OP400AY [ADI]

Quad Low-Offset, Low-Power Operational Amplifier; 四路低失调,低功耗运算放大器
OP400AY
型号: OP400AY
厂家: ADI    ADI
描述:

Quad Low-Offset, Low-Power Operational Amplifier
四路低失调,低功耗运算放大器

运算放大器
文件: 总12页 (文件大小:233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad Low-Offset, Low-Power  
Operational Amplifier  
a
OP400  
FEATURES  
PIN CONNECTIONS  
Low Input Offset Voltage 150 V Max  
Low Offset Voltage Drift, Over –55؇C to +125؇C  
1.2 pV/؇C Max  
Low Supply Current (Per Amplifier) 725 A Max  
High Open-Loop Gain 5000 V/mV Min  
Input Bias Current 3 nA Max  
14-PIN HERMETIC DIP  
(Y-Suffix)  
16-PIN SOL  
(S-Suffix)  
14-PIN PLASTIC DIP  
(P-Suffix)  
Low Noise Voltage Density 11 nV/÷Hz at 1 kHz  
Stable With Large Capacitive Loads 10 nF Typ  
Pin Compatible to LM148, HA4741, RM4156, and LT1014  
with Improved Performance  
Available in Die Form  
GENERAL DESCRIPTION  
The OP400 is the first monolithic quad operational amplifier  
that features OP77 type performance. Precision performance no  
longer has to be sacrificed to obtain the space and cost savings  
offered by quad amplifiers.  
The OP400 features low power consumption, drawing less than  
725 mA per amplifier. The total current drawn by this quad  
amplifier is less than that of a single OP07, yet the OP400 offers  
significant improvements over this industry standard op amp.  
The OP400 features an extremely low input offset voltage of  
less than 150 mV with a drift of under 1.2 mV/C, guaranteed  
over the full military temperature range. Open-loop gain of the  
OP400 is over 5,000,000 into a 10 kW load, input bias current is  
under 3 nA, CMR is above 120 dB, and PSRR is below 1.8 mV/V.  
On-chip zener-zap trimming is used to achieve the low input  
offset voltage of the OP400 and eliminates the need for offset  
nulling. The OP400 conforms to the industry-standard quad  
pinout which does not have null terminals.  
Voltage noise density of the OP400 is a low 11 nV/  
which is half that of most competitive devices.  
÷Hz at 10 Hz,  
The OP400 is pin-compatible with the LM148, HA4741,  
RM4156, and LT1014 operational amplifiers and can be used  
to upgrade systems using these devices. The OP400 is an ideal  
choice for applications requiring multiple precision operational  
amplifiers and where low power consumption is critical.  
Figure 1. Simplified Schematic (One of Four Amplifiers is Shown)  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
OP400–SPECIFICATIONS  
(@ V = 15 V, T = 25؇C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
S
A
OP400A/E  
OP400F  
OP400G/H  
Parameter  
Input Offset  
Voltage  
Symbol Conditions  
Min Typ Max Min Typ Max Min Typ Max  
Unit  
mV  
VOS  
40  
150  
60  
230  
80  
300  
Long-Term Input  
Voltage Stability  
Input Offset  
Current  
Input Bias  
Current  
Input Noise  
Voltage  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
mV/mo  
nA  
IOS  
IB  
VCM = V  
1.0  
2.0  
3.5  
VCM = V  
0.75 3.0  
0.5  
0.75 6.0  
0.5  
0.75 7.0  
0 5  
nA  
en p-p  
0.1 Hz to 10 Hz  
mV p-p  
Input Noise  
Voltage Density1 en  
fO = 10 Hz1  
22  
11  
36  
18  
22  
11  
36  
18  
22  
11  
fO = 1000 Hz1  
nV/÷Hz  
pAp-p  
pA/÷Hz  
MW  
Input Noise  
Current  
Input Noise  
Current Density  
in p-p  
in  
0.1 Hz to 10 Hz  
fO= 10 Hz  
15  
15  
15  
0.6  
10  
0.6  
10  
0.6  
10  
Input Resistance  
Differential Mode RIN  
Input Resistance  
Common Mode  
RINCM  
200  
200  
200  
GW  
Large Signal  
Voltage Gain  
AVO  
VO = ±10 V  
RL = 10 kW  
RL = 2 kW  
5000 12000  
2000 3500  
3000 7000  
1500 3000  
3000 7000  
1500 3000  
V/mV  
V
Input Voltage  
Range3  
IVR  
±12  
±13  
±12  
±13  
±12  
±13  
Common Mode  
Rejection  
Power Supply  
CMR  
PSRR  
VCM = 12 V  
120  
140  
115  
140  
110  
135  
dB  
Rejection Ratio  
VS = 3 V  
to 18 V  
0.1  
1.8  
0.1  
3.2  
0.2  
5 6  
mV/V  
Output Voltage  
Swing  
VO  
RL = 10 kW  
RL = 2 kW  
±12  
±11  
±12.6  
±12.2  
±12  
±11  
±12.6  
±12.2  
±12  
±11  
±12.6  
±12.2  
V
Supply Current  
Per Amplifier  
Slew Rate  
ISY  
SR  
No Load  
600  
0.15  
725  
600  
0.15  
725  
600  
0.15  
725  
mA  
V/ms  
0.1  
0.1  
0.1  
Gain Bandwidth  
Product  
Channel  
GBWP  
CS  
AV = 1  
500  
135  
500  
135  
500  
135  
kHz  
dB  
Separation  
VO = 20 V p-p  
fO = 10 Hz2  
123  
123  
123  
Input  
Capacitance  
Capacitive Load  
Stability  
CIN  
3.2  
10  
3.2  
10  
3.2  
10  
pF  
nF  
AV = 1  
No Oscillations  
NOTES  
1Sample tested  
2Guaranteed but not 100% tested.  
3Guaranteed by CMR test  
–2–  
REV. A  
OP400  
SPECIFICATIONS (continued)  
<
ELECTRICAL CHARACTERISTICS (@ VS = 15 V, –55؇C TA = 125؇C for OP400A, unless otherwise noted.)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
mV  
Input Offset Voltage  
VoS  
70  
270  
Average Input Offset Voltage Drift  
Input Offset Current  
Input Bias Current  
TCVOS  
IOS  
IB  
0.3  
01  
1.3  
12  
2.5  
5.0  
mV/C  
nA  
nA  
VCM = 0 V  
VCM = 0 V  
Large Signal Voltage Gain  
AVO  
VO = ±10 V RL = 10 kW 3000  
9000  
2300  
±12.5  
130  
0.2  
±12.4  
±12  
V/mV  
RL = 2 kW  
1000  
±12  
115  
Input Voltage Range  
*
IVR  
V
dB  
mV/V  
Common Mode Rejection  
Power Supply Rejection Ratio  
Output Voltage Swing  
CMR  
PSRR  
VO  
VCM = ±12 V  
VO = 3 V to 18 V  
3.2  
RL = 10 kW  
RL = 2 kW  
±12  
±11  
V
Supply Current Per Amplifier  
Capacitive Load Stability  
ISY  
No Load  
AV = 1  
600  
8
775  
mA  
nF  
No Oscillations  
NOTE  
*
Guaranteed by CMR test  
<
<
(@ VS = ؎15 V, –25؇C TA S ؎85؇C for OP400E/F, 0؇C S TA 70؇C for OP400G,  
<
<
–40؇C TA +85؇C for OP400H, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
OP400A/E  
OP400F  
OP400G/H  
Parameter  
Input Offset  
Voltage  
Average Input Offset  
Voltage Drift  
Input Offset  
Current  
Symbol Conditions  
Min Typ Max Min Typ Max Min Typ Max  
Unit  
mV  
VOS  
60  
220  
1.2  
80  
350  
2.0  
110  
0.6  
400  
2.5  
TCVOS  
0 3  
0.3  
mV/C  
IOS  
VCM = 0 V  
E, F, G Grades  
H Grade  
0.1  
0.1  
2.5  
2.5  
0.1  
0.1  
3.5  
3.5  
0.2  
0.2  
6.0  
12.0  
nA  
nA  
Input Bias  
Current  
IB  
VCM = 0 V  
E, F, G Grades  
H Grade  
1.0  
1.0  
12.0  
20.0  
Large-Signal  
Voltage Gain  
AVO  
VCM = 0 V  
RL = 10 kW  
RL = 2 kW  
3000 10000  
1500 2700  
2000 5000  
1000 2000  
2000 5000  
1000 2000  
V/mv  
V
Input Voltage  
Range  
Common-Mode  
Rejection  
Power Supply  
Rejection Ratio  
IVR  
*
±12  
±12.5  
±12  
±12.5  
±12  
±12.5  
CMR  
PSRR  
VCM = ±12 V  
115  
135  
110  
135  
105  
130  
dB  
VS = ±3 V  
to ±18 V  
0.15 3.2  
0.15 5.6  
0.3  
10.0  
mV/V  
Output Voltage  
Swing  
VO  
ISY  
RL = 10 kW  
RL = 2 kW  
±12  
±11  
±12.4  
±12  
±12  
±11  
±12.4  
±12  
±12  
±11  
±12.6  
±12.2  
V
Supply Current  
Per Amplifier  
Capacitive Load  
Stability  
No Load  
600  
10  
775  
600  
10  
775  
600  
10  
775  
mA  
nF  
No Oscillations  
NOTE  
*
Guaranteed by CMR test.  
REV. A  
–3–  
OP400  
ORDERING INFORMATION  
Package Operating  
CerDIP  
DICE CHARACTERISTICS  
TA = 25؇C  
V
OS Max  
Temperature  
Range  
(mV)  
14-Lead  
Plastic  
150  
150  
230  
300  
300  
300  
300  
NOTES  
OP400AY  
OP400EY  
OP400FY  
MIL  
IND  
IND  
COM  
COM  
XIND  
XIND  
OP400GP  
OP400GS  
OP400HP  
OP400HS  
1For devices processed in total compliance to MIL-STD-883, add/883after part  
number. Consult factory for 883 data sheet.  
2Burn-in is available on commercial and industrial temperature range parts in  
CerDIP, plastic DIP, and TO-can packages.  
DIE SIZE 0.181 
؋
 0.123 inch, 22,263 sq. milts  
(4.60 
؋
 3.12 mm, 14.35 sq. mm)  
For Military processed devices, please refer to the standard  
microcircuit drawing (SMD) available at  
www.dscc.dla.mil/programs/milspec/default.asp  
1. OUT A  
2. –IN A  
3. +INA  
4. V+  
8. OUT C  
9. –IN C  
10. +IN C  
11. V-  
SMD Part Number  
ADI Equivalent  
5. +IN B  
6. –IN B  
7. OUT B  
12. +IND  
13. –IN D  
14. OUT D  
5962-8777101M3A  
5962-8777101MCA  
OP400ATCMDA  
OP400AYMDA  
(@ V = ؎15 V, T = 25؇C, unless otherwise noted.)  
WAFER TEST LIMITS  
S
A
OP400GBC  
Parameter  
Symbol  
VOS  
VOS  
IB  
AVO  
Conditions  
Limit  
230  
2
Unit  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Large Signal  
Voltage Gain  
Input Voltage Range  
Common Mode Rejection  
Power Supply Rejection Ratio  
Output Voltage Swing  
mA Max  
nA Max  
nA Max  
VCM = 0 V  
VCM = 0 V  
VO = ±10 V RL = 10 kW  
Rig 2 kW  
6
3000  
1500  
±12  
115  
3.2  
V/mV Min  
V Min  
dB Min  
*
IVR  
*
CMR  
PSRR  
VO  
VCM = ±12 V  
VS = ±3 V to ±18 V  
RL = 10 kW  
RL = 2 kW  
mV/V Max  
±12  
V Min  
Supply Current Per Amplifier  
ISY  
No Load  
725  
mA Max  
NOTE  
*
Guaranteed by CMR test.  
Electrical tests are performed at wafer probe to the limits shown Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
OP400 features proprietary ESD protection circuitry, permanent damage may occur on devices  
WARNING!  
subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
ESD SENSITIVE DEVICE  
–4–  
REV. A  
Typical Performance Characteristics–OP400  
TPC 3. Input Bias Current  
vs. Temperature  
TPC 1. Warm-Up Drift  
TPC 2. Input Offset Voltage  
vs. Temperature  
TPC 5. Input Bias Current vs.  
Common-Mode Voltage  
TPC 4. Input Offset Current  
vs. Temperature  
TPC 6. Common-Mode Rejection  
vs. Frequency  
TPC 7. Noise Voltage Density  
vs. Frequency  
TPC 9. 0.1 Hz to10 Hz Noise  
TPC 8. Current Noise Density  
vs. Frequency  
REV. A  
–5–  
OP400  
TPC 12. Power Supply Rejection  
vs. Frequency  
TPC 10. Total Supply Current  
vs. Supply Voltage  
TPC 11. Total Supply Current  
vs. Temperature  
TPC 13. Power Supply  
Rejection vs. Temperature  
TPC 15. Open-Loop Gain and  
Phase Shift vs. Frequency  
TPC 14. Open-Loop Gain vs.  
Temperature  
TPC 16. Closed-Loop Gain  
vs. Frequency  
TPC 17. Maximum Output  
Swing Frequency  
TPC 18. Total Harmonic  
Distortion vs. Frequency  
–6–  
REV. A  
OP400  
TPC 21. Channel Separation  
vs. Frequency  
TPC 20. Short Circuit vs. Time  
TPC 19. Overshoot vs.  
Capacitive Load  
TPC 23. Small-Signal  
Transient Response  
TPC 24. Small-Signal Transient  
Response CLOAD = 1nF  
TPC 22. Large-Signal  
Transient Response  
Figure 2. Noise Test Schematic  
REV. A  
–7–  
OP400  
Table I. Gain Bandwidth  
Bandwidth  
Gain  
5
10  
100  
1000  
150 kHz  
67 kHz  
7.5 kHz  
500 Hz  
The output signal is specified with respect to the reference  
input, which is normally connected to analog ground. The refer-  
ence input can be used to offset the output from –10 V to +10 V  
if required.  
Figure 3. Burn-In Circuit  
APPLICATIONS INFORMATION  
The OP400 is inherently stable at all gains and is capable of  
driving large capacitive loads without oscillating. Nonetheless,  
good supply decoupling is highly recommended. Proper supply  
decoupling reduces problems caused by supply line noise and  
improves the capacitive load driving capability of the OP400.  
Total supply current can be reduced by connecting the inputs of  
an unused amplifier to –V. This turns the amplifier off, lowering  
the total supply current.  
APPLICATIONS  
Dual Low-Power Instrumentation Amplifier  
A dual instrumentation amplifier that consumes less than 33 mW  
of power per channel is shown in Figure 1. The linearity of the  
instrumentation amplifier exceeds 16 bits in gains of 5 to 200  
and is better than 14 bits in gains from 200 to 1000. CMRR is  
above 115 dB (G = 1000). Offset voltage drift is typically 0.4  
mV/C over the military temperature range which is comparable  
to the best monolithic instrumentation amplifiers. The band-  
width of the low-power instrumentation amplifier is a function  
of gain and is shown in Table I.  
Figure 4. Dual Low-Power Instrumentation Amplifier  
–8–  
REV. A  
OP400  
Figure 5. Bipolar Current Transmitter  
BIPOLAR CURRENT TRANSMITTER  
In the circuit of Figure 5, which is an extension of the standard  
three op amp instrumentation amplifier, the output current is  
proportional to the differential input voltage. Maximum output  
current is ±5 mA with voltage compliance equal to ±10 V when  
using ±15 V supplies. Output impedance of the current transmit-  
ter exceeds 3 MW and linearity is better than 16 bits with gain  
set for a full scale input of ±100 mV.  
DIFFERENTIAL OUTPUT INSTRUMENTATION  
AMPLIFIER  
The output voltage swing of a single-ended instrumentation  
amplifier is limited by the supplies, normally at ±15 V, to a  
maximum of 24 V p-p. The differential output instrumentation  
amplifier of Figure 6 can provide an output voltage swing of  
48 V p-p when operated with ±15 V supplies. The extended  
output swing is due to the opposite polarity of the outputs. Both  
outputs will swing 24 V p-p but with opposite polarity, for a  
total output voltage swing of 48 V p-p. The reference input can  
be used to set a common-mode output voltage over the range  
±10 V. PSRR of the amplifier is less than 1 mV/V with CMRR  
(G = 1000) better than 115 dB. Offset voltage drift is typically  
0.4 mV/C over the military temperature range.  
Figure 6. Differential Output Instrumentation Amplifier  
REV. A  
–9–  
OP400  
MULTIPLE OUTPUT TRACKING VOLTAGE  
REFERENCE  
Figure 7 shows a circuit that provides outputs of 10 V, 7.5 V, 5 V,  
and 2.5 V for use as a system voltage reference. Maximum  
output current from each reference is 5 mA with load regulation  
under 25 mV/mA. Line regulation is better than 15 mV/V and  
output voltage drift is under 20 mV/C. Output voltage noise  
from 0.1 Hz to 10 Hz is typically 75 mV p-p from the 10 V output  
and proportionately less from the 7.5 V, 5 V, and 2.5 V outputs.  
Figure 7. Multiple-Output Tracking Voltage Reference  
–10–  
REV. A  
OP400  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
14-Lead Hermetic DIP Package  
(Y-Suffix)  
14-Lead Plastic DIP Package  
(P-Suffix)  
0.005 (0.13) MIN 0.098 (2.49) MAX  
0.795 (20.19)  
0.725 (18.42)  
14  
8
7
0.310 (7.87)  
0.220 (5.59)  
14  
8
7
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
1
1
0.320 (8.13)  
0.290 (7.37)  
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
0.100 (2.54)  
BSC  
0.060 (1.52)  
0.015 (0.38)  
0.785 (19.94) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.195 (4.95)  
0.115 (2.93)  
0.200  
0.210 (5.33)  
(5.08)  
MAX  
0.130  
(3.30)  
MIN  
0.150  
(3.81)  
MIN  
MAX  
0.200 (5.08)  
0.160 (4.06)  
0.115 (2.93)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
SEATING  
0.023 (0.58)  
0.070 (1.78)  
0.030 (0.76)  
0.070 (1.77)  
0.045 (1.15)  
15  
0
0.022 (0.558)  
0.014 (0.356)  
PLANE  
PLANE  
0.014 (0.36)  
16-Lead SOL Package  
(S-Suffix)  
0.4133 (10.50)  
0.3977 (10.00)  
16  
1
9
8
0.2992 (7.60)  
0.2914 (7.40)  
0.4193 (10.65)  
0.3937 (10.00)  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
0.050 (1.27)  
BSC  
؋
 45؇  
8؇  
0؇  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0157 (0.40)  
0.0125 (0.32)  
0.0091 (0.23)  
Revision History  
Location  
Page  
Data Sheet changed from REV. 0 to REV. A.  
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to GENERAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 2  
Edits to PACKAGE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
REV. A  
–11–  
–12–  

相关型号:

OP400AY/883C

IC QUAD OP-AMP, 270 uV OFFSET-MAX, 0.5 MHz BAND WIDTH, CDIP14, HERMETIC SEALED, CERDIP-14, Operational Amplifier
ADI

OP400AYMDA

Quad Low Offset, Low Power Operational Amplifier
ADI

OP400BIEY

IC QUAD OP-AMP, 220 uV OFFSET-MAX, 0.5 MHz BAND WIDTH, CDIP14, HERMETIC SEALED, CERDIP-14, Operational Amplifier
ADI

OP400BIFY

IC QUAD OP-AMP, 350 uV OFFSET-MAX, 0.5 MHz BAND WIDTH, CDIP14, HERMETIC SEALED, CERDIP-14, Operational Amplifier
ADI

OP400BIGP

QUAD OP-AMP, 400uV OFFSET-MAX, 0.5MHz BAND WIDTH, PDIP14, PLASTIC, DIP-14
ROCHESTER

OP400BIGP

IC QUAD OP-AMP, 400 uV OFFSET-MAX, 0.5 MHz BAND WIDTH, PDIP14, PLASTIC, DIP-14, Operational Amplifier
ADI

OP400BIGS

暂无描述
ADI

OP400BIHP

IC QUAD OP-AMP, 400 uV OFFSET-MAX, 0.5 MHz BAND WIDTH, PDIP14, PLASTIC, DIP-14, Operational Amplifier
ADI

OP400BIHS

IC QUAD OP-AMP, 400 uV OFFSET-MAX, 0.5 MHz BAND WIDTH, PDSO16, PLASTIC, SOL-16, Operational Amplifier
ADI

OP400EY

Quad Low-Offset, Low-Power Operational Amplifier
ADI

OP400EY/883

Operational Amplifier
ETC

OP400FY

Quad Low-Offset, Low-Power Operational Amplifier
ADI