OP400HSZ [ADI]

Quad Low Offset, Low Power Operational Amplifier; 四通道,低失调,低功耗运算放大器
OP400HSZ
型号: OP400HSZ
厂家: ADI    ADI
描述:

Quad Low Offset, Low Power Operational Amplifier
四通道,低失调,低功耗运算放大器

运算放大器 放大器电路 光电二极管 PC
文件: 总16页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad Low Offset, Low Power  
Operational Amplifier  
OP400  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
Low input offset voltage: 150 μV maximum  
Low offset voltage drift over –55°C to +125°C: 1.2 pV/°C  
maximum  
Low supply current (per amplifier): 725 μA maximum  
High open-loop gain: 5000 V/mV minimum  
Input bias current: 3 nA maximum  
Low noise voltage density: 11 nV/√Hz at 1 kHz  
Stable with large capacitive loads: 10 nF typical  
Pin-compatible to LM148, HA4741, RM4156, and LT1014,  
with improved performance  
OUTA  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
14 +IN D  
13 V–  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
+
+
+
+
OP400  
+IN B  
–IN B  
OUT B  
NC  
12 +IN C  
11 –IN C  
10 OUT C  
OP400  
+
+
+IN B  
–IN B  
OUT B  
10 +IN C  
+
+
9
8
–IN C  
9
NC  
OUT C  
NC = NO CONNECT  
Figure 1. 14-Pin Ceramic DIP (Y-Suffix)  
and 14-Pin Plastic DIP (P-Suffix)  
Figure 2. 16-Pin SOIC (S-Suffix)  
Available in die form  
GENERAL DESCRIPTION  
The OP400 is the first monolithic quad operational amplifier  
that features OP77-type performance. Precision performance is  
not sacrificed with the OP400 to obtain the space and cost  
savings offered by quad amplifiers.  
The OP400 features low power consumption, drawing less than  
725 μA per amplifier. The total current drawn by this quad  
amplifier is less than that of a single OP07, yet the OP400 offers  
significant improvements over this industry-standard op amp.  
Voltage noise density of the OP400 is a low 11 nV/√Hz at  
10 Hz, half that of most competitive devices.  
The OP400 features an extremely low input offset voltage of less  
than 150 μV with a drift of less than 1.2 μV/°C, guaranteed over  
the full military temperature range. Open-loop gain of the  
OP400 is more than 5 million into a 10 kΩ load, input bias  
current is less than 3 nA, CMR is more than 120 dB, and PSRR  
is less than 1.8 μV/V. On-chip Zener zap trimming is used to  
achieve the low input offset voltage of the OP400 and eliminates  
the need for offset nulling. The OP400 conforms to the industry-  
standard quad pinout, which does not have null terminals.  
The OP400 is pin-compatible with the LM148, HA4741,  
RM4156, and LT1014 operational amplifiers and can be used to  
upgrade systems having these devices. The OP400 is an ideal  
choice for applications requiring multiple precision operational  
amplifiers and where low power consumption is critical.  
V+  
BIAS  
VOLTAGE  
LIMITING  
NETWORK  
OUT  
+IN  
–IN  
V–  
Figure 3. Simplified Schematic (One of Four Amplifiers Is Shown)  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights ofthird parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
OP400  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................6  
Applications..................................................................................... 11  
Dual Low Power Instrumentation Amplifier ......................... 11  
Bipolar Current Transmitter..................................................... 12  
Differential Output Instrumentation Amplifier .................... 12  
Multiple Output Tracking Voltage Reference......................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 15  
SMD Parts and Equivalents ...................................................... 15  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
REVISION HISTORY  
1/07—Rev. D to Rev. E  
Updated Format..................................................................Universal  
Changes to Figure 1 and Figure 2................................................... 1  
Removed Figure 4............................................................................. 4  
Changes to Table 3............................................................................ 4  
Changes to Figure 16 through Figure 19, Figure 21..................... 8  
Changes to Figure 27........................................................................ 9  
Changes to Figure 28...................................................................... 10  
Changes to Figure 33...................................................................... 13  
Updated Outline Dimensions....................................................... 14  
6/03—Rev. B to Rev. C  
Edits to Specifications.......................................................................2  
10/02—Rev. A to Rev. B  
Addition of Absolute Maximum Ratings .......................................5  
Edits to Outline Dimensions......................................................... 12  
4/02—Rev. 0 to Rev. A  
Edits to Features.................................................................................1  
Edits to Ordering Information ........................................................1  
Edits to Pin Connections..................................................................1  
Edits to General Descriptions..................................................... 1, 2  
Edits to Package Type .......................................................................2  
3/06—Rev. C to Rev. D  
Updated Format..................................................................Universal  
Deleted Wafer Test Limits Table..................................................... 4  
New Package Drawing: R-14......................................................... 15  
Updated Outline Dimensions....................................................... 15  
Changes to Ordering Guide .......................................................... 16  
Rev. E | Page 2 of 16  
 
OP400  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
@ VS = 15 V, TA = +25°C, unless otherwise noted.  
Table 1.  
OP400A/E  
Min Typ  
OP400F  
Typ  
OP400G/H  
Typ Max Unit  
Parameter  
Symbol Conditions  
Max Min  
Max Min  
INPUT CHARACTERISTICS  
Input Offset Voltage  
VOS  
40  
150  
60  
230  
80  
300  
μV  
Long-Term Input  
Voltage Stability  
0.1  
0.1  
0.1  
μV/mo  
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Resistance  
Differential Mode  
IOS  
IB  
en p-p  
RIN  
VCM = 0 V  
VCM = 0 V  
0.1 Hz to 10 Hz  
0.1  
0.75  
0.5  
10  
1.0  
3.0  
0.1  
0.75  
0.5  
10  
2.0  
6.0  
0.1  
0.75  
0.5  
10  
3.5  
7.0  
nA  
nA  
μV p-p  
MΩ  
Input Resistance  
Common Mode  
Large Signal Voltage  
Gain  
RINCM  
AVO  
200  
200  
200  
GΩ  
VO = 10 V  
RL = 10 kΩ  
RL = 2 kΩ  
5000 12,000  
2000 3500  
3000  
1500  
12  
7000  
3000  
13  
3000  
1500  
12  
7000  
3000  
13  
V/mV  
V/mV  
V
Input Voltage Range1  
IVR  
12  
13  
Common-Mode  
Rejection  
CMR  
V
CM = 12 V  
120  
140  
115  
140  
110  
135  
dB  
Input Capacitance  
CIN  
VO  
3.2  
3.2  
3.2  
pF  
V
OUTPUT  
CHARACTERISTICS  
Output Voltage Swing  
POWER SUPPLY  
RL = 10 kΩ  
12  
12.6  
12  
12.6  
12  
12.6  
Power Supply Rejection PSRR  
Ratio  
VS = 3V to 18V  
No load  
0.1  
1.8  
0.1  
3.2  
0.2  
5.6  
μV/V  
μA  
Supply Current per  
Amplifier  
ISY  
600  
725  
600  
725  
600  
725  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth  
Product  
SR  
GBWP  
0.1  
0.15  
500  
0.1  
0.15  
500  
0.1  
0.15  
500  
V/μs  
kHz  
AV = 1  
Channel Separation  
CS  
VO = 20 V p-p,  
fO = 10 Hz2  
AV = 1,  
123  
135  
10  
123  
135  
10  
123  
135  
10  
dB  
nF  
Capacitive Load  
Stability  
no oscillations  
NOISE PERFORMANCE  
Input Noise Voltage  
Density3  
Input Noise Current  
Input Noise Current  
Density  
en  
fO = 10 Hz3  
22  
36  
18  
22  
11  
15  
0.6  
36  
18  
22  
11  
15  
0.6  
nV/√Hz  
nV/√Hz  
pA p-p  
pA/√Hz  
fO = 1000 Hz3  
0.1 Hz to 10 Hz  
fO = 10 Hz  
11  
15  
0.6  
in p-p  
in  
1 Guaranteed by CMR test.  
2 Guaranteed but not 100% tested.  
3 Sample tested.  
Rev. E | Page 3 of 16  
 
 
OP400  
@ VS = 15 V, 55°C ≤ TA ≤ +125°C for OP400A, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Input Offset Voltage  
Average Input Offset Voltage Drift  
Input Offset Current  
Input Bias Current  
VOS  
TCVOS  
IOS  
70  
0.3  
0.1  
1.3  
270  
1.2  
2.5  
5.0  
μV  
μV/°C  
nA  
VCM = 0 V  
VCM = 0 V  
IB  
nA  
Large Signal Voltage Gain  
AVO  
VO = 10 V, RL = 10 kΩ  
RL = 2 kΩ  
3000  
1000  
12  
9000  
2300  
12.5  
115  
V/mV  
Input Voltage Range1  
Common-Mode Rejection  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
IVR  
CMR  
V
dB  
VCM = 12 V  
RL = 10 kΩ  
130  
VO  
12  
12.4  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current per Amplifier  
DYNAMIC PERFORMANCE  
Capacitive Load Stability  
PSRR  
ISY  
VO = 3 V to 18 V  
No load  
0.2  
600  
3.2  
775  
μV/V  
μA  
AV = 1, no oscillations  
8
nF  
1 Guaranteed by CMR test.  
@ VS = 15 V, 25°C ≤ TA ≤ +85°C for OP400E/F, 0°C ≤ TA ≤ 70°C for OP400G, −40°C ≤ TA ≤ +85°C for OP400H, unless otherwise noted.  
Table 3.  
OP400E  
Typ  
OP400F  
Typ  
OP400G/H  
Typ Max Unit  
Parameter  
Symbol Conditions  
Min  
Max Min  
Max Min  
INPUT CHARACTERISTICS  
Input Offset Voltage  
Average Input Offset  
Voltage Drift  
VOS  
TCVOS  
60  
0.3  
220  
1.2  
80  
0.3  
350  
2.0  
110  
0.6  
400  
2.5  
μV  
μV/°C  
Input Offset Current  
IOS  
VCM = 0 V  
E, F, G grades  
H grade  
0.1  
0.9  
2.5  
5.0  
0.1  
0.9  
3.5  
0.2  
0.2  
6.0  
12.0 nA  
nA  
Input Bias Current  
IB  
VCM = 0 V  
E, F, G grades  
H grade  
10.0  
1.0  
1.0  
12.0 nA  
20.0 nA  
Large-Signal Voltage Gain  
AVO  
VCM = 0 V  
RL = 10 kΩ  
RL = 2 kΩ  
3000 10,000  
1500 2700  
2000 5000  
1000 2000  
2000 5000  
1000 2000  
V/mV  
V/mV  
V
Input Voltage Range1  
Common-Mode Rejection  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
IVR  
CMR  
12  
115  
12.5  
135  
12  
110  
12.5  
135  
12  
105  
12.5  
130  
VCM = 12 V  
dB  
VO  
RL = 10 kΩ  
RL = 2 kΩ  
12  
11  
12.4  
12  
12  
11  
12.4  
12  
12  
11  
12.6  
12.2  
V
V
POWER SUPPLY  
Power Supply Rejection  
Ratio  
Supply Current per  
Amplifier  
PSRR  
ISY  
VS = 3 V to  
18 V  
No load  
0.15  
3.2  
0.15  
5.6  
0.3  
10.0 μV/V  
600  
775  
600  
775  
600  
775  
μA  
DYNAMIC PERFORMANCE  
Capacitive Load Stability  
No oscillations  
10  
10  
10  
nF  
1 Guaranteed by CMR test.  
Rev. E | Page 4 of 16  
 
 
OP400  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
Differential Input Voltage  
Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range  
P, Y Packages  
Lead Temperature (Soldering 60 sec)  
Junction Temperature (TJ) Range  
Operating Temperature Range  
OP400A  
20 V  
30 V  
Supply voltage  
Continuous  
Absolute maximum ratings apply to both dice and packaged  
parts, unless otherwise noted.  
−65°C to +150°C  
300°C  
−65°C to +150°C  
THERMAL RESISTANCE  
θJA is specified for worst-case mounting conditions, that is, θJA is  
specified for device in socket for CERDIP and PDIP packages;  
−55°C to +125°C  
−25°C to +85°C  
0°C to 70°C  
OP400E, OP400F  
OP400G  
OP400H  
θJA is specified for device soldered to printed circuit board for  
SOIC package.  
−40°C to +85°C  
Table 5. Thermal Resistance  
Package Type  
θJA  
94  
76  
88  
θJC  
10  
33  
23  
Unit  
°C/W  
°C/W  
°C/W  
14-Pin Ceramic DIP (Y)  
14-Pin Plastic DIP (P)  
16-Pin SOIC (S)  
ESD CAUTION  
Rev. E | Page 5 of 16  
 
OP400  
TYPICAL PERFORMANCE CHARACTERISTICS  
3
V
= ±15V  
S
T
= 25°C  
A
120  
110  
100  
90  
V
= ±15V  
S
2
1
0
80  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
0
1
2
3
4
5
TEMPERATURE (°C)  
TIME (Minutes)  
Figure 7. Input Offset Current vs. Temperature  
Figure 4. Warmup Drift  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
70  
60  
50  
40  
30  
20  
10  
V
= ±15V  
S
–15  
–10  
–5  
0
5
10  
15  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 8. Input Bias Current vs. Common-Mode Voltage  
Figure 5. Input Offset Voltage vs. Temperature  
140  
2.0  
T
V
= 25°C  
= ±15V  
A
V
= ±15V  
S
S
120  
100  
80  
60  
40  
20  
0
1.6  
1.2  
0.8  
0.4  
0
1
10  
100  
1k  
10k  
100k  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 9. Common-Mode Rejection vs. Frequency  
Figure 6. Input Bias Current vs. Temperature  
Rev. E | Page 6 of 16  
 
OP400  
2.5  
2.4  
2.3  
2.2  
2.1  
100  
FOUR AMPLIFIERS  
= 25°C  
T
A
10  
±2  
±4  
±6  
±8  
±10  
±12  
±14  
±16  
±18  
±20  
1
10  
100  
FREQUENCY (Hz)  
1k  
SUPPLY VOLTAGE (V)  
Figure 13. Total Supply Current vs. Supply Voltage  
Figure 10. Noise Voltage Density vs. Frequency  
2.5  
2.4  
2.3  
2.2  
2.1  
1k  
800  
600  
400  
200  
0
FOUR AMPLIFIERS  
T
V
= 25°C  
= ±15V  
A
V
= ±15V  
S
S
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
1
10  
100  
FREQUENCY (Hz)  
1k  
TEMPERATURE (°C)  
Figure 14. Total Supply Current vs. Temperature  
Figure 11. Current Noise Density vs. Frequency  
140  
120  
100  
80  
NEGATIVE  
SUPPLY  
POSITIVE  
SUPPLY  
60  
40  
20  
0
0
2
4
6
8
10  
0.1  
1
10  
100  
FREQUENCY (Hz)  
1k  
10k  
100k  
TIME (Seconds)  
Figure 12. 0.1 Hz to 10 Hz Noise  
Figure 15. Power Supply Rejection vs. Frequency  
Rev. E | Page 7 of 16  
OP400  
144  
T
V
= 25°C  
= ±15V  
A
V
= ±15V  
S
S
80  
60  
142  
A
= 1000  
V
140  
A
A
= 100  
= 10  
V
V
40  
138  
136  
134  
20  
0
A
= 1000  
V
1
10  
100  
1k  
10k  
100k  
1M  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 19. Closed-Loop Gain vs. Frequency  
Figure 16. Power Supply Rejection vs. Temperature  
5k  
4k  
T
V
= 25°C  
= ±15V  
A
V
=
±15V  
S
S
25  
20  
R
= 2k  
L
3k  
15  
2k  
1k  
0
10  
5
10  
100  
1k  
10k  
100k  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 17. Open-Loop Gain vs. Temperature  
Figure 20. Maximum Output Swing Frequency  
T
V
= 25°C  
= ±15V  
A
T
= 25°C  
= ±15V  
A
120  
100  
80  
S
V
V
S
10  
= 10V p-p  
OUT  
R
= 2k  
L
A
= 100  
V
1
0
A
A
= 10  
= 1  
V
GAIN  
V
45  
90  
135  
180  
60  
0.1  
PHASE  
40  
20  
0
0.01  
0.001  
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Open-Loop Gain and Phase Shift vs. Frequency  
Figure 21. Total Harmonic Distortion vs. Frequency  
Rev. E | Page 8 of 16  
OP400  
50  
45  
40  
35  
T
= 25°C  
= ±15V  
= +1  
T
= 25°C  
= ±15V  
= +1  
A
A
V
V
S
S
A
A
V
V
FALLING  
RISING  
30  
25  
20  
15  
10  
5
5V  
100μs  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
CAPACITIVE LOAD (nF)  
Figure 22. Overshoot vs. Capacitive Load  
Figure 25. Large Signal Transient Response  
T
= 25°C  
A
T
= 25°C  
A
34  
32  
V
= ±15V  
S
V
= ±15V  
= +1  
S
A
V
SINKING  
30  
28  
SOURCING  
20mV  
5μs  
0
1
2
3
4
5
TIME (Minutes)  
Figure 23. Short Circuit vs. Time  
Figure 26. Small Signal Transient Response  
140  
T
= 25°C  
T = 25°C  
A
A
V
V
= ±15V  
S
V
= ±15V  
= +1  
S
= 20V p-p  
IN  
130  
120  
110  
A
V
100  
90  
20mV  
5μs  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 27. Small Signal Transient Response, CLOAD = 1 nF  
Figure 24. Channel Separation vs. Frequency  
Rev. E | Page 9 of 16  
OP400  
100  
10kΩ  
1/4  
eOUT  
OP400  
+
1/4  
TO SPECTRUM ANALYZER  
OP400  
1/4  
+
OP400  
+
1/4  
OP400  
+
nV  
~
nV  
e
(
)
2 × e  
(
) × 101  
Hz  
=
OUT  
n
Hz  
Figure 28. Noise Test Schematic  
–18V  
14  
13  
12  
11  
V–  
10  
9
8
+
+
4
3
+
+
1
2
V+  
1
2
3
4
5
6
7
GND  
+18V  
Figure 29. Burn-In Circuit  
Rev. E | Page 10 of 16  
OP400  
APPLICATIONS  
The OP400 is inherently stable at all gains and is capable of  
driving large capacitive loads without oscillating. Nonetheless,  
good supply decoupling is highly recommended. Proper supply  
decoupling reduces problems caused by supply line noise and  
improves the capacitive load-driving capability of the OP400.  
Table 6. Gain Bandwidth  
Gain  
5
10  
100  
1000  
Bandwidth  
150 kHz  
67 kHz  
7.5 kHz  
500 Hz  
Total supply current can be reduced by connecting the inputs of  
an unused amplifier to V−. This turns the amplifier off,  
lowering the total supply current.  
+
+
V
OUT  
1/4  
V
IN  
DUAL LOW POWER INSTRUMENTATION  
AMPLIFIER  
OP400A  
+
1/4  
OP400A  
A dual instrumentation amplifier that consumes less than  
33 mW of power per channel is shown in Figure 30. The linear-  
ity of the instrumentation amplifier exceeds 16 bits in gains of 5 to  
200 and is better than 14 bits in gains from 200 to 1000. CMRR  
is above 115 dB (G = 1000). Offset voltage drift is typically  
0.4 ꢀV/°C over the military temperature range, which is  
comparable to the best monolithic instrumentation amplifiers.  
The bandwidth of the low power instrumentation amplifier is  
a function of gain and is shown in Table 6.  
REFERENCE  
5k  
5kΩ  
20kΩ  
20kΩ  
V
R
G
OUT  
40,000  
R
G
= 5 +  
V
IN  
+
+
V
OUT  
1/4  
OP400A  
V
IN  
+
The output signal is specified with respect to the reference  
input, which is normally connected to analog ground. The  
reference input can be used to offset the output from −10 V to  
+10 V if required.  
1/4  
OP400A  
REFERENCE  
5kΩ  
5kΩ  
20kΩ  
20kΩ  
R
G
Figure 30. Dual Low Power Instrumentation Amplifier  
Rev. E | Page 11 of 16  
 
 
 
OP400  
DIFFERENTIAL OUTPUT INSTRUMENTATION  
AMPLIFIER  
BIPOLAR CURRENT TRANSMITTER  
In the circuit of Figure 31, which is an extension of the standard  
three op amp instrumentation amplifier, the output current is  
proportional to the differential input voltage. Maximum output  
current is 5 mA, with voltage compliance equal to 10 V when  
using 15 V supplies. Output impedance of the current  
transmitter exceeds 3 Mꢁ, and linearity is better than 16 bits  
with gain set for a full-scale input of 100 μV.  
The output voltage swing of a single-ended instrumentation  
amplifier is limited by the supplies, normally at 15 V, to  
a maximum of 24 V p-p. The differential output instrumenta-  
tion amplifier shown in Figure 32 can provide an output voltage  
swing of 48 V p-p when operated with 15 V supplies. The  
extended output swing is due to the opposite polarity of the  
outputs. Both outputs swing 24 V p-p, but with opposite  
polarity, for a total output voltage swing of 48 V p-p. The reference  
input can be used to set a common-mode output voltage over the  
range 10 V. The PSRR of the amplifier is less than 1 μV/V with  
CMRR (G = 1000) better than 115 dB. Offset voltage drift is  
typically 0.4 μV/°C over the military temperature range.  
+
25k  
25kΩ  
1/4  
OP400E  
V
OUT  
1/4  
200Ω  
IOUT  
5mA  
OP400E  
25kΩ  
25kΩ  
+
V
R
IN  
G
+
1/4  
1/4  
25kΩ  
25kΩ  
OP400E  
OP400E  
+
+
V
IN  
200Ω  
50,000  
R
G
1
IOUT  
Figure 31. Bipolar Current Transmitter  
22pF  
+
1/4  
25k  
25kΩ  
OP400A  
+
25kΩ  
1/4  
OP400A  
V
R
G
IN  
25kΩ  
22pF  
1/4  
25kΩ  
25kΩ  
OP400A  
22pF  
+
+
25kΩ  
22pF  
V
50k+ R  
IN  
G
=
V
R
G
OUT  
25kΩ  
V
OUT  
1/4  
OP400A  
REFERENCE  
INPUT  
+
Figure 32. Differential Output Instrumentation Amplifier  
Rev. E | Page 12 of 16  
 
 
 
OP400  
under 25 μV/mA. Line regulation is better than 15 μV/V,  
MULTIPLE OUTPUT TRACKING VOLTAGE  
REFERENCE  
and output voltage drift is under 20 μV/°C. Output voltage  
noise from 0.1 Hz to 10 Hz is typically 75 μV p-p from the  
10 V output and proportionately less from the 7.5 V, 5 V, and  
2.5 V outputs.  
Figure 33 shows a circuit that provides outputs of 10 V, 7.5 V, 5 V,  
and 2.5 V for use as a system voltage reference. Maximum  
output current from each reference is 5 mA with load regulation  
10V  
15V  
10k  
22kΩ  
1N4002  
+
1/4  
7.5V  
OP400A  
1μF  
10kΩ  
2
10kΩ  
10kΩ  
REF 43  
2.5V  
REFERENCE  
6
+
1/4  
OP400A  
+
1/4  
OP400A  
4
5V  
10kΩ  
2μF  
10kΩ  
10kΩ  
+
1/4  
2.5V  
OP400A  
1μF  
Figure 33. Multiple Output Tracking Voltage Reference  
Rev. E | Page 13 of 16  
 
 
OP400  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
0.098 (2.49) MAX  
0.005 (0.13) MIN  
14  
8
0.310 (7.87)  
0.220 (5.59)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
1
7
10.65 (0.4193)  
10.00 (0.3937)  
PIN 1  
0.100 (2.54) BSC  
0.785 (19.94) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.50 (0.0197)  
0.25 (0.0  
098)  
0.060 (1.52)  
0.015 (0.38)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.200 (5.08)  
MAX  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 36. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (R-16)  
Figure 34. 14-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-14)  
[Y-Suffix]  
[S-Suffix]  
Dimensions shown in millimeters and (inches)  
Dimensions shown in inches and (millimeters)  
0.775 (19.69)  
0.750 (19.05)  
0.735 (18.67)  
14  
1
8
7
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.015 (0.38)  
GAUGE  
PLANE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 35. 14-Lead Plastic Dual In-Line Package [PDIP]  
(N-14)  
[P-Suffix]  
Dimensions shown in inches and (millimeters)  
Rev. E | Page 14 of 16  
 
OP400  
ORDERING GUIDE  
Model  
OP400AY  
OP400EY  
OP400FY  
OP400GP  
OP400GPZ1  
OP400HP  
OP400HPZ1  
OP400GS  
OP400GS-REEL  
OP400GSZ1  
OP400GSZ-REEL1  
OP400HS  
OP400HS-REEL  
OP400HSZ1  
OP400HSZ-REEL1  
OP400GBC  
Temperature Range  
−55°C to +125°C  
−25°C to +85°C  
−25°C to +85°C  
0°C to +70°C  
Package Description  
14-Lead CERDIP  
14-Lead CERDIP  
14-Lead CERDIP  
14-Lead PDIP  
14-Lead PDIP  
14-Lead PDIP  
14-Lead PDIP  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
Die  
Package Option  
Y-Suffix (Q-14)  
Y-Suffix (Q-14)  
Y-Suffix (Q-14)  
P-Suffix (N-14)  
P-Suffix (N-14)  
P-Suffix (N-14)  
P-Suffix (N-14)  
S-Suffix (RW-16)  
S-Suffix (RW-16)  
S-Suffix (RW-16)  
S-Suffix (RW-16)  
S-Suffix (RW-16)  
S-Suffix (RW-16)  
S-Suffix (RW-16)  
S-Suffix (RW-16)  
0°C to +70°C  
−40°C to +85°C  
−40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
1 Z = Pb-free part.  
SMD PARTS AND EQUIVALENTS  
SMD Part Number1  
5962-8777101M3A  
5962-8777101MCA  
Analog Devices Equivalent  
OP400ATCMDA  
OP400AYMDA  
1 For military processed devices, please refer to the standard microcircuit drawing (SMD) available at the Defense Supply Center Columbus website.  
Rev. E | Page 15 of 16  
 
 
 
OP400  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00304-0-1/07(E)  
Rev. E | Page 16 of 16  

相关型号:

OP400HSZ-REEL

Quad Low Offset, Low Power Operational Amplifier
ADI

OP400RPFB

Quad Low-Offset, Low-Power Operational Amplifier
MAXWELL

OP400RPFE

Quad Low-Offset, Low-Power Operational Amplifier
MAXWELL

OP400RPFI

Quad Low-Offset, Low-Power Operational Amplifier
MAXWELL

OP400RPFS

Quad Low-Offset, Low-Power Operational Amplifier
MAXWELL

OP400_07

Quad Low Offset, Low Power Operational Amplifier
ADI

OP4010B

663.552 MHz Optical Timing Clock
RFM

OP4011B

719.734 MHz Optical Timing
RFM

OP4012B

644.53125 MHz Optical Timing Clock
RFM

OP4013B

693.48342 MHz Optical Timing Clock
RFM

OP4014B

627.329 MHz Optical Timing Clock
RFM

OP4015B

780.881 MHz Optical Timing Clock
RFM