OP283GBC [ADI]

IC DUAL OP-AMP, 1250 uV OFFSET-MAX, 5 MHz BAND WIDTH, UUC8, 0.063 X 0.092 INCH, DIE-8, Operational Amplifier;
OP283GBC
型号: OP283GBC
厂家: ADI    ADI
描述:

IC DUAL OP-AMP, 1250 uV OFFSET-MAX, 5 MHz BAND WIDTH, UUC8, 0.063 X 0.092 INCH, DIE-8, Operational Amplifier

运算放大器
文件: 总12页 (文件大小:418K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5 MHz Single-Supply  
Operational Amplifiers  
a
OP183/OP283  
P IN CO NNECTIO NS  
FEATURES  
Single-Supply – +3 Volts to +36 Volts  
Wide Bandw idth – 5 MHz  
Low Offset Voltage – <1 m V  
High Slew Rate – 10 V/ s  
Low Noise – 10 nV/ Hz  
Unity-Gain Stable  
8-Lead Nar r ow-Body SO  
8-Lead Epoxy D IP  
(P Suffix)  
(S Suffix)  
1
2
3
4
8
7
6
5
NULL  
–IN  
1
2
3
4
8
7
6
5
NC  
OP183  
V+  
OP183  
Input and Output Range Includes GND  
No Phase Reversal  
TOP VIEW  
(Not to Scale)  
+IN  
OUT  
NULL  
V–  
APPLICATIONS  
Multim edia  
NC = NO CONNECT  
Telecom  
ADC Buffers  
Wide Band Filters  
Microphone Pream plifiers  
8-Lead Nar r ow-Body SO  
(S Suffix)  
8-Lead Epoxy D IP  
(P Suffix)  
1
2
3
4
8
7
6
5
OUTA  
–INA  
+INA  
V–  
1
2
3
4
8
7
6
5
V+  
GENERAL D ESCRIP TIO N  
OUTB  
–INB  
+INB  
OP283  
T he OP183 is a single-supply, 5 MHz bandwidth amplifier with  
slew rates of 10 V/µs. T he OP283 is a dual version. Both can  
operate from voltages as low as 3 volts and up to 36 volts. T his  
combination of slew rate and bandwidth yields excellent single-  
supply ac performance making them ideally suited for telecom and  
multimedia audio applications.  
TOP VIEW  
(Not to Scale)  
OP283  
In addition to its ac characteristics, the OP183 family provides  
good dc performance with guaranteed 1 mV offset. Noise is a  
respectable 10 nV/Hz. Supply current is only 1.2 mA per amplifier.  
T hese amplifiers are well suited for single-supply applications that  
require moderate bandwidths even when used in high gain configu-  
rations. T his makes them useful in filters and instrumentation.  
T heir output drive capability and very wide full power bandwidth  
make them a good choice for multimedia headphone drivers or  
microphone input amplifiers.  
T he OP183 and OP283 are available in 8-pin plastic DIP and SO-8  
surface mount packages. T hey are specified over the extended  
industrial (–40°C to +85°C) temperature range.  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood. MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
OP183/OP283–SPECIFICATIONS  
(@ V = +5.0 V, T = +25؇C unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
S
A
P ar am eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
VOS  
IB  
VCM = 2.5 V, VOUT = 2.5 V,  
–40°C T A +85°C  
VCM = 2.5 V, VOUT = 2.5 V,  
–40°C T A +85°C  
VCM = 2.5 V, VOUT = 2.5 V,  
–40°C T A +85°C  
0.025  
1.0  
mV  
mV  
nA  
nA  
nA  
nA  
V
1.25  
600  
750  
Input Bias Current  
Input Offset Current  
350  
430  
IOS  
11  
±50  
+3.5  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
VCM = 0 to 3.5 V  
–40°C T A +85°C  
RL = 2 k, 0.2 VO 3.8 V  
70  
100  
104  
dB  
Large Signal Voltage Gain  
Offset Voltage Drift  
Bias Current Drift  
AVO  
VOS/T  
IB/T  
V/mV  
µV/°C  
nA/°C  
4
–1.6  
OUT PUT CHARACT ERIST ICS  
Output Voltage High  
VOH  
VOL  
ISC  
RL = 2 kto GND  
RL = 2 kto GND  
Source  
+4.0  
4.22  
50  
25  
V
Output Voltage Low  
Short Circuit Limit  
75  
mV  
mA  
mA  
Sink  
30  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = +4 V to +6 V,  
–40°C T A +85°C  
VO = 2.5 V,  
70  
104  
1.2  
dB  
Supply Current/Amplifier  
–40°C T A +85°C  
1.5  
±18  
mA  
V
Supply Voltage Range  
VS  
+3  
5
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
RL = 2 kΩ  
10  
>50  
1.5  
5
V/µs  
kHz  
µs  
Full-Power Bandwidth  
Settling T ime  
BWp  
tS  
1% Distortion  
T o 0.01%  
Gain Bandwidth Product  
GBP  
MHz  
Phase Margin  
φm  
46  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
en  
0.1 Hz to 10 Hz  
2
µV p-p  
p-p  
Voltage Noise Density  
Current Noise Density  
en  
in  
f = 1 kHz, VCM = 2.5 V  
10  
0.4  
nV/Hz  
pA/Hz  
ELECTRICAL CHARACTERISTICS (@ V = +3.0 V, T = +25؇C unless otherwise noted)  
S
A
P ar am eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
VOS  
IB  
VCM = 1.5 V, VOUT = 1.5 V,  
–40°C T A +85°C  
VCM = 1.5 V, VOUT = 1.5 V,  
–40°C T A +85°C  
VCM = 1.5 V, VOUT = 1.5 V,  
–40°C T A +85°C  
0.3  
1.0  
mV  
mV  
nA  
nA  
nA  
nA  
V
1.25  
600  
750  
Input Bias Current  
Input Offset Current  
350  
IOS  
11  
±50  
+1.5  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 1.5 V,  
–40°C T A +85°C  
RL = 2 k, 0.2 VO 1.8 V  
70  
100  
103  
260  
dB  
V/mV  
Large Signal Voltage Gain  
OUT PUT CHARACT ERIST ICS  
Output Voltage High  
VOH  
VOL  
ISC  
RL = 2 kto GND  
RL = 2 kto GND  
Source  
+2.0  
2.25  
90  
25  
V
Output Voltage Low  
Short Circuit Limit  
125  
1.5  
mV  
mA  
mA  
Sink  
30  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = +2.5 V to +3.5 V,  
–40°C T A +85°C  
–40°C T A +85°C, VO = 1.5 V  
60  
113  
1.2  
dB  
mA  
Supply Current/Amplifier  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
GBP  
en  
5
MHz  
NOISE PERFORMANCE  
Voltage Noise Density  
f = 1 kHz, VCM = 1.5 V  
10  
nV/Hz  
–2–  
REV. B  
OP183/OP283  
(@ V = ؎15.0 V, T = +25؇C unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
S
A
P ar am eter  
Sym bol  
Conditions  
Min Typ  
Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
VOS  
IB  
0.01  
1.0  
1.25  
600  
750  
±50  
+13.5  
mV  
mV  
nA  
nA  
nA  
V
–40°C T A +85°C  
Input Bias Current  
300  
400  
11  
–40°C T A +85°C  
–40 TA +85°C  
Input Offset Current  
Input Voltage Range  
IOS  
–15  
Common-Mode Rejection Ratio CMRR  
VCM = –15 V to +13.5 V,  
–40°C T A +85°C  
RL = 2 kΩ  
70  
86  
dB  
Large Signal Voltage Gain  
Offset Voltage Drift  
AVO  
100  
1000  
3
–1.6  
V/mV  
µV/°C  
nA/°C  
mV  
VOS/T  
IB/T  
VOS  
Bias Current Drift  
Long T erm Offset Voltage  
Note 1  
1.5  
OUT PUT CHARACT ERIST ICS  
Output Voltage High  
VOH  
VOL  
ISC  
RL = 2 kto GND, 40°C T A +85°C  
RL = 2 kto GND, 40°C T A +85°C  
Source  
Sink  
+13.9 14.1  
V
V
mA  
mA  
Output Voltage Low  
Short-Circuit Limit  
–14.05 –13.9  
30  
50  
15  
Open -Loop Output Impedance  
ZOUT  
f = 1 MHz, AV = +1  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = ±2.5 V to ±18 V,  
–40°C T A +85°C  
VS = ±18 V, VO = 0 V,  
–40°C T A +85°C  
70  
112  
dB  
Supply Current/Amplifier  
Supply Voltage Range  
1.2  
1.75  
±18  
mA  
V
VS  
+3  
10  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
BWp  
tS  
GBP  
φm  
RL = 2 kΩ  
1% Distortion  
T o 0.01%  
15  
50  
1.5  
5
V/µs  
kHz  
µs  
MHz  
degrees  
Full-Power Bandwidth  
Settling T ime  
Gain Bandwidth Product  
Phase Margin  
56  
NOISE PERFORMANCE  
Voltage Noise  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
2
10  
0.4  
µV p-p  
nV/Hz  
pA/Hz  
Voltage Noise Density  
Current Noise Density  
NOT ES  
1Long term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125 °C, with an LT PD of 1.3.  
Specifications subject to change without notice.  
(@ V = +5.0 V, T = +25؇C unless otherwise noted)  
WAFER TEST LIMITS  
S
A
P ar am eter  
Sym bol  
Conditions  
Lim it  
Units  
Offset Voltage  
Input Bias Current  
VOS  
IB  
IOS  
CMRR  
PSRR  
AVO  
VOH  
VOL  
ISY  
VS = ±15 V, VO = 0 V  
VCM = 2.5 V  
VCM = 2.5 V  
VCM = 0 V to 3.5 V  
V = ±2.5 V to ±18 V  
RL = 2 k, 0.2 VO 3.8 V  
RL = 2 kΩ  
1.0  
±600  
±50  
70  
mV max  
nA max  
nA max  
dB min  
dB min  
V/mV min  
V min  
Input Offset Current  
Common-Mode Rejection  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Output Voltage High  
Output Voltage Low  
Supply Current/Amplifier  
70  
100  
4.0  
75  
RL = 2 kΩ  
VS = ±15 V, VO = 0 V, RL = ∞  
mV max  
mA max  
1.5  
NOT E  
Electrical tests and wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard  
product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.  
REV.B  
–3–  
OP183/OP283  
ABSO LUTE MAXIMUM RATINGS1  
D ICE CH ARACTERISTICS  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . ±7 V  
Output Short-Circuit Duration to GND . . . . . . . . . . . . Indefinite  
Storage T emperature Range  
V+  
OUT NULL  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating T emperature Range  
OP183/OP283G . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Junction T emperature Range  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature Range (Soldering 60 Sec) . . . . . . . . . . +300°C  
NULL  
–IN IN+  
V–  
3
P ackage Type  
θJA  
θJC  
Units  
OP183 Die Size 0.058 X 0.063 Inch, 3,717 Sq. Mils  
Substrate (Die Backside) Is Connected to V–.  
Transistor Count, 30.  
8-Pin Plastic DIP (P)  
8-Pin SOIC (S)  
103  
158  
43  
43  
°C/W  
°C/W  
NOT ES  
1Absolute maximum ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
2For supply voltages less than ±7 V, the absolute maximum input voltage is equal  
V+ OUTB  
–INB  
+INB  
to the supply voltage. Maximum input current should not exceed  
2 mA.  
3θJA is specified for the worst case conditions, i.e., θJA is specified for device in socket  
for P-DIP packages; θJA is specified for device soldered in circuit board for SOIC  
packages.  
O RD ERING GUID E  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model  
OP183GP  
OP183GS  
–40°C to +85°C  
–40°C to +85°C  
8-Pin Plastic DIP  
8-Pin SOIC  
N-8  
SO-8  
OUTA  
–INA  
V–  
+INA  
OP283GP  
OP283GS  
–40°C to +85°C  
–40°C to +85°C  
8-Pin Plastic DIP  
8-Pin SOIC  
N-8  
SO-8  
OP283 Die Size 0.063 X 0.092 Inch, 5,796 Sq. Mils  
Substrate (Die Backside) Is Connected to V–.  
Transistor Count, 55.  
–4–  
REV. B  
Typical Characteristics–OP183/OP283  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
160  
V
300X  
OP AMPS  
= +5V  
V
= ±15V  
V = +5V  
S
S
S
300X  
OP AMPS  
140  
120  
100  
80  
590X  
OP AMPS  
60  
40  
20  
0
–600 –400 –200  
0
+200 +400 +600  
–600 –400 –200  
0
+200 +400 +600  
–600 –400 –200  
0
+200 +400 +600  
INPUT OFFSET VOLTAGE – µV  
INPUT OFFSET VOLTAGE – µV  
INPUT OFFSET VOLTAGE – µV  
Figure 1. OP183 Input Offset Voltage  
Distribution @ +5 V  
Figure 2. OP183 Input Offset Voltage  
Distribution @ ±15 V  
Figure 3. OP283 Input Offset Voltage  
Distribution @ +5 V  
160  
160  
160  
–40°C T +85°C  
V
= ±15V  
–40°C T +85°C  
A
S
A
300X OP AMPS  
140  
140  
120  
100  
80  
590X  
OP AMPS  
300X OP AMPS  
140  
PLASTIC PACKAGE  
PLASTIC PACKAGE  
120  
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
60  
40  
20  
0
0
2
4
6
8
10  
12  
–600 –400 –200  
0
+200 +400 +600  
0
2
4
6
8
10  
12  
INPUT OFFSET VOLTAGE – µV  
TCV – µV/°C  
OS  
TCV – µV/°C  
OS  
Figure 4. OP283 Input Offset Voltage  
Distribution @ ±15 V  
Figure 5. OP183 Input Offset Voltage  
Drift (TCVOS) Distribution @ +5 V  
Figure 6. OP183 Input Offset Voltage  
Drift (TCVOS) Distribution @ ±15 V  
3
200  
200  
–40°C T +85°C  
590X OP AMPS  
–40°C T +85°C  
590X OP AMPS  
A
A
180  
180  
160  
140  
120  
100  
80  
PLASTIC PACKAGE  
160  
140  
120  
100  
80  
PLASTIC PACKAGE  
2
1
60  
60  
T = +25°C  
A
40  
40  
R
V
= 2kΩ  
L
= +3V  
S
20  
20  
0
0
0
1k  
10k  
100k  
1M  
10M  
0
2
4
6
8
10 12  
14 16  
0
2
4
6
8
10 12  
14 16  
FREQUENCY – Hz  
TCV – µV/°C  
TCV – µV/°C  
OS  
OS  
Figure 8. OP283 Input Offset Voltage  
Drift (TCVOS) Distribution @ ±15 V  
Figure 9. OP183/OP283 Maxim um  
Output Swing vs. Frequency @ +3 V  
Figure 7. OP283 Input Offset Voltage  
Drift (TCVOS) Distribution @ +5 V  
REV.B  
–5–  
OP183/OP283–Typical Characteristics  
30  
25  
20  
15  
10  
5
5
4
3
2
1
0
1
-p  
SINK  
100m  
10m  
1m  
SOURCE  
T = +25°C  
T = +25°C  
A
A
R
V
= 2kΩ  
= ±15V  
R
V
= 2kΩ  
= +5V  
L
L
S
S
0
1k  
10k  
100k  
1M  
10M  
1k  
1µ  
10k  
100k  
1M  
10M  
10µ  
100µ  
1m  
10m  
FREQUENCY – Hz  
FREQUENCY – Hz  
LOAD CURRENT – Amps  
Figure 10. OP183/OP283 Maxim um  
Output Swing vs. Frequency @ +5 V  
Figure 11. OP183/OP283 Maxim um  
Output Swing vs. Frequency @ ±15 V  
Figure 12. Output Voltage vs. Sink  
& Source Current  
1.50  
500  
600  
T
V
= +25°C  
= ±15V  
A
V
V
= ±15V  
&
= +5V  
V = ±18V  
S
S
S
R
=
1.25  
1.00  
0.75  
0.50  
0.25  
0
L
500  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
S
V
= +3V  
S
V
R
= +3V  
V
R
= +5V  
S
S
=
=
L
L
–75 –50 –25  
0
25 50 75 100 125  
–15  
–10  
–5  
0
5
10 13.5  
–75 –50 –25  
0
25 50 75 100 125  
TEMPERATURE – °C  
COMMON-MODE VOLTAGE – Volts  
TEMPERATURE – °C  
Figure 13. Input Bias Current vs.  
Com m on-Mode Voltage  
Figure 14. Input Bias Current vs.  
Tem perature  
Figure 15. Supply Current per  
Am plifier vs. Tem perature  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
60  
60  
T
= +25°C  
A
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
–I  
SC  
–I  
SC  
+I  
SC  
+I  
SC  
0
±2.5 ±5 ±7.5 ±10 ±12.5 ±15 ±17.5 ±20  
SUPPLY VOLTAGE – Volts  
–75 –50 –25  
0
25 50 75 100 125  
–75 –50 –25  
0
25 50 75 100 125  
TEMPERATURE – °C  
TEMPERATURE – °C  
Figure 16. Supply Current per  
Am plifier vs. Supply Voltage  
Figure 17. Short-Circuit Current vs.  
Tem perature @ +5 V  
Figure 18. Short-Circuit Current vs.  
Tem perature @ ±15 V  
–6–  
REV. B  
OP183/OP283  
140  
140  
90  
80  
70  
60  
50  
T
V
= +25°C  
= ±15V  
T = +25°C  
T
V
= +25°C  
= ±15V  
A
A
A
V
R
= +3V  
= 10kΩ  
S
S
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
S
L
+PSRR  
GAIN  
40  
30  
20  
PHASE  
MARGIN 135  
= 43°  
–PSRR  
90  
PHASE  
10k  
45  
0
10  
0
–10  
–45  
100  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
1k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 19. Com m on-Mode Rejection  
vs. Frequency  
Figure 20. Power Supply Rejection  
vs. Frequency  
Figure 21. Open-Loop Gain and Phase  
vs. Frequency @ +3 V  
90  
90  
1000  
900  
T = +25°C  
T = +25°C  
A
A
80  
80  
V
R
= ±15V  
= 10kΩ  
V
R
= +5V  
= 10kΩ  
S
S
V = +5V  
S
L
70  
60  
50  
70  
60  
50  
L
800  
R
= 2kΩ  
L
700  
600  
500  
400  
300  
200  
100  
0
GAIN  
GAIN  
40  
30  
20  
40  
30  
20  
PHASE  
MARGIN 135  
= 56°  
PHASE  
MARGIN 135  
= 46°  
90  
90  
V = ±15V  
S
PHASE  
10k  
PHASE  
10k  
OR  
= +3V  
= 2kΩ  
45  
0
10  
0
45  
0
10  
0
V
S
R
L
–10  
–45  
–10  
–45  
10M  
1k  
1k  
100k  
1M  
10M  
100k  
1M  
–75 –50 –25  
0
25 50 75 100 125  
FREQUENCY – Hz  
FREQUENCY – Hz  
TEMPERATURE – °C  
Figure 24. Open-Loop Gain vs.  
Tem perature  
Figure 22. Open-Loop Gain and Phase  
vs. Frequency @ +5 V  
Figure 23. Open-Loop Gain and Phase  
vs. Frequency @ ±15 V  
25  
30  
25  
20  
15  
10  
5
50  
T
= +25°C  
T
V
= +25°C  
= ±15V  
A
A
V
= ±15V  
OR  
S
S
40  
30  
20  
15  
10  
5
V = ±15V  
S
A
= +100  
= +10  
V
V
= +3V, +15V  
S
R
= 2kΩ  
L
± SLEW RATE  
20  
A
V
10  
V = ±5V  
S
R
= 2kΩ  
0
L
A
= +1  
± SLEW RATE  
V
–10  
0
0
–20  
1k  
–75 –50 –25  
0
25 50 75 100 125  
1k  
100  
FREQUENCY – Hz  
10  
10k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
TEMPERATURE – °C  
Figure 27. Voltage Noise Density  
vs. Frequency  
Figure 25. Closed-Loop Gain vs.  
Frequency  
Figure 26. Slew Rate vs. Tem perature  
REV.B  
–7–  
OP183/OP283–Typical Characteristics  
80  
70  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
T
V
= +25°C  
= ±15V  
T = +25°C  
A
A
T
V
= +25°C  
= ±15V  
OR  
A
V
= ±15V  
S
S
S
S
R
= 2kΩ  
L
V
= +3\+5V  
60  
50  
NEGATIVE  
EDGE  
A
= +10  
V
40  
30  
20  
A
= +1  
V
POSITIVE  
EDGE  
10  
0
100  
0
1k  
10k  
100k  
1M  
10  
100  
200  
300  
100  
1k  
10k  
CAPACITANCE – pF  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 28. Current Noise Density  
vs. Frequency  
Figure 29. Closed-Loop Output  
Im pedance vs. Frequency  
Figure 30. Sm all Signal Overshoot  
vs. Load Capacitance  
1S  
100  
90  
100  
90  
100  
90  
10  
10  
10  
0%  
0%  
0%  
5V  
1µS  
5mV  
50mV  
200nS  
Figure 33. 0.1 Hz to 10 Hz Noise  
Figure 31. Large Signal Perform ance  
Figure 32. Sm all Signal Perform ance  
@ ± 2.5 V  
@ ±15 V  
@ ±15 V  
OP283  
V
= ±2.5V  
S
600Ω  
A
V
= +1  
= 1V  
RF = 0  
V
1S  
1kΩ  
2kΩ  
5kΩ  
IN  
RMS  
80kHz LOW PASS FILTER  
100  
90  
10Ω  
10  
0%  
NO LOAD  
5mV  
FREQUENCY – Hz  
Figure 34. 0.1 Hz to 10 Hz Noise  
Figure 35. THD + Noise vs. Frequency for Various Loads  
@ ±15 V  
–8–  
REV. B  
OP183/OP283  
AP P LICATIO NS  
+5 Volt O nly Ster eo D AC for Multim edia  
T he OP283s low noise and single supply capability are ideally  
suited for stereo DAC audio reproduction or sound synthesis  
applications such as multimedia systems. Figure 38 shows an 18-bit  
stereo DAC output setup that is powered from a single +5 volt  
supply. T he low noise preserves the 18-bit dynamic range of the  
AD1868. For DACs that operate on dual supplies, the OP283 can  
also be powered from the same supplies.  
O P 183 O ffset Adjust  
Figure 36 shows how the OP183’s offset voltage can be adjusted by  
connecting a potentiometer between Pins 1 and 5, and connecting  
the wiper to VEE. T he recommended value for the potentiometer is  
10 k. T his will give an adjustment range of approximately ±1 mV.  
If larger adjustment span is desired, a 50 kpotentiometer will  
yield a range of ±2.5 mV.  
V
CC  
+5V SUPPLY  
7
AD1868  
18-BIT  
DAC  
VBL  
VOL  
3
V
L
1
16  
15  
14  
13  
8
3
2
220µF  
6
OP183  
V
LEFT  
CHANNEL  
OUTPUT  
2
3
OS  
1
LL  
DL  
1/2 OP283  
4
9.76kΩ  
7.68k  
4
18-BIT  
SERIAL  
REG.  
2
47kΩ  
5
1
V
REF  
V
100pF  
330pF  
EE  
4
CK  
7.68kΩ  
5
6
7
8
AGND 12  
11  
DR  
LR  
18-BIT  
SERIAL  
REG.  
VREF  
7.68kΩ  
VOR  
10  
DGND  
18-BIT  
100pF  
7
7.68kΩ  
VBR  
9
DAC  
6
V
S
220µF  
RIGHT  
CHANNEL  
OUTPUT  
9.76kΩ  
330pF  
1/2 OP283  
5
Figure 36. OP183 Offset Adjust  
P hase Rever sal  
47kΩ  
T he OP183 family is protected against phase reversal as long as  
both of the inputs are within the range of the positive supply and  
the negative supply minus 0.6 volts. However if there is a possibility  
of either input going beyond these limits, then the inputs should be  
protected with a series resistor to limit input current to 2 mA.  
Figure 38. +5 Volt Only 18-Bit Stereo DAC  
Low Voltage H eadphone Am plifier s  
Figure 39 shows a stereo headphone output amplifier for the  
AD1849 16-bit SoundPort Stereo Codec device. T he pseudo-  
reference voltage is derived from the common-mode voltage  
generated internally by the AD1849, thus providing a convenient  
bias for the headphone output amplifiers.  
D ir ect Access Ar r angem ent  
T he OP183/OP283 can be used in a single supply Direct Access  
Arrangement (DAA) as is shown in Figure 37. T his figure shows a  
portion of a typical DAA capable of operating from a single +5 volt  
supply and it should also work on +3 volt supplies with minor  
modifications. Amplifiers A2 and A3 are configured so that the  
transmit signal T XA is inverted by A2 and is not inverted by A3.  
T his arrangement drives the transformer differentially so that the  
drive to the transformer is effectively doubled over a single amplifier  
arrangement. T his application takes advantage of the OP183/283’s  
ability to drive capacitive loads, and to save power in single supply  
OPTIONAL  
GAIN  
1kΩ  
5kΩ  
V
REF  
+5V  
10µF  
31  
LOUT1L  
220µF  
16Ω  
HEADPHONE  
LEFT  
L VOLUME  
CONTROL  
1/2 OP283  
10kΩ  
47kΩ  
applications.  
+5V  
300pF  
AD1849  
37.4kΩ  
V
1/2 OP283  
REF  
0.1µF  
A1  
20kΩ  
RXA  
OP283  
19  
CMOUT  
LOUT1R  
0.0047µF  
20kΩ  
10kΩ  
220µF  
16Ω  
HEADPHONE  
RIGHT  
3.3kΩ  
1/2 OP283  
29  
A2  
475Ω  
47kΩ  
R VOLUME  
CONTROL  
10µF  
OP283  
5kΩ  
22.1kΩ  
OPTIONAL  
GAIN  
1kΩ  
0.1µF  
TXA  
750pF  
V
0.33µF  
REF  
20kΩ  
20kΩ  
20kΩ  
Figure 39. Headphone Output Am plifier for Multim edia  
Sound Codec  
A3  
OP283  
SoundPort is a registered trademark of Analog Devices Inc.  
2.5V  
REF  
Figure 37. Direct Access Arrangem ent  
REV.B  
–9–  
OP183/OP283  
Low Noise Micr ophone Am plifier for Multim edia  
T he OP183 family is ideally suited as a low noise microphone  
preamp for low voltage audio applications. Figure 40 shows a gain  
of 100 stereo preamp for the AD1849 16-bit SoundPort Stereo  
Codec chip. T he common-mode output buffer serves as a “phan-  
tom power” driver for the microphones.  
bandwidth and is not sensitive to false-ground perturbations. T he  
simple false-ground circuit shown achieves good rejection of low  
frequency interference using standard off-the-shelf components.  
Amplifier A3 biases A1 and A2 to the middle of their input  
common-mode range. When operating on a +3 V supply, the  
center of the OP283s common-mode range is 0.75 V. T his notch  
filter effectively squelches 60 Hz pickup at a filter Q of 0.75. T o  
reject 50 Hz interference, simply change the resistors in the twin-T  
section (R1 through R5) from 2.67 kto 3.16 k.  
10kΩ  
+5V  
T he filter section uses an OP283 dual op amp in a twin-T configu-  
ration whose frequency selectivity is very sensitive to the relative  
matching of the capacitors and resistors in the twin-T section.  
Mylar is the material of choice for the capacitors, and the relative  
matching of the capacitors and resistors determines the filter’s pass  
band symmetry. Using 1% resistors and 5% capacitors produces  
satisfactory results.  
17  
1/2 OP283  
10µF  
MINL  
50Ω  
LEFT  
ELECTRET  
CONDENSER  
MIC  
20Ω  
10kΩ  
100Ω  
INPUT  
AD1849  
+5V  
CMOUT  
19  
1/2 OP213  
A Low Voltage Fr equency Synthesizer for Wir eless  
Tr ansceiver  
100Ω  
20Ω  
10kΩ  
50Ω  
T he OP183s low noise and the low voltage operation capability  
serves well for the loop filter of a frequency synthesizer. Figure 42  
shows a typical application in a radio transceiver. T he phase noise  
performance of the synthesizer depends on low noise contribution  
from each component in the loop as the noise is amplified by the  
frequency division factor of the prescaler.  
10µF  
MINR  
15  
1/2 OP283  
RIGHT  
ELECTRET  
CONDENSER  
MIC  
INPUT  
10kΩ  
Figure 40. Low Noise Stereo Microphone Am plifier for  
Multim edia Sound CODEC  
+3V  
CRYSTAL  
A +3 Volt 50 H z/60 H z Active Notch Filter with False Gr ound  
T o process ac signals, it may be easier to use a false-ground bias  
rather than the negative supply as a reference ground. T his would  
reject the power-line frequency interference which oftentimes can  
obscure low frequency physiological signals, such as heart rates,  
blood pressures, EEGs, ECGs, et cetera.  
OP183  
REFERENCE  
OSCILLATOR  
PHASE  
DETECTOR  
V
CONTROL  
÷
RF  
OUT  
VCO  
PRESCALER  
VARACTER  
DIODE  
R2  
2.67kΩ  
900MHz  
+3V  
R1  
2.67kΩ  
C2  
1µF  
C1  
1µF  
1/2 OP283  
Figure 42. A Low Voltage Frequency Synthesizer for a  
Wireless Transceiver  
2
3
8
1
5
A1  
4
VO  
7
VIN  
R3  
2.67kΩ  
R4  
2.67kΩ  
A2  
6
T he resistors used in the low-pass filter should be of low to  
moderate values to reduce noise contribution due to the input bias  
current as well as the resistors themselves. T he filter cutoff  
frequency should be chosen to optimize the loop constant.  
R6  
10kΩ  
×C3  
2µF  
(1µF × 2)  
R5  
1/2 OP283  
1.33kΩ  
(2.67k÷ 2)  
R7  
1kΩ  
R8  
1kΩ  
R11  
10kΩ  
Q = 0.75  
NOTE: FOR 50Hz APPLICATIONS  
C5  
0.015µF  
+3V  
CHANGE R1–R4 TO 3.1kΩ  
AND R5 TO 1.58k(3.16k÷ 2).  
R12  
70Ω  
2
3
R9  
75kΩ  
1
A3  
OP183  
0.75V  
C6  
1µF  
C4  
1µF  
R10  
25kΩ  
A1, A2, AND A3 = 1/2 OP283  
Figure 41. +3 Volt Supply 50 Hz/60 Hz Notch Filter with  
Pseudo Ground  
Figure 41 shows a 50 Hz/60 Hz active notch filter for eliminating  
line noise in patient monitoring equipment. It has several kilohertz  
–10–  
REV. B  
OP183/OP283  
7
QB9  
RB4  
QB6  
RB5  
QB7  
RB6  
QB8  
QB10  
QB11  
Q7  
Q8  
RB3  
R9  
Q12  
R1  
R2  
QD2  
CC2  
Q6  
Q1  
Q2  
Q5  
2
3
CC3  
JB1  
QD1  
Z1  
R8  
6
CF1  
Q4  
R5  
QB5A  
Q3  
QD3  
CB1  
1
5
QB4  
A
CO  
R7  
QB3  
QB1  
R3A  
B
R4A  
R4B  
Q11  
R10  
R11  
CC1  
Q10  
QB13  
QB14  
QB2  
R3AT  
R3B  
R4AT  
R4LT  
QB12  
R3LT  
RB2  
RB1  
4
Figure 43. OP183 Sim plified Schem atic  
G1  
R5  
C2  
D1  
D2  
E1  
V2  
*
98  
9
9
9
(4,5) 6.28E-4  
1.59E9  
10E-12  
DX  
* OP283 SPICE Macro-model  
*
*
* Copyright 1993 by Analog Devices  
*
* Refer to “README.DOC” file for License Statement.  
* Use of this model indicates your acceptance of the terms and  
* provisions in the License Statement.  
*
Rev. A, 9/93  
JCB/ADI  
98  
98  
10  
9
98  
11  
9
11  
10  
50  
DX  
POLY(1) 99 98 -1.35 1.03  
–0.63  
* COMMON MODE ST AGE WIT H ZERO AT 353 Hz  
*
* Node assignments  
ECM  
R7  
C4  
R8  
*
*POLE AT 20 MHz  
*
GP2  
RP2  
CP2  
*
14  
14  
14  
15  
98  
15  
15  
98  
POLY(2) (1,98) (2,98) 0 3.5 3.5  
1E6  
3.75E-11  
1
*
*
*
*
*
*
noninverting input  
|
|
|
|
|
inverting input  
|
positive supply  
|
|
|
|
|
|
negative supply  
|
|
output  
|
.SUBCKT OP283 2  
*
* INPUT ST AGE AND POLE AT 600 kHz  
*
1
99 50 45  
98  
31  
31  
31  
98  
98  
(9,98) 1E-6  
1E6  
7.96E-15  
I1  
99  
4
5
8
1
1E-4  
6
*ZERO AT 1.5 MHz  
*
Q1  
Q2  
CIN  
R1  
R2  
C1  
QP  
QP  
3
7
EZ1  
RZ1  
RZ2  
CZ1  
*
32  
32  
33  
32  
98  
33  
98  
33  
(31,98) 1E6  
1E6  
1
1
2
4
5
5
8
8
2
1.5PF  
1591  
1591  
83.4E-12  
1075  
1075  
12.5E-9  
50  
50  
4
6
7
1
3
2
1
106E-15  
R3  
R4  
*POLE AT 10 MHz  
*
GP10  
RP10  
CP10  
*
IOS  
EOS  
DC1  
DC2  
*
98  
40  
40  
40  
98  
98  
(33,98) 1E-6  
1E6  
15.9E-15  
2
POLY(1) (15,98) 25E-6 1  
36  
36  
DZ  
DZ  
* OUT PUT ST AGE  
*
* GAIN ST AGE AND DOMINANT POLE AT 10 Hz  
*
RO1  
99  
45  
140  
EREF  
98  
0
POLY(2) (99,0) (50,0) 0 0.5 0.5  
REV.B  
–11–  
OP183/OP283  
RO2  
G7  
G8  
G9  
D7  
D8  
V7  
V8  
45  
45  
50  
98  
60  
62  
61  
98  
99  
99  
40  
50  
99  
45  
60  
61  
60  
98  
62  
50  
50  
41  
140  
D10  
V5  
V6  
*
42  
41  
45  
40  
45  
42  
DX  
1.2  
1.5  
(99,40)  
(40,50)  
(45,40)  
DX  
DX  
DC 0  
7.14E-3  
7.14E-3  
7.14E-3  
* MODELS USED  
*
.MODEL DX D  
.MODEL DZ D(IS=1E-15 BV=7.0)  
.MODEL QP PNP(BF=143)  
.ENDS  
DC 0  
(99,50)5E-6  
POLY(2) V7 V8 1.075E-3 1 1  
DX  
GSY  
FSY  
D9  
O UTLINE D IMENSIO NS  
Dimensions shown in inches and (mm).  
8-Lead P lastic D IP (N-8)  
8
5
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
1
4
0.325 (8.25)  
0.430 (10.92)  
0.348 (8.84)  
0.300 (7.62)  
0.060 (1.52)  
0.015 (0.38)  
0.195 (4.95)  
0.115 (2.93)  
0.210  
(5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.100  
(2.54)  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
BSC  
8-Lead Nar r ow-Body SO (SO -8)  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.2440 (6.20)  
0.2284 (5.80)  
0.1968 (5.00)  
0.1890 (4.80)  
0.0196 (0.50)  
0.0099 (0.25)  
x 45°  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
8°  
0°  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0500  
(1.27)  
BSC  
0.0098 (0.25)  
0.0075 (0.19)  
–12–  
REV. B  

相关型号:

OP283GP

5 MHz Single-Supply Operational Amplifiers
ADI

OP283GS

5 MHz Single-Supply Operational Amplifiers
ADI

OP284

Precision Rail-to-Rail Input & Output Operational Amplifiers
ADI

OP284

Operational Amplifiers
MAXWELL

OP284A

Dual Operational Amplifier
MAXWELL

OP284ARPFB

Dual Operational Amplifier
MAXWELL

OP284ARPFE

Dual Operational Amplifier
MAXWELL

OP284ARPFI

Dual Operational Amplifier
MAXWELL

OP284ARPFS

Dual Operational Amplifier
MAXWELL

OP284ARPLB

Dual Operational Amplifier
MAXWELL

OP284ARPLE

Dual Operational Amplifier
MAXWELL

OP284ARPLI

Dual Operational Amplifier
MAXWELL