
TPC 37. 0.1 Hz to 10 Hz Input Voltage  
Noise  
TPC 38. Voltage Noise Density  
TPC 39. Short Circuit Current vs.  
Temperature  
4.40  
25  
600  
500  
V
= ؎5V  
SY  
V
= ؎5V  
SY  
4.35  
4.30  
4.25  
4.20  
4.15  
4.10  
4.05  
4.00  
20  
15  
10  
5
V
= ؎15V  
SY  
؉V  
OH  
400  
300  
200  
100  
0
V
= ؎5V  
SY  
؊V  
OL  
0
؊50  
؊50  
0
50  
100  
150  
؊50  
0
50  
100  
150  
0
50  
100  
150  
TEMPERATURE ؇C  
TEMPERATURE ؇C  
TEMPERATURE ؇C  
TPC 40. Output Voltage Swing vs.  
Temperature  
TPC 41. |VOS| vs. Temperature  
TPC 42. Supply Current vs.  
Temperature  
450  
0
؊20  
T
= 25؇C  
A
400  
350  
300  
250  
200  
150  
100  
50  
؊40  
؊60  
؊80  
؊100  
؊120  
؊140  
؊160  
0
0
5
10  
15  
20  
25  
30  
35  
10  
100  
1k  
10k  
100k  
1M  
SUPPLY VOLTAGE V  
FREQUENCY Hz  
TPC 43. Supply Current vs. Supply  
Voltage  
TPC 44. Channel Separation vs.  
Frequency  
–9–  
REV. B  
OP1177/OP2177/OP4177  
FUNCTIONAL DESCRIPTION  
Where BW is the bandwidth in Hertz.  
OP1177 is the fourth generation of ADI’s industry standard OP07  
amplifier family. OP1177 is a very high-precision, low-noise opera-  
tional amplifier with the highly desirable combination of extremely  
low offset voltage and very low input bias currents. Unlike JFET  
amplifiers, the low bias and offset currents are relatively insensitive  
to ambient temperatures, even up to 125°C.  
NOTE: The above analysis is valid for frequencies larger than  
50 Hz. When considering lower frequencies, flicker noise (also  
known as 1/f noise) must be taken into account.  
For a reference on noise calculations refer to Bandpass KRC or  
Sallen-Key Filter section.  
Gain Linearity  
For the first time, Analog Devices’ proprietary process technology  
and linear design expertise have produced a high-voltage  
amplifier with superior performance to the OP07, OP77, and  
OP177 in a tiny MSOP 8-lead package. Despite its small size  
the OP1177 offers numerous improvements including low wide-  
band noise, very wide input and output voltage range, lower  
input bias current, and complete freedom from phase inversion.  
Gain linearity reduces errors in closed-loop configurations. The  
straighter the gain curve, the lower the maximum error over the  
input signal range will be. This is especially true for circuits with  
high closed-loop gains.  
The OP1177 has excellent gain linearity even with heavy loads,  
shown in Figure 1. Compare its performance to the OPA277,  
shown in Figure 2. Both devices were measured under identical  
conditions with RL = 2 k. The OP2177 (dual) has virtually no  
distortion at lower voltages. It was compared to the OPA277 at  
several supply voltages and various loads. Its performance exceeded  
that of its counterpart by far.  
OP1177 has the widest specified operating temperature range of  
any similar device in a plastic surface-mount package. This is  
increasingly important as PC board and overall system sizes  
continue to shrink, causing internal system temperatures to rise.  
Power consumption is reduced by a factor of four from the OP177  
while bandwidth and slew rate increase by a factor of two. The low  
power dissipation and very stable performance versus temperature  
also act to reduce warm-up drift errors to insignificant levels.  
V
R
= ؎15V  
= 2k⍀  
SY  
L
Open-loop gain linearity under heavy loads is superior to competitive  
parts like OPA277, improving dc accuracy and reducing distortion  
in circuits with high closed-loop gains. Inputs are internally protected  
from overvoltage conditions referenced to either supply rail.  
OP1177  
Like any high-performance amplifier, maximum performance is  
achieved by following appropriate circuit and PC board guidelines.  
The following sections provide practical advice on getting the most  
out of the OP1177 under a variety of application conditions.  
Total Noise Including Source Resistors  
The low input current noise and input bias current of the OP1177  
make it useful for circuits with substantial input source resistance.  
Input offset voltage increases by less than 1 µV max per 500 Ω  
of source resistance.  
SCALE V  
Figure 1. Gain Linearity  
V
R
= ؎15V  
= 2k⍀  
SY  
The total noise density of the OP1177 is:  
L
2
2
en  
=
en + i R  
+ 4kTRS  
(
)
n
S
, TOTAL  
Where, en is the input voltage noise density  
in is the input current noise density  
RS is the source resistance at the noninverting terminal  
k is Boltzman’s constant (1.38 10–23 J/K)  
T is the ambient temperature in Kelvin (T = 273 + °C)  
OPA277  
For RS < 3.9 k, en dominates and  
en, TOTAL en  
For 3.9 k< RS < 412 k, voltage noise of the amplifier, current  
noise of the amplifier translated through the source resistor, and  
thermal noise from the source resistor all contribute to the total  
noise.  
SCALE V  
Figure 2. Gain Linearity  
Input Overvoltage Protection  
When their input voltage exceeds the positive or negative supply  
voltage, most amplifiers require external resistors to protect them  
from damage.  
For RS > 412 k, the current noise dominates and  
en, TOTAL inRS  
The OP1177 has internal protective circuitry that allows volt-  
ages as high as 2.5 V beyond the supplies to be applied at the  
input of either terminal without any harmful effects.  
The total equivalent rms noise over a specific bandwidth is  
expressed as:  
E = e  
BW  
(
)
n
n, TOTAL  
–10–  
REV. B  
OP1177/OP2177/OP4177  
Use an additional resistor in series with the inputs if the voltage  
will exceed the supplies by more than 2.5 V. The value of the  
resistor can be determined from the formula:  
demanded by the circuit’s transfer function lies beyond the maxi-  
mum output voltage capability of the amplifier. A 10 V input  
applied to an amplifier in a closed-loop gain of 2 will demand an  
output voltage of 20 V. This is beyond the output voltage range of  
the OP1177 when operating at 15 V supplies and will force the  
output into saturation.  
V
VS  
(
)
IN  
5 mA  
RS + 500 Ω  
Recovery time is important in many applications, particularly where  
the op amp must amplify small signals in the presence of large  
transient voltages.  
With the OP1177’s low input offset current of <1 nA max, placing  
a 5 kresistor in series with both inputs adds less than 5 µV to  
input offset voltage and has a negligible impact on the overall  
noise performance of the circuit.  
R2  
100k  
V؊  
5 kwill protect the inputs to more than 27 V beyond either supply.  
Refer to the THD + N section for additional information on  
noise versus source resistance.  
R1  
4
2
3
1
V
OUT  
1k⍀  
+
Output Phase Reversal  
200mV  
؊
10k⍀  
OP1177  
7
Phase reversal is defined as a change of polarity in the amplifier  
transfer function. Many operational amplifiers exhibit phase reversal  
when the voltage applied to the input is greater than the maxi-  
mum common-mode voltage. In some instances this can cause  
permanent damage to the amplifier. In feedback loops, it can  
result in system lockups or equipment damage. The OP1177 is  
immune to phase reversal problems even at input voltages beyond  
the supplies.  
V+  
Figure 4. Test Circuit for Overload RecoveryTime  
TPC 12 shows the positive overload recovery time of the OP1177.  
The output recovers in less than 4 µs after being overdriven by  
more than 100%.  
The negative overload recovery of the OP1177 is 1.4 µs as seen  
in TPC 13.  
V
A
= ؎10V  
= 1  
SY  
V
THD + Noise  
The OP1177 has very low total harmonic distortion. This indicates  
excellent gain linearity and makes the OP1177 a great choice for  
high closed-loop gain precision circuits.  
V
IN  
V
OUT  
Figure 5 shows that the OP1177 has approximately 0.00025%  
distortion in unity gain, the worst-case configuration for distortion.  
0.1  
V
R
= ؎15V  
= 10k⍀  
SY  
L
BW = 22kHz  
0.01  
0.001  
TIME 400s/DIV  
Figure 3. No Phase Reversal  
Settling Time  
Settling time is defined as the time it takes an amplifier output  
to reach and remain within a percentage of its final value after  
application of an input pulse. It is especially important in mea-  
surement and control circuits where amplifiers buffer A/D inputs  
or DAC outputs.  
0.0001  
20  
100  
1k  
6k  
To minimize settling time in amplifier circuits, use proper bypassing  
of power supplies and an appropriate choice of circuit components.  
Resistors should be metal film types as these have less stray  
capacitance and inductance than their wire-wound counterparts.  
Capacitors should be polystyrene or polycarbonate types to  
minimize dielectric absorption.  
FREQUENCY Hz  
Figure 5. THD + N vs. Frequency  
Capacitive Load Drive  
OP1177 is inherently stable at all gains and capable of driving  
large capacitive loads without oscillation. With no external com-  
pensation, the OP1177 will safely drive capacitive loads up to  
1000 pF in any configuration. As with virtually any amplifier,  
driving larger capacitive loads in unity gain requires additional  
circuitry to assure stability.  
The leads from the power supply should be kept as short as  
possible to minimize capacitance and inductance. The OP1177  
has a settling time of about 45 µs to 0.01% (1 mV) with a 10 V  
step applied to the input in a noninverting unity gain.  
Overload Recovery Time  
In this case, a “snubber network” is used to prevent oscillation  
and reduce the amount of overshoot. A significant advantage of  
this method is that it does not reduce the output swing because  
the resistor RS is not inside the feedback loop.  
Overload recovery is defined as the time it takes the output voltage  
of an amplifier to recover from a saturated condition to its linear  
response region. A common example is where the output voltage  
REV. B  
–11–  
OP1177/OP2177/OP4177  
Figure 6 is a scope photograph of the output of the OP1177 in  
response to a 400 mV pulse. The load capacitance is 2 nF. The  
circuit is configured in positive unity gain, the worst-case condition  
for stability.  
V؊  
4
2
3
1
V
OUT  
+
400mV  
؊
Placing an R-C network, as shown in Figure 8, parallel to the  
load capacitance CL will allow the amplifier to drive higher  
values of CL without causing oscillation or excessive overshoot.  
OP1177  
R
S
7
C
L
V+  
C
S
There is no ringing and overshoot is reduced from 27% to 5%  
using the snubber network.  
Figure 8. Snubber Network Configuration  
CAUTION: The snubber technique cannot recover the loss of  
bandwidth induced by large capacitive loads.  
Optimum values for RS and CS are tabulated in Table I for several  
capacitive loads up to 200 nF. Values for other capacitive loads  
can be determined experimentally.  
Stray Input Capacitance Compensation  
The effective input capacitance in an op amp circuit, C , con-  
t
sists of three components. These are: the internal differential  
capacitance between the input terminals, the internal common  
mode capacitance of each input to ground, and the external  
capacitance including parasitic capacitance. In the circuit of  
Figure 9, the closed-loop gain increases as the signal frequency  
increases.  
Table I. Optimum Values for Capacitive Loads  
CL (nF)  
RS ()  
CS  
10  
50  
20  
30  
0.33 µF  
6.8 nF  
200  
200  
0.47 µF  
The transfer function of the circuit is:  
0
0
0
0
0
V
R
C
= ؎5V  
= 10k⍀  
= 2nF  
SY  
R2  
R1  
L
L
1+  
1+ sC R1  
(
)
t
indicating a zero at:  
R2 + R1  
R2R1Ct  
1
s =  
=
2π R1// R2 C  
(
)
t
0
GND  
Depending on the value of R1 and R2, the cutoff frequency of the  
closed-loop gain may be well below the crossover frequency. In  
this case, the phase margin, Φm, can be severely degraded resulting  
in excessive ringing or even oscillation.  
0
0
0
A simple way to overcome this problem is to insert a capacitor in  
the feedback path as shown in Figure 10.  
0
0
0
0
0
0
0
0
0
0
0
TIME 10s/DIV  
Figure 6. Capacitive Load Drive without Snubber  
The resulting pole can be positioned to adjust the phase margin.  
0
Setting Cf = (R1/R2)C , achieves a phase margin of 90°.  
t
V
= ؎5V  
= 10k⍀  
= 200⍀  
= 2nF  
SY  
R
R
C
C
L
S
L
S
0
0
0
0
R1  
R2  
= 0.47F  
V؊  
+
4
2
3
V1  
1
C
V
OUT  
t
OP1177  
7
0
GND  
V+  
0
0
0
Figure 9. Stray Input Capacitance  
C
f
0
0
0
0
0
0
0
0
0
0
0
TIME 10s/DIV  
R1  
R2  
Figure 7. Capacitive Load Drive with Snubber  
V؊  
+
4
2
3
V1  
1
C
V
OUT  
t
7
V+ OP1177  
Figure 10. Compensation Using Feedback Capacitor  
REV. B  
–12–  
OP1177/OP2177/OP4177  
Reducing Electromagnetic Interference  
A number of methods can be utilized to reduce the effects of  
EMI on amplifier circuits.  
A variation in temperature across the PC board can cause a  
mismatch in the Seebeck voltages at solder joints and other  
points where dissimilar metals are in contact, resulting in thermal  
voltage errors. To minimize these thermocouple effects, resistors  
should be oriented so heat sources warm both ends equally.  
Input signal paths should contain matching numbers and types  
of components where possible in order to match the number  
and type of thermocouple junctions. For example, dummy com-  
ponents such as zero value resistors can be used to match real  
resistors in the opposite input path. Matching components  
should be located in close proximity and should be oriented in  
the same manner. Leads should be of equal length so that ther-  
mal conduction is in equilibrium. Heat sources on the PC board  
should be kept as far away from amplifier input circuitry as  
practical.  
In one method, stray signals on either input are coupled to the  
opposite input of the amplifier. The result is that the signal is  
rejected according to the amplifier’s CMRR.  
This is usually achieved by inserting a capacitor between the inputs  
of the amplifier as shown in Figure 11. However, this method may  
also cause instability depending on the value of capacitance.  
R1  
R2  
V؊  
+
4
2
3
V1  
1
C
V
OUT  
The use of a ground plane is highly recommended. A ground  
plane reduces EMI noise and also helps to maintain a constant  
temperature across the circuit board.  
OP1177  
7
V+  
Figure 11. EMI Reduction  
Difference Amplifiers  
Difference amplifiers are used in high-accuracy circuits to improve  
the common-mode rejection ratio (CMRR).  
Placing a resistor in series with the capacitor (Figure 12) increases  
the dc loop gain and reduces the output error. Positioning the  
breakpoint (introduced by R-C) below the secondary pole of the  
op amp improves the phase margin and hence stability.  
R2  
100k  
V؊  
R can be chosen independently of C for a specific phase margin  
according to the formula  
R1  
4
2
3
V1  
V2  
1
V
OUT  
R2  
ajf2  
R2  
R1  
R =  
1+  
OP1177  
7
V+  
where a is the open-loop gain of the amplifier and f2 is the frequency  
at which the phase of a = Φm – 180°.  
R3 = R1  
R4 = R1  
R2  
R4 R2  
=
R3 R1  
V؊  
R1  
Figure 13. Difference Amplifier  
4
2
3
R
C
1
In the single amplifier instrumentation amplifier (circuit of  
Figure 13), where:  
+
V1  
V
OUT  
7
R4 R2  
=
OP1177  
V+  
R 3 R1  
Figure 12. Compensation Using Input RC Network  
R2  
R1  
VO  
=
V V  
(
)
2
1
Proper Board Layout  
The OP1177 is a high-precision device. In order to ensure optimum  
performance at the PC board level, care must be taken in the design  
of the board layout.  
a mismatch between the ratio R2/R1 and R4/R3 will cause the  
common-mode rejection ratio to be reduced. To better under-  
stand this effect, consider the following:  
To avoid leakage currents, the surface of the board should be kept  
clean and free of moisture. Coating the surface creates a barrier to  
moisture accumulation and helps reduce parasitic resistance on  
the board.  
By definition:  
ADM  
CMRR =  
ACM  
where ADM is the differential gain and ACM is the common-mode gain.  
Keeping supply traces short and properly bypassing the power  
supplies will minimize power supply disturbances due to output  
current variation, such as when driving an ac signal into a heavy  
load. Bypass capacitors should be connected as closely as pos-  
sible to the device supply pins. Stray capacitances are a concern  
at the output and the inputs of the amplifier. It is recommended  
that signal traces be kept at least 5 mm from supply lines to  
minimize coupling.  
VO  
VDIFF  
VO  
VCM  
ADM  
=
and ACM =  
1
2
VDIFF = V V2 and VCM  
=
V + V  
(
)
1
1
2
REV. B  
–13–  
OP1177/OP2177/OP4177  
In order for this circuit to act as a difference amplifier, its output  
must be proportional to the differential input signal.  
Maximum measurement accuracy requires cold junction compen-  
sation of the thermocouple as described below.  
From Figure 13,  
To perform the cold junction compensation, apply a copper  
wire short across the terminating junctions (inside the isothermal  
block) simulating a 0°C point. Adjust the output voltage to zero  
using the trimming resistor R5 and then remove the copper wire.  
R2  
1+  
   
   
R1  
R3  
R2  
R1  
VO = −  
V +  
V2  
1
The OP1177 is an ideal amplifier for thermocouple circuits since  
it has a very low offset voltage, excellent PSSR and CMRR, and  
low noise at low frequencies.  
1+  
R4  
It can be used to create a thermocouple circuit with great linearity.  
Resistors R1 and R2 and diode D1 shown in Figure 14 are  
mounted in an isothermal block.  
Arranging terms and combining the equations above yields:  
R4R1+ R 3R2 + 2R4R2  
CMRR =  
(1)  
2R4R12R2R 3  
V
CC  
The sensitivity of CMRR with respect to the R1 is obtained by  
taking the derivative of CMRR, in Equation 1, with respect to R1.  
C1  
2.2F  
R9  
200k⍀  
ADR293  
R7  
80.6k⍀  
+15V  
R3  
47k⍀  
δCMRR  
δR1  
δ   
R1R4  
2R2R4 + R2R 3   
=
+
0.1F  
10F  
10F  
D1  
δR12R1R4 2R2R 3 2R1R4 2R2R 3  
R6  
50⍀  
R2  
4.02k⍀  
D1  
TR  
R8  
1k⍀  
4
7
2
3
Cu  
δCMRR  
δR1  
1
(؊)  
1
=
V
OUT  
R5  
100⍀  
2R2R 3  
T
J
V
TC  
(
)
2 −  
OP1177  
TR  
Cu  
R1R4  
(+)  
10F  
10F  
R1  
R4  
50⍀  
50⍀  
Assuming that: R1 R2 R3 R4 R and  
R(1 – δ) < R1, R2, R3, R4 < R(1 + δ).  
The worst-case CMRR error arises when:  
ISOTHERMAL  
BLOCK  
0.1F  
؊15V  
Figure 14. Type K Thermocouple Amplifier Circuit  
Low Power Linearized RTD  
R1 = R4 = R(1 + δ) and R2 = R3 = R(1 – δ). Plugging these  
values into Equation 1 yields:  
A common application for a single element varying bridge is an  
RTD thermometer amplifier as shown in Figure 15. The excita-  
tion is delivered to the bridge by a 2.5 V reference applied at the  
top of the bridge.  
1
2δ  
CMRRMIN  
where δ is the tolerance of the resistors.  
RTDs may have thermal resistance as high as 0.5°C to 0.8°C  
per mW. In order to minimize errors due to resistor drift, the  
current through each leg of the bridge must be kept low. In this  
circuit, the amplifier supply current flows through the bridge.  
Lower tolerance value resistors result in higher common-mode  
rejection (up to the CMRR of the op amp).  
Using 5% tolerance resistors, the highest CMRR that can be  
guaranteed is 20 dB. On the other hand, using 0.1% tolerance  
resistors would result in a common-mode rejection ratio of at  
least 54 dB (assuming that the op amp CMRR 54 dB).  
However, at the OP1177 maximum supply current of 600 µA,  
the RTD dissipates less than 0.1 mW of power even at the high-  
est resistance. Errors due to power dissipation in the bridge are  
kept under 0.1°C.  
With the CMRR of OP1177 at 120 dB minimum, the resistor  
match will be the limiting factor in most circuits. A trimming  
resistor can be used to further improve resistor matching and  
CMRR of the difference amp circuit.  
Calibration of the bridge can be made at the minimum value of  
temperature to be measured by adjusting RP until the output is zero.  
To calibrate the output span, set the full-scale and linearity pots  
to midpoint and apply a 500°C temperature to the sensor or  
substitute the equivalent 500°C RTD resistance.  
A High-Accuracy Thermocouple Amplifier  
A thermocouple consists of two dissimilar metal wires placed in  
contact. The dissimilar metals produce a voltage  
Adjust the full-scale pot for a 5 V output. Finally, apply 250°C  
or the equivalent RTD resistance and adjust the linearity pot for  
2.5 V output.  
VTC = α T T  
(
)
J
R
where TJ is the temperature at the measurement of the hot junction,  
TR is the one at the cold junction, and is the Seebeck coefficient  
specific to the dissimilar metals used in the thermocouple. VTC is the  
thermocouple voltage. VTC becomes larger with increasing temperature.  
The circuit achieves better than 0.5°C accuracy after adjustment.  
–14–  
REV. B  
OP1177/OP2177/OP4177  
REALIZATION OF ACTIVE FILTERS  
+15V  
Bandpass KRC or Sallen-Key Filter  
The low offset voltage and the high CMRR of the OP1177 make  
it an excellent choice for precision filters such as the KRC filter  
shown in Figure 17. This filter type offers the capability to tune  
the gain and the cutoff frequency independently.  
0.1F  
500⍀  
200⍀  
4.37k⍀  
4.12k⍀  
100⍀  
ADR421  
؊15V  
4
6
Since the common-mode voltage into the amplifier varies with the  
input signal in the KRC filter circuit, a high CMRR is required to  
minimize distortion. Also, the low offset voltage of the OP1177 allows  
a wider dynamic range when the circuit gain is chosen to be high.  
V
OUT  
4.12k⍀  
7
5
1/2 OP2177  
8
100⍀  
20⍀  
+15V  
The circuit of Figure 17 consists of two stages. The first stage is  
a simple high-pass filter whose corner frequency fC is:  
5k⍀  
49.9k⍀  
1
100⍀  
RTD  
(2)  
؊15V  
2π C1C2R1R2  
4
2
3
1
and whose  
V
OUT  
1/2 OP2177  
8
R1  
+15V  
Q = K  
(3)  
R2  
where K is the dc gain.  
Figure 15. Low Power Linearized RTD Circuit  
Single Op Amp Bridge  
Choosing equal capacitor values minimizes the sensitivity and  
simplifies Equation 2 to:  
The low input offset voltage drift of the OP1177 makes it very  
effective for bridge amplifier circuits used in RTD signal condi-  
tioning. It is often more economical to use a single bridge op amp  
as opposed to an instrumentation amplifier.  
1
2πC R1R2  
In the circuit of Figure 16, the output voltage at the op amp is:  
The value of Q determines the peaking of the gain versus frequency  
(ringing in transient response). Commonly chosen values for Q  
are generally near unity.  
R2  
R
δ
R1  
R2  
VO  
=
VREF  
R1  
R
+ 1+  
1+ δ  
(
1
)
Q =  
Setting  
,
2
yields minimum gain peaking and minimum ringing.  
where δ = R/R is the fractional deviation of the RTD resis-  
tance with respect to the bridge resistance due to the change in  
temperature at the RTD.  
Determine values for R1 and R2 by use of Equation 3.  
1
For δ << 1, the expression above becomes:  
Q =  
For  
, R1/R2 = 2 in the circuit example. Pick R1 = 5 kΩ  
2
and R2 = 10 kfor simplicity.  
R2  
R   
δ
R2  
R1  R1  
R2  R2  
VO  
V
=
1+  
+
V
δ
REF  
  
  
  
REF  
The second stage is a low-pass filter whose corner frequency can  
be determined in a similar fashion. For R3 = R4 = R.  
R1 R1  
R   
1+  
+
R
R2  
1
1
2
C3  
C4  
With VREF constant, the output voltage is linearly proportional to  
δ with a gain factor of:  
fC =  
and Q =  
C3  
C4  
2πR  
R2   
R1  R1  
V
1+  
+
   
   
  
REF R    
R2  R2  
Channel Separation  
Multiple amplifiers on a single die are often required to reject  
any signals originating from the inputs or outputs of adjacent  
channels. OP2177 input and bias circuitry is designed to prevent  
feedthrough of signals from one amplifier channel to the other. As  
a result the OP2177 has an impressive channel separation of  
greater than –120 dB for frequencies up to 100 kHz and greater  
than –115 dB for signals up to 1 MHz.  
15V  
R
F
0.1F  
ADR421  
V؊  
R
R
R
4
2
3
V
OUT  
1
R(1+)  
7
OP1177  
V+  
R
F
Figure 16. Single Bridge Amplifier  
REV. B  
–15–  
OP1177/OP2177/OP4177  
C3  
680pF  
R2  
10k  
V؊  
V؊  
4
2
3
4
R3  
33k⍀  
R4  
33k⍀  
6
5
1
C2  
10nF  
C1  
10nF  
V
OUT  
7
1/2 OP2177  
8
1/2 OP2177  
8
+
C4  
330pF  
V1  
V+  
R1  
20k⍀  
V+  
Figure 17. Two-Stage Band-Pass Filter  
10k⍀  
SPICE Model  
The spice macro-model for the OP1177 can be downloaded from  
the Analog Devices web site at www.analog.com. This model will  
accurately simulate a number of parameters, both dc and ac.  
V؊  
V؊  
4
4
100⍀  
6
5
2
3
7
1
References on Noise Dynamics and Flicker Noise  
S. Franco, Design with Operational Amplifiers and Analog Integrated  
Circuits, McGraw-Hill 1998.  
8 1/2 OP2177  
1/2 OP2177  
+
V1  
8
V+  
V+  
50mV  
The Best of Analog Dialogue, from Analog Devices.  
Figure 18. Channel Separation Test Circuit  
–16–  
REV. B  
OP1177/OP2177/OP4177  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead MINI_SOIC  
(RM-8)  
0.122 (3.10)  
0.114 (2.90)  
8
5
4
0.122 (3.10)  
0.114 (2.90)  
0.199 (5.05)  
0.187 (4.75)  
1
PIN 1  
0.0256 (0.65) BSC  
0.120 (3.05)  
0.112 (2.84)  
0.120 (3.05)  
0.112 (2.84)  
0.043 (1.09)  
0.037 (0.94)  
0.006 (0.15)  
0.002 (0.05)  
33؇  
0.018 (0.46)  
0.008 (0.20)  
27؇  
0.028 (0.71)  
0.011 (0.28)  
0.003 (0.08)  
SEATING  
PLANE  
0.016 (0.41)  
14-Lead SOIC  
(R-14)  
0.3444 (8.75)  
0.3367 (8.55)  
14  
8
7
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
1
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.050 (1.27)  
BSC  
0.0196 (0.50)  
0.0099 (0.25)  
؋
 45؇  
8؇  
0؇  
0.0098 (0.25)  
0.0040 (0.10)  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0160 (0.41)  
0.0099 (0.25)  
0.0075 (0.19)  
REV. B  
–17–  
OP1177/OP2177/OP4177  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
14-Lead TSSOP  
(RU-14)  
0.201 (5.10)  
0.193 (4.90)  
14  
8
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
7
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
0.0256 0.0118 (0.30)  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
(0.65)  
0.0075 (0.19)  
BSC  
8-Lead SOIC  
(R-8)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
x 45°  
0.0099 (0.25)  
0.0098 (0.25)  
0.0040 (0.10)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
–18–  
REV. B  
OP1177/OP2177/OP4177  
Revision History  
Location  
Page  
Data Sheet changed from REV. A to REV. B.  
Added OP4177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Global  
Edits to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to ELECTRICAL CHARACTERISTICS headings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
11/01Data Sheet changed from REV. 0 to REV. A.  
Edit to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to TPC 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
REV. B  
–19–  
–20–  
REV. B  

相关型号:

OP21AJ

OP-AMP, 100 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, MBCY8, TO-99, 8 PIN
ROCHESTER

OP21AJ

IC OP-AMP, 100 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, MBCY8, TO-99, 8 PIN, Operational Amplifier
ADI

OP21AZ

IC OP-AMP, 100 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

OP21B102K101CG

High voltage in a given case size
WALSIN

OP21B102K101CT

High voltage in a given case size
WALSIN

OP21B102K201CG

High voltage in a given case size
WALSIN

OP21B102K201CT

High voltage in a given case size
WALSIN

OP21B102K251CG

High voltage in a given case size
WALSIN

OP21B102K251CT

High voltage in a given case size
WALSIN

OP21B102K500CG

High voltage in a given case size
WALSIN

OP21B102K500CT

High voltage in a given case size
WALSIN

OP21B102K501CG

High voltage in a given case size
WALSIN