OP220AJ/883 [ADI]

IC DUAL OP-AMP, 300 uV OFFSET-MAX, 0.2 MHz BAND WIDTH, MBCY8, TO-99, 8 PIN, Operational Amplifier;
OP220AJ/883
型号: OP220AJ/883
厂家: ADI    ADI
描述:

IC DUAL OP-AMP, 300 uV OFFSET-MAX, 0.2 MHz BAND WIDTH, MBCY8, TO-99, 8 PIN, Operational Amplifier

放大器
文件: 总12页 (文件大小:710K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Micropower  
Operational Amplifier  
a
OP220  
FEATURES  
PIN CONFIGURATIONS  
Excellent TCVOS Match: 2 V/؇C Max  
Low Input Offset Voltage: 150 V Max  
Low Supply Current: 100 A  
8-Lead Hermatic Dip  
8-Lead Plastic Dip  
(P-Suffix)  
(Z-Suffix)  
Single-Supply Operation: 5 V to 30 V  
Low Input Offset Voltage Drift: 0.75 V/؇C Max  
High Open-Loop Gain: 2,000 V/mV  
High PSRR: 3 V/V  
Low Input Bias Current: 12 nA  
Wide Common-Mode Voltage Range: V– to Within  
1.5 V of V+  
OUT A  
–IN A  
+IN A  
V–  
OUT A  
–IN A  
+IN
V–  
V+  
V+  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
OP220  
OP220  
OUT B  
OUT B  
–IN
+IN
–IN B  
+IN B  
Pin Compatible with 1458, LM158, and LM2904  
Available in Die Form  
8-Lead O
(S-Suffix)  
8-Lead TO-99  
(J-Suffix)  
GENERAL DESCRIPTION  
+IN
V
–IN A  
The OP220 is a monolithic dual operational amplifier that can  
be used either in single or dual supply operation. T he low offset  
voltage and input offset voltage tracking as low as 1.0 mV/C,  
make this the first micropower precision dual operational amplifier.  
1
8
7
6
5
OUT A  
3
4
V+  
+IN B  
–IN B  
OUT B  
T he excellent specifications of the individual amplifiers com-  
bined with the tight matching and temperature tracking between  
channels provides high performance in instrumentation am
fier designs. T he individual amplifiers feature extremel
input offset voltage, low offset voltage drift, low nois
and low bias current. They are fully compensated and
Matching between channels is provided on all cical pa
including input offset voltage, tracking of set voltage ver
temperature, noninverting bias currents, d commode  
rejection ratios.  
V+  
Q11  
Q28  
Q12  
Q2  
Q26  
OUTPUT  
Q9  
Q10  
Q27  
Q8  
Q7  
Q29  
Q6  
Q5  
Q13  
NULL*  
Q33  
V–  
*ACESSIBLE IN CHIP FORM ONLY  
Figure 1. Simplified Schematic  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
OP220–SPECIFICATIONS  
؇
(@ V = ؎2.5 V to ؎15 V, T = 25 C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
S
A
OP220A/E  
Typ  
OP220F  
Typ  
OP220C/G  
Typ Max Unit  
Parameter  
Symbol  
Conditions  
VS = ±2.5 V to ±15 V  
VCM = 0  
Min  
Max  
150  
1.5  
Min  
Max  
300  
2
Min  
Input Offset Voltage VOS  
Input Offset Current IOS  
120  
0.15  
12  
250  
0.2  
13  
500  
0.2  
14  
750  
3.5  
30  
mV  
nA  
nA  
Input Bias Current  
IB  
VCM = 0  
20  
25  
Input Voltage Range IVR  
V+ = 5 V, V– = 0 V  
VS = ±15 V  
0/3.5  
–15/+13.5  
0/3.5  
–15/+13.5  
0/3.5  
–15/+13.5  
V
V
Common-Mode  
Rejection Ratio  
CMRR  
V+ = 5 V, V– = 0 V  
0 V £ VCM £ 3.5 V  
VS = ±15 V  
90  
95  
100  
85  
90  
90  
75  
80  
85  
dB  
dB  
100  
95  
90  
–15 V £ VCM £ +13.5 V  
Power Supply  
Rejection Ratio  
PSRR  
AVO  
VS = ±2.5 V to ±15 V,  
3
6
10  
18  
10  
18  
32  
57  
32  
100  
180  
mV/V  
mV/V  
V– = 0 V, V+ = 5 V to 30 V  
Large-Signal  
Voltage Gain  
V+ = 5 V, V– = 0 V,  
RL = 100 kW,  
1 V £ VO £ 3.5 V  
VS = ±15 V, RL = 25 kW  
VO = ±10 V  
500  
1,000  
500  
0  
300  
800  
500  
V/mV  
1,000  
2,000  
10  
2,000  
1,600  
V/mV  
V
Output Voltage  
Swing  
VO  
V+ = 5 V, V– = 0 V  
RL = 10 kW  
VS = ±15 V, RL = 25 kW  
0.7/4  
.7/4  
0.8/4  
±14  
±1
±14  
V
Slew Rate*  
SR  
BW  
ISY  
RL =25 kW  
0
200  
0.05  
200  
0.05  
200  
V/ms  
kHz  
Bandwidth  
AVCL = 1, RL =25 kW  
Supply Current  
(Both Amplifiers)  
VS = ±2.5 V, No Load  
VS = ±15 V, No Load  
11
170  
115  
150  
125  
190  
125  
205  
135  
220  
mA  
mA  
*Sample tested.  
؇
؇
؇
؇
(؎2.5 V 55 C £ T £ +125 C for OP220A/C, 25 C £ T £ +85 C for OP220E/F,  
A
A
؇
ELECTRICAL CHARACTERISTICS  
–40 C £ T £ +85 C for OP220G unless otherwise noted.)  
A
OP220A/E  
Typ  
OP220F  
Typ  
OP220C/G  
Typ  
Parameter  
Symbol  
Conditins  
n  
Max  
Min  
Max  
Min  
Max Unit  
mV/C  
Input Offset Voltage T CVOS  
Drift*  
V
0.75  
1.5  
1.2  
2
2
3
Input Offset Voltage VOS  
Input Offset Current IO
200  
0.5  
12  
300  
2
400  
0.6  
13  
500  
2.5  
30  
1,000 1,300 mV  
M =
= 0  
0.6  
14  
5
nA  
nA  
Input Bias Current  
25  
40  
Input Voltage Range 
5 V, V– = 0 V  
±15 V  
0/3.2  
–15/+13.2  
0/3.2  
–15/+13.2  
0/3.2  
–15/+13.2  
V
V
Common-Mode  
Rejection Ratio  
CMRR  
V+ = 5 V, V– = 0 V  
0 V £ VCM £ 3.2 V  
VS = ±15 V  
86  
90  
90  
80  
85  
85  
70  
75  
80  
dB  
dB  
95  
90  
85  
–15 V £ VCM £ +13.2 V  
Power Supply  
Rejection Ratio  
PSRR  
AVO  
VO  
VS = ±2.5 V to ±15 V,  
6
10  
18  
32  
18  
32  
57  
100  
57  
100  
180  
320  
mV/V  
mV/V  
V– = 0 V, V+ = 5 V to 30 V  
Large-Signal  
Voltage Gain  
VS = ±15 V, RL = 50 kW  
VO = ±10 V  
500  
1,000  
500  
800  
400  
500  
V/mV  
Output Voltage  
Swing  
V+ = 5 V, V– = 0 V  
RL = 20 kW  
VS = ±15 V, RL = 50 kW  
0.9/3.8  
0.9/3.8  
1.0/3.8  
V
V
±13.6  
±13.6  
±13.6  
Supply Current  
(Both Amplifiers)  
ISY  
VS = ±2.5 V, No Load  
VS = ±15 V, No Load  
135  
190  
170  
250  
155  
200  
185  
280  
170  
275  
210  
330  
mA  
mA  
*Sample tested.  
–2–  
REV. A  
OP220  
؇
MATCHING CHARACTERISTICS (@ V = ؎15 V, T = 25 C, unless otherwise noted.)  
S
A
OP220A/E  
Typ  
OP220F  
Typ  
OP220C/G  
Typ  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
Max  
Min  
Max Unit  
Input Offset Voltage  
Match  
DVOS  
150  
300  
250  
15  
1
500  
300  
800  
mV  
Average Noninverting  
Bias Current  
IB+  
VCM = 0  
VCM = 0  
10  
20  
25  
2
20  
30  
nA  
Noninverting Offset  
Current  
IOS  
+
0.7  
100  
6
1.5  
1.4  
85  
2.5  
nA  
Common-Mode  
DCMRR  
DPSRR  
VCM = –15 V to +13.5 V  
92  
87  
95  
18  
72  
dB  
Rejection Ratio Match1  
Power Supply  
Rejection Ratio Match2  
VS = ±2.5 V to ±15 V,  
14  
4  
57  
140  
mV/V  
NOT ES  
1DCMRR is 20 log10 VCM/DCME, where VCM is the voltage applied to both noninverting inputs and DCME is ifference in coode input-referred error.  
Input Referred Differential Error  
2DPSRR is  
.
DVS  
3Sample tested.  
؇
؇
؇
؇
MATCHING CHARACTERISTICS (V = ؎15 V, 55 C £ T £ +C for 220A/C, 25 C £ T £ +85 C for OP220E/F,  
s
A
A
؇
؇
–40 C £ T £ +85 C for OP220ns otherwe noted. Grades E, F are sample tested.)  
A
OP220A/E  
Typ  
OP220F  
Typ  
OP220C/G  
Typ  
Parameter  
Symbol  
Conditions  
Min  
Max  
M
Max  
Min  
Max Unit  
Input Offset Voltage  
Match  
DVOS  
500  
400  
1.5  
15  
800  
800  
1.5  
22  
1,800 mV  
Input Offset Voltage  
T racking1  
T CDVOS  
IB+  
3
5
mV/C  
nA  
Average Noninverting  
Bias Current  
VCM = 0  
VCM =
0  
15  
25  
25  
30  
30  
40  
50  
Average Drift of  
Noninverting  
Bias Current1  
T CIB+  
15  
30  
pA/C  
Noninverting Offset  
Current  
IOS  
+
0  
0.7  
7
2
1
2.5  
2.5  
15  
5
nA  
Average Drift of  
Noninverting Offset  
Current1  
T CIO
15  
12  
22.5  
30  
pA/C  
Common-Mode  
VCM = –15 V to +13 V  
87  
96  
10  
82  
96  
30  
72  
80  
57  
dB  
Rejection Ratio M
Power Supply  
Rejection Ratio Matc
VS = ±2.5 V to ±15 V,  
26  
78  
250  
mV/V  
NOT ES  
1Sample tested.  
2DCMRR is 20 log10 VCM/DCME, where VCM is the voltage applied to both noninverting inputs and DCME is the difference in common-mode input-referred error.  
Input Referred Differential Error  
3DPSRR is  
.
DVS  
؇
TYPICAL ELECTRICAL CHARACTERISTICS (@ V = ؎15 V, T = 25 C, unless otherwise noted.)  
s
A
OP220N  
Typical  
Parameter  
Symbol  
T CVOS  
AVO  
Conditions  
Unit  
Average Input Offset Voltage Drift  
Large-Signal Voltage Gain  
1.5  
mV/C  
V/mV  
RL = 25 kW  
2000  
–3–  
REV. A  
OP220–SPECIFICATIONS  
ABSO LUTE MAXIMUM RATINGS *  
P ackage Type  
*
Unit  
C/W  
C/W  
C/W  
C/W  
JA  
JC  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Differential Input Voltage . . . . . . . . . . 30 V or Supply Voltage  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage  
8-Lead Hermetic DIP (Q)  
8-Lead Plastic DIP (N)  
8-Lead SOL (RN)  
T O-99 (H)  
148  
103  
158  
150  
16  
43  
43  
18  
Output Short-Circuit Duration  
Indefinite  
Storage T emperature Range . . . . . . . . . . . . –65C to +150C  
Junction T emperature (Ti) . . . . . . . . . . . . . –65C to +150C  
Operating T emperature Range  
*JA is specified for worst-case mounting conditions, i.e., JA is specified for device  
in socket for CERDIP and PDIP packages; JA is specified for device soldered to  
printed circuit board for SO packages.  
OP220A/OP220C . . . . . . . . . . . . . . . . . . –55C to +125C  
OP220E/OP220F . . . . . . . . . . . . . . . . . . . . –25C to +85C  
OP220G . . . . . . . . . . . . . . . . . . . . . . . . . . . –40C to +85C  
Lead T emperature Range (Soldering, 60 sec) . . . . . . . . 300C  
O RD ERING GID E  
NOT ES  
*Absolute Maximum Ratings apply to packaged parts, unless otherwise noted.  
TA = 25C  
O S MAX  
(m V)  
P ackagO ption
O per ating  
Tem per atur e  
V
D IE CH ARACTERISTICS  
CERD IP  
P stic  
TO -99 Range  
150  
150  
300  
750  
750  
750  
OP220AZ*  
OP220E*  
OP220FZ*  
MIL  
IND  
IND  
1. INVERTING INPUT (A)  
2. NONINVERTING INPUT (A)  
3. BALANCE (A)  
4. V–  
OP22* MIL  
5. BALANCE (B)  
6. NONINVERTING INPUT (B)  
7. INVERTING INPUT (B)  
8. BALANCE (B)  
9. V+  
P220G* OP220GP*  
XIND  
XIND  
OP220GS  
10. OUT (B)  
11. V+  
For military prssed vices, please refer to the Mil Standard  
Data Sheet  
12. OUT (A)  
13. V+  
14. BALANCE (A)  
220AJ/883*.  
*Nr new desigObsolete April 2002.  
DIE SIZE 0.097 INCH 
؋
 0.063 INCH, 6111 SQ. MILS  
(2.464 mm 
؋
 1.600 mm, 3.94 SQ. mm)  
NOTE : ALLV+ PADS ARE INTERNALL CONNECTED  
(@ V = ؎2.5 V, to ؎15 V, T = 2wise noted.)  
WAFER TEST LIMITS  
S
A
O P 220N  
P aram eter  
Sym bol  
VOS  
Condit
Lim it  
Unit  
Input Offset Voltage  
Input Offset Voltage Match  
Input Offset Current  
Input Bias Current  
Input Voltage Range  
200  
mV Max  
mV Max  
nA Max  
nA Max  
V Min  
VO
I
300  
M = 0  
2
IB  
M = 0  
25  
VS = ±15 V  
–15/13.5  
Common-Mode  
Rejection Ratio  
R  
V– = 0 V, V+ = 5 V, 0 V £ VCM £ 3.5 V  
–15 V £ VCM £ 13.5 V, VS = ±15 V  
88  
93  
dB Min  
Power Supply  
Rejection Ratio  
R  
AVO  
VO  
VS = ±2.5 V to ±15 V  
12.5  
22.5  
mV/V Max  
V/mV Min  
V Min  
V– = 0 V, V+ = 5 V to 30 V  
Large-Signal  
Voltage Gain  
RL = 25 kW, VS = ±15 V  
VO = ±10 V  
1000  
Output Voltage Swing  
V+ = 5 V, V– = 0 V, RL = 10 kW  
VS = ±15 V, RL = 25 kW  
0.7/4  
±14  
Supply Current  
(Both Amplifiers)  
ISY  
VS = ±2.5 V, No Load  
VS = ±15 V, No Load  
125  
190  
mA Max  
NOT E  
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packing is not guaranteed  
for standard product dice. Consult factory to negotiate specifications based on die lot qualification through sample lot assembly and testing.  
–4–  
REV. A  
Typical Performance Characteristics–OP220  
150  
100  
50  
14  
V
S
= 15V  
V
S
= 15V  
12  
10  
8
0
6
–50  
–100  
–150  
4
2
0
–100  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
100  
150  
TEMPERATURE – ؇C  
PERAT؇C  
TPC 1. Normalized Offset Voltage vs. Temperature  
TPC 4. Inpuias Cnt vs. mperature  
80  
700  
0  
400  
300  
0  
100  
0
T
A
= 25؇C  
= 15V  
S
60  
40  
20  
0
–20  
–40  
–60  
0
4
8
12  
–100  
–50  
0
50  
100  
150  
POWER SUPPLYVOLTAGV  
TEMPERATURE – ؇C  
TPC 2. Input Offset Voltage vs. Powr Sly tage  
TPC 5. Input Offset Current vs. Temperature  
110  
200  
180  
V
S
= 15V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 125؇C  
= 25؇C  
A
10H
160  
140  
120  
100  
80  
0Hz  
1kHz  
T
A
T
A
= –55؇C  
60  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
0
2.5  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
TEMPERATURE – ؇C  
SUPPLYVOLTAGE V  
TPC 6. Supply Current vs. Supply Voltage  
TPC 3. Open-Loop Gain vs. Temperature  
–5–  
REV. A  
OP220  
120  
160  
140  
120  
100  
80  
0
T
V
= 25؇C  
= 15V  
A
T
V
= 25؇C  
= 15V  
A
S
S
100  
80  
60  
40  
20  
0
45  
GAIN  
PHASE  
90  
60  
40  
135  
180  
m = 53؇  
20  
0
0.01  
0.1  
1
10  
100  
1k  
0.01  
0.1  
1
10  
0  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
FRNCY –
TPC 7. CMRR vs. Frequency  
TPC 10. Open-Loop Volte Gand Phavs. Frequency  
130  
120  
110  
100  
90  
36  
T
؇C  
15V  
A
T
V
= 25؇C  
= 15V  
A
32  
28  
24  
20  
16  
12  
S
+PSRR  
80  
70  
–PSRR  
60  
50  
4
40  
0
1
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 8. PSRR vs. Frequen
TPC 11. Maximum Output Swing vs. Frequency  
17  
15  
0.09  
0.08  
0.07  
T
A
= 25؇C  
V
=
15V  
5V  
S
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
V
=
S
10  
5
V
= 5V  
S
0
1
10  
LOAD RESISTANCE – k⍀  
100  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
TEMERATURE – ؇C  
TPC 9. Maximum Output Voltage vs. Load Resistance  
TPC 12. Slew Rate vs. Temperature  
–6–  
REV. A  
OP220  
1,000  
100  
10  
10  
1
0.1  
0.01  
0.1  
1
10  
100  
1k  
0.1  
1
10  
100  
1k  
FREQUENCY – Hz  
REQUE– Hz  
TPC 13. Voltage Noise Density vs. Frequency  
TPC 14. Nise Dty vs. Fquency  
–7–  
REV. A  
OP220  
R0  
2s  
50mV  
GAIN  
ADJ  
100  
90  
R1  
R2  
A1  
V1  
R4  
V
– 1/2V  
+ 1/2V  
CM  
D
10  
1/2  
OP220  
R3  
0%  
V
D
20mV  
A2  
V
O
+
V
CM  
D
1/2  
OP220  
INPUT  
OUTPUT  
È
˘
R4  
R3  
1 Ê R2 R3ˆ + R3  
R4 Ê R3 R2ˆ  
OP220  
VO  
=
1 +  
+
+
VD  
+
-
V
CM  
Á
˜
Á
˜
Í
Ë
¯
Ë
¯
2
R1 R4  
RR4 R1  
Î
˚
25k⍀  
100pF  
Ê
Ë
R1
If R1 = R2 = R3 = R4VO = 2 1 +  
V
Á
D
¯
R
Figure 2. Small-Signal Transient Response  
Figure 4. wo Op Amp trumentation Amplifier  
Configution  
2V  
200s  
T he input ltagere represented as a common-mode input  
100  
90  
VCM plus a dntial inpVD. T he ratio R3/R4 is made equal  
to the ratio R2/o ret the common-mode input VCM. T he  
ifferential signal s then amplified according to:  
ˆ
R
3  
R3 R2 + R3  
R3 R2  
V , where =  
D
=
1 +  
+
Á
Ë
˜
¯
R4  
RO  
R4 R1  
10  
0%  
that gain can be independently varied by adjusting RO.  
considerations of dynamic range, resistor tempco match-  
and matching of amplifier response, it is generally best to  
make RX, R2, R3, and R4 approximately equal. Designating  
R1, R2, R3, and R4 as RN allows the output equation to be  
further simplified:  
5V  
INPUT  
UT  
OP220  
Ê
Ë
ˆ
RN  
RO  
C
L
0pF  
VO = 2 1 +  
V , whereR = R1 = R2 = R3 = R4  
D N  
Á
˜
¯
40k⍀  
10k⍀  
Dynamic range is limited by A1 as well as A2; the output of A1 is:  
Ê
Ë
ˆ
RN  
RO  
Figure 3. Tranent Response  
V1 = - 1 +  
V + 2 VCM  
D
Á
˜
¯
INSTRUMENTATIOAPPLICATIONS OF  
THE OP220  
Two Op Amp Configuration  
The excellent input characteristics of the OP220 make it ideal for  
use in instrumentation amplifier configurations where low-level  
differential signals are to be amplified. T he low-noise, low input  
offsets, low drift, and high gain combined with excellent CMRR  
provide the characteristics needed for high-performance instru-  
mentation amplifiers. In addition, the power supply current  
drain is very low.  
If the instrumentation amplifier were designed for a gain of 10  
and maximum VD of ±1 V, then RN/RO would need to be four  
and VO would be a maximum of ±10 V. Amplifier A1 would  
have a maximum output of ±5 V plus 2 VCM, thus a limit of  
±10 V on the output of A1 would imply a limit of ±2.5 V on VCM  
.
A nominal value of 100 kW for RN is suitable for most applica-  
tions. A range of 200 W to 25 kW for RO will then provide a gain  
range of 10 to 1,000. T he current through RO is VD/RO, so the  
amplifiers must supply ±10 mV/200 W when the gain is at the  
maximum value of 1,000 and VD is at ±10 mV.  
T he circuit of Figure 4 is recommended for applications where  
the common-mode input range is relatively low and differential  
gain will be in the range of 10 to 1,000. This two op amp instrumen-  
tation amplifier features independent adjustment of common-mode  
rejection and differential gain. Input impedance is very high since  
both inputs are applied to noninverting op amp inputs.  
Rejecting common-mode inputs is most important in accurately  
amplifying low-level differential signals. T wo factors determine  
the CMR of this instrumentation amplifier configuration (assuming  
infinite gain):  
1. CMRR of the op amps  
2. Matching of the resistor network (R3/R4 = R2/R1)  
–8–  
REV. A  
OP220  
In this instrumentation amplifier configuration, error due to  
CMRR effect is directly proportional to the differential CMRR  
of the op amps. For the OP220A/E, this combined CMRR is a  
minimum of 98 dB. A combined CMRR value of 100 dB and  
common-mode input range of ±2.5 V indicates a peak input-  
referred error of only ±25 mV.  
THREE OP AMP CONFIGURATION  
A three op amp instrumentation amplifier configuration using  
the OP220 and OP777 is recommended for applications requiring  
high accuracy over a wide gain range. T his circuit provides  
excellent CMR over a wide input range. As with the two op amp  
instrumentation amplifier circuits, tight matching of the two op  
amps provides a real boost in performance.  
Resistor matching is the other factor affecting CMRR. Defining  
Ad as the differential gain of the instrumentation amplifier and  
assuming that R1, R2, R3 and R4 are approximately equal (RN  
will be the nominal value), then CMRR will be approximately  
AD divided by 4DR/RN. CMRR at differential gain of 100 would  
be 88 dB with resistor matching of 0.1%. T rimming R1 to make  
the ratio R3/R4 equal to R2/R1 will directly raise the CMRR  
until it is limited by linearity and resistor stability considerations.  
R1  
2R1  
V
O
=V 1 +  
D
R0  
R2  
V+  
R2  
A1  
V1  
V
CM  
– 1/2V  
D
1/2  
OP220  
OP777  
R0  
A3  
V
O
R
T he high open-loop gain of the OP220 is very important in  
achieving high accuracy in the two-op-amp instrumentation  
amplifier configuration. Gain error can be approximated by:  
V
D
V+  
–  
V–  
A2  
V
CM  
+ 1/2V  
D
V2  
1
AD  
AD  
R2  
1/2  
OP22
Gain Error =  
,
< 1  
2A01A02  
1 +  
A02  
Figu5. The Op Amp Instrumentation Amplifier Using  
OP22nOP777  
where AD is the instrumentation amplifier differential gain and  
A02 is the open-loop gain of op amp A2. T his analysis assumes  
equal values of R1, R2, R3, and R4. For example, consider an  
OP220 with A02 of 700 V/mV. If the differential gain AD were  
set to 700, the gain error would be 1/1.001 which is approxi-  
mately 0.1%.  
A simplifiechemic is shown in Figure 2. T he input stage  
(A1 and A2) ss to amplify the differential input VD without  
amplifying the common-mode voltage VCM. T he output stage  
en rejecthe common-mode input. With ideal op amps and  
no sisr matching errors, the outputs of each amplifier will be:  
Another effect of finite op amp gain is undesired feed
common-mode input. Defining A01 as the open-loop
amp A1, then the common-mode error (CME) at the
due to this effect will be approximately:  
Ê
ˆ
¯
2R1 VD  
V1 = - 1 +  
+VCM  
+VCM  
Á
˜
RO  
2
Ë
Ê
ˆ
2R1 VD  
V2 = 1 +  
Á
˜
2AD  
1
RO  
2
Ë
¯
CME =  
V
AD  
A01  
1 +  
Ê
ˆ
2R1  
VO =V2 -V1 = 1 +  
V
D
Á
˜
¯
RO  
Ë
For AD/A01, < 1, this simplϫ VCM. If the op  
amp gain is 700 V/mV, VCM is s set to 700, then  
the error at the output this efapproximately 5 mV.  
VO = ADVD  
T he differential gain AD is 1 + 2R1/RO and the common-mode  
input VCM is rejected.  
T he OP220 offerbinatn of excellent dc perfor-  
mance, wide inpsupply current drain that is  
particularly attracentation amplifier design.  
This three op amp instrumentation amplifier configuration using an  
OP220 at the input and an OP777 at the output provides excellent  
performance over a wide gain range with very low power consump-  
tion. A gain range of 1 to 2,000 is practical and CMR of over  
120 dB is readily achievable.  
REV. A  
–9–  
OP220  
OUTLINE DIMENSIONS  
8-Lead Ceramic DIP – Glass Hermatic Seal [CERDIP]  
8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(Q-8)  
Dimensions shown in inches and (millimeters)  
(RN-8)  
Dimensions shown in millimeters and (inches)  
0.005 (0.13) 0.055 (1.40)  
5.00 (0.1968)  
4.80 (0.1890)  
MIN  
MAX  
8
5
8
1
5
4
0.310 (7.87)  
0.220 (5.59)  
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
PIN 1  
1
4
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.50 (0.0196)  
5 (0.0099)  
1.27 (0.0500)  
BSC  
؋
 45؇  
1.75 (8
1.35 (0.0
0.060 (1.52)  
0.015 (0.38)  
0.25 (0.0098)  
0.10 (0.0040)  
0.200 (5.08)  
MAX  
8؇  
0.0201)  
0.33 30)  
0.150 (3.81)  
0.200 (5.08)  
0.125 (3.18)  
0؇ 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.19 (0.0075)  
MIN  
SEATING  
ANE  
0.41 (0.0160)  
0.015 (0.38)  
0.008 (0.20)  
0.023 (0.58)  
0.014 (0.36)  
SEATING  
PLANE  
15  
0
0.070 (1.78)  
0.030 (0.76)  
MPLIANT TO JEDEC STARDS MS-012AA  
CONTRONG DIMEONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PAHESESE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFEREONND ARE NOT APPROPRIATE FOR USE IN DESIGN  
CONTROLLING DIMENSIONS ARE IN INCH; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
8-Lead Plastic Dual-in-Line Package [PDIP]  
(N-8)  
8-Lead Metal Can [TO-99]  
(H-08)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in inches and (millimeters)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
REFERENCE PLANE  
0.5000 (12.70)  
MIN  
0.1850 (4.70)  
0.2500 (6.35) MIN  
0.1650 (4.19)  
8
5
0.1000 (2.54) BSC  
5
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
0.1600 (4.06)  
0.1400 (3.56)  
0.0500 (1.27) MAX  
1
4
0.325 (8.26)  
(7.87)  
7.62)  
6
4
0.0450 (1.14)  
0.0270 (0.69)  
0.2000  
(5.08)  
BSC  
0.100 (2.54)  
BSC  
1)  
0.135 (3.43)  
0.120 (3.05)  
3
7
0.015  
(0.38)  
MIN  
2
0.180  
(4.57)  
MAX  
8
1
0.1000  
(2.54)  
BSC  
0.0190 (0.48)  
0.0160 (0.41)  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.0340 (0.86)  
0.0280 (0.71)  
0.0400 (1.02) MAX  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.0210 (0.53)  
0.0160 (0.41)  
0.0400 (1.02)  
0.0100 (0.25)  
45 BSC  
BASE & SEATING PLANE  
COMPLIANT TO JEDEC STANDARDS MO-002AK  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES)  
–10–  
REV. A  
OP220  
Revision History  
Location  
Page  
10/02—Data Sheet changed from REV. 0 to REV. A.  
Edits to TYPICAL ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Change to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
REV. A  
–11–  
–12–  

相关型号:

OP220AJ/883C

IC DUAL OP-AMP, 300 uV OFFSET-MAX, 0.2 MHz BAND WIDTH, MBCY8, TO-99, 8 PIN, Operational Amplifier
ADI

OP220AY

Operational Amplifier, 2 Func, 300uV Offset-Max, BIPolar, CDIP14,
ADI

OP220AY/883

Operational Amplifier, 2 Func, 300uV Offset-Max, BIPolar, CDIP14,
ADI

OP220AZ

Dual Micropower Operational Amplifier
ADI

OP220AZ/883

Operational Amplifier, 2 Func, 300uV Offset-Max, BIPolar, CDIP8,
ADI

OP220BIGJ

IC DUAL OP-AMP, 1300 uV OFFSET-MAX, 0.2 MHz BAND WIDTH, MBCY8, TO-99, 8 PIN, Operational Amplifier
ADI

OP220BIGP

IC DUAL OP-AMP, 1300 uV OFFSET-MAX, 0.2 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier
ADI

OP220BIGS

IC DUAL OP-AMP, 1300 uV OFFSET-MAX, 0.2 MHz BAND WIDTH, PDSO8, PLASTIC, SO-8, Operational Amplifier
ADI

OP220BIGZ

DUAL OP-AMP, 1300 uV OFFSET-MAX, 0.2 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8
ROCHESTER

OP220BJ

Operational Amplifier
ETC

OP220BJ/883

Operational Amplifier, 2 Func, 500uV Offset-Max, BIPolar, MBCY8,
ADI

OP220BY/883

Operational Amplifier, 2 Func, 500uV Offset-Max, BIPolar, CDIP14,
ADI