OP297_03 [ADI]

Dual Low Bias Current Precision Operational Amplifier; 双通道,低偏置电流精密运算放大器
OP297_03
型号: OP297_03
厂家: ADI    ADI
描述:

Dual Low Bias Current Precision Operational Amplifier
双通道,低偏置电流精密运算放大器

运算放大器
文件: 总12页 (文件大小:267K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Low Bias Current  
Precision Operational Amplifier  
OP297  
FEATURES  
PIN CONNECTIONS  
Low Offset Voltage: 50 V Max  
Low Offset Voltage Drift: 0.6 V/؇C Max  
Very Low Bias Current: 100 pA Max  
1
2
3
4
8
7
6
5
V+  
OUTA  
–INA  
+INA  
V–  
OUTB  
–INB  
+INB  
A
B
Very High Open-Loop Gain: 2000 V/mV Min  
Low Supply Current (Per Amplifier): 625 A Max  
Operates From ؎2 V to ؎20 V Supplies  
High Common-Mode Rejection: 120 dB Min  
Pin Compatible to LT1013, AD706, AD708, OP221,  
LM158, and MC1458/1558 with Improved Performance  
Precision performance of the OP297 includes very low offset,  
under 50 µV, and low drift, below 0.6 µV/°C. Open-loop gain  
exceeds 2000 V/mV, ensuring high linearity in every application.  
APPLICATIONS  
Strain Gage and Bridge Amplifiers  
High Stability Thermocouple Amplifiers  
Instrumentation Amplifiers  
Photo-Current Monitors  
High Gain Linearity Amplifiers  
Long-Term Integrators/Filters  
Sample-and-Hold Amplifiers  
Peak Detectors  
Errors due to common-mode signals are eliminated by the  
OP297’s common-mode rejection of over 120 dB, which mini-  
mizes offset voltage changes experienced in battery-powered  
systems. Supply current of the OP297 is under 625 µA per  
amplifier, and the part can operate with supply voltages as low  
as 2 V.  
Logarithmic Amplifiers  
Battery-Powered Systems  
The OP297 uses a super-beta input stage with bias current  
cancellation to maintain picoamp bias currents at all temperatures.  
This is in contrast to FET input op amps whose bias currents  
start in the picoamp range at 25°C, but double for every 10°C  
rise in temperature, to reach the nanoamp range above 85°C.  
Input bias current of the OP297 is under 100 pA at 25°C and is  
under 450 pA over the military temperature range.  
GENERAL DESCRIPTION  
The OP297 is the first dual op amp to pack precision performance  
into the space-saving, industry-standard, 8-lead SOIC package.  
Its combination of precision with low power and extremely low  
input bias current makes the dual OP297 useful in a wide variety  
of applications.  
Combining precision, low power, and low bias current, the OP297  
is ideal for a number of applications, including instrumentation  
amplifiers, log amplifiers, photodiode preamplifiers, and long-  
term integrators. For a single device, see the OP97; for a quad,  
see the OP497.  
60  
V
V
= ؎15V  
S
400  
= 0V  
CM  
1200 UNITS  
T
= 25؇C  
A
40  
20  
0
V
= ؎15V  
= 0V  
S
V
CM  
300  
200  
100  
0
I –  
B
I +  
B
–20  
–40  
–60  
I
OS  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (؇C)  
–100 –80 –60 –40  
–20  
0
20  
40  
60  
80 100  
INPUT OFFSET VOLTAGE (V)  
Figure 1. Low Bias Current over Temperature  
REV. E  
Figure 2. Very Low Offset  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
OP297–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
(@ VS = ؎15 V, TA = 25؇C, unless otherwise noted.)  
OP297E  
Min Typ  
OP297F  
Typ Max Min  
OP297G  
Typ Max Unit  
Parameter  
Symbol Conditions  
Max Min  
Input Offset Voltage  
Long-Term Input  
VOS  
25  
50  
50  
100  
80  
200  
µV  
Voltage Stability  
0.1  
20  
20  
0.5  
20  
17  
20  
0.1  
35  
35  
0.5  
20  
17  
20  
0.1  
50  
50  
0.5  
20  
17  
20  
µV/mo  
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Voltage Density  
IOS  
IB  
en p-p  
en  
VCM = 0 V  
VCM = 0 V  
0.1 Hz to 10 Hz  
fO = 10 Hz  
fO = 1000 Hz  
fO = 10 Hz  
100  
100  
150  
150  
200  
pA  
200 pA  
µV p-p  
nV/Hz  
nV/Hz  
fA/Hz  
Input Noise Current Density  
Input Resistance  
in  
Differential Mode  
Input Resistance  
Common-Mode  
RIN  
RINCM  
30  
500  
30  
30  
500  
MΩ  
GΩ  
500  
Large-Signal  
VO  
= 10 V  
Voltage Gain  
AVO  
VCM  
CMRR VCM  
PSRR  
VO  
RL = 2 kΩ  
2000 4000  
1500 3200  
1200 3200  
V/mV  
V
dB  
dB  
V
V
µA  
V
Input Voltage Range*  
Common-Mode Rejection  
Power Supply Rejection  
Output Voltage Swing  
13  
120  
14  
140  
130  
14  
13.7  
525  
13  
114  
114  
13  
14  
135  
125  
14  
13  
114  
114  
13  
14  
135  
125  
14  
=
13 V  
VS = 2 V to 20 V 120  
RL = 10 kΩ  
13  
13  
RL = 2 kΩ  
13  
13.7  
13  
13.7  
Supply Current per Amplifier  
Supply Voltage  
ISY  
VS  
No Load  
625  
20  
525 625  
20  
525 625  
20  
Operating Range  
2
2
2
Slew Rate  
Gain Bandwidth Product  
Channel Separation  
SR  
0.05 0.15  
500  
0.05  
0.15  
500  
150  
0.05  
0.15  
500  
150  
V/µs  
kHz  
dB  
GBWP AV = +1  
CS  
VO = 20 V p-p  
fO = 10 Hz  
150  
Input Capacitance  
CIN  
3
3
3
pF  
*Guaranteed by CMR test.  
Specifications subject to change without notice.  
(@ VS = ؎15 V, –40؇C Յ TA Յ +85؇C for OP297E/F/G, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
OP297E  
Min Typ  
OP297F  
Max Min Typ  
OP297G  
Max Min Typ Max Unit  
Parameter  
Symbol Conditions  
Input Offset Voltage  
Average Input Offset  
Voltage Drift  
Input Offset Current  
Input Bias Current  
Large-Signal Voltage Gain  
VOS  
35  
100  
80  
300  
110  
400  
µV  
TCVOS  
IOS  
IB  
0.2  
50  
50  
0.6  
450  
450  
0.5  
80  
80  
2.0  
750  
750  
0.6  
80  
80  
2.0  
750  
750 pA  
µV/°C  
pA  
VCM = 0 V  
VCM = 0 V  
AVO  
VO  
= 10 V,  
RL = 2 kΩ  
1200 3200  
1000 2500  
800 2500  
V/mV  
V
dB  
Input Voltage Range*  
Common-Mode Rejection  
Power Supply Rejection  
VCM  
13  
114  
13.5  
130  
13  
108  
13.5  
130  
13  
13.5  
CMRR VCM  
=
13  
108 130  
PSRR  
VS = 2.5 V  
to 20 V  
RL = 10 kΩ  
No Load  
114  
13  
0.15  
13.4  
550  
108  
13  
0.15  
13.4  
550  
108 0.3  
dB  
V
µA  
V
Output Voltage Swing  
Supply Current per Amplifier ISY  
Supply Voltage  
VO  
13  
13.4  
550  
750  
20  
750  
20  
750  
20  
VS  
Operating Range  
2.5  
2.5  
2.5  
*Guaranteed by CMR test.  
Specifications subject to change without notice.  
–2–  
REV. E  
OP297  
ABSOLUTE MAXIMUM RATINGS1  
3
Package Types  
Unit  
JA  
JC  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V  
Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . 40 V  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range  
8-Lead CERDIP (Z)  
8-Lead PDIP (P)  
8-Lead SOIC (S)  
134  
96  
150  
12  
37  
41  
°C/W  
°C/W  
°C/W  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; and functional operation  
of the device at these or any other conditions above those indicated in the  
operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2 For supply voltages less than 20 V, the absolute maximum input voltage is equal  
to the supply voltage.  
Z Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C  
P, S Packages . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
OP297E (Z) . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
OP297F, OP297G (P, S) . . . . . . . . . . . . . . –40°C to +85°C  
Junction Temperature  
Z Package . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C  
P, S Packages . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C  
3 JA is specified for worst case mounting conditions, i.e., JA is specified for device  
in socket for CERDIP and PDIP, packages; JA is specified for device soldered to  
printed circuit board for SOIC package.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Options  
OP297EZ  
OP297FP  
OP297FS  
OP297FS-REEL  
OP297FS-REEL7  
OP297GP  
OP297GS  
OP297GS-REEL  
OP297GS-REEL7  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead CERDIP  
8-Lead PDIP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead PDIP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
Q-8  
N-8  
R-8  
R-8  
R-8  
N-8  
R-8  
R-8  
R-8  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
OP297 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
1/2  
OP297  
V
2k  
20Vp-p @ 10Hz  
1
50k⍀  
50⍀  
1/2  
OP297  
V
2
V
1
CHANNEL SEPARATION = 20 log  
)
)
V /10000  
2
Figure 3. Channel Separation Test Circuit  
REV. E  
–3–  
OP297–Typical Performance Characteristics  
400  
300  
200  
100  
250  
200  
150  
400  
T
V
V
= 25؇C  
= ؎15V  
= 0V  
T
V
V
= 25؇C  
= ؎15V  
= 0V  
T
V
V
= 25؇C  
= ؎15V  
= 0V  
1200 UNITS  
1200 UNITS  
A
A
1200 UNITS  
A
S
S
S
CM  
CM  
CM  
300  
200  
100  
0
100  
50  
0
0
–100 –80 –60 –40 –20  
0
20 40 60 80 100  
–100 –80 –60 –40 –20  
0
20 40 60 80 100  
–100 –80 –60 –40 –20  
0
20 40 60 80 100  
INPUT OFFSET VOLTAGE (pA)  
INPUT BIAS CURRENT (pA)  
INPUT OFFSET VOLTAGE (pA)  
TPC 1. Typical Distribution of  
Input Offset Voltage  
TPC 2. Typical Distribution of  
Input Bias Current  
TPC 3. Typical Distribution of  
Input Offset Current  
60  
40  
60  
؎3  
؎2  
؎1  
0
V
V
= ؎15V  
V
V
= ؎15V  
S
T
V
V
= 25؇C  
= ؎15V  
S
A
= 0V  
= 0V  
CM  
CM  
S
= 0V  
CM  
I
40  
20  
B
20  
I
+
B
I
B
0
I
+
B
0
–20  
–40  
–60  
I
OS  
I
OS  
–20  
–40  
–75 –50 –25  
0
25  
50 75 100 125  
–10  
–5  
0
5
10  
15  
–15  
0
1
2
3
4
5
TEMPERATURE (؇C)  
COMMON-MODE VOLTAGE (V)  
TIME AFTER POWER APPLIED (Minutes)  
TPC 4. Input Bias, Offset  
Current vs. Temperature  
TPC 5. Input Bias, Offset Current vs.  
Common-Mode Voltage  
TPC 6. Input Offset Voltage  
Warm-Up Drift  
100  
35  
10000  
1000  
BALANCED OR UNBALANCED  
T
T
= –55؇C  
= +25؇C  
A
30  
25  
BALANCED OR UNBALANCED  
V
V
= ؎15V  
S
V
V
= ؎15V  
= 0V  
S
CM  
20  
15  
10  
5
= 0V  
A
CM  
10  
1
T
= +125؇C  
A
V
= ؎15V  
S
0
OUTPUT SHORTED  
TO GROUND  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
100  
10  
T
= +125؇C  
= +25؇C  
A
–55؇C  
T
+125؇C  
A
T
A
A
T
= –55؇C  
T
= +25؇C  
A
0.1  
100  
0
1
2
3
4
1k  
10k  
100k  
1M  
10M 100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
TIME FROM OUTPUT SHORT (Minutes)  
SOURCE RESISTANCE ()  
SOURCE RESISTANCE ()  
TPC 7. Effective Offset Voltage  
vs. Source Resistance  
TPC 8. Effective TCVOS vs.  
Source Resistance  
TPC 9. Short Circuit Current  
vs. Time, Temperature  
–4–  
REV. E  
OP297  
1300  
160  
140  
120  
100  
160  
140  
120  
100  
80  
NO LOAD  
T
V
= 25؇C  
= ؎15V  
A
T
= 25؇C  
A
S
V
= ؎15V  
S
T
= +125؇C  
= +25؇C  
A
1200  
1100  
V = 10Vp-p  
S
T
A
1000  
900  
80  
60  
40  
T
= –55؇C  
A
60  
40  
800  
0
1
10  
100  
1k  
10k  
100k  
1M  
0.1  
1
10  
100  
1k  
10k 100k 1M  
؎5  
؎10  
؎15  
؎20  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 10. Total Supply Current  
vs. Supply Voltage  
TPC 11. Common-Mode Rejection  
Frequency  
TPC 12. Power Supply Rejection vs.  
Frequency  
10  
10000  
1000  
100  
1000  
100  
T
V
= 25؇C  
= ؎2V TO ؎20V  
T
V
= 25؇C  
= ؎2V TO ؎15V  
A
A
T
= –55؇C  
A
S
S
T
= +25؇C  
A
1
T
= +125؇C  
A
10Hz  
CURRENT  
NOISE  
1000  
1kHz  
VOLTAGE  
NOISE  
10  
1
10  
0.1  
V
= ؎15V  
= ؎10V  
1kHz  
10Hz  
S
V
O
0.01  
100  
1
1000  
2
3
4
5
6
7
10  
1
3
4
5
10  
20  
2
1
10  
100  
10  
10  
SOURCE RESISTANCE ()  
10  
10  
10  
FREQUENCY (Hz)  
LOAD RESISTANCE (k)  
TPC 13. Voltage Noise Density and  
Current Noise Density vs. Frequency  
TPC 14. Total Noise Density  
vs. Source Resistance  
TPC 15. Open-Loop Gain vs.  
Load Resistance  
35  
35  
T
V
A
= 25؇C  
= ؎15V  
A
T
V
A
= 25؇C  
= ؎15V  
= +1  
R
V
= 10k⍀  
= ؎15V  
= 0V  
A
L
S
30  
25  
20  
30  
25  
20  
S
S
= +1  
VCL  
V
VCL  
CM  
1%THD  
T
= +125؇C  
A
1%THD  
= 1kHz  
f
= 1kHz  
= 10k⍀  
O
f
O
R
L
T
= +25؇C  
= –55؇C  
A
15  
10  
5
15  
10  
5
0
T
A
0
0
100  
10  
100  
1k  
10k  
1k  
10k  
100k  
–15  
–10  
–5  
0
5
10  
15  
OUTPUT VOLTAGE (V)  
LOAD RESISTANCE ()  
FREQUENCY (Hz)  
TPC 16. Differential Input  
Voltage vs. Output Voltage  
TPC 17. Output Swing vs. Load  
Resistance  
TPC 18. Maximum Output  
Swing vs. Frequency  
REV. E  
–5–  
OP297  
70  
60  
50  
40  
30  
20  
100  
1000  
100  
10  
T
V
= 25؇C  
= ؎15V  
T
V
A
V
= 25؇C  
= ؎15V  
A
A
V
C
R
= ؎15V  
= 30pF  
= 1M⍀  
S
80  
S
S
L
L
GAIN  
–EDGE  
= +1  
VCL  
60  
40  
20  
0
= 100mV p-p  
OUT  
PHASE  
T
= –55؇C  
A
+EDGE  
1
0.1  
0.01  
–20  
–40  
10  
0
T
= +125؇C  
A
0.001  
10  
100  
1k  
10k  
100k  
1M  
100  
100  
FREQUENCY (Hz)  
1M  
10M  
0
1k  
10k  
100  
1000  
10000  
FREQUENCY (Hz)  
LOAD CAPACITANCE (pF)  
TPC 19. Open Loop Gain, Phase  
vs. Frequency  
TPC 20. Small-Signal Over-  
shoot vs. Load Capacitance  
TPC 21. Open Loop Output  
Impedance vs Frequency  
APPLICATIONS INFORMATION  
Extremely low bias current over a wide temperature range makes  
the OP297 attractive for use in sample-and-hold amplifiers,  
peak detectors, and log amplifiers that must operate over a wide  
temperature range. Balancing input resistances is unnecessary  
with the OP297. Offset voltage and TCVOS are degraded only  
minimally by high source resistance, even when unbalanced.  
100  
90  
The input pins of the OP297 are protected against large differ-  
ential voltage by back-to-back diodes and current-limiting  
resistors. Common-mode voltages at the inputs are not restricted  
and may vary over the full range of the supply voltages used.  
10  
0%  
20mV  
5s  
The OP297 requires very little operating headroom about the  
supply rails and is specified for operation with supplies as low as  
2 V. Typically, the common-mode range extends to within 1 V  
of either rail. The output typically swings to within 1 V of the  
rails when using a 10 kload.  
Figure 5. Small-Signal Transient Response  
(CLOAD = 1000 pF, AVCL = 1)  
AC PERFORMANCE  
100  
90  
The OP297’s ac characteristics are highly stable over its full  
operating temperature range. Unity gain small-signal response is  
shown in Figure 4. Extremely tolerant of capacitive loading on  
the output, the OP297 displays excellent response with 1000 pF  
loads (Figure 5).  
10  
0%  
20mV  
5s  
100  
90  
Figure 6. Large-Signal Transient Response  
(AVCL = 1)  
10  
0%  
20mV  
5s  
Figure 4. Small-Signal Transient Response  
(CLOAD = 100 pF, AVCL = 1)  
–6–  
REV. E  
OP297  
UNITY-GAIN FOLLOWER  
NONINVERTING AMPLIFIER  
APPLICATIONS  
PRECISION ABSOLUTE VALUE AMPLIFIER  
The circuit of Figure 9 is a precision absolute value amplifier with  
an input impedance of 30 M. The high gain and low TCVOS  
of the OP297 ensure accurate operation with microvolt input  
signals. In this circuit, the input always appears as a common-  
mode signal to the op amps. The CMR of the OP297 exceeds  
120 dB, yielding an error of less than 2 ppm.  
1/2  
OP297  
1/2  
OP297  
+15V  
C2  
0.1F  
MINI-DIP  
BOTTOM VIEW  
INVERTING AMPLIFIER  
R1  
1k⍀  
R3  
1k⍀  
8
1
C1  
30pF  
5
D 1  
1N4148  
A
1/2  
OP297  
7
2
3
8
1/2  
OP297  
B
1/2  
1
6
0V  
V
10V  
OUT  
OP297  
D 2  
1N4148  
V
IN  
C3  
R2  
0.1F  
2k⍀  
4
–15V  
Figure 7. Guard Ring Layout and Connections  
Figure 9. Precision Absolute Value Amplifier  
GUARDING AND SHIELDING  
To maintain the extremely high input impedances of the OP297,  
care must be taken in circuit board layout and manufacturing.  
Board surfaces must be kept scrupulously clean and free of mois-  
ture. Conformal coating is recommended to provide a humidity  
barrier. Even a clean PC board can have 100 pA of leakage  
currents between adjacent traces, so guard rings should be used  
around the inputs. Guard traces are operated at a voltage close to  
that on the inputs, as shown in Figure 7, so that leakage currents  
become minimal. In noninverting applications, the guard ring  
should be connected to the common-mode voltage at the inverting  
input. In inverting applications, both inputs remain at ground,  
so the guard trace should be grounded. Guard traces should be  
on both sides of the circuit board.  
PRECISION CURRENT PUMP  
Maximum output current of the precision current pump shown  
in Figure 10 is 10 mA. Voltage compliance is 10 V with 15 V  
supplies. Output impedance of the current transmitter exceeds  
3 Mwith linearity better than 16 bits.  
R3  
10k⍀  
R1  
10k⍀  
2
3
R6  
10k⍀  
1/2  
OP297  
1
I
OUT  
10mA  
R2  
10k⍀  
V
IN  
+15V  
8
5
R4  
OPEN-LOOP GAIN LINEARITY  
10k⍀  
7
1/2  
The OP297 has both an extremely high gain of 2000 V/mV  
minimum and constant gain linearity. This enhances the precision  
of the OP297 and provides for very high accuracy in high closed  
loop gain applications. Figure 8 illustrates the typical open-loop  
gain linearity of the OP297 over the military temperature range.  
OP297  
6
V
V
IN  
IN  
I
=
=
= 10mA/V  
OUT  
R5  
100⍀  
–15V  
Figure 10. Precision Current Pump  
R
= 10k⍀  
= ؎15V  
= 0V  
L
V
V
S
CM  
T
= +125؇C  
A
T
= +25؇C  
= –55؇C  
A
0
T
A
–15  
–10  
–5  
0
5
10  
15  
OUTPUT VOLTAGE (V)  
Figure 8. Open-Loop Linearity of the OP297  
REV. E  
–7–  
OP297  
PRECISION POSITIVE PEAK DETECTOR  
In Figure 11, the CH must be of polystyrene, Teflon®, or poly-  
ethylene to minimize dielectric absorption and leakage. The  
droop rate is determined by the size of CH and the bias current  
of the OP297.  
All the transistors of the MAT04 are precisely matched and at  
the same temperature, so the IS and VT terms cancel, giving  
2 ln IIN = ln IO + ln IREF = ln I × IREF  
(
)
O
Exponentiating both sides of the equation leads to  
2
1k⍀  
I
(
=
)
IN  
IO  
+15V  
IREF  
1N4148  
0.1F  
Op amp A2 forms a current-to-voltage converter, which gives  
VOUT = R2 × IO. Substituting (VIN/R1) for IIN and the above  
equation for IO yields  
2
3
8
1/2  
6
5
1
OP297  
1/2  
OP297  
7
1k⍀  
V
V
IN  
OUT  
1k⍀  
R2 VIN 2  
0.1F  
C
H
VOUT =  
  
RESET  
I
R1  
  
REF  
1k⍀  
2N930  
–15V  
A similar analysis made for the square-root circuit of Figure 14  
leads to its transfer function  
Figure 11. Precision Positive Peak Detector  
SIMPLE BRIDGE CONDITIONING AMPLIFIER  
Figure 12 shows a simple bridge conditioning amplifier using the  
OP297. The transfer function is  
V
I
REF  
(
IN )(  
)
VOUT = R2  
R1  
C2  
100pF  
R RF  
R2  
33k⍀  
VOUT =VREF  
R + ∆R  
R
6
The REF43 provides an accurate and stable reference voltage for  
the bridge. To maintain the highest circuit accuracy, RF should  
be 0.1% or better with a low temperature coefficient.  
1/2  
OP297  
7
V
I
OUT  
O
5
1
2
Q1  
7
Q2  
3
6
15V  
5
MAT04E  
R
14  
F
V
REF  
13  
8
I
Q4  
REF  
9
C1  
REF43  
Q3  
10  
V+  
100pF  
12  
2
R1  
33k⍀  
4
8
2
1/2  
OP297  
1
R3  
V
IN  
V
R + R  
OUT  
1/2  
OP297  
50k⍀  
1
3
R4  
50k⍀  
3
4
–15V  
8
V–  
6
5
R
R  
R + R  
F
1/2  
OP297  
7
V
= V  
OUT  
REF  
R
Figure 13. Squaring Amplifier  
4
R2  
33k⍀  
Figure 12. A Simple Bridge Conditioning Amplifier  
Using the OP297  
C2  
100pF  
6
NONLINEAR CIRCUITS  
1/2  
7
V
I
OUT  
OP297  
Due to its low input bias currents, the OP297 is an ideal log  
amplifier in nonlinear circuits such as the square and square-  
root circuits shown in Figures 13 and 14. Using the squaring  
circuit of Figure 13 as an example, the analysis begins by writing a  
voltage loop equation across transistors Q1, Q2, Q3, and Q4.  
O
5
I
REF  
MAT04E  
1
3
Q1  
6
14  
Q4  
12  
13  
C1  
100pF  
7
8
S1   
IIN  
I
IIN  
IO  
IREF  
IS 4  
9
Q2  
Q3  
10  
V ln  
+V ln  
=VT3 ln  
+VT 4 ln  
V+  
T1  
T2  
5
I
I
S2   
S3   
R1  
33k⍀  
8
2
R3  
50k⍀  
V
IN  
1/2  
1
OP297  
R4  
50k⍀  
3
4
–15V  
V–  
Figure 14. Square-Root Amplifier  
–8–  
REV. E  
OP297  
In these circuits, IREF is a function of the negative power supply.  
To maintain accuracy, the negative supply should be well regu-  
lated. For applications where very high accuracy is required, a  
voltage reference may be used to set IREF. An important consider-  
ation for the squaring circuit is that a sufficiently large input voltage  
can force the output beyond the operating range of the output  
op amp. Resistor R4 can be changed to scale IREF, or R1, and R2  
can be varied to keep the output voltage within the usable range.  
OP297 SPICE MACRO MODEL  
Figures 14 and 15 show the node end net list for a SPICE macro  
model of the OP297. The model is a simplified version of the  
actual device and simulates important dc parameters such as VOS  
IOS, IB, AVO, CMR, VO, and ISY. AC parameters such as slew  
rate, gain and phase response, and CMR change with frequency  
are also simulated by the model.  
,
The model uses typical parameters for the OP297. The poles  
and zeros in the model were determined from the actual open-  
and closed-loop gain and phase response of the OP297. In this  
way, the model presents an accurate ac representation of the actual  
device. The model assumes an ambient temperature of 25°C.  
Unadjusted accuracy of the square-root circuit is better than 0.1%  
over an input voltage range of 100 mV to 10 V. For a similar  
input voltage range, the accuracy of the squaring circuit is better  
than 0.5%.  
99  
V2  
R3  
R4  
6
13  
C4  
C2  
5
D3  
12  
R8  
15  
16  
R
C
IN2  
2
1
8
7
C3  
G1  
R7  
R9  
E1  
Q1 Q2  
10  
–IN  
+IN  
R1  
11  
D1  
D2  
98  
I
IN  
3
R2  
OS  
R5 R6  
4
E
D4  
REF  
14  
V3  
R
9
IN1  
E
OS  
I1  
50  
C6  
C7  
R11  
R13  
E2  
E3  
R10  
R12  
R14  
R15  
C5  
C8  
G1  
G3  
98  
9
99  
G6  
D7  
26  
D8  
R18  
I
R16  
23  
SYS  
V4  
D5  
22  
25  
L1  
V5  
D6  
27  
28 29  
G4  
R17  
R19  
G7  
D9  
D10  
G5  
50  
Figure 15. Macro Model  
REV. E  
–9–  
OP297  
SPICE Net List  
*OP297 SPICE MACRO-MODEL  
*
*NODE ASSIGNMENTS  
*POLE AT 1.8 MHz  
*
R10  
C5  
G2  
*
17  
17  
98  
98  
98  
17  
1E6  
88 4E-15  
16 23 1 E-6  
NONINVERTING INPUT  
INVERTING INPUT  
OUTPUT  
POSITIVE SUPPLY  
NEGATIVE SUPPLY  
*COMMON-MODE GAIN NETWORK WITH ZERO AT 50 HZ  
*
R11  
C6  
R12  
E2  
*
18  
18  
19  
18  
19  
19  
98  
98  
1E6  
3.183E-9  
1
*SUBCKT OP297  
*
*INPUT STAGE & POLE AT 6 MHz  
*
1
2
30  
99  
50  
3 23 100E-3  
RIN1  
RIN2  
R1  
1
2
8
7
8
3
3
99  
99  
8
6
50  
8
7
8
9
4
4
9
8
2500  
2500  
5E11  
5E11  
612  
612  
3E-12  
21.67E-12  
0.1E-3  
20E-12  
POLY(1) 19 23 25E-6 1  
10  
11  
96  
96  
DX  
DX  
*POLE AT 6 MHz  
*
R15  
C8  
G3  
*
22  
22  
98  
98  
98  
22  
1E6  
26.53E-15  
17 23 1 E-6  
R2  
7
R3  
5
R4  
6
CIN  
C2  
7
5
*OUTPUT STAGE  
*
I1  
4
R16  
R17  
ISY  
R18  
R19  
L1  
G4  
G5  
G6  
G7  
V4  
23  
23  
99  
25  
25  
25  
28  
29  
25  
50  
26  
25  
22  
27  
99  
99  
50  
50  
99  
50  
50  
99  
50  
30  
50  
50  
99  
25  
25  
27  
26  
22  
28  
29  
28  
29  
160E3  
160E3  
331E-6  
200  
200  
1E-7  
22 25 5E-3  
25 22 5E-3  
99 22 5E-3  
22 50 5E-3  
1.8  
1.3  
DX  
DX  
DX  
DX  
DY  
DY  
IOS  
EOS  
Q1  
7
9
5
QX  
QX  
Q2  
6
R5  
R6  
D1  
10  
11  
8
D2  
9
*
EREF  
*
98  
0
23 0 1  
V5  
*GAIN STAGE & DOMINANT POLE AT 0.13 HZ  
*
D5  
D6  
D7  
D8  
D9  
D10  
*
R7  
C3  
G1  
V2  
V3  
D3  
D4  
*
12  
12  
98  
99  
14  
12  
14  
98  
98  
12  
13  
50  
13  
12  
2.45E9  
500E-12  
5 6  
1.5  
1.5  
1.634E-3  
DX  
DX  
*MODELS USED  
*
.MODEL QX NPN BF=2.5E6)  
.MODEL DX D IS = 1E-15)  
.MODEL DY D IS = 1E-15 BV = 50)  
.ENDS OP297  
*NEGATIVE ZERO AT -1.8 MHz  
*
R8  
C4  
R9  
E1  
*
15  
15  
16  
15  
16  
16  
98  
98  
1E6  
88.4E-15  
1
12 23 1E6  
–10–  
REV. E  
OP297  
OUTLINE DIMENSIONS  
8-Lead Plastic Dual In-Line Package [PDIP]  
8-Lead Ceramic Dual In-Line Package [CERDIP]  
P-Suffix  
(N-8)  
Z-Suffix  
(Q-8)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in inches and (millimeters)  
0.005 (0.13) 0.055 (1.40)  
0.375 (9.53)  
0.365 (9.27)  
0.355 (9.02)  
MIN  
MAX  
8
5
8
1
5
0.310 (7.87)  
0.220 (5.59)  
0.295 (7.49)  
0.285 (7.24)  
0.275 (6.98)  
PIN 1  
1
4
4
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.100 (2.54)  
BSC  
0.320 (8.13)  
0.290 (7.37)  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.060 (1.52)  
0.015 (0.38)  
0.015  
(0.38)  
MIN  
0.180  
(4.57)  
MAX  
0.200 (5.08)  
MAX  
0.150 (3.81)  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
SEATING  
PLANE  
0.015 (0.38)  
0.008 (0.20)  
0.023 (0.58)  
0.014 (0.36)  
SEATING  
PLANE  
15  
0
0.070 (1.78)  
0.030 (0.76)  
0.060 (1.52)  
0.050 (1.27)  
0.045 (1.14)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-095AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
8-Lead Standard Small Outline Package (SOIC)  
Narrow Body  
S-Suffix  
(R-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
؋
 45؇  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8؇  
0.51 (0.0201)  
0.31 (0.0122)  
0؇ 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. E  
–11–  
OP297  
Revision History  
Location  
Page  
7/03Data Sheet changed from REV. D to REV. E.  
Changes to TPCS 13 and 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits to Figures 12 and 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Changes to NONLINEAR CIRCUITS Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
10/02Data Sheet changed from REV. C to REV. D.  
Edits to Figure 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
10/02Data Sheet changed from REV. B to REV. C.  
Edits to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Deleted WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Deleted DICE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Deleted ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
–12–  
REV. E  

相关型号:

OP297_06

Dual Low Bias Current Precision Operational Amplifier
ADI

OP299

Plastic Infrared Emitting Diode
TTELEC

OP299A

Plastic Infrared Emitting Diode
TTELEC

OP299AA

Plastic Infrared Emitting Diode
TTELEC

OP299AB

Plastic Infrared Emitting Diode
TTELEC

OP299AC

Plastic Infrared Emitting Diode
TTELEC

OP299AD

Plastic Infrared Emitting Diode
TTELEC

OP299B

Plastic Infrared Emitting Diode
TTELEC

OP299C

Plastic Infrared Emitting Diode
TTELEC

OP299D

Plastic Infrared Emitting Diode
TTELEC

OP300

PHOTOTRANSISTOR | DARLINGTON | 875NM PEAK WAVELENGTH | 10M | DO-31VAR
ETC

OP301

PHOTOTRANSISTOR | DARLINGTON | 875NM PEAK WAVELENGTH | 10M | DO-31VAR
ETC