OP27GS-REEL7 [ADI]

Low Noise, Precision Operational Amplifier; 低噪声,精密运算放大器
OP27GS-REEL7
型号: OP27GS-REEL7
厂家: ADI    ADI
描述:

Low Noise, Precision Operational Amplifier
低噪声,精密运算放大器

运算放大器 放大器电路 光电二极管
文件: 总20页 (文件大小:420K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise, Precision  
Operational Amplifier  
OP27  
FEATURES  
PIN CONFIGURATIONS  
Low noise: 80 nV p-p (0.1 Hz to 10 Hz), 3 nV/√Hz  
Low drift: 0.2 μV/°C  
High speed: 2.8 V/μs slew rate, 8 MHz gain bandwidth  
Low VOS: 10 μV  
BAL  
V+  
BAL 1  
OP27  
OUT  
–IN 2  
Excellent CMRR: 126 dB at VCM of 11 V  
High open-loop gain: 1.8 million  
Fits OP07, 5534A sockets  
NC  
+IN 3  
4V– (CASE)  
NC = NO CONNECT  
Available in die form  
Figure 1. 8-Lead TO-99 (J-Suffix)  
GENERAL DESCRIPTION  
1
2
3
4
8
7
6
5
V
TRIM  
V
TRIM  
–IN  
+IN  
V–  
OS  
OS  
OP27  
The OP27 precision operational amplifier combines the low  
offset and drift of the OP07 with both high speed and low noise.  
Offsets down to 25 μV and maximum drift of 0.6 μV/°C make  
the OP27 ideal for precision instrumentation applications.  
Exceptionally low noise, en = 3.5 nV/√Hz, at 10 Hz, a low 1/f  
noise corner frequency of 2.7 Hz, and high gain (1.8 million),  
allow accurate high-gain amplification of low-level signals.  
A gain-bandwidth product of 8 MHz and a 2.8 V/μs slew rate  
provide excellent dynamic accuracy in high speed, data-  
acquisition systems.  
V+  
OUT  
NC  
NC = NO CONNECT  
Figure 2. 8-Lead CERDIP – Glass Hermetic Seal (Z-Suffix),  
8-Lead PDIP (P-Suffix),  
8-Lead SO (S-Suffix)  
A low input bias current of 10 nA is achieved by use of a bias  
current cancellation circuit. Over the military temperature  
range, this circuit typically holds IB and IOS to 20 nA  
and 15 nA, respectively.  
The output stage has good load driving capability. A guaranteed  
swing of 10 V into 600 Ω and low output distortion make the  
OP27 an excellent choice for professional audio applications.  
(Continued on Page 3)  
FUNCTIONAL BLOCK DIAGRAM  
V+  
C2  
R3  
1
R4  
R2  
1
8
Q6  
Q22  
Q46  
C1  
.
ADJ  
V
1
OS  
R23 R24  
Q24  
R1  
Q21  
Q23  
R9  
Q20 Q19  
OUTPUT  
R12  
Q1A Q1B  
Q2B Q2A  
NONINVERTING  
INPUT (+)  
C3  
C4  
R5  
Q3  
Q26  
INVERTING  
INPUT (–)  
Q45  
Q11 Q12  
Q27  
Q28  
1
R1 AND R2 ARE PERMANENTLY  
ADJUSTED AT WAFER TEST FOR  
MINIMUM OFFSET VOLTAGE  
V–  
Figure 3.  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
OP27  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................8  
Application Information................................................................ 14  
Offset Voltage Adjustment........................................................ 14  
Noise Measurements.................................................................. 14  
Unity-Gain Buffer Applications ............................................... 14  
Comments On Noise ................................................................. 15  
Audio Applications .................................................................... 16  
References.................................................................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide............................................................................... 20  
General Description......................................................................... 1  
Pin Configurations ........................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 4  
Electrical Characteristics............................................................. 4  
Typical Electrical Characteristics ............................................... 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
REVISION HISTORY  
5/06—Rev. E to Rev. F  
9/01—Rev. 0 to Rev. A  
Removed References to 745 ..............................................Universal  
Updated 741 to AD741 ......................................................Universal  
Changes to Ordering Guide .......................................................... 20  
Edits to Ordering Information ........................................................1  
Edits to Pin Connections..................................................................1  
Edits to Absolute Maximum Ratings..............................................2  
Edits to Package Type .......................................................................2  
Edits to Electrical Characteristics .............................................. 2, 3  
Edits to Wafer Test Limits ................................................................4  
Deleted Typical Electrical Characteristics......................................4  
Edits to Burn-In Circuit Figure .......................................................7  
Edits to Application Information ....................................................8  
12/05—Rev. D to Rev. E  
Edits to Figure 2................................................................................ 1  
9/05—Rev. C to Rev. D  
Updated Format..................................................................Universal  
Changes to Table 1............................................................................ 4  
Removed Die Characteristics Figure ............................................ 5  
Removed Wafer Test Limits Table.................................................. 5  
Changes to Table 5............................................................................ 7  
Changes to Comments on Noise Section.................................... 15  
Changes to Ordering Guide .......................................................... 24  
1/03—Rev. B to Rev. C  
Edits to Pin Connections................................................................. 1  
Edits to General Description........................................................... 1  
Edits to Die Characteristics............................................................. 5  
Edits to Absolute Maximum Ratings ............................................. 7  
Updated Outline Dimensions....................................................... 16  
Edits to Figure 8.............................................................................. 14  
Edits to Outline Dimensions......................................................... 16  
Rev. F | Page 2 of 20  
 
OP27  
GENERAL DESCRIPTION  
(Continued from Page 1)  
PSRR and CMRR exceed 120 dB. These characteristics, coupled  
with long-term drift of 0.2 μV/month, allow the circuit designer  
to achieve performance levels previously attained only by  
discrete designs.  
The OP27 provides excellent performance in low noise,  
high accuracy amplification of low level signals. Applications  
include stable integrators, precision summing amplifiers,  
precision voltage threshold detectors, comparators, and  
professional audio circuits such as tape heads and micro-  
phone preamplifiers.  
Low cost, high volume production of OP27 is achieved by  
using an on-chip Zener zap-trimming network. This reliable  
and stable offset trimming scheme has proven its effectiveness  
over many years of production history.  
The OP27 is a direct replacement for OP06, OP07, and OP45  
amplifiers; AD741 types can be directly replaced by removing  
the nulling potentiometer of the AD741.  
Rev. F | Page 3 of 20  
OP27  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VS = 15 V, TA = 25°C, unless otherwise noted.  
Table 1.  
OP27A/E  
Typ  
10  
OP27/G  
Typ  
30  
Parameter  
Symbol  
VOS  
Conditions  
Min  
Max Min  
Max Unit  
INPUT OFFSET VOLTAGE1  
LONG-TERM VOS STABILITY2, 3  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
INPUT NOISE VOLTAGE3, 4  
INPUT NOISE  
25  
100  
2.0  
μV  
VOS/Time  
IOS  
0.2  
1.0  
35  
0.4  
μV/MO  
nA  
7
12  
75  
IB  
±10  
0.0±  
3.5  
3.1  
3.0  
±40  
0.1±  
5.5  
4.5  
3.±  
4.0  
2.3  
0.6  
±15  
0.09  
3.±  
3.3  
3.2  
±±0  
0.25  
±.0  
5.6  
4.5  
nA  
en p-p  
en  
0.1 Hz to 10 Hz  
fO = 10 Hz  
fO = 30 Hz  
fO = 1000 Hz  
fO = 10 Hz  
fO = 30 Hz  
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
pA/√Hz  
pA/√Hz  
pA/√Hz  
Voltage Density3  
INPUT NOISE  
Current Density3  
in  
1.7  
1.0  
0.4  
1.7  
1.0  
0.4  
fO = 1000 Hz  
0.6  
20  
INPUT RESISTANCE  
Differential Mode5  
Common Mode  
RIN  
RINCM  
IVR  
1.3  
6
3
0.7  
4
2
MΩ  
GΩ  
V
INPUT VOLTAGE RANGE  
COMMON-MODE REJECTION RATIO  
POWER SUPPLY REJECTION RATIO  
LARGE SIGNAL VOLTAGE GAIN  
±11.0 ±12.3  
±11.0 ±12.3  
CMRR  
PSRR  
AVO  
VCM = ±11 V  
114  
126  
1
100  
120  
2
dB  
VS = ±4 V to ±1± V  
RL ≥ 2 k Ω, VO = ±10 V  
RL ≥ 600 Ω, VO = ±10 V  
RL ≥ 2 k Ω  
10  
μV/V  
V/mV  
V/mV  
V
1000  
±00  
1±00  
1500  
700  
600  
1500  
1500  
OUTPUT VOLTAGE SWING  
VO  
±12.0 ±13.±  
±10.0 ±11.5  
±11.5 ±13.5  
±10.0 ±11.5  
RL ≥ 600 Ω  
V
SLEW RATE6  
SR  
RL ≥ 2 kΩ  
1.7  
5.0  
2.±  
±.0  
70  
1.7  
5.0  
2.±  
V/μs  
MHz  
Ω
GAIN BANDWIDTH PRODUCT6  
OPEN-LOOP OUTPUT RESISTANCE  
POWER CONSUMPTION  
OFFSET ADJUSTMENT RANGE  
GBW  
RO  
±.0  
VO = 0, IO = 0  
VO  
70  
Pd  
90  
140  
100  
±4.0  
170  
mW  
mV  
RP = 10 kΩ  
±4.0  
1 Input offset voltage measurements are performed approximately 0.5 seconds after application of power. A/E grades guaranteed fully warmed up.  
2 Long-term input offset voltage stability refers to the average trend line of VOS vs. time over extended periods after the first 30 days of operation. Excluding the initial  
hour of operation, changes in VOS during the first 30 days are typically 2.5 μV. Refer to the Typical Performance Characteristics section.  
3 Sample tested.  
4 See voltage noise test circuit (Figure 31).  
5 Guaranteed by input bias current.  
6 Guaranteed by design.  
Rev. F | Page 4 of 20  
 
 
OP27  
VS = 15 V, 55°C ≤ TA ≤ 125°C, unless otherwise noted.  
Table 2.  
OP27A  
Typ  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
INPUT OFFSET VOLTAGE1  
VOS  
30  
60  
μV  
2
AVERAGE INPUT OFFSET DRIFT  
TCVOS  
3
TCVOSn  
0.2  
0.6  
50  
μV/°C  
nA  
INPUT OFFSET CURRENT  
IOS  
15  
INPUT BIAS CURRENT  
IB  
±20  
±11.5  
122  
2
±60  
nA  
INPUT VOLTAGE RANGE  
IVR  
CMRR  
PSRR  
AVO  
VO  
±10.3  
10±  
V
COMMON-MODE REJECTION RATIO  
POWER SUPPLY REJECTION RATIO  
LARGE SIGNAL VOLTAGE GAIN  
OUTPUT VOLTAGE SWING  
VCM = ±10 V  
dB  
VS = ±4.5 V to ±1± V  
RL ≥ 2 kΩ, VO = ±10 V  
RL ≥ 2 kΩ  
16  
μV/V  
V/mV  
V
600  
1200  
±13.5  
±11.5  
1 Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power. A/E grades guaranteed fully  
warmed up.  
2 The TCVOS performance is within the specifications unnulled or when nulled with RP = ± kΩ to 20 kΩ. TCVOS is 100% tested for A/E grades, sample tested for G grades.  
3 Guaranteed by design.  
VS = 15 V, 25°C ≤ TA ≤ 85°C for OP27J, OP27Z, 0°C ≤ TA ≤ 70°C for OP27EP, and –40°C ≤ TA ≤ 85°C for OP27GP, OP27GS, unless  
otherwise noted.  
Table 3.  
OP27E  
Typ  
20  
OP27G  
Typ  
55  
Parameter  
Symbol  
Conditions  
Min  
Max Min  
Max  
220  
1.±  
Unit  
μV  
INPUT ONSET VOLTAGE  
AVERAGE INPUT OFFSET DRIFT  
VOS  
50  
1
TCVOS  
0.2  
0.2  
0.6  
0.6  
50  
0 4  
0 4  
μV/°C  
μV/°C  
nA  
2
TCVOSn  
1.±  
INPUT OFFSET CURRENT  
IOS  
10  
20  
135  
±150  
INPUT BIAS CURRENT  
IB  
±14  
±11.±  
124  
2
±60  
±25  
±11.±  
11±  
2
nA  
INPUT VOLTAGE RANGE  
IVR  
CMRR  
PSRR  
AVO  
VO  
±10.5  
110  
±10.5  
V
COMMON-MODE REJECTION RATIO  
POWER SUPPLY REJECTION RATIO  
LARGE SIGNAL VOLTAGE GAIN  
OUTPUT VOLTAGE SWING  
VCM = ±10 V  
96  
dB  
VS = ±4.5 V to ±1± V  
RL ≥ 2 kΩ, VO = ±10 V  
RL ≥ 2 kΩ  
15  
32  
μV/V  
V/mV  
V
750  
1500  
±13.6  
450  
1000  
±13.3  
±11.7  
±11.0  
1 The TCVOS performance is within the specifications unnulled or when nulled with RP = ± kΩ to 20 kΩ. TCVOS is 100% tested for A/E grades, sample tested for C/G grades.  
2 Guaranteed by design.  
Rev. F | Page 5 of 20  
 
 
OP27  
TYPICAL ELECTRICAL CHARACTERISTICS  
VS = 15 V, TA = 25°C unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
TCVOS or  
TCVOSn  
TCIOS  
TCIB  
Conditions  
OP27N Typical  
Unit  
AVERAGE INPUT OFFSET VOLTAGE DRIFT1  
Nulled or unnulled  
RP = ± kΩ to 20 kΩ  
0.2  
μV/°C  
AVERAGE INPUT OFFSET CURRENT DRIFT  
AVERAGE INPUT BIAS CURRENT DRIFT  
INPUT NOISE VOLTAGE DENSITY  
±0  
pA/°C  
100  
3.5  
3.1  
3.0  
pA/°C  
en  
en  
en  
fO = 10 Hz  
fO = 30 Hz  
fO = 1000 Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
INPUT NOISE CURRENT DENSITY  
in  
in  
in  
fO = 10 Hz  
fO = 30 Hz  
fO = 1000 Hz  
0.1 Hz to 10 Hz  
RL ≥ 2 kΩ  
1.7  
1.0  
0.4  
0.0±  
2.±  
±
pA/√Hz  
pA/√Hz  
pA/√Hz  
μV p-p  
V/μs  
INPUT NOISE VOLTAGE SLEW RATE  
GAIN BANDWIDTH PRODUCT  
enp-p  
SR  
GBW  
MHz  
1 Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.  
Rev. F | Page 6 of 20  
 
 
OP27  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
Parameter  
Rating  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Supply Voltage  
Input Voltage1  
±22 V  
±22 V  
Output Short-Circuit Duration  
Differential Input Voltage2  
Differential Input Current2  
Storage Temperature Range  
Operating Temperature Range  
OP27A (J, Z)  
Indefinite  
±0.7 V  
±25 mA  
−65°C to +150°C  
THERMAL RESISTANCE  
−55°C to +125°C  
−25°C to +±5°C  
0°C to 70°C  
θJA is specified for the worst-case conditions, that is, θJA is  
specified for device in socket for TO, CERDIP, and PDIP  
packages; θJA is specified for device soldered to printed circuit  
board for SO package.  
OP27E, ( Z)  
OP27E, (P)  
OP27G (P, S, J, Z)  
Lead Temperature Range (Soldering, 60 sec)  
Junction Temperature  
−40°C to +±5°C  
300°C  
−65°C to +150°C  
Absolute maximum ratings apply to both DICE and packaged  
parts, unless otherwise noted.  
1 For supply voltages less than ±22 V, the absolute maximum input voltage is  
equal to the supply voltage.  
Table 6.  
2 The inputs of the OP27 are protected by back-to-back diodes. Current  
limiting resistors are not used in order to achieve low noise. If differential  
input voltage exceeds ±0.7 V, the input current should be limited to 25 mA.  
Package Type  
θJA  
θJC  
1±  
16  
43  
43  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
TO-99 (J)  
150  
14±  
103  
15±  
±-Lead Hermetic DlP (Z)  
±-Lead Plastic DIP (P)  
±-Lead SO (S)  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. F | Page 7 of 20  
 
 
OP27  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
10  
T
V
= 25°C  
= ±15V  
A
S
90  
80  
70  
60  
1
0.1  
50  
TEST TIME OF 10sec FURTHER  
LIMITS LOW FREQUENCY  
(<0.1Hz) GAIN  
40  
30  
0.01  
100  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
BANDWIDTH (Hz)  
Figure 4. 0.1 Hz to 10 Hz p-p Noise Tester Frequency Response  
Figure 7. Input Wideband Voltage Noise vs. Bandwidth (0.1 Hz to Frequency  
Indicated)  
100  
10  
9
8
7
6
R1  
R2  
T
V
= 25°C  
= ±15V  
A
T
V
= 25°C  
= ±15V  
A
S
S
R
– 2R1  
S
5
4
10  
3
2
AT 10Hz  
AT 1kHz  
I/F CORNER = 2.7Hz  
RESISTOR NOISE ONLY  
1k  
1
100  
1
10k  
1
10  
100  
1k  
SOURCE RESISTANCE (Ω)  
FREQUENCY (Hz)  
Figure 8. Total Noise vs. Sourced Resistance  
Figure 5. Voltage Noise Density vs. Frequency  
100  
5
4
V
= ±15V  
S
741  
AT 10Hz  
AT 1kHz  
I/F CORNER  
10  
3
2
1
LOW NOISE  
I/F CORNER = 2.7Hz  
AUDIO OP AMP  
OP27 I/F CORNER  
INSTRUMENTATION  
RANGE TO DC  
AUDIO RANGE  
TO 20kHz  
1
1
10  
100  
1k  
–50  
–25  
0
25  
50  
75  
100  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 6. A Comparison of Op Amp Voltage Noise Spectra  
Figure 9. Voltage Noise Density vs. Temperature  
Rev. F | Page ± of 20  
 
OP27  
5
4
60  
50  
T
= 25°C  
OP27C  
OP27A  
A
40  
30  
AT 10Hz  
AT 1kHz  
20  
10  
OP27A  
OP27A  
0
3
2
1
–10  
–20  
–30  
–40  
–50  
–60  
–70  
TRIMMING WITH  
10kΩ POT DOES  
NOT CHANGE  
TCV  
OS  
OP27C  
0
10  
20  
30  
40  
–75 –50 –25  
0
25  
50  
75  
100 125 150 175  
TOTAL SUPPLY VOLTAGE, V+ – V–, (V)  
TEMPERATURE (°C)  
Figure 13. Offset Voltage Drift of Five Representative Units vs. Temperature  
Figure 10. Voltage Noise Density vs. Supply Voltage  
10.0  
6
4
2
0
–2  
–4  
–6  
6
1.0  
4
2
0
–2  
–4  
–6  
I/F CORNER = 140Hz  
0.1  
10  
100  
FREQUENCY (Hz)  
1k  
10k  
0
1
2
3
4
5
6
7
TIME (Months)  
Figure 11. Current Noise Density vs. Frequency  
Figure 14. Long-Term Offset Voltage Drift of Six Representative Units  
5.0  
T
= 25°C  
A
V
= 15V  
S
10  
4.0  
3.0  
2.0  
1.0  
OP27 C/G  
OP27 F  
T
= +125°C  
A
5
OP27 A/E  
T
= –55°C  
A
T
= +25°C  
A
1
0
1
2
3
4
5
5
15  
25  
35  
45  
TIME AFTER POWER ON (Min)  
TOTAL SUPPLY VOLTAGE (V)  
Figure 15. Warm-Up Offset Voltage Drift  
Figure 12. Supply Current vs. Supply Voltage  
Rev. F | Page 9 of 20  
OP27  
30  
130  
110  
90  
V
= ±15V  
S
25  
20  
15  
10  
5
T
= 70°C  
T
25°C  
=
A
A
70  
THERMAL  
SHOCK  
RESPONSE  
BAND  
50  
30  
10  
DEVICE IMMERSED  
IN 70  
°
C OIL BATH  
0
–10  
–20  
0
20  
40  
60  
80  
100  
150  
125  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
TIME (Sec)  
FREQUENCY (Hz)  
Figure 16. Offset Voltage Change Due to Thermal Shock  
Figure 19. Open-Loop Gain vs. Frequency  
10  
9
50  
40  
30  
20  
10  
0
V
= ±15V  
70  
S
ΦM  
V
= ±15V  
S
60  
GBW  
SLEW  
25  
50  
4
8
OP27C  
3
2
7
6
OP27A  
75  
–75  
–50  
–25  
0
50  
75  
100  
125  
–50  
–25  
0
25  
50  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 20. Slew Rate, Gain Bandwidth Product, Phase Margin vs.  
Temperature  
Figure 17. Input Bias Current vs. Temperature  
50  
40  
30  
20  
10  
0
25  
80  
V
= ±15V  
S
T
V
= 25°C  
= ±15V  
A
S
20  
15  
10  
5
100  
120  
140  
160  
180  
200  
220  
GAIN  
PHASE  
MARGIN  
= 70°  
OP27C  
0
–5  
OP27A  
50  
–10  
1M  
–75  
–50  
–25  
0
25  
75  
100  
10M  
FREQUENCY (Hz)  
100M  
TEMPERATURE (°C)  
Figure 18. Input Offset Current vs. Temperature  
Figure 21. Gain, Phase Shift vs. Frequency  
Rev. F | Page 10 of 20  
OP27  
2.5  
2.0  
1.5  
1.0  
0.5  
0
100  
80  
60  
40  
20  
0
T
= 25°C  
V
V
A
= ±15V  
A
S
= 100mV  
= +1  
IN  
V
R
= 2kΩ  
L
R
= 1kΩ  
L
0
10  
20  
30  
40  
50  
10M  
10k  
0
500  
1000  
1500  
2000  
2500  
TOTAL SUPPLY VOLTAGE (V)  
CAPACITIVE LOAD (pF)  
Figure 22. Open-Loop Voltage Gain vs. Supply Voltage  
Figure 25. Small-Signal Overshoot vs. Capacitive Load  
28  
24  
20  
16  
12  
8
T
V
= 25°C  
= ±15V  
A
S
20mV  
500ns  
50mV  
0V  
A
C
V
= +1  
VCL  
= 15pF  
= ±15V  
= 25°C  
L
S
A
T
4
–50mV  
0
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 26. Small-Signal Transient Response  
Figure 23. Maximum Output Swing vs. Frequency  
18  
16  
14  
12  
10  
8
POSITIVE  
SWING  
2V  
2μs  
+5V  
0V  
NEGATIVE  
SWING  
A
= +1  
= ±15V  
= 25°C  
VCL  
V
T
S
A
6
4
2
T
V
= 25°C  
= ±15V  
0
A
S
–5V  
–2  
100  
1k  
LOAD RESISTANCE (Ω)  
Figure 24. Maximum Output Voltage vs. Load Resistance  
Figure 27. Large Signal Transient Response  
Rev. F | Page 11 of 20  
OP27  
60  
T
V
= 25°C  
= 15V  
A
S
50  
40  
30  
20  
10  
0.1  
μ
F
100k  
Ω
I
I
(+)  
(–)  
SC  
OP27  
Ω
D.U.T.  
10  
2k  
Ω
SC  
VOLTAGE  
GAIN  
= 50,000  
22μF  
4.3k  
Ω
OP12  
100k  
SCOPE  
IN  
× 1  
R
= 1M  
Ω
Ω
4.7μF  
2.2  
μ
F
110kΩ  
0.1  
24.3k  
μF  
0
1
2
3
4
5
Ω
TIME FROM OUTPUT SHORTED TO GROUND (Min)  
Figure 28. Short-Circuit Current vs. Time  
Figure 31. Voltage Noise Test Circuit (0.1 Hz to 10 Hz)  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
140  
T
V
= 25°C  
= ±15V  
S
V
= ±15V  
= 25°C  
= ±10V  
A
S
T
A
V
CM  
120  
100  
80  
60  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
LOAD RESISTANCE (Ω)  
FREQUENCY (Hz)  
Figure 32. Open-Loop Voltage Gain vs. Load Resistance  
Figure 29. CMRR vs. Frequency  
16  
T
= –55°C  
A
A
12  
8
1 SEC/DIV  
T
= +25°C  
A
120  
80  
T
= +125°C  
4
40  
0
0
T
T
= –55°C  
A
–4  
–8  
–12  
–16  
T
= +25°C  
–40  
–90  
A
= +125°C  
±10  
A
–120  
0
±5  
±15  
±20  
0.1Hz TO 10Hz p-p NOISE  
SUPPLY VOLTAGE (V)  
Figure 33. Low Frequency Noise  
Figure 30. Common-Mode Input Range vs. Supply Voltage  
Rev. F | Page 12 of 20  
 
OP27  
160  
140  
120  
100  
80  
T
= 25°C  
A
NEGATIVE  
SWING  
60  
POSITIVE  
SWING  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 34. PSRR vs. Frequency  
Rev. F | Page 13 of 20  
OP27  
APPLICATION INFORMATION  
OP27 series units can be inserted directly into OP07 sockets  
with or without removal of external compensation or nulling  
components. Additionally, the OP27 can be fitted to unnulled  
AD741-type sockets; however, if conventional AD741 nulling  
circuitry is in use, it should be modified or removed to ensure  
correct OP27 operation. OP27 offset voltage can be nulled to  
0 (or another desired setting) using a potentiometer (see  
Figure 35).  
NOISE MEASUREMENTS  
To measure the 80 nV p-p noise specification of the OP27 in  
the 0.1 Hz to 10 Hz range, the following precautions must be  
observed:  
The device must be warmed up for at least five minutes.  
As shown in the warm-up drift curve, the offset voltage  
typically changes 4 μV due to increasing chip temperature  
after power-up. In the 10-second measurement interval,  
these temperature-induced effects can exceed tens-of-  
nanovolts.  
The OP27 provides stable operation with load capacitances of  
up to 2000 pF and 10 V swings; larger capacitances should be  
decoupled with a 50 Ω resistor inside the feedback loop. The  
OP27 is unity-gain stable.  
For similar reasons, the device has to be well-shielded  
from air currents. Shielding minimizes thermocouple effects.  
Thermoelectric voltages generated by dissimilar metals at the  
input terminal contacts can degrade the drift performance.  
Best operation is obtained when both input contacts are  
maintained at the same temperature.  
Sudden motion in the vicinity of the device can also  
feedthrough to increase the observed noise.  
The test time to measure 0.1 Hz to 10 Hz noise should not  
exceed 10 seconds. As shown in the noise-tester frequency  
response curve, the 0.1 Hz corner is defined by only one  
zero. The test time of 10 seconds acts as an additional zero  
to eliminate noise contributions from the frequency band  
below 0.1 Hz.  
10kΩ R  
P
V+  
1
8
–-  
+
2
3
7
6
OP27  
OUTPUT  
4
A noise voltage density test is recommended when  
measuring noise on a large number of units. A 10 Hz noise  
voltage density measurement correlates well with a 0.1 Hz to  
10 Hz p-p noise reading, since both results are determined  
by the white noise and the location of the 1/f corner  
frequency.  
V–  
Figure 35. Offset Nulling Circuit  
OFFSET VOLTAGE ADJUSTMENT  
The input offset voltage of the OP27 is trimmed at wafer level.  
However, if further adjustment of VOS is necessary, a 10 kΩ trim  
potentiometer can be used. TCVOS is not degraded (see Figure 35).  
Other potentiometer values from 1 kΩ to 1 MΩ can be used  
with a slight degradation (0.1 μV/°C to 0.2 μV/°C) of TCVOS.  
Trimming to a value other than zero creates a drift of approxi-  
mately (VOS/300) μV/°C. For example, the change in TCVOS is  
0.33 μV/°C if VOS is adjusted to 100 μV. The offset voltage  
adjustment range with a 10 kΩ potentiometer is 4 mV. If smaller  
adjustment range is required, the nulling sensitivity can be  
reduced by using a smaller potentiometer in conjunction with  
fixed resistors. For example, Figure 36 shows a network that has  
a 280 μV adjustment range.  
UNITY-GAIN BUFFER APPLICATIONS  
When Rf ≤ 100 Ω and the input is driven with a fast, large  
signal pulse (>1 V), the output waveform looks as shown in the  
pulsed operation diagram (see Figure 37).  
During the fast feedthrough-like portion of the output, the  
input protection diodes effectively short the output to the input,  
and a current, limited only by the output short-circuit protect-  
ion, is drawn by the signal generator. With Rf ≥ 500 Ω, the  
output is capable of handling the current requirements (IL ≤ 20 mA  
at 10 V); the amplifier stays in its active mode and a smooth  
transition occurs.  
4.7kΩ  
1kΩ POT  
4.7kΩ  
8
1
When Rf > 2 kΩ, a pole is created with Rf and the amplifiers  
input capacitance (8 pF) that creates additional phase shift and  
reduces phase margin. A small capacitor (20 pF to 50 pF) in  
parallel with Rf eliminates this problem.  
V+  
Figure 36. Offset Voltage Adjustment  
R
f
+
2.8V/μs  
OP27  
Figure 37. Pulsed Operation  
Rev. F | Page 14 of 20  
 
 
 
 
OP27  
COMMENTS ON NOISE  
Figure 39 shows the 0.1 Hz to 10 Hz p-p noise. Here the picture  
is less favorable; resistor noise is negligible and current noise  
becomes important because it is inversely proportional to the  
square root of frequency. The crossover with the OP07 occurs  
in the 3 kΩ to 5 kΩ range depending on whether balanced or  
unbalanced source resistors are used (at 3 kΩ the IB and IOS  
error also can be 3× the VOS spec).  
The OP27 is a very low noise, monolithic op amp. The out-  
standing input voltage noise characteristics of the OP27  
are achieved mainly by operating the input stage at a high  
quiescent current. The input bias and offset currents, which  
would normally increase, are held to reasonable values by the  
input bias current cancellation circuit. The OP27A/E has IB  
and IOS of only 40 nA and 35 nA at 25°C respectively. This  
is particularly important when the input has a high source  
resistance. In addition, many audio amplifier designers prefer  
to use direct coupling. The high IB, VOS, and TCVOS of previous  
designs have made direct coupling difficult, if not impossible,  
to use.  
1k  
OP08/108  
500  
5534  
OP07  
1
2
100  
Voltage noise is inversely proportional to the square root of bias  
current, but current noise is proportional to the square root of  
bias current. The noise advantage of the OP27 disappears when  
high source resistors are used. Figure 38, Figure 39, Figure 40  
compare the observed total noise of the OP27 with the noise  
performance of other devices in different circuit applications.  
OP27/37  
1 RS UNMATCHED  
50  
e.g. RS = RS1 = 10k  
2 RS MATCHED  
Ω, RS2 = 0  
e.g. RS = 10kΩ, RS1 = RS2 = 5kΩ  
RS1  
RS2  
REGISTER  
NOISE ONLY  
10  
50  
100  
500  
1k  
5k  
10k  
50k  
1/ 2  
2
(VoltageNoise) +  
R —SOURCE RESISTANCE (Ω)  
S
TotalNoise = (Current Noise× R )2 +  
Figure 39. Peak-to-Peak Noise (0.1 Hz to 10 Hz) as Source Resistance  
(Includes Resistor Noise)  
S
(Resistor Noise)2  
For low frequency applications, the OP07 is better than the  
OP27/OP37 when RS > 3 kΩ. The only exception is when gain  
error is important.  
Figure 38 shows noise vs. source resistance at 1000 Hz. The  
same plot applies to wideband noise. To use this plot, multiply  
the vertical scale by the square root of the bandwidth.  
Figure 40 illustrates the 10 Hz noise. As expected, the results are  
between the previous two figures.  
100  
50  
100  
1
50  
OP08/108  
1
2
2
OP07  
10  
OP08/108  
1 RS UNMATCHED  
OP07  
10  
5
5534  
e.g. RS = RS1 = 10k  
2 RS MATCHED  
Ω, RS2 = 0  
5534  
e.g. RS = 10k  
Ω
, RS1 = RS2 = 5k  
Ω
1 RS UNMATCHED  
OP27/37  
RS1  
5
e.g. RS = RS1 = 10k  
2 RS MATCHED  
Ω, RS2 = 0  
RS2  
e.g. RS = 10kΩ, RS1 = RS2 = 5kΩ  
REGISTER  
OP27/37  
NOISE ONLY  
RS1  
1
50  
100  
500  
1k  
5k  
10k  
50k  
RS2  
REGISTER  
NOISE ONLY  
R —SOURCE RESISTANCE (Ω)  
S
1
50  
100  
500  
1k  
5k  
10k  
50k  
Figure 38. Noise vs. Source Resistance (Including Resistor Noise) at 1000 Hz  
R —SOURCE RESISTANCE (Ω)  
S
At RS < 1 kΩ, the low voltage noise of the OP27 is maintained.  
With RS < 1 kΩ, total noise increases but is dominated by the  
resistor noise rather than current or voltage noise. lt is only  
beyond RS of 20 kΩ that current noise starts to dominate. The  
argument can be made that current noise is not important for  
applications with low-to-moderate source resistances. The  
crossover between the OP27 and OP07 noise occurs in the 15 kΩ  
to 40 kΩ region.  
Figure 40. 10 Hz Noise vs. Source Resistance (Includes Resistor Noise)  
Audio Applications  
Rev. F | Page 15 of 20  
 
 
 
 
OP27  
C4 (2)  
220µF  
R5  
100k  
For reference, typical source resistances of some signal sources  
are listed in Table 7.  
+
+
MOVING MAGNET  
CARTRIDGE INPUT  
LF ROLLOFF  
OUT  
Table 7.  
C3  
0.47µF  
IN  
3
2
A1  
OP27  
C
Source  
Impedance Comments  
A
6
R
150pF  
A
Device  
R4  
75kΩ  
OUTPUT  
47.5kΩ  
R1  
Strain Gauge  
<500 Ω  
Typically used in low frequency  
C1  
0.03µF  
97.6kΩ  
applications.  
<1500 Ω  
Low is very important to reduce  
self-magnetization problems  
when direct coupling is used.  
OP27 IB can be neglected.  
R2  
7.87kΩ  
Magnetic  
Tape Head  
C2  
0.01µF  
R3  
100Ω  
Magnetic  
Phonograph  
Cartridges  
<1500 Ω  
<1500 Ω  
Similar need for low IB in direct  
coupled applications. OP27 does  
not introduce any self-  
G = 1kHz GAIN  
R1  
R3  
= 0.101 ( 1 +  
)
= 98.677 (39.9dB) AS SHOWN  
magnetization problems.  
Figure 41. Phono Preamplifier Circuit  
Linear  
Variable  
Differential  
Transformer  
Used in rugged servo-feedback  
applications. Bandwidth of  
interest is 400 Hz to 5 kHz.  
The OP27 brings a 3.2 nV/√Hz voltage noise and 0.45 pA/√Hz  
current noise to this circuit. To minimize noise from other  
sources, R3 is set to a value of 100 Ω, generating a voltage noise  
of 1.3 nV/√Hz. The noise increases the 3.2 nV/√Hz of the  
amplifier by only 0.7 dB. With a 1 kΩ source, the circuit noise  
measures 63 dB below a 1 mV reference level, unweighted, in a  
20 kHz noise bandwidth.  
Table 8. Open-Loop Gain  
Frequency  
OP07  
OP27  
OP37  
@ 3 Hz  
@ 10 Hz  
@ 30 Hz  
100 dB  
100 dB  
90 dB  
124 dB  
120 dB  
110 dB  
125 dB  
125 dB  
124 dB  
Gain (G) of the circuit at 1 kHz can be calculated by the  
expression:  
AUDIO APPLICATIONS  
R1  
R3  
Figure 41 is an example of a phono pre-amplifier circuit using the  
OP27 for A1; R1-R2-C1-C2 form a very accurate RIAA network  
with standard component values. The popular method to  
accomplish RIAA phono equalization is to employ frequency  
dependent feedback around a high quality gain block. Properly  
chosen, an RC network can provide the three necessary time  
constants of 3180 μs, 318 μs, and 75 μs.  
G =0.101 1 +  
For the values shown, the gain is just under 100 (or 40 dB).  
Lower gains can be accommodated by increasing R3, but gains  
higher than 40 dB show more equalization errors because of the  
8 MHz gain bandwidth of the OP27.  
This circuit is capable of very low distortion over its entire  
range, generally below 0.01% at levels up to 7 V rms. At 3 V  
output levels, it produces less than 0.03% total harmonic  
distortion at frequencies up to 20 kHz.  
For initial equalization accuracy and stability, precision metal  
film resistors and film capacitors of polystyrene or polypro-  
pylene are recommended because they have low voltage  
coefficients, dissipation factors, and dielectric absorption.  
(high-k ceramic capacitors should be avoided here, though  
low-k ceramics, such as NPO types that have excellent  
dissipation factors and somewhat lower dielectric absorption,  
can be considered for small values.)  
Capacitor C3 and Resistor R4 form a simple −6 dB per octave  
rumble filter, with a corner at 22 Hz. As an option, the switch  
selected Shunt Capacitor C4, a nonpolarized electrolytic,  
bypasses the low frequency roll-off. Placing the rumble filters  
high-pass action after the preamplifier has the desirable result  
of discriminating against the RIAA-amplified low frequency  
noise components and pickup produced low frequency  
disturbances.  
A preamplifier for NAB tape playback is similar to an RIAA  
phono preamplifier, though more gain is typically demanded,  
along with equalization requiring a heavy low frequency boost.  
The circuit in Figure 41 can be readily modified for tape use, as  
shown by Figure 42.  
Rev. F | Page 16 of 20  
 
 
 
OP27  
Noise performance of this circuit is limited more by the Input  
+
0.47µF  
Resistors R1 and R2 than by the op amp, as R1 and R2 each  
generate a 4 nV/√Hz noise, while the op amp generates a  
3.2 nV/√Hz noise. The rms sum of these predominant noise  
sources is about 6 nV/√Hz, equivalent to 0.9 μV in a 20 kHz  
noise bandwidth, or nearly 61 dB below a 1 mV input signal.  
Measurements confirm this predicted performance.  
OP27  
TAPE  
HEAD  
R
C
A
A
15k  
R1  
33kΩ  
R2  
5kΩ  
0.01µF  
10Ω  
T1 = 3180µs  
T2 = 50µs  
C1  
5mF  
R1  
R3  
R6  
1k  
316kΩ  
100Ω  
Figure 42. Tape Head Preamplifier  
While the tape equalization requirement has a flat high  
frequency gain above 3 kHz (T2 = 50 μs), the amplifier need  
not be stabilized for unity gain. The decompensated OP37  
provides a greater bandwidth and slew rate. For many applica-  
tions, the idealized time constants shown can require trimming  
of R1 and R2 to optimize frequency response for nonideal tape  
head performance and other factors (see the References  
section).  
LOW IMPEDANCE  
MICROPHONE INPUT  
(Z = 50TO 200)  
R7  
10kΩ  
R
OP27/  
P
OUTPUT  
30kOP37  
+
R2  
1kΩ  
R4  
R3 R4  
=
316kΩ  
R1 R2  
Figure 43. Fixed Gain Transformerless Microphone Preamplifier  
For applications demanding appreciably lower noise, a high  
quality microphone transformer coupled preamplifier (Figure  
44) incorporates the internally compensated OP27. T1 is a JE-  
115K-E 150 Ω/15 kΩ transformer that provides an optimum  
source resistance for the OP27 device. The circuit has an overall  
gain of 40 dB, the product of the transformers voltage setup and  
the op amp’s voltage gain.  
The network values of the configuration yield a 50 dB gain at  
1 kHz, and the dc gain is greater than 70 dB. Thus, the worst-  
case output offset is just over 500 mV. A single 0.47 μF output  
capacitor can block this level without affecting the dynamic  
range.  
The tape head can be coupled directly to the amplifier input,  
because the worst-case bias current of 80 nA with a 400 mH,  
100 μ inch head (such as the PRB2H7K) is not troublesome.  
C2  
1800pF  
R1  
R2  
121Ω  
1100Ω  
Amplifier bias-current transients that can magnetize a head  
present one potential tape head problem. The OP27 and OP37  
are free of bias current transients upon power-up or power-  
down. It is always advantageous to control the speed of power  
supply rise and fall to eliminate transients.  
2
3
A1  
OP27  
6
1
OUTPUT  
T1  
150Ω  
SOURCE  
R3  
100Ω  
1
T1 – JENSEN JE – 115K – E  
JENSEN TRANSFORMERS  
In addition, the dc resistance of the head should be carefully  
controlled and preferably below 1 kΩ. For this configuration,  
the bias current induced offset voltage can be greater than the  
100 pV maximum offset if the head resistance is not sufficiently  
controlled.  
Figure 44. High Quality Microphone Transformer Coupled Preamplifier  
Gain can be trimmed to other levels, if desired, by adjusting R2  
or R1. Because of the low offset voltage of the OP27, the output  
offset of this circuit is very low, 1.7 mV or less, for a 40 dB gain.  
The typical output blocking capacitor can be eliminated in such  
cases, but it is desirable for higher gains to eliminate switching  
transients.  
A simple, but effective, fixed gain transformerless microphone  
preamp (Figure 43) amplifies differential signals from low  
impedance microphones by 50 dB and has an input impedance  
of 2 kΩ. Because of the high working gain of the circuit, an  
OP37 helps to preserve bandwidth, which is 110 kHz. As the  
OP37 is a decompensated device (minimum stable gain of 5), a  
dummy resistor, Rp, may be necessary if the microphone is to be  
unplugged. Otherwise, the 100% feedback from the open input  
can cause the amplifier to oscillate.  
+18V  
8
2
7
6
OP27  
3
Common-mode input noise rejection will depend upon the  
match of the bridge-resistor ratios. Either close tolerance (0.1%)  
types should be used, or R4 should be trimmed for best CMRR.  
All resistors should be metal film types for best stability and low  
noise.  
4
–18V  
Figure 45. Burn-In Circuit  
Rev. F | Page 17 of 20  
 
 
 
 
OP27  
Capacitor C2 and Resistor R2 form a 2 μs time constant in this  
circuit, as recommended for optimum transient response by the  
transformer manufacturer. With C2 in use, A1 must have unity-  
gain stability. For situations where the 2 μs time constant is not  
necessary, C2 can be deleted, allowing the faster OP37 to be  
employed.  
REFERENCES  
1. Lipshitz, S. R, “On RIAA Equalization Networks,” JAES,  
Vol. 27, June 1979, p. 458–481.  
2. Jung, W. G., IC Op Amp Cookbook, 2nd. Ed., H. W. Sams  
and Company, 1980.  
3. Jung, W. G., Audio IC Op Amp Applications, 2nd. Ed., H. W.  
A 150 Ω resistor and R1 and R2 gain resistors connected to a  
noiseless amplifier generate 220 nV of noise in a 20 kHz  
bandwidth, or 73 dB below a 1 mV reference level. Any practical  
amplifier can only approach this noise level; it can never exceed  
it. With the OP27 and T1 specified, the additional noise  
degradation is close to 3.6 dB (or −69.5 referenced to 1 mV).  
Sams and Company, 1978.  
4. Jung, W. G., and Marsh, R. M., “Picking Capacitors,Audio,  
February and March, 1980.  
5. Otala, M., “Feedback-Generated Phase Nonlinearity in  
Audio Amplifiers,” London AES Convention, March 1980,  
preprint 1976.  
6. Stout, D. F., and Kaufman, M., Handbook of Operational  
Amplifier Circuit Design, New York, McGraw-Hill, 1976.  
Rev. F | Page 1± of 20  
 
 
OP27  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
5.00 (0.1968)  
4.80 (0.1890)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
8
1
5
4
0.210  
(5.33)  
MAX  
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.015 (0.38)  
GAUGE  
0.130 (3.30)  
0.115 (2.92)  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0099)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-001-BA  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 48. 8-Lead Standard Small Outline Package [SOIC]  
Figure 46. 8-Lead Plastic Dual-in-Line Package [PDIP]  
Narrow Body  
(R-8)  
S-Suffix  
(N-8)  
P-Suffix  
Dimensions shown in inches and (millimeters)  
Dimensions shown in millimeters and (inches)  
0.005 (0.13)  
MIN  
0.055 (1.40)  
MAX  
8
5
REFERENCE PLANE  
0.5000 (12.70)  
0.310 (7.87)  
0.220 (5.59)  
1
4
MIN  
0.1850 (4.70)  
0.1650 (4.19)  
0.1000 (2.54)  
BSC  
0.2500 (6.35) MIN  
0.0500 (1.27) MAX  
0.1600 (4.06)  
0.1400 (3.56)  
0.100 (2.54) BSC  
0.405 (10.29) MAX  
5
0.320 (8.13)  
0.290 (7.37)  
6
8
4
0.2000  
(5.08)  
BSC  
3
7
0.060 (1.52)  
0.200 (5.08)  
MAX  
0.0450 (1.14)  
0.0270 (0.69)  
0.015 (0.38)  
2
1
0.1000  
0.0190 (0.48)  
0.0160 (0.41)  
0.150 (3.81)  
MIN  
(2.54)  
BSC  
0.200 (5.08)  
0.125 (3.18)  
0.0340 (0.86)  
0.0280 (0.71)  
0.0400 (1.02) MAX  
0.0210 (0.53)  
0.0160 (0.41)  
0.015 (0.38)  
0.008 (0.20)  
0.0400 (1.02)  
0.0100 (0.25)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
15°  
0°  
45° BSC  
0.070 (1.78)  
0.030 (0.76)  
BASE & SEATING PLANE  
COMPLIANT TO JEDEC STANDARDS MO-002-AK  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 47. 8-Lead Ceramic DIP – Glass Hermetic Seal [CERDIP]  
Figure 49. 8-Lead Metal Can [TO-99]  
(Q-8)  
Z-Suffix  
(H-08)  
J-Suffix  
Dimensions shown in inches and (millimeters)  
Dimensions shown in inches and (millimeters)  
Rev. F | Page 19 of 20  
 
OP27  
ORDERING GUIDE  
Model  
Temperature Range  
–55° to +125°C  
–40° to +±5°C  
–55° to +125°C  
–55° to +125°C  
–25° to +±5°C  
–40° to +±5°C  
0° to +70°C  
Package Description  
±-Lead Metal Can (TO-99)  
±-Lead Metal Can (TO-99)  
±-Lead CERDIP  
±-Lead CERDIP  
±-Lead CERDIP  
±-Lead CERDIP  
±-Lead PDIP  
±-Lead PDIP  
±-Lead PDIP  
±-Lead PDIP  
±-Lead SOIC  
±-Lead SOIC  
±-Lead SOIC  
±-Lead SOIC  
±-Lead SOIC  
±-Lead SOIC  
Die  
Package Option  
J-Suffix (H-0±)  
J-Suffix (H-0±)  
Z-Suffix (Q-±)  
Z-Suffix (Q-±)  
Z-Suffix (Q-±)  
Z-Suffix (Q-±)  
P-Suffix (N-±)  
P-Suffix (N-±)  
P-Suffix (N-±)  
P-Suffix (N-±)  
S-Suffix (R-±)  
S-Suffix (R-±)  
S-Suffix (R-±)  
S-Suffix (R-±)  
S-Suffix (R-±)  
S-Suffix (R-±)  
OP27AJ/±±3C  
OP27GJ  
OP27AZ  
OP27AZ/±±3C  
OP27EZ  
OP27GZ  
OP27EP  
OP27EPZ1  
OP27GP  
OP27GPZ1  
OP27GS  
OP27GS-REEL  
OP27GS-REEL7  
OP27GSZ1  
OP27GSZ-REEL1  
OP27GSZ-REEL71  
OP27NBC  
0° to +70°C  
–40° to +±5°C  
–40° to +±5°C  
–40° to +±5°C  
–40° to +±5°C  
–40° to +±5°C  
–40° to +±5°C  
–40° to +±5°C  
–40° to +±5°C  
1 Z = Pb-free part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00317-0-5/06(F)  
Rev. F | Page 20 of 20  
 
 

相关型号:

OP27GS-T

Operational Amplifier, 1 Func, 220uV Offset-Max, BIPolar, PDSO8, SOP-8
MAXIM

OP27GSZ

Low Noise, Precision Operational Amplifier
ADI

OP27GSZ-REEL

Low Noise, Precision Operational Amplifier
ADI

OP27GSZ-REEL1

Low Noise, Precision Operational Amplifier
ADI

OP27GSZ-REEL7

Low Noise, Precision Operational Amplifier
ADI

OP27GSZ-REEL71

Low Noise, Precision Operational Amplifier
ADI

OP27GSZ1

Low Noise, Precision Operational Amplifier
ADI

OP27GU

Operational Amplifier, 1 Func, 100uV Offset-Max, BIPolar, PDSO8,
BB

OP27GU

OP-AMP, 100uV OFFSET-MAX, 8MHz BAND WIDTH, PDSO8
TI

OP27GZ

Low-Noise Precision Operaional Amplifiers
MAXIM

OP27GZ

Low-Noise, Precision Operational Amplifier
ADI

OP27GZ

Operational Amplifier, 1 Func, 100uV Offset-Max, BIPolar, CDIP8,
BB