OP27 [ADI]

Low-Noise, Precision Operational Amplifier; 低噪声,高精度运算放大器
OP27
型号: OP27
厂家: ADI    ADI
描述:

Low-Noise, Precision Operational Amplifier
低噪声,高精度运算放大器

运算放大器
文件: 总16页 (文件大小:366K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low-Noise, Precision  
Operational Amplifier  
a
OP27  
PIN CONNECTIONS  
FEATURES  
Low Noise: 80 nV p-p (0.1 Hz to 10 Hz), 3 nV/  
Low Drift: 0.2 V/C  
High Speed: 2.8 V/s Slew Rate, 8 MHz Gain  
Bandwidth  
Hz  
TO-99  
(J-Suffix)  
BAL  
Low VOS: 10 V  
Excellent CMRR: 126 dB at VCM of 11 V  
High Open-Loop Gain: 1.8 Million  
Fits 725, OP07, 5534A Sockets  
Available in Die Form  
V+  
BAL 1  
OP27  
OUT  
–IN 2  
NC  
+IN 3  
GENERAL DESCRIPTION  
4V– (CASE)  
NC = NO CONNECT  
The OP27 precision operational amplifier combines the low  
offset and drift of the OP07 with both high speed and low noise.  
Offsets down to 25 µV and drift of 0.6 µV/°C maximum make  
the OP27 ideal for precision instrumentation applications.  
Exceptionally low noise, en = 3.5 nV/Hz, at 10 Hz, a low 1/f  
noise corner frequency of 2.7 Hz, and high gain (1.8 million),  
allow accurate high-gain amplification of low-level signals. A  
gain-bandwidth product of 8 MHz and a 2.8 V/µsec slew rate  
provides excellent dynamic accuracy in high-speed, data-  
acquisition systems.  
8-Pin Hermetic DIP  
(Z-Suffix)  
Epoxy Mini-DIP  
(P-Suffix)  
8-Pin SO  
(S-Suffix)  
A low input bias current of 10 nA is achieved by use of a  
bias-current-cancellation circuit. Over the military temperature  
range, this circuit typically holds IB and IOS to 20 nA and 15 nA,  
respectively.  
1
2
3
4
8
7
6
5
V
TRIM  
V
TRIM  
IN  
+IN  
V–  
OS  
OS  
OP27  
V+  
OUT  
NC  
The output stage has good load driving capability. A guaranteed  
swing of 10 V into 600 and low output distortion make the  
NC = NO CONNECT  
OP27 an excellent choice for professional audio applications.  
(Continued on page 7)  
V+  
C2  
R3  
R4  
1
8
Q6  
Q22  
Q46  
C1  
V
ADJ.  
OS  
R23 R24  
Q24  
R1*  
R2*  
Q21  
Q23  
R9  
Q20 Q19  
OUTPUT  
R12  
Q1A Q1B  
Q2B Q2A  
NONINVERTING  
INPUT (+)  
C3  
C4  
R5  
Q3  
Q26  
INVERTING  
INPUT ()  
Q45  
Q11 Q12  
Q27  
Q28  
*R1 AND R2 ARE PERMANENTLY  
ADJUSTED ATWAFERTEST FOR  
MINIMUM OFFSETVOLTAGE.  
V–  
Figure 1. Simplified Schematic  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
OP27–SPECIFICATIONS  
(@ V = 15 V, T = 25C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
S
A
OP27A/E  
OP27F  
OP27C/G  
Parameter  
Symbol Conditions  
Min Typ Max Min Typ Max Min Typ Max Unit  
INPUT OFFSET  
VOLTAGE1  
VOS  
10  
0.2  
7
25  
1.0  
35  
20  
0.3  
9
60  
1.5  
50  
30  
0.4  
12  
100  
2.0  
75  
µV  
LONG-TERM VOS  
STABILITY2, 3  
VOS/Time  
µV/MO  
nA  
INPUT OFFSET  
CURRENT  
IOS  
IB  
INPUT BIAS  
CURRENT  
10  
40  
12  
55  
15  
80  
nA  
INPUT NOISE  
VOLTAGE3, 4  
en p-p  
en  
0.1 Hz to 10 Hz  
0.08 0.18  
0.08 0.18  
0.09 0.25 µV p-p  
INPUT NOISE  
Voltage Density3  
fO = 10 Hz  
fO = 30 Hz  
fO = 1000 Hz  
3.5  
3.1  
3.0  
5.5  
4.5  
3.8  
3.5  
3.1  
3.0  
5.5  
4.5  
3.8  
3.8  
3.3  
3.2  
8.0  
5.6  
4.5  
nV/Hz  
nV/Hz  
nV/Hz  
INPUT NOISE  
in  
fO = 10 Hz  
fO = 30 Hz  
fO = 1000 Hz  
1.7  
1.0  
0.4  
4.0  
2.3  
0.6  
1.7  
1.0  
0.4  
4.0  
2.3  
0.6  
1.7  
1.0  
0.4  
pA/Hz  
pA/Hz  
pA/Hz  
Current Density3, 5  
0.6  
INPUT  
RESISTANCE  
Differential-Mode6  
Common-Mode  
RIN  
RINCM  
1.3  
6
3
0.94  
5
2.5  
0.7  
4
2
MΩ  
GΩ  
INPUT VOLTAGE  
RANGE  
IVR  
11.0 12.3  
11.0 12.3  
11.0 12.3  
V
COMMON-MODE  
REJECTION RATIO CMRR  
VCM  
=
11 V  
114  
126  
1
106  
123  
1
100  
120  
2
dB  
POWER SUPPLY  
REJECTION RATIO  
PSRR  
VS = 4 V  
to 18 V  
10  
10  
20  
µV/V  
LARGE-SIGNAL  
VOLTAGE GAIN  
AVO  
RL 2 k,  
VO = 10 V  
RL 600 ,  
VO = 10 V  
1000 1800  
1000 1800  
700  
600  
1500  
1500  
V/mV  
V/mV  
800  
1500  
800  
1500  
OUTPUT  
VOLTAGE SWING  
VO  
SR  
RL 2 kΩ  
12.0 13.8  
10.0 11.5  
12.0 13.8  
10.0 11.5  
11.5 13.5  
10.0 11.5  
V
V
RL 600 Ω  
SLEW RATE7  
RL 2 kΩ  
1.7  
2.8  
1.7  
2.8  
1.7  
2.8  
V/µs  
GAIN  
BANDWIDTH  
PRODUCT7  
GBW  
5.0  
8.0  
5.0  
8.0  
5.0  
8.0  
MHz  
OPEN-LOOP  
OUTPUT  
RESISTANCE  
RO  
Pd  
VO = 0, IO = 0  
VO  
70  
90  
70  
90  
70  
POWER  
CONSUMPTION  
140  
140  
100  
170  
mW  
OFFSET  
ADJUSTMENT  
RANGE  
RP = 10 kΩ  
4.0  
4.0  
4.0  
mV  
NOTES  
1Input offset voltage measurements are performed ~ 0.5 seconds after application of power. A/E grades guaranteed fully warmed up.  
2Long-term input offset voltage stability refers to the average trend line of VOS versus. Time over extended periods after the first 30 days of operation. Excluding the  
initial hour of operation, changes in VOS during the first 30 days are typically 2.5 µV. Refer to typical performance curve.  
3Sample tested.  
4See test circuit and frequency response curve for 0.1 Hz to 10 Hz tester.  
5See test circuit for current noise measurement.  
6Guaranteed by input bias current.  
7Guaranteed by design.  
–2–  
REV. A  
OP27  
ELECTRICAL CHARACTERISTICS  
(@ VS = 15 V, –55C TA 125C, unless otherwise noted.)  
OP27A  
Typ  
OP27C  
Typ  
Parameter  
Symbol Conditions  
Min  
Max  
Min  
Max  
Unit  
INPUT OFFSET  
VOLTAGE1  
VOS  
30  
60  
70  
300  
µV  
AVERAGE INPUT  
OFFSET DRIFT  
2
TCVOS  
3
TCVOSn  
0.2  
15  
0.6  
50  
60  
4
1.8  
µV/°C  
INPUT OFFSET  
CURRENT  
IOS  
IB  
30  
35  
135  
nA  
INPUT BIAS  
CURRENT  
20  
150 nA  
INPUT VOLTAGE  
RANGE  
IVR  
10.3  
108  
11.5  
122  
2
10.2  
11.5  
V
COMMON-MODE  
REJECTION RATIO CMRR  
VCM  
VS = 4.5 V to 18 V  
RL 2 k, VO = 10 V 600  
RL 2 k11.5  
=
10 V  
94  
118  
4
dB  
POWER SUPPLY  
REJECTION RATIO PSRR  
16  
51  
µV/V  
V/mV  
V
LARGE-SIGNAL  
VOLTAGE GAIN  
AVO  
VO  
1200  
13.5  
300  
800  
OUTPUT  
VOLTAGE SWING  
10.5  
13.0  
NOTES  
1Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power. A/E grades guaranteed fully  
warmed up.  
2The TCVOS performance is within the specifications unnulled or when nulled with RP = 8 kto 20 k. TCVOS is 100% tested for A/E grades, sample tested for  
C/F/G grades.  
3Guaranteed by design.  
–3–  
REV. A  
OP27  
(@ VS = 15 V, –25TA 85C for OP27J, OP27Z, 0C TA 70C for OP27EP,  
ELECTRICAL CHARACTERISTICS OP27FP, and –40C TA 85C for OP27GP, OP27GS, unless otherwise noted.)  
OP27E  
Typ  
OP27F  
OP27G  
Parameter  
Symbol Conditions  
Min  
Max Min  
Typ Max Min Typ Max  
Unit  
INPUT ONSET  
VOLTAGE  
VOS  
20  
50  
40  
140  
55  
220  
µV  
AVERAGE INPUT  
OFFSET DRIFT  
1
TCVOS  
0.2  
0.2  
0.6  
0.6  
0.3  
0.3  
1.3  
1.3  
0 4  
0 4  
1.8  
1.8  
µV/°C  
µV/°C  
2
TCVOSn  
INPUT OFFSET  
CURRENT  
IOS  
IB  
10  
14  
50  
60  
14  
85  
95  
20  
135  
nA  
INPUT BIAS  
CURRENT  
18  
11.8  
121  
25  
10.5 11.8  
150 nA  
INPUT VOLTAGE  
RANGE  
IVR  
10.5  
10 V 110  
11.8  
10.5  
V
COMMON-MODE  
REJECTION RATIO CMRR  
VCM  
=
124  
2
102  
96  
118  
2
dB  
POWER SUPPLY  
REJECTION RATIO PSRR  
VS = 4.5 V  
to 18 V  
15  
2
16  
32  
µV/V  
LARGE-SIGNAL  
VOLTAGE GAIN  
AVO  
RL 2 k,  
VO = 10 V  
750  
11.7  
1500  
13.6  
700  
1300  
13.5  
450  
1000  
V/mV  
V
OUTPUT  
VOLTAGE SWING  
VO  
RL 2 kΩ  
11.4  
11.0 13.3  
NOTES  
1The TCVOS performance is within the specifications unnulled or when nulled with RP = 8 kto 20 k. TCVOS is 100% tested for A/E grades, sample tested for  
C/F/G grades.  
2Guaranteed by design.  
–4–  
REV. A  
OP27  
DICE CHARACTERISTICS  
1. NULL  
2. () INPUT  
3. (+) INPUT  
4. V–  
6. OUTPUT  
7. V+  
8. NULL  
DIE SIZE 0.109 0.055 INCH, 5995 SQ. MILS  
(2.77 1.40mm, 3.88 SQ. mm)  
(@ VS = 15 V, TA = 25C unless otherwise noted.)  
WAFER TEST LIMITS  
OP27N  
Limit  
OP27G  
Limit  
OP27GR  
Limit  
Parameter  
Symbol  
Conditions  
Unit  
INPUT OFFSET VOLTAGE*  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
VOS  
IOS  
IB  
35  
35  
40  
11  
60  
50  
55  
11  
100  
75  
µV Max  
nA Max  
nA Max  
V Min  
80  
INPUT VOLTAGE RANGE  
IVR  
11  
COMMON-MODE REJECTION  
RATIO  
CMRR  
PSRR  
V
CM = IVR  
114  
10  
106  
10  
100  
20  
dB Min  
POWER SUPPLY  
VS = 4 V to 18 V  
µV/V Max  
LARGE-SIGNAL VOLTAGE  
GAIN  
AVO  
AVO  
RL 2 k, VO = 10 V  
RL 600 , VO = 10 V  
1000  
800  
1000  
800  
700  
600  
V/mV Min  
V/mV Min  
OUTPUT VOLTAGE SWING  
VO  
VO  
RL 2 kΩ  
RL2600n  
12.0  
10.0  
12.0  
10.0  
+11.5  
10.0  
V Min  
V Min  
POWER CONSUMPTION  
Pd  
VO = 0  
140  
140  
170  
mW Max  
NOTE  
*Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.  
–5–  
REV. A  
OP27  
(@ V = 15 V, T = 25C unless otherwise noted.)  
TYPICAL ELECTRICAL CHARACTERISTICS  
S
A
OP27N  
Typical  
OP27G  
Typical  
OP27GR  
Typical  
Parameter  
Symbol  
Conditions  
Unit  
AVERAGE INPUT OFFSET  
VOLTAGE DRIFT*  
TCVOS or  
TCVOSn  
Nulled or Unnulled  
RP = 8 kto 20 kΩ  
0.2  
0.3  
0.4  
µV/°C  
AVERAGE INPUT OFFSET  
CURRENT DRIFT  
TCIOS  
TCIB  
80  
130  
160  
180  
200  
pA/°C  
pA/°C  
AVERAGE INPUT BIAS  
CURRENT DRIFT  
100  
INPUT NOISE VOLTAGE  
DENSITY  
en  
en  
en  
fO = 10 Hz  
fO = 30 Hz  
fO = 1000 Hz  
3.5  
3.1  
3.0  
3.5  
3.1  
3.0  
3.8  
3.3  
3.2  
nV/Hz  
nV/Hz  
nV/Hz  
INPUT NOISE CURRENT  
DENSITY  
in  
in  
in  
fO = 10 Hz  
fO = 30 Hz  
fO = 1000 Hz  
1.7  
1.0  
0.4  
1.7  
1.0  
0.4  
1.7  
1.0  
0.4  
pA/Hz  
pA/Hz  
pA/Hz  
INPUT NOISE VOLTAGE  
SLEW RATE  
enp-p  
SR  
0.1 Hz to 10 Hz  
RL 2 kΩ  
0.08  
2.8  
0.08  
2.8  
0.09  
2.8  
µV p-p  
V/µs  
GAIN BANDWIDTH  
PRODUCT  
GBW  
8
8
8
MHz  
NOTE  
*Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.  
–6–  
REV. A  
OP27  
(Continued from page 1)  
The OP27 provides excellent performance in low-noise, high-  
accuracy amplification of low-level signals. Applications include  
stable integrators, precision summing amplifiers, precision voltage-  
threshold detectors, comparators, and professional audio circuits  
such as tape-head and microphone preamplifiers.  
PSRR and CMRR exceed 120 dB. These characteristics, coupled  
with long-term drift of 0.2 µV/month, allow the circuit designer  
to achieve performance levels previously attained only by dis-  
crete designs.  
The OP27 is a direct replacement for 725, OP06, OP07, and  
OP45 amplifiers; 741 types may be directly replaced by remov-  
ing the 741’s nulling potentiometer.  
Low-cost, high-volume production of OP27 is achieved by  
using an on-chip Zener zap-trimming network. This reliable  
and stable offset trimming scheme has proved its effectiveness  
over many years of production history.  
ABSOLUTE MAXIMUM RATINGS4  
3
Package Type  
JA  
JC  
Unit  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
22 V  
22 V  
Input Voltage1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
TO 99 (J)  
150  
18  
16  
43  
38  
43  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
8-Lead Hermetic DlP (Z) 148  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . 0.7 V  
Differential Input Current2 . . . . . . . . . . . . . . . . . . . . 25 mA  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
OP27A, OP27C (J, Z) . . . . . . . . . . . . . . . . –55°C to +125°C  
OP27E, OP27F (J, Z) . . . . . . . . . . . . . . . . . –25°C to +85°C  
OP27E, OP27F (P) . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
OP27G (P, S, J, Z) . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . 300°C  
Junction Temperature . . . . . . . . . . . . . . . . . –65°C to +150°C  
8-Lead Plastic DIP (P)  
20-Contact LCC (RC)  
8-Lead SO (S)  
103  
98  
158  
NOTES  
1For supply voltages less than 22 V, the absolute maximum input voltage is  
equal to the supply voltage.  
2The OP27’s inputs are protected by back-to-back diodes. Current limiting  
resistors are not used in order to achieve low noise. If differential input voltage  
exceeds 0.7 V, the input current should be limited to 25 mA.  
JA is specified for worst-case mounting conditions, i.e., JA is specified for  
device in socket for TO, CERDIP, and P-DIP packages; JA is specified for  
device soldered to printed circuit board for SO package.  
4Absolute Maximum Ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
3
ORDERING INFORMATION1  
Package  
TA = 25°C  
OS Max  
(µV)  
Operating  
Temperature  
Range  
V
CERDIP  
8-Lead  
Plastic  
8-Lead  
TO-99  
25  
25  
60  
100  
100  
100  
OP27AJ2, 3  
OP27AZ2  
OP27EZ  
MIL  
OP27EJ2, 3  
OP27EP  
OP27FP3  
IND/COM  
IND/COM  
MIL  
XIND  
XIND  
OP27CZ3  
OP27GZ  
OP27GJ  
OP27GP  
OP27GS4  
NOTES  
1Burn-in is available on commercial and industrial temperature range parts in CERDIP, plastic  
DIP, and TO-can packages.  
2For devices processed in total compliance to MIL-STD-883, add /883 after part number.  
Consult factory for 883 data sheet.  
3Not for new design; obsolete April 2002.  
4For availability and burn-in information on SO and PLCC packages, contact your local  
sales office.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the OP27 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. A  
–7–  
OP27  
Typical Performance Characteristics  
10  
9
100  
90  
80  
70  
60  
50  
100  
10  
1
T
V
= 25C  
= 15V  
A
8
7
6
S
741  
5
4
I/F CORNER  
LOW NOISE  
3
I/F CORNER =  
2.7Hz  
AUDIO OP AMP  
OP27  
I/F CORNER  
I/F CORNER = 2.7Hz  
2
TEST TIME OF 10sec FURTHER  
LIMITS LOW FREQUENCY  
(<0.1Hz) GAIN  
INSTRUMENTATION AUDIO RANGE  
40  
RANGETO DC  
TO 20kHz  
1
30  
0.01  
1
10  
100  
1k  
0.1  
1
10  
100  
1
10  
100  
1k  
FREQUENCY Hz  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 1. 0.1 Hz to 10 Hzp-p Noise Tester  
Frequency Response  
TPC 2. Voltage Noise Density vs.  
Frequency  
TPC 3. A Comparison of Op Amp  
Voltage Noise Spectra  
100  
10  
5
R1  
R2  
T
V
= 25C  
= 15V  
A
T
V
= 25C  
= 15V  
V
= 15V  
A
S
S
S
R
2R1  
4
3
2
1
S
AT 10Hz  
AT 1kHz  
1
10  
0.1  
AT 10Hz  
AT 1kHz  
RESISTOR NOISE ONLY  
1
100  
0.01  
100  
50 25  
0
25  
50  
75  
100 125  
1k  
10k  
1k  
10k  
100k  
TEMPERATURE C  
SOURCE RESISTANCE ꢅ  
BANDWIDTH Hz  
TPC 4. Input Wideband Voltage  
Noise vs. Bandwidth (0.1 Hz to  
Frequency Indicated)  
TPC 5. Total Noise vs. Sourced  
Resistance  
TPC 6. Voltage Noise Density vs.  
Temperature  
5
10.0  
5.0  
4.0  
T
= 25C  
A
4
3
2
1
AT 10Hz  
AT 1kHz  
T
= +125C  
A
1.0  
3.0  
2.0  
1.0  
T
= 55C  
A
T
= +25C  
A
I/F CORNER = 140Hz  
0.1  
10  
0
10  
20  
30  
40  
5
15  
25  
35  
45  
100  
1k  
10k  
TOTAL SUPPLYVOLTAGE V  
TOTAL SUPPLYVOLTAGE (V+ V) V  
FREQUENCY Hz  
TPC 7. Voltage Noise Density vs.  
Supply Voltage  
TPC 8. Current Noise Density vs.  
Frequency  
TPC 9. Supply Current vs. Supply  
Voltage  
–8–  
REV. A  
OP27  
60  
50  
40  
6
4
OP27C  
OP27A  
T
V
= 25C  
= 15V  
A
S
2
10  
30  
20  
0
2  
4  
OP27 C/G  
OP27 F  
10  
0
OP27A  
OP27A  
6  
6
10  
20  
30  
5
4
OP27 A/E  
2
40  
0
TRIMMINGWITH  
10kPOT DOES  
NOT CHANGE  
2  
50  
60  
70  
4  
6  
TCV  
OS  
OP27C  
1
0
1
2
3
4
5
75 50 25  
0
25 50 75 100 125 150 175  
0
1
2
3
4
5
6
7
TEMPERATURE C  
TIME AFTER POWER ON Min  
TIME Months  
TPC 10. Offset Voltage Drift of  
Five Representative Units vs.  
Temperature  
TPC 11. Long-Term Offset Voltage  
Drift of Six Representative Units  
TPC 12. Warm-Up Offset Voltage  
Drift  
50  
50  
30  
V
= 15V  
V
= 15V  
V = 15V  
S
S
S
25  
20  
40  
30  
20  
10  
40  
30  
20  
T
25C  
=
T = 70C  
A
A
15  
10  
5
THERMAL  
SHOCK  
RESPONSE  
BAND  
OP27C  
OP27A  
OP27C  
10  
0
DEVICE IMMERSED  
IN 70C OIL BATH  
OP27A  
25  
0
20  
0
75 50 25  
0
50 75 100 125  
50 25  
0
25 50 75 100 125 150  
0
20  
40  
100  
60  
80  
TEMPERATURE C  
TEMPERATURE C  
TIME Sec  
TPC 13. Offset Voltage Change Due  
to Thermal Shock  
TPC 14. Input Bias Current vs.  
Temperature  
TPC 15. Input Offset Current vs.  
Temperature  
130  
110  
25  
80  
T
V
= 25C  
= 15V  
A
10  
9
S
70  
100  
120  
140  
160  
180  
200  
220  
20  
15  
10  
5
M  
GAIN  
V
S
= 15V  
90  
70  
60  
PHASE  
MARGIN  
= 70ꢁ  
GBW  
SLEW  
25  
50  
4
8
7
6
50  
30  
0
3
2
10  
5  
10  
10  
1
10 100 1k 10k 100k 1M 10M 100M  
75 50 25  
0
50  
75 100 125  
1M  
10M  
FREQUENCY Hz  
100M  
FREQUENCY Hz  
TEMPERATURE C  
TPC 16. Open-Loop Gain vs.  
Frequency  
TPC 17. Slew Rate, Gain-Bandwidth  
Product, Phase Margin vs.  
Temperature  
TPC 18. Gain, Phase Shift vs.  
Frequency  
–9–  
REV. A  
OP27  
2.5  
28  
24  
20  
16  
12  
8
18  
16  
T
V
= 25C  
= 15V  
A
T
= 25C  
A
S
POSITIVE  
SWING  
14  
12  
10  
8
2.0  
1.5  
1.0  
0.5  
R
= 2kꢅ  
L
NEGATIVE  
SWING  
R
= 1kꢅ  
L
6
4
2
T
V
= 25C  
= 15V  
4
A
0
S
2  
100  
0
1k  
0
0
10  
20  
30  
40  
50  
1k  
10k  
10k  
100k  
1M  
10M  
LOAD RESISTANCE ꢅ  
TOTAL SUPPLYVOLTAGE V  
FREQUENCY Hz  
TPC 19. Open-Loop Voltage Gain vs.  
Supply Voltage  
TPC 20. Maximum Output Swing vs.  
Frequency  
TPC 21. Maximum Output Voltage  
vs. Load Resistance  
100  
V
= 15V  
= 100mV  
= +1  
S
V
IN  
500ns  
= +1  
2V  
2s  
20mV  
A
80  
60  
40  
20  
0
V
50mV  
0V  
+5V  
0V  
A
A
= +1  
VCL  
VCL  
C
V
= 15pF  
= 15V  
= 25C  
V
T
= 15V  
= 25C  
L
S
S
A
A
T
50mV  
5V  
0
500  
1000  
1500  
2000  
2500  
CAPACITIVE LOAD pF  
TPC 22. Small-Signal Overshoot vs.  
Capacitive Load  
TPC 23. Small-Signal Transient  
Response  
TPC 24. Large-Signal Transient  
Response  
60  
140  
16  
V
T
= 15V  
= 25C  
= 10V  
T
V
= 25C  
= 15V  
S
A
T = 55C  
A
12  
8
A
S
V
T
= +25C  
CM  
A
50  
40  
30  
20  
10  
120  
100  
80  
T
= +125C  
A
4
I
(+)  
SC  
0
T
= 55C  
A
4  
8  
12  
16  
I
()  
SC  
T
= +25C  
A
T
= +125C  
10  
A
60  
100  
0
1
2
3
4
5
0
5  
15  
20  
1k  
10k  
100k  
1M  
FREQUENCY Hz  
TIME FROM OUTPUT SHORTEDTO  
SUPPLYVOLTAGE V  
GROUND Min  
TPC 27. Common-Mode Input Range  
vs. Supply Voltage  
TPC 25. Short-Circuit Current vs.  
Time  
TPC 26. CMRR vs. Frequency  
–10–  
REV. A  
OP27  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.1F  
T
V
= 25C  
= 15V  
A
S
100kꢅ  
1 SEC/DIV  
120  
80  
OP27  
D.U.T.  
10ꢅ  
40  
2kꢅ  
0
VOLTAGE  
GAIN  
22F  
4.3kꢅ  
2.2F  
40  
90  
120  
OP12  
100kꢅ  
= 50,000  
SCOPE 1  
= 1Mꢅ  
R
IN  
4.7F  
0.6  
0.4  
110kꢅ  
0.1F  
24.3kꢅ  
0.1Hz to 10Hz p-p NOISE  
100  
1k  
10k  
100k  
LOAD RESISTANCE ꢅ  
TPC 28. Voltage Noise Test Circuit  
(0.1 Hz to 10 Hz)  
TPC 29. Open-Loop Voltage Gain vs.  
Load Resistance  
TPC 30. Low-Frequency Noise  
160  
T
= 25C  
A
140  
120  
100  
80  
60  
40  
20  
0
NEGATIVE  
SWING  
POSITIVE  
SWING  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY Hz  
TPC 31. PSRR vs. Frequency  
APPLICATION INFORMATION  
approximately (VOS/300) µV/°C. For example, the change in  
TCVOS will be 0.33 µV/°C if VOS is adjusted to 100 µV. The  
offset voltage adjustment range with a 10 kpotentiometer is  
4 mV. If smaller adjustment range is required, the nulling  
sensitivity can be reduced by using a smaller pot in conjuction  
with fixed resistors. For example, the network below will have a  
280 µV adjustment range.  
OP27 series units may be inserted directly into 725 and OP07  
sockets with or without removal of external compensation or  
nulling components. Additionally, the OP27 may be fitted to  
unnulled 741-type sockets; however, if conventional 741 nulling  
circuitry is in use, it should be modified or removed to ensure  
correct OP27 operation. OP27 offset voltage may be nulled to  
zero (or another desired setting) using a potentiometer (see  
Offset Nulling Circuit).  
4.7kꢅ  
1kPOT  
4.7kꢅ  
8
1
The OP27 provides stable operation with load capacitances of  
up to 2000 pF and 10 V swings; larger capacitances should be  
decoupled with a 50 resistor inside the feedback loop. The  
OP27 is unity-gain stable.  
V+  
Figure 2.  
Thermoelectric voltages generated by dissimilar metals at the  
input terminal contacts can degrade the drift performance. Best  
operation will be obtained when both input contacts are main-  
tained at the same temperature.  
NOISE MEASUREMENTS  
To measure the 80 nV peak-to-peak noise specification of the  
OP27 in the 0.1 Hz to 10 Hz range, the following precautions  
must be observed:  
1. The device must be warmed up for at least five minutes.  
As shown in the warm-up drift curve, the offset voltage  
typically changes 4 µV due to increasing chip temperature  
after power-up. In the 10-second measurement interval,  
these temperature-induced effects can exceed tens-of-  
nanovolts.  
OFFSET VOLTAGE ADJUSTMENT  
The input offset voltage of the OP27 is trimmed at wafer level.  
However, if further adjustment of VOS is necessary, a 10 ktrim  
potentiometer can be used. TCVOS is not degraded (see Offset  
Nulling Circuit). Other potentiometer values from 1 kto 1 MΩ  
can be used with a slight degradation (0.1 µV/°C to 0.2 µV/°C)  
of TCVOS. Trimming to a value other than zero creates a drift of  
2. For similar reasons, the device has to be well-shielded from  
air currents. Shielding minimizes thermocouple effects.  
–11–  
REV. A  
OP27  
3. Sudden motion in the vicinity of the device can also  
“feedthrough” to increase the observed noise.  
2
1/2  
Voltage Noise  
+
(
)
2
Total Noise = Current Noise × R  
+
(
)
S
4. The test time to measure 0.1 Hz to 10 Hz noise should not  
exceed 10 seconds. As shown in the noise-tester frequency  
response curve, the 0.1 Hz corner is defined by only one  
zero. The test time of 10 seconds acts as an additional zero  
to eliminate noise contributions from the frequency band  
below 0.1 Hz.  
2
Resistor Noise  
(
)
Figure 4 shows noise versus source-resistance at 1000 Hz. The  
same plot applies to wideband noise. To use this plot, multiply  
the vertical scale by the square root of the bandwidth.  
5. A noise-voltage-density test is recommended when measuring  
noise on a large number of units. A 10 Hz noise-voltage-  
density measurement will correlate well with a 0.1 Hz to 10 Hz  
peak-to-peak noise reading, since both results are determined  
by the white noise and the location of the 1/f corner frequency.  
100  
50  
1
OP08/108  
UNITY-GAIN BUFFER APPLICATIONS  
2
OP07  
10  
When Rf 100 and the input is driven with a fast, large signal  
pulse (>1 V), the output waveform will look as shown in the  
pulsed operation diagram (Figure 3).  
1 R UNMATCHED  
S
5
5534  
e.g.R = R = 10k, R = 0  
S
S1 S2  
2 R MATCHED  
S
During the fast feedthrough-like portion of the output, the input  
protection diodes effectively short the output to the input and a  
current, limited only by the output short-circuit protection, will  
be drawn by the signal generator. With Rf 500 , the output is  
capable of handling the current requirements (IL 20 mA at 10 V);  
the amplifier will stay in its active mode and a smooth transition  
will occur.  
e.g.R = 10k, R = R = 5kꢅ  
S1 S2  
S
OP27/37  
R
S1  
R
S2  
REGISTER  
NOISE ONLY  
1
50  
100  
500  
1k  
5k  
10k  
50k  
R
SOURCE RESISTANCE ꢅ  
S
Figure 4. Noise vs. Source Resistance (Including Resistor  
Noise) at 1000 Hz  
When Rf > 2 k, a pole will be created with Rf and the amplifier’s  
input capacitance (8 pF) that creates additional phase shift and  
reduces phase margin. A small capacitor (20 pF to 50 pF) in  
parallel with Rf will eliminate this problem.  
At RS <1 k, the OP27s low voltage noise is maintained. With  
RS <1 k, total noise increases, but is dominated by the resis-  
tor noise rather than current or voltage noise. lt is only beyond  
RS of 20 kthat current noise starts to dominate. The argument  
can be made that current noise is not important for applica-  
tions with low to moderate source resistances. The crossover  
between the OP27, OP07, and OP08 noise occurs in the 15 kto  
40 kregion.  
R
f
2.8V/s  
OP27  
Figure 5 shows the 0.1 Hz to 10 Hz peak-to-peak noise. Here  
the picture is less favorable; resistor noise is negligible and current  
noise becomes important because it is inversely proportional to  
the square root of frequency. The crossover with the OP07  
occurs in the 3 kto 5 krange depending on whether bal-  
anced or unbalanced source resistors are used (at 3 kthe IB  
and IOS error also can be three times the VOS spec.).  
+
Figure 3. Pulsed Operation  
COMMENTS ON NOISE  
The OP27 is a very low-noise monolithic op amp. The outstanding  
input voltage noise characteristics of the OP27 are achieved mainly  
by operating the input stage at a high quiescent current. The input  
bias and offset currents, which would normally increase, are held  
to reasonable values by the input bias-current cancellation circuit.  
The OP27A/E has IB and IOS of only 40 nA and 35 nA at 25°C  
respectively. This is particularly important when the input has a  
high source resistance. In addition, many audio amplifier design-  
ers prefer to use direct coupling. The high IB, VOS, and TCVOS  
of previous designs have made direct coupling difficult, if not  
impossible, to use.  
1k  
OP08/108  
500  
5534  
OP07  
1
2
100  
OP27/37  
1 RS UNMATCHED  
50  
e.g.RS = RS1 = 10k, RS2 = 0  
2 RS MATCHED  
Voltage noise is inversely proportional to the square root of bias  
current, but current noise is proportional to the square root of  
bias current. The OP27’s noise advantage disappears when high  
source-resistors are used. Figures 4, 5, and 6 compare OP27’s  
observed total noise with the noise performance of other devices  
in different circuit applications.  
e.g.RS = 10k, RS1 = RS2 = 5kꢅ  
RS1  
RS2  
REGISTER  
NOISE ONLY  
10  
50  
100  
500  
1k  
5k  
10k  
50k  
R
SOURCE RESISTANCE ꢅ  
S
Figure 5. Peak-to-Peak Noise (0.1 Hz to 10 Hz) as Source  
Resistance (Includes Resistor Noise)  
–12–  
REV. A  
OP27  
Therefore, for low-frequency applications, the OP07 is better  
than the OP27/OP37 when RS > 3 k. The only exception is  
when gain error is important. Figure 6 illustrates the 10 Hz  
noise. As expected, the results are between the previous two  
figures.  
Figure 7 is an example of a phono pre-amplifier circuit using the  
OP27 for A1; R1-R2-C1-C2 form a very accurate RIAA net-  
work with standard component values. The popular method to  
accomplish RIAA phono equalization is to employ frequency-  
dependent feedback around a high-quality gain block. Properly  
chosen, an RC network can provide the three necessary time  
constants of 3180, 318, and 75 µs.1  
For reference, typical source resistances of some signal sources  
are listed in Table I.  
For initial equalization accuracy and stability, precision metal  
film resistors and film capacitors of polystyrene or polypropy-  
lene are recommended since they have low voltage coefficients,  
dissipation factors, and dielectric absorption.4 (High-K ceramic  
capacitors should be avoided here, though low-K ceramics—  
such as NPO types, which have excellent dissipation factors  
and somewhat lower dielectric absorptioncan be considered  
for small values.)  
Table I.  
Source  
Device  
Impedance  
Comments  
Strain Gauge  
<500 Ω  
Typically used in low-  
frequency applications.  
Magnetic  
Tapehead  
<1500 Ω  
<1500 Ω  
Low is very important to  
reduce self-magnetization  
problems when direct coupling  
is used. OP27 IB can be  
neglected.  
C4 (2)  
R5  
220F  
100kꢅ  
+
+
MOVING MAGNET  
CARTRIDGE INPUT  
LF ROLLOFF  
OUT  
C3  
0.47F  
IN  
Magnetic  
Phonograph  
Cartridges  
Similar need for low IB in  
direct coupled applications.  
OP27 will not introduce any  
self-magnetization problem.  
A1  
OP27  
Ca  
150pF  
Ra  
R4  
75kꢅ  
C1  
0.03F  
47.5kꢅ  
OUTPUT  
R1  
97.6kꢅ  
Linear Variable <1500 Ω  
Differential  
Transformer  
Used in rugged servo-feedback  
applications. Bandwidth of  
interest is 400 Hz to 5 kHz.  
R2  
C2  
0.01F  
7.87kꢅ  
R3  
100ꢅ  
G = 1kHz GAIN  
Open-Loop Gain  
R1  
R3  
1 +  
= 0.101 (  
)
Frequency at  
OP07  
OP27  
OP37  
= 98.677 (39.9dB) AS SHOWN  
3 Hz  
10 Hz  
30 Hz  
100 dB  
100 dB  
90 dB  
124 dB  
120 dB  
110 dB  
125 dB  
125 dB  
124 dB  
Figure 7.  
The OP27 brings a 3.2 nV/Hz voltage noise and 0.45 pA/Hz  
current noise to this circuit. To minimize noise from other  
sources, R3 is set to a value of 100 , which generates a voltage  
noise of 1.3 nV/Hz. The noise increases the 3.2 nV/Hz of the  
amplifier by only 0.7 dB. With a 1 ksource, the circuit noise  
measures 63 dB below a 1 mV reference level, unweighted, in a  
20 kHz noise bandwidth.  
For further information regarding noise calculations, see Minimization of Noise  
in Op Amp Applications,Application Note AN-15.  
100  
50  
1
2
Gain (G) of the circuit at 1 kHz can be calculated by the  
OP08/108  
expression:  
R1  
OP07  
10  
G = 0.101 1+  
R3  
5534  
1 RS UNMATCHED  
e.g.RS = RS1 = 10k, RS2 = 0  
2 RS MATCHED  
For the values shown, the gain is just under 100 (or 40 dB).  
Lower gains can be accommodated by increasing R3, but gains  
higher than 40 dB will show more equalization errors because of  
the 8 MHz gain-bandwidth of the OP27.  
5
e.g.RS = 10k, RS1 = RS2 = 5kꢅ  
OP27/37  
RS1  
RS2  
REGISTER  
NOISE ONLY  
This circuit is capable of very low distortion over its entire range,  
generally below 0.01% at levels up to 7 V rms. At 3 V output  
levels, it will produce less than 0.03% total harmonic distortion  
at frequencies up to 20 kHz.  
1
50  
100  
500  
1k  
5k  
10k  
50k  
R
SOURCE RESISTANCE ꢅ  
S
Figure 6. 10 Hz Noise vs. Source Resistance (Includes  
Resistor Noise)  
Capacitor C3 and resistor R4 form a simple 6 dB-per-octave  
rumble filter, with a corner at 22 Hz. As an option, the switch-  
selected shunt capacitor C4, a nonpolarized electrolytic, bypasses  
the low-frequency rolloff. Placing the rumble filters high-pass  
action after the preamp has the desirable result of discriminating  
AUDIO APPLICATIONS  
The following applications information has been abstracted  
from a PMI article in the 12/20/80 issue of Electronic De-  
sign magazine and updated.  
REV. A  
–13–  
OP27  
against the RlAA-amplified low-frequency noise components and  
pickup-produced low-frequency disturbances.  
noise. The rms sum of these predominant noise sources will be  
about 6 nV/Hz, equivalent to 0.9 µV in a 20 kHz noise band-  
width, or nearly 61 dB below a 1 mV input signal. Measurements  
confirm this predicted performance.  
A preamplifier for NAB tape playback is similar to an RIAA  
phono preamp, though more gain is typically demanded, along  
with equalization requiring a heavy low-frequency boost. The  
circuit in Figure 7 can be readily modified for tape use, as shown  
by Figure 8.  
C1  
R1  
R3  
R6  
5F  
1kꢅ  
316kꢅ  
100ꢅ  
0.47F  
LOW IMPEDANCE  
MICROPHONE INPUT  
(Z = 50TO 200)  
Rp  
30kꢅ  
OP27/  
OP37  
+
R7  
10kꢅ  
OUTPUT  
OP27  
+
TAPE  
HEAD  
Ra  
Ca  
15kꢅ  
R1  
33kꢅ  
R2  
1kꢅ  
R4  
316kꢅ  
R3 R4  
=
R1 R2  
R2  
5kꢅ  
0.01F  
Figure 9.  
100kꢅ  
T1 = 3180s  
T2 = 50s  
For applications demanding appreciably lower noise, a high  
quality microphone transformer-coupled preamp (Figure 10)  
incorporates the internally compensated OP27. T1 is a JE-115K-E  
150 /15 ktransformer which provides an optimum source  
resistance for the OP27 device. The circuit has an overall gain of  
40 dB, the product of the transformers voltage setup and the op  
amps voltage gain.  
Figure 8.  
While the tape-equalization requirement has a flat high-frequency  
gain above 3 kHz (T2 = 50 µs), the amplifier need not be stabilized  
for unity gain. The decompensated OP37 provides a greater  
bandwidth and slew rate. For many applications, the idealized  
time constants shown may require trimming of R1 and R2 to  
optimize frequency response for nonideal tapehead performance  
and other factors.5  
C2  
1800pF  
R1  
121ꢅ  
R2  
1100ꢅ  
The network values of the configuration yield a 50 dB gain at  
1 kHz, and the dc gain is greater than 70 dB. Thus, the worst-case  
output offset is just over 500 mV. A single 0.47 µF output capaci-  
tor can block this level without affecting the dynamic range.  
A1  
OP27  
OUTPUT  
T1*  
The tapehead can be coupled directly to the amplifier input,  
since the worst-case bias current of 80 nA with a 400 mH, 100  
µ inch head (such as the PRB2H7K) will not be troublesome.  
150ꢅ  
R3  
100ꢅ  
SOURCE  
*T1 JENSEN JE 115K E  
JENSENTRANSFORMERS  
10735 BURBANK BLVD.  
N. HOLLYWOOD, CA 91601  
One potential tapehead problem is presented by amplifier bias-  
current transients which can magnetize a head. The OP27 and  
OP37 are free of bias-current transients upon power-up or power-  
down. However, it is always advantageous to control the speed  
of power supply rise and fall, to eliminate transients.  
Figure 10.  
Gain may be trimmed to other levels, if desired, by adjusting R2  
or R1. Because of the low offset voltage of the OP27, the output  
offset of this circuit will be very low, 1.7 mV or less, for a 40 dB  
gain. The typical output blocking capacitor can be eliminated in  
such cases, but is desirable for higher gains to eliminate switch-  
ing transients.  
In addition, the dc resistance of the head should be carefully  
controlled, and preferably below 1 kS2. For this configuration,  
the bias-current-induced offset voltage can be greater than the  
100pV maximum offset if the head resistance is not sufficiently  
controlled.  
+18V  
A simple, but effective, fixed-gain transformerless microphone  
preamp ( Figure 9) amplifies differential signals from low imped-  
ance microphones by 50 dB, and has an input impedance of 2 k.  
Because of the high working gain of the circuit, an OP37 helps  
to preserve bandwidth, which will be 110 kHz. As the OP37  
is a decompensated device (minimum stable gain of 5), a dummy  
resistor, Rp, may be necessary, if the microphone is to be  
unplugged. Otherwise the 100% feedback from the open input  
may cause the amplifier to oscillate.  
OP27  
18V  
Figure 11. Burn-In Circuit  
Common-mode input-noise rejection will depend upon the  
match of the bridge-resistor ratios. Either close-tolerance (0.1%)  
types should be used, or R4 should be trimmed for best CMRR.  
All resistors should be metal film types for best stability and  
low noise.  
Capacitor C2 and resistor R2 form a 2 µs time constant in this  
circuit, as recommended for optimum transient response by the  
transformer manufacturer. With C2 in use, A1 must have unity-  
gain stability. For situations where the 2 µs time constant is not  
necessary, C2 can be deleted, allowing the faster OP37 to be  
employed.  
Noise performance of this circuit is limited more by the input  
resistors R1 and R2 than by the op amp, as R1 and R2 each gen-  
erate a 4 nV/Hz noise, while the op amp generates a 3.2 nV/Hz  
–14–  
REV. A  
OP27  
Some comment on noise is appropriate to understand the  
capability of this circuit. A 150 resistor and R1 and R2  
gain resistors connected to a noiseless amplifier will generate  
220 nV of noise in a 20 kHz bandwidth, or 73 dB below a 1 mV  
reference level. Any practical amplifier can only approach this noise  
level; it can never exceed it. With the OP27 and T1 specified, the  
additional noise degradation will be close to 3.6 dB (or 69.5 refer-  
enced to 1 mV).  
References  
1. Lipshitz, S.R, On RIAA Equalization Networks,JAES,  
Vol. 27, June 1979, p. 458481.  
2. Jung, W.G., IC Op Amp Cookbook, 2nd. Ed., H.W. Sams and  
Company, 1980.  
3. Jung, W.G., Audio IC Op Amp Applications, 2nd. Ed., H.W.  
Sams and Company, 1978.  
R
10kꢅ  
4. Jung, W.G., and Marsh, R.M., Picking Capacitors,Audio,  
P
February and March, 1980.  
V+  
5. Otala, M., Feedback-Generated Phase Nonlinearity in  
Audio Amplifiers,London AES Convention, March 1980,  
preprint 1976.  
OP27  
INPUT  
OUTPUT  
6. Stout, D.F., and Kautman, M., Handbook of Operational  
Amplifier Circuit Design, New York, McGraw-Hill, 1976.  
V–  
Figure 12. Offset Nulling Circuit  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead PDIP Package (P-Suffix)  
(N-8)  
8-Lead SOIC Package (S-Suffix)  
(R-8)  
0.430 (10.92)  
0.348 (8.84)  
0.1968 (5.00)  
0.1890 (4.80)  
8
5
8
1
5
4
0.280 (7.11)  
0.240 (6.10)  
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
1
4
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
PIN 1  
0.100 (2.54)  
BSC  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
45ꢁ  
0.060 (1.52)  
0.015 (0.38)  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
0.130  
(3.30)  
MIN  
8ꢁ  
0ꢁ  
0.160 (4.06)  
0.115 (2.93)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
SEATING  
PLANE  
0.015 (0.381)  
0.008 (0.204)  
0.022 (0.558) 0.070 (1.77) SEATING  
0.014 (0.356) 0.045 (1.15)  
PLANE  
8-Pin (TO-99) Header Package (J-Suffix)  
(H-8A)  
8-Lead CERDIP Package (Z-Suffix)  
(Q-8)  
REFERENCE PLANE  
0.750 (19.05)  
0.005 (0.13) 0.055 (1.4)  
MIN  
MAX  
0.500 (12.70)  
0.185 (4.70)  
0.165 (4.19)  
8
5
0.250 (6.35) MIN  
0.100 (2.54) BSC  
0.310 (7.87)  
0.220 (5.59)  
0.160 (4.06)  
0.110 (2.79)  
0.050 (1.27) MAX  
PIN 1  
5
1
4
4
6
8
0.045 (1.14)  
0.027 (0.69)  
0.100 (2.54)  
0.200  
(5.08)  
BSC  
BSC  
0.320 (8.13)  
0.290 (7.37)  
3
7
0.405 (10.29) MAX  
0.060 (1.52)  
0.015 (0.38)  
2
0.200 (5.08)  
MAX  
1
0.100  
0.019 (0.48)  
0.016 (0.41)  
(2.54)  
BSC  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.034 (0.86)  
0.027 (0.69)  
0.040 (1.02) MAX  
0.021 (0.53)  
0.016 (0.41)  
0.045 (1.14)  
0.010 (0.25)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
45 BSC  
15  
0
0.023 (0.58) 0.070 (1.78)  
0.014 (0.36) 0.030 (0.76)  
BASE & SEATING PLANE  
REV. A  
–15–  
Revision History  
Location  
Page  
9/01—Data Sheet changed from REV. 0 to REV. A.  
Edits to ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to PACKAGE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 3  
Edits to WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Deleted TYPICAL ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits to BURN-IN CIRCUIT figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Edits to APPLICATION INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
–16–  

相关型号:

OP270

DUAL VERY LOW NOISE PRECISION OPERATIONAL AMPLIFIER
ADI

OP270ARC/883

IC DUAL OP-AMP, 175 uV OFFSET-MAX, 5 MHz BAND WIDTH, CQCC20, LCC-20, Operational Amplifier
ADI

OP270ARC/883C

IC DUAL OP-AMP, 175 uV OFFSET-MAX, 5 MHz BAND WIDTH, CQCC20, CERAMIC, LCC-20, Operational Amplifier
ADI

OP270ARCMDA

IC DUAL OP-AMP, 175 uV OFFSET-MAX, 5 MHz BAND WIDTH, CQCC20, Operational Amplifier
ADI

OP270AZ

Operational Amplifier
ETC

OP270AZ/883

DUAL OP-AMP, 75uV OFFSET-MAX, 5MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8
ROCHESTER

OP270AZ/883

IC DUAL OP-AMP, 75 uV OFFSET-MAX, 5 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

OP270AZ/883C

IC DUAL OP-AMP, 75 uV OFFSET-MAX, 5 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

OP270AZMDA

Dual Very Low Noise Precision Operational Amplifier
ADI

OP270BIEZ

DUAL OP-AMP, 150 uV OFFSET-MAX, 5 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8
ROCHESTER

OP270BIEZ

IC DUAL OP-AMP, 150 uV OFFSET-MAX, 5 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

OP270BIGS

IC DUAL OP-AMP, 400 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO16, PLASTIC, SOL-16, Operational Amplifier
ADI