OP37EZ [ADI]

Low Noise, Precision, High Speed Operational Amplifier; 低噪声,精密,高速运算放大器
OP37EZ
型号: OP37EZ
厂家: ADI    ADI
描述:

Low Noise, Precision, High Speed Operational Amplifier
低噪声,精密,高速运算放大器

运算放大器 放大器电路 CD
文件: 总16页 (文件大小:385K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise, Precision, High Speed  
a
>
Operational Amplifier (A VCL 5)  
OP37  
FEATURES  
The output stage has good load driving capability. A guaranteed  
swing of 10 V into 600 and low output distortion make the  
OP37 an excellent choice for professional audio applications.  
Low Noise, 80 nV p-p (0.1 Hz to 10 Hz)  
3 nV/Hz @ 1 kHz  
Low Drift, 0.2 V/؇C  
High Speed, 17 V/s Slew Rate  
63 MHz Gain Bandwidth  
Low Input Offset Voltage, 10 V  
Excellent CMRR, 126 dB (Common-Voltage @ 11 V)  
High Open-Loop Gain, 1.8 Million  
Replaces 725, OP-07, SE5534 In Gains > 5  
Available in Die Form  
PSRR and CMRR exceed 120 dB. These characteristics, coupled  
with long-term drift of 0.2 µV/month, allow the circuit designer  
to achieve performance levels previously attained only by  
discrete designs.  
Low-cost, high-volume production of the OP37 is achieved by  
using on-chip zener-zap trimming. This reliable and stable offset  
trimming scheme has proved its effectiveness over many years of  
production history.  
GENERAL DESCRIPTION  
The OP37 brings low-noise instrumentation-type performance to  
such diverse applications as microphone, tapehead, and RIAA  
phono preamplifiers, high-speed signal conditioning for data  
acquisition systems, and wide-bandwidth instrumentation.  
The OP37 provides the same high performance as the OP27,  
but the design is optimized for circuits with gains greater than  
five. This design change increases slew rate to 17 V/µs and  
gain-bandwidth product to 63 MHz.  
PIN CONNECTIONS  
The OP37 provides the low offset and drift of the OP07  
plus higher speed and lower noise. Offsets down to 25 µV and  
drift of 0.6 µV/°C maximum make the OP37 ideal for preci-  
sion instrumentation applications. Exceptionally low noise  
(en= 3.5 nV/ @ 10 Hz), a low 1/f noise corner frequency of  
2.7 Hz, and the high gain of 1.8 million, allow accurate  
high-gain amplification of low-level signals.  
8-Lead Hermetic DIP  
(Z Suffix)  
Epoxy Mini-DIP  
(P Suffix)  
8-Lead SO  
(S Suffix)  
The low input bias current of 10 nA and offset current of 7 nA  
are achieved by using a bias-current cancellation circuit. Over  
the military temperature range this typically holds IB and IOS  
to 20 nA and 15 nA respectively.  
1
2
3
4
8
7
6
5
V
TRIM  
V
TRIM  
IN  
+IN  
V–  
OS  
OS  
OP37  
V+  
OUT  
NC  
NC = NO CONNECT  
SIMPLIFIED SCHEMATIC  
V+  
C2  
R3  
R4  
1
8
Q6  
Q22  
Q46  
C1  
V
ADJ.  
OS  
R23 R24  
Q24  
R1*  
R2*  
Q21  
Q23  
R9  
R12  
Q20 Q19  
OUTPUT  
Q1A Q1B  
Q2B Q2A  
NON-INVERTING  
INPUT (+)  
C3  
C4  
R5  
Q3  
Q26  
INVERTING  
INPUT (–)  
Q45  
Q11 Q12  
Q27  
Q28  
*R1 AND R2 ARE PERMANENTLY  
ADJUSTED ATWAFERTEST FOR  
MINIMUM OFFSETVOLTAGE.  
V–  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
OP37  
ABSOLUTE MAXIMUM RATINGS4  
ORDERING GUIDE  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V  
Internal Voltage (Note 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . 22 V  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . Indefinite  
Differential Input Voltage (Note2) . . . . . . . . . . . . . . . . . 0.7 V  
Differential Input Current (Note 2) . . . . . . . . . . . . . . . . 25 mA  
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
TA = 25°C  
VOS MAX  
(µV)  
Operating  
Temperature  
Range  
CerDIP  
8-Lead  
Plastic  
8-Lead  
25  
25  
60  
100  
100  
OP37AZ*  
OP37EZ  
MIL  
OP37EP  
OP37FP*  
OP37GP  
OP37GS  
IND/COM  
IND/COM  
XIND  
OP37A . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +1 25°C  
OP37E (Z) . . . . . . . . . . . . . . . . . . . . . . . . . . –25°C to +85°C  
OP37E, OP-37F (P) . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
OP37G (P, S, Z) . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C  
Junction Temperature . . . . . . . . . . . . . . . . . . –45°C to +150°C  
3
OP37GZ  
XIND  
*Not for new design, obsolete, April 2002.  
Package Type  
Unit  
JA  
JC  
8-Lead Hermetic DIP (Z) 148  
16  
43  
43  
°C/W  
°C/W  
°C/W  
8-Lead Plastic DIP (P)  
8-Lead SO (S)  
103  
158  
NOTES  
1For supply voltages less than 22 V, the absolute maximum input voltage is equal  
to the supply voltage.  
2The OP37’s inputs are protected by back-to-back diodes. Current limiting resistors  
are not used in order to achieve low noise. If differential input voltage exceeds 0.7 V,  
the input Current should be limited to 25 mA.  
3
JA is specified for worst case mounting conditions, i.e., JA is specified for device  
in socket for TO, CerDIP, P-DIP, and LCC packages; JA is specified for device  
soldered to printed circuit board for SO package.  
4Absolute maximum ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the OP37 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–2–  
REV. A  
OP37  
SPECIFICATIONS ( VS = 15 V, TA = 25C, unless otherwise noted.)  
OP37A/E  
OP37F  
Min Typ Max  
OP37G  
Min Typ Max  
Parameter  
Symbol  
Conditions  
Min Typ Max  
Unit  
Input Offset  
Voltage  
Long-Term  
Stability  
Input Offset  
Current  
Input Bias  
Current  
VOS  
Note 1  
10  
0.2  
7
25  
1.0  
35  
20  
0.3  
9
60  
1.5  
50  
30  
0.4  
12  
100  
2.0  
75  
µV  
VOS/Time Notes 2, 3  
µV/Mo  
nA  
IOS  
IB  
enp-p  
10  
40  
12  
55  
15  
80  
nA  
Input Noise  
Voltage  
Input Noise  
1 Hz to 10 Hz3, 5  
0.08 0.18  
0.08 0.18  
0.09 0.25  
µV p-p  
Voltage Density en  
fO = 10 Hz3  
fO = 30 Hz3  
fO = 1000 Hz3  
3.5  
3.1  
3.0  
5.5  
4.5  
3.8  
3.5  
3.1  
3.0  
5.5  
4.5  
3.8  
3.8  
3.3  
3.2  
8.0  
5.6  
4.5  
nV/ Hz  
pA/ Hz  
Input Noise  
CurrentDensity iN  
fO = 10 Hz3, 6  
1.7  
1.0  
0.4  
4.0  
2.3  
0.6  
1.7  
1.0  
0.4  
4.0  
2.3  
0.6  
1.7  
1.0  
0.4  
f
O = 30 Hz3, 6  
fO = 1000 Hz3, 6  
0.6  
Input Resistance  
Differential  
Mode  
RIN  
Note 7  
1.3  
6
3
0.9  
4 5  
2.5  
0.7  
4
2
MΩ  
GΩ  
V
Input Resistance  
Common Mode  
Input Voltage  
Range  
Common Mode  
Rejection Ratio  
Power Supply  
Rejection Ratio  
RINCM  
IVR  
11  
114  
12.3  
11  
106  
12.3  
11  
12.3  
CMRR  
PSSR  
VCM  
=
11 V  
126  
1
123  
1
100  
120  
2
dB  
VS = 4 V  
to 18 V  
10  
10  
20  
µV/ V  
Large Signal  
Voltage Gain  
AVO  
RL 2 k,  
VO = 10 V  
RL 1 k,  
Vo = 10 V  
RL 600 ,  
1000 1800  
1000 1800  
700  
400  
1500  
1500  
V/m V  
V/m V  
800  
1500  
800  
1500  
VO  
= 1 V,  
VS 44  
250  
700  
250  
700  
200  
500  
V/m V  
Output Voltage  
Swing  
VO  
RL 2 kΩ  
RL 600 Ω  
RL 2k 4  
12.0 13.8  
10 11.5  
11 17  
12.0 13.8  
10 11.5  
11 17  
11.5 13.5  
10 11.5  
11 17  
V
V
V/µs  
Slew Rate  
Gain Bandwidth  
Product  
SR  
GBW  
f
O = 10 kHz4  
45  
63  
40  
45  
63  
40  
45  
63  
40  
MHz  
MHz  
fO = 1 MHz  
VO = 0, IO = 0  
VO = 0  
Open-Loop  
Output Resistance RO  
Power  
Consumption  
Offset Adjustment  
Range  
70  
90  
4
70  
90  
4
70  
100  
4
Pd  
140  
140  
170  
mW  
mV  
RP = 10 kΩ  
NOTES  
1Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power. A/E grades guaranteed fully  
warmed up.  
2Long term input offset voltage stability refers to the average trend line of VOS vs. Time over extended periods after the first 30 days of operation. Excluding the initial  
hour of operation, changes in VOS during the first 30 days are typically 2.5 µV—refer to typical performance curve.  
3Sample tested.  
4Guaranteed by design.  
5See test circuit and frequency response curve for 0.1 Hz to 10 Hz tester.  
6See test circuit for current noise measurement.  
7Guaranteed by input bias current.  
–3–  
REV. A  
OP37–SPECIFICATIONS  
Electrical Characteristics ( VS = 15 V, –55C < TA < +125C, unless otherwise noted.)  
OP37A  
Typ  
OP37C  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
Typ  
Max  
Unit  
Input Offset  
Voltage  
Average Input  
Offset Drift  
VOS  
Note 1  
1025  
30  
100  
µV  
TCVOS  
TCVOSN  
Note 2  
Note 3  
0.2  
0.6  
60  
0.4  
135  
35  
1.8  
nA  
µV/°C  
Input Offset  
Current  
Input Bias  
IOS  
1550  
20  
30  
Current  
IB  
150  
nA  
V
Input Voltage  
Range  
Common Mode  
Rejection Ratio  
Power Supply  
Rejection Ratio  
IVR  
CMRR  
PSRR  
10.3  
11.5  
122  
10.2 11.5  
116  
VCM  
=
10 V  
108  
94  
4
dB  
VS = 4.5 V to  
18 V  
2 16  
51  
µV/ V  
Large-Signal  
Voltage Gain  
AVO  
VO  
RL 2 k,  
VO  
=
10 V  
600  
1200  
13.5  
300  
10.5  
800  
13.0  
V/m V  
V
Output Voltage  
Swing  
RL 2 kΩ  
11.5  
Electrical Characteristics (V = 15 V, –25C < T < +85C for OP37EZ/FZ, 0C < T < 70C for OP37EP/FP, and –40C < T  
< +85C for OP37GP/GS/GZ, unless otherwise noted.)  
S
A
A
A
OP37E  
Min Typ Max  
OP37F  
Min Typ Max  
OP37C  
Parameter  
Symbol  
Conditions  
Min Typ Max  
Unit  
Input Offset  
Voltage  
Average Input  
Offset Drift  
VOS  
20  
50  
40  
140  
55  
220  
µV  
TCVOS  
TCVOSN  
Note 2  
Note 3  
0.2  
10  
0.6  
50  
0.3  
14  
1.3  
85  
95  
0.4  
20  
1.8  
µV/°C  
nA  
Input Offset  
Current  
Input Bias  
Current  
Input Voltage  
Range  
IOS  
IB  
135  
14  
10.5 11.8  
60  
18  
10.5 11.8  
25  
10.5 11.8  
150  
nA  
IVR  
V
Common Mode  
Rejection Ratio CMRR  
Power Supply  
Rejection Ratio PSRR  
VCM  
=
10 V  
108  
122  
2
100  
119  
2
94  
116  
4
dB  
VS = 4.5 V to  
18 V  
15  
16  
32  
µV/ V  
Large-Signal  
Voltage Gain  
AVO  
VO  
RL 2 k,  
VO  
=
10 V  
750  
1500  
700  
1300  
450  
11  
1000  
13.3  
V/mV  
V
Output Voltage  
Swing  
RL 2 kΩ  
11.7 13.6  
11.4 13.5  
NOTES  
1Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power. A/E grades guaranteed fully  
warmed up.  
2The TC VOS performance is within the specifications unnulled or when nulled withRP = 8 kto 20 k. TC VOS is 100% tested for A/E grades, sample tested for F/G grades.  
3Guaranteed by design.  
–4–  
REV. A  
OP37  
1. NULL  
2. () INPUT  
3. (+) INPUT  
4. V–  
6. OUTPUT  
7. V+  
8. NULL  
(VS = 15 V, TA = 25C for OP37N, OP37G, and OP37GR devices; TA = 125C for OP37NT and OP37GT devices,  
unless otherwise noted.)  
Wafer Test Limits  
OP37NT  
Limit  
OP37N  
Limit  
OP37GT  
Limit  
OP37G  
Limit  
OP37GR  
Limit  
Parameter  
Symbol  
Conditions  
Unit  
Input Offset  
Voltage  
Input Offset  
Current  
Input Bias  
Current  
Input Voltage  
Range  
Common Mode  
Rejection Ratio CMRR  
VOS  
IOS  
IB  
Note 1  
60  
35  
35  
200  
85  
60  
100  
75  
µV MAX  
nA MAX  
nA MAX  
V MIN  
50  
50  
60  
40  
11  
114  
95  
55  
11  
106  
80  
IVR  
10.3  
10.3  
100  
11  
VCM  
=
11 V 108  
100  
dB MIN  
Power Supply  
Rejection Ratio PSRR  
TA = 25°C,  
VS = 4 V to  
18 V  
10  
10  
10  
10  
20  
µV/V MAX  
µV/V MAX  
TA = 125°C,  
VS = 4.5 V to  
18 V  
16  
20  
Large-Signal  
Voltage Gain  
AVO  
RL 2 k,  
VO  
=
10 V  
600  
1000  
800  
500  
1000  
800  
700  
V/mV MIN  
V/mV MIN  
RL 1 k,  
VO 10 V  
=
Output Voltage  
Swing  
VO  
Pd  
RL 2 kΩ  
11.5  
12  
10  
11  
12  
10  
11.5  
10  
V MIN  
V MIN  
RL 600 kΩ  
Power  
Consumption  
VO = 0  
140  
140  
170  
mW MAX  
NOTES  
For 25°C characterlstics of OP37NT and OP37GT devices, see OP37N and OP37G characteristics, respectively.  
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.  
REV. A  
–5–  
OP37  
(V = 15 V, T = 25C, unless otherwise noted.)  
Typical Electrical Characteristics  
S
A
OP37NT  
Typical  
OP37N  
Typical  
OP37GT  
Typical  
OP37G  
Typical  
OP37GR  
Typical  
Parameter  
Symbol  
Conditions  
Unit  
Average Input  
Offset Voltage  
Drift  
TCVOS or Nulled or  
TCVOSN  
Unnulled  
RP = 8 kΩ  
to 20 kΩ  
0.2  
80  
0.2  
80  
0.3  
0.3  
0.4  
µV/°C  
pA/°C  
pA/°C  
Average Input  
Offset Current  
Drift  
Average Input  
Bias Current  
Drift  
TCIOS  
TCIB  
130  
160  
130  
160  
180  
200  
100  
100  
Input Noise  
Voltage Density en  
fO = 10 Hz  
fO = 30 Hz  
3.5  
3.1  
3.0  
3.5  
3.1  
3.0  
3.5  
3.1  
3.0  
3.5  
3.1  
3.0  
3.8  
3.3  
3.2  
nV/Hz  
nV/Hz  
nV/Hz  
f
O = 1000 Hz  
Input Noise  
Current Density in  
fO = 10 Hz  
fO = 30 Hz  
1.7  
1.0  
0.4  
1.7  
1.0  
0.4  
1.7  
1.0  
0.4  
1.7  
1.0  
0.4  
1.7  
1.0  
0.4  
pA/ Hz  
pA/ Hz  
pA/ Hz  
f
O = 1000 Hz  
Input Noise  
Voltage  
en p-p  
0.1 Hz to  
10 Hz  
RL 2k Ω  
0.08  
17  
0.08  
17  
0.08  
17  
0.08  
17  
0.09  
17  
µV p-p  
V/µs  
Slew Rate  
Gain Bandwidth  
Product  
SR  
GBW  
fO = 10 kHz  
63  
63  
63  
63  
63  
MHz  
–6–  
REV. A  
Typical Performance Characteristics–OP37  
10  
9
100  
100  
90  
80  
70  
60  
50  
40  
30  
T
V
= 25C  
= 15V  
A
8
741  
S
7
6
5
4
I/F CORNER  
LOW NOISE  
10  
I/F CORNER =  
2.7Hz  
3
2
AUDIO OP AMP  
OP37  
I/F CORNER  
I/F CORNER = 2.7Hz  
TEST TIME OF 10sec MUST BE USED  
TO LIMIT LOW FREQUENCY  
(<0.1Hz) GAIN.  
INSTRUMENTATION AUDIO RANGE  
RANGETO DC  
TO 20kHz  
1
1
1
10  
100  
1k  
1
10  
100  
1k  
0.01  
0.1  
1
10  
100  
FREQUENCY Hz  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 1. Noise-Tester Frequency  
Response (0.1 Hz to 10 Hz)  
TPC 2. Voltage Noise Density vs.  
Frequency  
TPC 3. A Comparison of Op Amp  
Voltage Noise Spectra  
100  
10  
5
R1  
R2  
T
V
= 25C  
= 15V  
A
T
V
= 25C  
= 15V  
V
= 15V  
A
S
S
S
4
3
2
1
R
2R1  
S
AT 10Hz  
AT 1kHz  
1
10  
0.1  
AT 10Hz  
AT 1kHz  
RESISTOR NOISE ONLY  
1
100  
0.01  
100  
50 25  
0
25  
50  
75  
100 125  
1k  
10k  
1k  
10k  
100k  
TEMPERATURE C  
SOURCE RESISTANCE ꢃ  
BANDWIDTH Hz  
TPC 4. Input Wideband Voltage Noise  
vs. Bandwidth (0.1 Hz to Frequency  
Indicated)  
TPC 5. Total Noise vs. Source Resistance  
TPC 6. Voltage Noise Density vs.  
Temperature  
5
10.0  
5.0  
4.0  
T
= 25C  
A
4
3
2
1
AT 10Hz  
AT 1kHz  
T
= +125C  
A
3.0  
2.0  
1.0  
1.0  
T
= 55C  
A
T
= +25C  
A
I/F CORNER = 140Hz  
0.1  
10  
0
10  
20  
30  
40  
5
15  
25  
35  
45  
100  
1k  
10k  
TOTAL SUPPLYVOLTAGE (V+ V) Volts  
TOTAL SUPPLYVOLTAGE Volts  
FREQUENCY Hz  
TPC 7. Voltage Noise Density vs.  
Supply Voltage  
TPC 8. Current Noise Density vs.  
Frequency  
TPC 9. Supply Current vs. Supply  
Voltage  
–7–  
REV. A  
OP37  
6
4
60  
50  
40  
OP37C  
OP37B  
T
= 25C  
A
V
= 15V  
S
2
10  
30  
20  
0
OP37A  
2  
4  
OP37C/G  
OP37F  
10  
0
OP37B  
OP37A  
6  
6
10  
20  
30  
OP37A  
OP37B  
5
4
OP37A/E  
2
40  
0
TRIMMINGWITH  
10kPOT DOES  
2  
50  
60  
70  
NOT CHANGE  
4  
6  
TCV  
OS  
OP37C  
1
75 50 25  
0
25 50 75 100 125 150 175  
0
1
2
3
4
5
0
1
2
3
4
5
6
7
TEMPERATURE C  
TIME AFTER POWER ON MINUTES  
TIME MONTHS  
TPC 10. Offset Voltage Drift of Eight  
Representative Units vs. Temperature  
TPC 12. Warm Up Offset Voltage Drift  
TPC 11. Long-Term Offset Voltage  
Drift of Six Representative Units  
30  
50  
50  
V
= +15V  
S
V
= +15V  
V = 15V  
S
S
25  
20  
40  
30  
20  
10  
40  
30  
20  
T
25C  
=
T = 70C  
A
A
THERMAL SHOCK  
RESPONSE BAND  
15  
10  
5
OP37C  
OP37C  
OP37B  
10  
0
DEVICE IMMERSED  
IN 70C OIL BATH  
OP37B  
OP37A  
OP37A  
25  
0
20  
0
0
20  
40  
100  
60  
80  
75 50 25  
0
50 75 100 125  
50 25  
0
25 50 75 100 125 150  
TEMPERATURE C  
TIME Seconds  
TEMPERATURE C  
TPC 13. Offset Voltage Change Due  
to Thermal Shock  
TPC 14. Input Bias Current vs. Temperature  
TPC 15. Input Offset Current vs.  
Temperature  
80  
75  
70  
65  
60  
55  
30  
25  
90  
60  
50  
40  
30  
20  
10  
0
80  
140  
T
V
= 25C  
= 15V  
A
V
= 15V  
T
V
R
= 25C  
= 15V  
2kꢃ  
S
A
85  
80  
75  
70  
65  
S
M  
100  
120  
140  
160  
180  
200  
220  
120  
100  
80  
60  
40  
20  
0
S
L
PHASE  
MARGIN  
= 71ꢁ  
GBW  
60  
55  
A
= 5  
V
50  
45  
40  
20  
15  
10  
SLEW  
10  
100k  
2
3
4
5
6
7
8
1
10  
50 25  
0
25  
50  
75  
100 125  
10  
10 10  
10  
10 10 10  
1M  
10M  
100M  
FREQUENCY Hz  
FREQUENCY Hz  
TEMPERATURE C  
TPC 16. Open-Loop Gain vs. Frequency  
TPC 17. Slew Rate, Gain Bandwidth  
Product, Phase Margin vs. Temperature  
TPC 18. Gain, Phase Shift vs. Frequency  
–8–  
REV. A  
OP37  
2.5  
2.0  
1.5  
1.0  
0.5  
0
28  
24  
20  
16  
12  
8
18  
16  
T
V
= 25C  
= 15V  
T
= 25C  
A
A
S
POSITIVE  
SWING  
14  
12  
10  
8
R
= 2kꢃ  
L
NEGATIVE  
SWING  
R
= 1kꢃ  
L
6
4
2
T
= 25C  
4
A
0
V
= 15V  
S
2  
100  
0
10  
0
10  
20  
30  
40  
50  
4
5
6
7
10  
1k  
10k  
10  
10  
TOTAL SUPPLYVOLTAGE Volts  
LOAD RESISTANCE ꢃ  
FREQUENCY Hz  
TPC 19. Open-Loop Voltage Gain vs.  
Supply Voltage  
TPC 20. Maximum Output Swing vs.  
Frequency  
TPC 21. Maximum Output Voltage  
vs. Load Resistance  
80  
60  
40  
1µs  
5V  
200ns  
20mV  
+50mV  
0V  
+10V  
0V  
T
V
A
= 25C  
= 15V  
= +5  
A
T
V
A
= 25C  
= 15V  
= +5 (1k, 250)  
A
10V  
S
V
V
A
= 15V  
= 20mV  
= +5 (1k, 250)  
20  
0
S
S
50mV  
V
IN  
V
(1k, 250)  
V
0
500  
1000  
1500  
2000  
CAPACITIVE LOAD pF  
TPC 22. Small-Signal Overshoot vs.  
Capacitive Load  
TPC 23. Large-Signal Transient  
Response  
TPC 24. Small-Signal Transient  
Response  
60  
140  
16  
V
T
= 15V  
= 25C  
= 10V  
T
V
= 25C  
= 15V  
S
A
T = 55C  
A
12  
8
A
S
V
T
= +25C  
120  
100  
80  
CM  
A
50  
40  
30  
20  
10  
T
= +125C  
A
4
I
(+)  
SC  
0
T
= 55C  
A
4  
8  
12  
16  
I
()  
SC  
T
= +25C  
A
60  
T
= +125C  
10  
A
40  
1k  
0
1
2
3
4
5
0
5  
15  
20  
10k  
100k  
FREQUENCY Hz  
1M  
10M  
TIME FROM OUTPUT SHORTEDTO  
SUPPLYVOLTAGE Volts  
GROUND MINUTES  
TPC 25. Short-Circuit Current vs. Time  
TPC 26. CMRR vs. Frequency  
TPC 27. Common-Mode Input Range  
vs. Supply Voltage  
–9–  
REV. A  
OP37  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.1F  
T
V
= 25C  
= 15V  
A
1 SEC/DIV  
S
100kꢃ  
OP37  
10ꢃ  
D.U.T.  
2kꢃ  
VOLTAGE  
GAIN  
= 50,000  
22F  
4.3kꢃ  
2.2F  
OP12  
100kꢃ  
SCOPE 1  
= 1Mꢃ  
4.7F  
R
IN  
110kꢃ  
0.6  
0.4  
0.1F  
24.3kꢃ  
100  
1k  
10k  
100k  
LOAD RESISTANCE ꢃ  
TPC 28. Noise Test Circuit (0.1 Hz to  
10 Hz)  
TPC 29. Low-Frequency Noise  
TPC 30. Open-Loop Voltage Gain vs.  
Load Resistance  
160  
19  
18  
17  
20  
T
= 25C  
A
T
V
A
V
= 25C  
= 15V  
= 5  
T = 25C  
A
A
140  
RISE  
FALL  
A
= 5  
S
VCL  
V
120  
100  
80  
60  
40  
20  
0
15  
10  
5
= 20V p-p  
O
NEGATIVE  
SWING  
POSITIVE  
SWING  
16  
15  
0
3  
1
10 100 1k 10k 100k 1M 10M 100M  
100  
1k  
10k  
100k  
6  
9  
12  
15  
18  
21  
FREQUENCY Hz  
LOAD RESISTANCE ꢃ  
SUPPLYVOLTAGE Volts  
TPC 31. PSRP vs. Frequency  
TPC 32. Slew Rate vs. Load  
TPC 33. Slew Rate vs. Supply Voltage  
–10–  
REV. A  
OP37  
APPLICATIONS INFORMATION  
Noise Measurements  
OP37 Series units may be inserted directly into 725 and OP07  
sockets with or without removal of external compensation or  
nulling components. Additionally, the OP37 may be fitted to  
unnulled 741type sockets; however, if conventional 741 nulling  
circuitry is in use, it should be modified or removed to ensure  
correct OP37 operation. OP37 offset voltage may be nulled to  
zero (or other desired setting) using a potentiometer (see offset  
nulling circuit).  
To measure the 80 nV peak-to-peak noise specification of the  
OP37 in the 0.1 Hz to 10 Hz range, the following precautions  
must be observed:  
The device has to be warmed-up forat least five minutes. As  
shown in the warm-up drift curve, the offset voltage typically  
changes 4 µV due to increasing chip temperature after power up.  
In the ten second measurement interval, these temperature-  
induced effects can exceed tens of nanovolts.  
The OP37 provides stable operation with load capacitances of  
up to 1000 pF and 10 V swings; larger capacitances should be  
decoupled with a 50 resistor inside the feedback loop. Closed  
loop gain must be at least five. For closed loop gain between five  
to ten, the designer should consider both the OP27 and the OP37.  
For gains above ten, the OP37 has a clear advantage over the  
unity stable OP27.  
For similar reasons, the device has to be well-shielded from  
air currents. Shielding minimizes thermocouple effects.  
Sudden motion in the vicinity of the device can also  
“feedthrough” to increase the observed noise.  
The test time to measure 0.1 Hz to l0 Hz noise should not  
exceed 10 seconds. As shown in the noise-tester frequency  
response curve, the 0.1 Hz corner is defined by only one zero.  
The test time of ten seconds acts as an additional zero to eliminate  
noise contributions from the frequency band below 0.1 Hz.  
Thermoelectric voltages generated by dissimilar metals at the input  
terminal contacts can degrade the drift performance. Best  
operation will be obtained when both input contacts are main-  
tained at the same temperature.  
A noise-voltage-density test is recommended when measuring  
noise on a large number of units. A 10 Hz noise-voltage-density  
measurement will correlate well with a 0.1 Hz-to-10 Hz peak-to-peak  
noise reading, since both results are determined by the white  
noise and the location of the 1/f corner frequency.  
10kR  
P
V+  
OP37  
OUTPUT  
Optimizing Linearity  
+
Best linearity will be obtained by designing for the minimum  
output current required for the application. High gain and  
excellent linearity can be achieved by operating the op amp with  
a peak output current of less than 10 mA.  
V–  
Figure 1. Offset Nulling Circuit  
Offset Voltage Adjustment  
Instrumentation Amplifier  
A three-op-amp instrumentation amplifier provides high gain and  
wide bandwidth. The input noise of the circuit below is 4.9 nV/Hz.  
The gain of the input stage is set at 25 and the gain of the second  
stage is 40; overall gain is 1000. The amplifier bandwidth of  
800 kHz is extraordinarily good for a precision instrumentation  
amplifier. Set to a gain of 1000, this yields a gain bandwidth  
product of 800 MHz. The full-power bandwidth for a 20 V p-p  
output is 250 kHz. Potentiometer R7 provides quadrature  
trimming to optimize the instrumentation amplifier’s ac common-  
mode rejection.  
The input offset voltage of the OP37 is trimmed at wafer level.  
However, if further adjustment of VOS is necessary, a 10 ktrim  
potentiometer may be used. TCVOS is not degraded (see offset  
nulling circuit). Other potentiometer values from 1 kto 1 MΩ  
can be used with a slight degradation (0.1 µV/°C to 0.2 µV/°C) of  
TCVOS. Trimming to a value other than zero creates a drift of  
approximately (VOS/300) µV/°C. For example, the change in TCVOS  
will be 0.33 µV/°C if VOS is adjusted to 100 µV. The offset voltage  
adjustment range with a 10 kpotentiometer is 4 mV. If smaller  
adjustment range is required, the nulling sensitivity can be reduced  
by using a smaller pot in conjunction with fixed resistors. For  
example, the network below will have a 280 µV adjustment range.  
R5  
500ꢃ  
0.1%  
R8  
20kꢃ  
0.1%  
+
INPUT ()  
OP37  
R1  
4.7kꢃ  
1kPOT  
4.7kꢃ  
8
1
5kꢃ  
0.1%  
R3  
V+  
390ꢃ  
R7  
V
OUT  
R4  
5kꢃ  
0.1%  
100kOP37  
C1  
100pF  
R2  
100ꢃ  
Figure 2. TBD  
+
+18V  
R6  
R9  
19.8kꢃ  
500ꢃ  
0.1%  
OP37  
R10  
500ꢃ  
INPUT (+)  
+
NOTES:  
TRIM R2 FOR A  
OP37  
= 1000  
VCL  
TRIM R10 FOR dc CMRR  
TRIM R7 FOR MINIMUMV  
AT V  
= 20V p-p, 10kHz  
CM  
OUT  
Figure 4a. TBD  
18V  
Figure 3. Burn-In Circuit  
REV. A  
–11–  
OP37  
140  
1k  
T
= 25C  
A
OP08/108  
5534  
V
= 15V  
= 20V p-p  
S
R
= 0  
S
500  
V
CM  
120  
100  
80  
ACTRIM @ 10kHz  
= 0  
R
S
OP07  
1
R
= 1kꢃ  
S
BALANCED  
2
100  
50  
OP27/37  
R
= 100,  
1kUNBALANCED  
S
1 R UNMATCHED  
S
e.g.R = R = 10k, R = 0  
S
S1  
S2  
2 R MATCHED  
S
e.g.R = 10k, R = R = 5kꢃ  
S
S1  
S2  
60  
R
S1  
R
S2  
REGISTER  
NOISE ONLY  
40  
10  
50  
10  
100  
1k  
10k  
100k  
1M  
100  
500  
1k  
5k  
10k  
50k  
FREQUENCY Hz  
R
SOURCE RESISTANCE ꢃ  
S
Figure 4b. TBD  
Figure 6. Peak-to-Peak Noise (0.1 Hz to 10 Hz) vs. Source  
Resistance (Includes Resistor Noise)  
Comments on Noise  
The OP37 is a very low-noise monolithic op amp. The outstanding  
input voltage noise characteristics of the OP37 are achieved  
mainly by operating the input stage at a high quiescent current.  
The input bias and offset currents, which would normally increase,  
are held to reasonable values by the input bias current cancellation  
circuit. The OP37A/E has IB and IOS of only 40 nA and 35 nA  
respectively at 25°C. This is particularly important when the input  
has a high source resistance. In addition, many audio amplifier  
designers prefer to use direct coupling. The high IB. TCVOS of  
previous designs have made direct coupling difficult, if not  
impossible, to use.  
At RS < 1 kkey the OP37’s low voltage noise is maintained.  
With RS < 1 k, total noise increases, but is dominated by the  
resistor noise rather than current or voltage noise. It is only  
beyond Rs of 20kil that current noise starts to dominate. The  
argument can be made that current noise is not important for  
applications with low to-moderate source resistances. The  
crossover between the OP37 and OP07 and OP08 noise occurs  
in the 15 kto 40 kregion.  
100  
50  
1
2
100  
OP08/108  
50  
1
OP07  
10  
OP08/108  
5534  
1 R UNMATCHED  
S
2
5
e.g.R = R = 10k, R = 0  
S
S1 S2  
OP07  
10  
2 R MATCHED  
S
OP27/37  
e.g.R = 10k, R = R = 5kꢃ  
S1 S2  
S
R
S1  
1 R UNMATCHED  
S
5
5534  
R
S2  
e.g.R = R = 10k, R = 0  
REGISTER  
S
S1  
S2  
2 R MATCHED  
NOISE ONLY  
S
1
50  
e.g.R = 10k, R = R = 5kꢃ  
S1 S2  
S
OP27/37  
100  
500  
1k  
5k  
10k  
50k  
R
S1  
R
SOURCE RESISTANCE ꢃ  
S
R
S2  
REGISTER  
NOISE ONLY  
Figure 7. !0 Hz Noise vs. Source resistance (Inlcludes  
Resistor Noise)  
1
50  
100  
500  
1k  
5k  
10k  
50k  
R
SOURCE RESISTANCE ꢃ  
S
Figure 6 shows the 0.1 Hz to 10 Hz peak-to-peak noise. Here  
the picture is less favorable; resistor noise is negligible, current  
noise becomes important because it is inversely proportional to  
the square-root of frequency. The crossover with the OP-07  
occurs in the 3 kto 5 krange depending on whether bal-  
anced or unbalanced source resistors are used (at 3 kthe IB.  
IOS error also can be three times the VOS spec.).  
Figure 5. Noise vs. Resistance (Including Resistor Noise  
@ 1000 Hz)  
Voltage noise is inversely proportional to the square-root of bias  
current, but current noise is proportional to the square-root of  
bias current. The OP37’s noise advantage disappears when high  
source-resistors are used. Figures 5, 6, and 7 compare OP-37  
observed total noise with the noise performance of other devices  
in different circuit applications.  
Therefore, for low-frequency applications, the OP07 is better  
than the OP27/37 when Rs > 3 k. The only exception is when  
gain error is important. Figure 3 illustrates the 10 Hz noise. As  
expected, the results are between the previous two figures.  
Total noise = [( Voltage noise)2 + (current noise ϫ RS)2 +  
(resistor noise_]1/2  
For reference, typical source resistances of some signal sources  
are listed in Table I.  
Figure 5 shows noise versus source resistance at 1000 Hz. The  
same plot applies to wideband noise. To use this plot, just multiply  
the vertical scale by the square-root of the bandwidth.  
–12–  
REV. A  
OP37  
Table I. TBD  
Source  
by only 0.7 dB. With a 1 ksource, the circuit noise measures  
63 dB below a 1 mV reference level, unweighted, in a 20 kHz  
noise bandwidth.  
Device  
Impedance Comments  
Gain (G) of the circuit at 1 kHz can be calculated by the expression:  
Straln Gauge  
<500 Ω  
Typically used in low-frequency  
applications.  
R   
G = 0.101 1+  
1   
Magnetic  
Tapehead  
<1500 Ω  
Low IB very important to reduce  
set-magnetization problems when  
direct coupling is used. OP37  
IB can be neglected.  
R
3   
For the values shown, the gain is just under 100 (or 40 dB).  
Lower gains can be accommodated by increasing R3, but gains  
higher than 40 dB will show more equalization errors because of  
the 8 MHz gain bandwidth of the OP27.  
Magnetic  
Phonograph  
Cartridges  
<1500 Ω  
Similar need for low IB in direct  
coupled applications. OP47 will not  
introduce any self-magnetization  
problem.  
This circuit is capable of very low distortion over its entire range,  
generally below 0.01% at levels up to 7 V rms. At 3 V output  
levels, it will produce less than 0.03% total harmonic distortion  
at frequencies up to 20 kHz.  
Linear Variable <1500 Ω  
Differential  
Used in rugged servo-feedback  
applications. Bandwidth of interest  
is 400 Hz to 5 kHz.  
Transformer  
Capacitor C3 and resistor R4form a simple 6 dB per octave  
rumble filter, with a corner at 22 Hz. As an option, the switch  
selected shunt capacitor C4, a nonpolarized electrolytic, bypasses  
the low-frequency rolloff. Placing the rumble filters high-pass  
action after the preamp has the desirable result of discriminating  
against the RIAA amplified low frequency noise components  
and pickup-produced low-frequency disturbances.  
Audio Applications  
The following applications information has been abstracted from  
a PMI article in the 12/20/80 issue of Electronic Design magazine  
and updated.  
C4 (2)  
R5  
220F  
100kꢃ  
+
+
A preamplifier for NAB tape playback is similar to an RIAA  
phono preamp, though more gain is typically demanded, along  
with equalization requiring a heavy low-frequency boost. The  
circuit In Figure 4 can be readily modified for tape use, as  
shown by Figure 5.  
MOVING MAGNET  
CARTRIDGE INPUT  
LF ROLLOFF  
OUT  
C3  
0.47F  
IN  
A1  
OP27  
Ca  
150pF  
Ra  
R4  
75kꢃ  
C1  
0.03F  
47.5kꢃ  
OUTPUT  
R1  
97.6kꢃ  
0.47F  
R2  
7.87kꢃ  
C2  
0.01F  
OP37  
TAPE  
HEAD  
Ra  
Ca  
+
15kꢃ  
R3  
100ꢃ  
R1  
33kꢃ  
R2  
5kꢃ  
G = 1kHz GAIN  
0.01F  
R1  
R3  
1 +  
= 0.101 (  
)
= 98.677 (39.9dB) AS SHOWN  
100kꢃ  
T1 = 3180s  
T2 = 50s  
Figure 8. TBD  
Figure 9. TBD  
Figure 8 is an example of a phono pre-amplifier circuit using the  
OP27 for A1; R1-R2-C1-C2 form a very accurate RIAA net-  
work with standard component values. The popular method to  
accomplish RIAA phono equalization is to employ frequency-  
dependent feedback around a high-quality gain block. Properly  
chosen, an RC network can provide the three necessary time  
constants of 3180 µs, 318 µs, and 75 µs.1  
While the tape-equalization requirement has a flat high frequency  
gain above 3 kHz (t2 = 50 µs), the amplifier need not be stabilized  
for unity gain. The decompensated OP37 provides a greater  
bandwidth and slew rate. For many applications, the idealized  
time constants shown may require trimming of RA and R2 to  
optimize frequency response for non ideal tape head perfor-  
mance and other factors.5  
For initial equalization accuracy and stability, precision metal-  
film resistors and film capacitors of polystyrene or polypropylene  
are recommended since they have low voltage coefficients,  
dissipation factors, and dielectric absorption.4 (High-K ceramic  
capacitors should be avoided here, though low-K ceramics—  
such as NPO types, which have excellent dissipation factors,  
and somewhat lower dielectric absorption—can be considered  
for small values or where space is at a premium.)  
The network values of the configuration yield a 50 dB gain at 1 kHz,  
and the dc gain is greater than 70 dB. Thus, the worst-case out-  
put offset is just over 500 mV. A single 0.47 µF output capacitor  
can block this level without affecting the dynamic range.  
The tape head can be coupled directly to the amplifier input,  
since the worst-case bias current of 85 nA with a 400 mH, 100 µin.  
head (such as the PRB2H7K) will not be troublesome.  
The OP27 brings a 3.2 nV/Hz voltage noise and 0.45 pA/Hz  
current noise to this circuit. To minimize noise from other sources,  
R3 is set to a value of 100 , which generates a voltage noise of  
1.3 nV/Hz. The noise increases the 3.2 nV/Hz of the amplifier  
One potential tape-head problem is presented by amplifier bias-  
current transients which can magnetize a head. The OP27 and  
REV. A  
–13–  
OP37  
OP37 are free of bias-current transients upon power up or power  
down. However, it is always advantageous to control the speed  
of power supply rise and fall, to eliminate transients.  
offset of this circuit will be very low, 1.7 mV or less, for a 40 dB  
gain. The typical output blocking capacitor can be eliminated in  
such cases, but is desirable for higher gains to eliminate switching  
transients.  
In addition, the dc resistance of the head should be carefully  
controlled, and preferably below 1 k. For this configuration,  
the bias-current induced offset voltage can be greater than the  
170 pV maximum offset if the head resistance is not sufficiently  
controlled.  
C2  
1800pF  
R1  
121ꢃ  
R2  
1100ꢃ  
A simple, but effective, fixed-gain transformerless microphone  
preamp (Figure 10) amplifies differential signals from low imped-  
ance microphones by 50 dB, and has an input impedance of 2 k.  
Because of the high working gain of the circuit, an OP37 helps  
to preserve bandwidth, which will be 110 kHz. As the OP37 is a  
decompensated device (minimum stable gain of 5), a dummy  
resistor, RP, may be necessary, if the microphone is to be  
unplugged. Otherwise the 100% feedback from the open input  
may cause the amplifier to oscillate.  
A1  
OUTPUT  
T1*  
OP27  
150ꢃ  
SOURCE  
R3  
100ꢃ  
*T1 JENSEN JE 115K E  
JENSENTRANSFORMERS  
10735 BURBANK BLVD.  
N. HOLLYWOOD, CA 91601  
Figure 11. TBD  
C1  
5F  
R1  
1kꢃ  
R3  
R6  
Capacitor C2 and resistor R2 form a 2 µs time constant in this  
circuit, as recommended for optimum transient response by  
the transformer manufacturer. With C2 in use, A1 must have  
unity-gain stability. For situations where the 2 µs time con-  
stant is not necessary, C2 can be deleted, allowing the faster  
OP37 to be employed.  
316kꢃ  
100ꢃ  
LOW IMPEDANCE  
MICROPHONE INPUT  
(Z = 50TO 200)  
Rp  
30kꢃ  
R7  
10kꢃ  
OP37  
OUTPUT  
+
R2  
R4  
R3 R4  
=
Some comment on noise is appropriate to understand the  
capability of this circuit. A 150 resistor and R1 and R2 gain  
resistors connected to a noiseless amplifier will generate 220 nV  
of noise in a 20 kHz bandwidth, or 73 dB below a 1 mV reference  
level. Any practical amplifier can only approach this noise level;  
it can never exceed it. With the OP27 and T1 specified, the  
additional noise degradation will be close to 3.6 dB (or 69.5  
referenced to 1 mV).  
1kꢃ  
316kꢃ  
R1 R2  
Figure 10. TBD  
Common-mode input-noise rejection will depend upon the match  
of the bridge-resistor ratios. Either close-tolerance (0.1%) types  
should be used, or R4 should be trimmed for best CMRR. All  
resistors should be metal-film types for best stability and low noise.  
References  
Noise performance of this circuit is limited more by the input  
resistors R1 and R2 than by the op amp, as R1 and R2 each  
generate a 4 nVHz noise, while the op amp generates a 3.2 nVHz  
noise. The rms sum of these predominant noise sources will be  
about 6 nVHz, equivalent to 0.9 µV in a 20 kHz noise bandwidth,  
or nearly 61 dB below a l mV input signal. Measurements confirm  
this predicted performance.  
1. Lipshitz, S.P, On RIAA Equalization Networks,JAES, Vol. 27, June 1979,  
p. 458-4S1.  
2. Jung, W.G., IC Op Amp Cookbook, 2nd Ed., H.W. Sams and Company,  
1980.  
3. Jung, W.G., Audio /C Op Amp Applications, 2nd Ed., H.W. Sams and Com-  
pany, 1978.  
4. Jung, W.G., and Marsh, R.M., Picking Capacitors.Audio, February &  
March, 1980.  
5. Otala, M., Feedback-Generated Phase Nonlinearity in Audio Amplifiers,”  
London AES Convention, March 1980, preprint 197B.  
6. Stout, D.F., and Kaufman, M., Handbook of Operational Amplifier Circuit  
Design, New York, McGraw Hill, 1976.  
For applications demanding appreciably lower noise, a high quality  
microphone-transformer-coupled preamp (Figure 11) incorporates  
the internally compensated. T1 is a JE-115K-E 150 /15 kΩ  
transformer which provides an optimum source resistance for  
the OP27 device. The circuit has an overall gain of 40 dB, the  
product of the transformers voltage setup and the op amps  
voltage gain.  
Gain may be trimmed to other levels, if desired, by adjusting R2  
or R1. Because of the low offset voltage of the OP27, the output  
–14–  
REV. A  
OP37  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Hermetic DIP  
(Z Suffix)  
0.005 (0.13) 0.055 (1.4)  
MIN  
MAX  
8
5
0.310 (7.87)  
0.220 (5.59)  
PIN 1  
1
4
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
15°  
0°  
0.023 (0.58) 0.070 (1.78)  
0.014 (0.36) 0.030 (0.76)  
Epoxy Mini-Dip  
(P Suffix)  
0.430 (10.92)  
0.348 (8.84)  
8
5
0.280 (7.11)  
0.240 (6.10)  
1
4
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
0.060 (1.52)  
0.015 (0.38)  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
0.022 (0.558) 0.070 (1.77) SEATING  
0.014 (0.356) 0.045 (1.15)  
PLANE  
8-Lead SO  
(S Suffix)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
45ꢁ  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
SEATING  
PLANE  
8ꢁ  
0ꢁ  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
REV. A  
–15–  
OP37  
Revision History  
Location  
Page  
Data Sheet changed from REV. B to REV. C.  
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to PACKAGE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to APPLICATIONS INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
–16–  
REV. A  

相关型号:

OP37FJ

Low-Noise Precision Operaional Amplifiers
MAXIM

OP37FJ

Operational Amplifier, 1 Func, 140uV Offset-Max, BIPolar, MBCY8, TO-99, 8 PIN
ROCHESTER

OP37FJ

IC OP-AMP, 140 uV OFFSET-MAX, 63 MHz BAND WIDTH, MBCY8, TO-99, 8 PIN, Operational Amplifier
ADI

OP37FP

Low Noise, Precision, High Speed Operational Amplifier
ADI

OP37FP

Low-Noise Precision Operaional Amplifiers
MAXIM

OP37FP

Operational Amplifier, 1 Func, 140uV Offset-Max, BIPolar, PDIP8, MINI, PLASTIC, DIP-8
Linear

OP37FS

OP-AMP, 63MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8
Linear

OP37FZ

Low-Noise Precision Operaional Amplifiers
MAXIM

OP37FZ

Operational Amplifier, 1 Func, 60uV Offset-Max, BIPolar, CDIP8, HERMETIC SEALED, CERDIP-8
ROCHESTER

OP37FZ

IC OP-AMP, 60 uV OFFSET-MAX, 63 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

OP37G

LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS
TI

OP37G

IC OP-AMP, 60 uV OFFSET-MAX, 63 MHz BAND WIDTH, UUC7, DIE-8/7, Operational Amplifier
ADI