OP470S [ADI]

航空航天用极低噪声四通道运算放大器;
OP470S
型号: OP470S
厂家: ADI    ADI
描述:

航空航天用极低噪声四通道运算放大器

放大器 航空 运算放大器 放大器电路
文件: 总16页 (文件大小:311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed, Low Noise Quad  
Operational Amplifier  
a
OP471  
FEATURES  
PIN CONFIGURATIONS  
Excellent Speed: 8 V/s Typ  
Low Noise: 11 nV/÷Hz @ 1 kHz Max  
Unity-Gain Stable  
High Gain Bandwidth: 6.5 MHz Typ  
Low Input Offset Voltage: 0.8 mV Max  
Low Offset Voltage Drift: 4 V/C Max  
High Gain: 500 V/mV Min  
14-Lead  
Hermetic Dip  
(Y-Suffix)  
14-Lead  
Plastic Dip  
(P-Suffix)  
1
2
3
4
5
6
7
14 OUT D  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
OUT A  
–IN A  
+IN A  
V+  
OUT A  
–IN A  
+IN A  
V+  
13 –IN D  
12 +IN D  
11 V–  
Outstanding CMR: 105 dB Min  
Industry Standard Quad Pinouts  
OP471  
OP471  
+IN B  
–IN B  
OUT B  
10 +IN C  
+IN B  
–IN B  
OUT B  
10 +IN C  
GENERAL DESCRIPTION  
9
8
–IN C  
9
8
–IN C  
The OP471 is a monolithic quad op amp featuring low noise,  
11 nV/÷Hz Max @ 1 kHz, excellent speed, 8 V/ms typical, a  
gain bandwidth of 6.5 MHz, and unity-gain stability.  
OUT C  
OUT C  
The OP471 has an input offset voltage under 0.8 mV and an  
input offset voltage drift below 4 mV/C, guaranteed over the full  
military temperature range. Open-loop gain of the OP471 is over  
500,000 into a 10 kW load ensuring outstanding gain accuracy  
and linearity. The input bias current is under 25 nA limiting  
errors due to signal source resistance. The OP471’s CMR of  
over 105 dB and PSRR of under 5.6 mV/V significantly reduce  
errors caused by ground noise and power supply fluctuations.  
16-Lead SOIC  
(S-Suffix)  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
OUT A  
–IN A  
+IN A  
V+  
OUT D  
–IN D  
+IN D  
V–  
OP471  
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
The OP471 offers excellent amplifier matching which is important  
for applications such as multiple gain blocks, low-noise instru-  
mentation amplifiers, quad buffers and low-noise active filters.  
10 OUT C  
NC  
9
The OP471 conforms to the industry standard 14-lead DIP  
pinout. It is pin-compatible with the LM148/LM149, HA4741,  
RM4156, MC33074, TL084 and TL074 quad op amps and can  
be used to upgrade systems using these devices.  
NC = NO CONNECT  
For applications requiring even lower voltage noise the OP470  
with a voltage density of 5 nV/÷Hz Max @ 1 kHz is recommended.  
V+  
BIAS  
OUT  
+IN  
–IN  
V–  
Figure 1. Simplified Schematic  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
OP471–SPECIFICATIONS  
(@ V = 15 V, T = 25C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
S
A
OP471E  
OP471F  
OP471G  
Min Typ Max  
Parameter  
Symbol Conditions  
Min Typ Max  
Min Typ Max  
Unit  
mV  
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
Input Noise Voltage1  
VOS  
0.25 0.8  
0.5 1.5  
1.0 1.8  
IOS  
IB  
VCM = 0 V  
VCM = 0 V  
4
7
10  
25  
7
20  
50  
12  
25  
30  
60  
nA  
15  
nA  
en p-p  
en  
0.1 Hz to 10 Hz  
250 500  
250 500  
250 500  
nV p–p  
Input Noise  
fO = 10 Hz  
fO = 100 Hz  
fO = 1 kHz  
9
7
16  
12  
9
7
16  
12  
9
7
16  
12  
nV/÷Hz  
nV/÷Hz  
nV/÷Hz  
Voltage Density2  
6.5 11  
6.5 11  
6.5 11  
Input Noise  
Current Density  
in  
fO = 10 Hz  
fO = 100 Hz  
fO = 1 kHz  
1.7  
0.7  
0.4  
1.7  
0.7  
0.4  
1.7  
0 7  
0.4  
pA÷Hz  
pA÷Hz  
pA÷Hz  
Large-Signal  
Voltage Gain  
AVO  
V = ±10 V  
RL = 10 kW  
RL = 2 kW  
500 700  
300 500  
300 500  
V/mV  
V/mV  
350 550  
±11 ±12  
±12 ±13  
105 120  
175 275  
±11 ±12  
±12 ±13  
175 275  
±11 ±12  
±12 ±13  
Input Voltage Range3  
Output Voltage Swing  
IVR  
VO  
V
RL 2 kW  
V
Common-Mode  
Rejection  
CMR  
VCM = ±11 V  
95  
115  
95  
115  
dB  
Power Supply  
Rejection Ratio  
PSRR  
VS = 4.5 V to 18 V  
1
5.6  
5.6 17.8  
5.6 17.8  
mV/V  
Slew Rate  
SR  
ISY  
6.5  
8
6.5  
8
6.5  
8
V/ms  
Supply Current  
(All Amplifiers)  
No Load  
Av = 10  
9.2 11  
9.2 11  
9.2 11  
mA  
Gain Bandwidth  
Product  
Channel Separation1  
GBW  
CS  
6.5  
6.5  
6.5  
MHz  
dB  
VO = 20 V p-p  
fO = 10 Hz  
125 150  
125 150  
125 150  
Input Capacitance  
CIN  
RIN  
2.6  
1.1  
2.6  
1.1  
2.6  
1.1  
pF  
Input Resistance  
Differential-Mode  
MW  
Input Resistance  
Common-Mode  
RINCM  
tS  
11  
11  
11  
GW  
Settling Time  
AV = 1  
To 0.1%  
To 0.01 %  
4.5  
7.5  
4.5  
7.5  
4.5  
7.5  
ms  
ms  
NOTES  
1Guaranteed but not 100% tested.  
2Sample tested.  
3Guaranteed by CMR test.  
–2–  
REV. A  
OP471  
(Vs = ±15 V, –25 C £ TA £ 85C for OP471E/F, –40C £ TA £ 85for OP471G,  
ELECTRICAL CHARACTERISTICS  
unless otherwise noted.)  
OP471E  
OP471F  
OP471G  
Parameter  
Symbol Conditions  
Min Typ Max  
Min Typ Max  
Min Typ Max  
Unit  
mV  
Input Offset Voltage  
VOS  
0.3 1.1  
0.6 2.0  
1.2 2.5  
4
Average Input  
Offset Voltage Drift  
TCVOS  
1
4
2
7
mV/C  
Input Offset Current  
Input Bias Current  
los  
IB  
VCM = 0 V  
VCM = 0 V  
5
20  
50  
8
40  
70  
20  
40  
50  
75  
nA  
nA  
13  
25  
Large-Signal  
Voltage Gain  
VO = ±10 V  
RL = 10 kW  
RL = 2 kW  
Avo  
375 600  
250 400  
200 400  
125 200  
200 400  
125 200  
V/mV  
Input Voltage Range*  
IVR  
VO  
±11 ±12  
±12 ±13  
100 115  
±11 ±12  
±12 ±13  
±11 ±12  
±12 ±13  
V
Output Voltage Swing  
RL 2 kW  
V
Common-Mode  
Rejection  
CMR  
V
CM = ±11 V  
90  
110  
90  
110  
dB  
Power Supply  
Rejection Ratio  
PSRR  
ISY  
VS = ±4.5 V to ±18 V  
3.2 10  
9.3 11  
18  
31.6  
18  
31.6  
mV/V  
Supply Current  
(All Amplifiers)  
No Load  
9.3 11  
9.3 11  
mA  
*Guaranteed by CMR test.  
ABSOLUTE MAXIMUM RATINGS1  
Package Type  
JA*  
94  
JC  
10  
33  
23  
Unit  
C/W  
C/W  
C/W  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . ±1.0 V  
Differential Input Current2 . . . . . . . . . . . . . . . . . . . . ±25 mW  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage  
Output Short-Circuit Duration . . . . . . . . . . . . . . .Continuous  
Storage Temperature Range  
P, Y-Package . . . . . . . . . . . . . . . . . . . . . . –65C to +150C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300C  
Junction Temperature (Ti) . . . . . . . . . . . . . –65C to +150C  
Operating Temperature Range  
14-Lead Hermetic DIP(Y)  
14-Lead Plastic DIP(P)  
16-Lead SOIC (S)  
76  
88  
*JA is specified for worst-case mounting conditions, i.e., JA is specified for device  
in socket for TO, CERDIP, PDIP packages; JA is specified for device soldered to  
printed circuit board for SO packages.  
ORDERING GUIDE  
OP471E, OP471F . . . . . . . . . . . . . . . . . . . –25C to +85C  
OP471G . . . . . . . . . . . . . . . . . . . . . . . . . . . –40C to +85C  
TA = 25C  
OS MAX  
(mV)  
Package Options  
Operating  
Temperature  
Range  
V
NOTES  
1Absolute Maximum Ratings apply to packaged parts, unless otherwise noted.  
2The OP471’s inputs are protected by back-to-back diodes. Current limiting  
resistors are not used in order to achieve low noise performance. If differential  
voltage exceeds ±1.0 V, the input current should be limited to ±25 mA.  
14-Lead CERDIP Plastic  
800  
OP471EY  
OP471FY*  
IND  
IND  
XIND  
XIND  
1,500  
1,800  
1,800  
OP471GP  
OP471GS  
*Not for new design. Obsolete April 2002.  
For military processed devices, please refer to the standard  
microcircuit drawing (SMD) available at  
www.dscc.dla.mil/programs/milspec/default.asp  
5962-88565022A - OP471ARCMDA  
5962-88565023A - OP471ATCMDA  
5962-8856502CA - OP471AYMDA  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the OP471 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–3–  
REV. A  
–Typical Performance Characteristics  
OP471  
100  
10  
T
= 25C  
T
A
= 25C  
= 15V  
A
AT 10Hz  
1s  
5mV  
V
S
40  
30  
20  
100  
90  
8
6
4
2
AT 1kHz  
10  
5
4
3
2
10  
0%  
T
= 25C  
A
I/F CORNER = 5Hz  
10  
V
= 15V  
S
0
2
4
6
8
10  
1
TIME – Seconds  
0
5  
10  
15  
20  
1
100  
1k  
FREQUENCY – Hz  
SUPPLYVOLTAGE V  
TPC 2. Voltage Noise Density  
vs. Supply Voltage  
TPC 1. Voltage Noise Density  
vs. Frequency  
TPC 3. 0.1 Hz to 10 Hz Noise  
20  
18  
16  
14  
12  
10  
8
100  
400  
300  
200  
T
= 25C  
T
= 25C  
V = 15V  
S
A
S
A
S
V
= 15V  
V
= 15V  
40  
30  
20  
10  
5
4
3
2
6
100  
I/F CORNER = 5Hz  
10  
4
2
0
0
1
–75 –50 –25  
0
25  
50 75 100 125  
0
1
2
3
4
5
1
100  
1k  
TEMPERATURE – C  
TIME – Minutes  
FREQUENCY – Hz  
TPC 5. Input Offset Voltage vs.  
Temperature  
TPC 4. Current Noise Density  
vs. Frequency  
TPC 6. Warm-Up Offset  
Voltage Drift  
10  
9
20  
15  
10  
9
V
V
= 15V  
CM  
T = 25C  
A
V = 15V  
S
S
V
CM  
= 15V  
S
= 0V  
V
= 0V  
8
7
6
5
4
3
2
1
0
8
10  
7
5
0
6
5
–75 –50 –25  
0
25 50  
75 100 125  
–75 –50 –25  
0
25  
50 75 100 125  
–12.5  
–7.5  
–2.5  
2.5  
7.5  
12.5  
TEMPERATURE – C  
TEMPERATURE – C  
COMMON-MODEVOLTAGE V  
TPC 9. Input Bias Current vs.  
Common-Mode Voltage  
TPC 8. Input Offset Current vs.  
Temperature  
TPC 7. Input Bias Current vs.  
Temperature  
–4–  
REV. A  
OP471  
10  
9
130  
120  
110  
100  
90  
10  
8
T
= 25C  
= 15V  
V
= 15V  
A
S
S
T
= +25C  
A
V
T
= +125C  
8
A
7
80  
70  
60  
50  
40  
30  
20  
10  
T
= –55C  
A
6
6
5
4
4
3
2
2
–75 –50 –25  
0
25 50  
75 100 125  
0
5  
10  
15  
20  
1
10  
100  
1k  
10k 100k  
1M  
SUPPLYVOLTAGE V  
FREQUENCY – Hz  
TEMPERATURE – C  
TPC 12. Total Supply Current  
vs. Temperature  
TPC 11. Total Supply Current  
vs. Supply Voltage  
TPC 10. CMR vs. Frequency  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
80  
60  
40  
20  
0
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
T
= 25C  
= 15V  
A
S
T
= 25C  
= 15V  
T
= 25C  
= 15V  
A
S
A
S
V
V
V
–PSR  
+PSR  
20  
10  
0
20  
10  
0
–20  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY – Hz  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY – Hz  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
TPC 13. PSR vs. Frequency  
TPC 14. Open-Loop Gain vs. Frequency  
TPC 15. Closed-Loop Gain  
vs. Frequency  
25  
20  
15  
80  
2000  
80  
8
6
4
2
0
T = 25C  
A
V
= 15V  
T
= 25C  
S
A
S
R = 10kꢄ  
L
V
= 15V 100  
GBW  
PHASE  
GAIN  
1500  
1000  
500  
0
70  
60  
50  
40  
120  
140  
10  
5
PHASE MARGIN  
= 57ꢁ  
160  
180  
200  
220  
0
–5  
–10  
0
5  
10  
15  
20  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE – C  
10  
6 7 8 9  
1
2
3
4
5
SUPPLYVOLTAGE V  
FREQUENCY – MHz  
TPC 16. Open-Loop Gain,  
Phase Shift vs. Frequency  
TPC 17. Open-Loop Gain vs.  
Supply Voltage  
TPC 18. Gain-Bandwidth Product,  
Phase Margin vs. Temperature  
–5–  
REV. A  
OP471  
28  
24  
20  
16  
12  
8
20  
18  
360  
300  
240  
180  
120  
T
= 25C  
T
= 25C  
T
= 25C  
= 15V  
A
S
A
S
A
S
V
= 15V  
V
= 15V  
V
THD = 1%  
16  
14  
12  
10  
8
POSITIVE  
SWING  
NEGATIVE  
SWING  
6
A
= 100  
V
4
60  
0
4
2
A
= 1  
V
0
0
100  
1k  
10k 100k  
FREQUENCY – Hz  
1M  
10M 100M  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
100  
1k  
10k  
LOAD RESISTANCE – ꢄ  
TPC 20. Maximum Output Voltage  
vs. Load Resistance  
TPC 19. Maximum Output Swing  
vs. Frequency  
TPC 21. Closed-Loop Output  
Impedance vs. Frequency  
9.0  
8.5  
170  
1
T
= 25C  
A
S
O
T
= 25C  
A
S
O
L
160  
150  
140  
130  
120  
110  
V
V
= 15V  
V
V
= 15V  
= 10V p-p  
= 2kꢄ  
= 20V p-pTO 100kHz  
R
–SR  
8.0  
0.1  
+SR  
7.5  
7.0  
100  
90  
0.01  
80  
70  
A = 10  
V
6.5  
6.0  
A
= 1  
V
60  
50  
0.001  
–75 –50 –25  
0
25  
50  
75 100 125  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
TEMPERATURE – C  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 23. Channel Separation vs.  
Frequency  
TPC 22. Slew Rate vs. Temperature  
TPC 24. Total Harmonic Distortion  
vs. Frequency  
T
= 25C  
= 15V  
= 1  
T
= 25C  
= 15V  
= 1  
A
S
V
A
S
V
V
V
100  
90  
100  
90  
A
A
10  
10  
0%  
0%  
0.2µs  
50mV  
5µs  
5V  
TPC 26. Small-Signal Transient  
Response  
TPC 25. Large-Signal Transient  
Response  
–6–  
REV. A  
OP471  
100  
10  
1
5kꢄ  
500ꢄ  
1/4  
V
V
20V p-p  
1
OP471  
OP11  
OP400  
OP471  
50kꢄ  
50ꢄ  
1/4  
2
OP471  
OP470  
RESISTOR  
NOISE ONLY  
V
1
CHANNEL SEPARATION = 20 LOG  
V
/1000  
100  
1k  
10k  
100k  
2
RS – SOURCE RESISTANCE ꢄ  
Figure 2. Channel Separation Test Circuit  
Figure 4. Total Noise vs. Source Resistance (Including  
Resistor Noise) at 1 kHz  
+18V  
2
3
6
5
100  
4
1
7
A
B
D
+1V  
–1V  
+1V  
–1V  
11  
–18V  
OP11  
OP400  
10  
9
13  
12  
OP471  
8
14  
C
10  
OP470  
RESISTOR  
NOISE ONLY  
Figure 3. Burn-In Circuit  
1
100  
1k  
10k  
100k  
RS – SOURCE RESISTANCE ꢄ  
APPLICATIONS INFORMATION  
Voltage and Current Noise  
Figure 5. Total Noise vs. Source Resistance (Including  
Resistor Noise) at 10 Hz  
The OP471 is a very low-noise quad op amp, exhibiting a typical  
voltage noise of only 6.5 Hz @ 1 kHz. The low noise character-  
istic of the OP471 is, in part, achieved by operating the input  
transistors at high collector currents since the voltage noise is  
inversely proportional to the square root of the collector current.  
Current noise, however, is directly proportional to the square  
root of the collector current. As a result, the outstanding voltage  
noise performance of the OP471 is gained at the expense of current  
noise performance which is typical for low noise amplifiers.  
Figure 4 shows the relationship between total noise at 1 kHz  
and source resistance. For RS < 1 kW the total noise is domi-  
nated by the voltage noise of the OP471. As RS rises above 1 kW,  
total noise increases and is dominated by resistor noise rather  
than by voltage or current noise of the OP471. When RS exceeds  
20 kW, current noise of the OP471 becomes the major contributor  
to total noise.  
Figure 5 also shows the relationship between total noise and source  
resistance, but at 10 Hz. Total noise increases more quickly  
than shown in Figure 4 because current noise is inversely pro-  
portional to the square root of frequency. In Figure 5, current  
noise of the OP471 dominates the total noise when RS > 5 kW.  
To obtain the best noise performance in a circuit, it is vital to  
understand the relationship between voltage noise (en), current  
noise (in), and resistor noise (et).  
Total Noise and Source Resistance  
The total noise of an op amp can be calculated by:  
From Figures 4 and 5, it can be seen that to reduce total noise,  
source resistance must be kept to a minimum. In applications  
with a high source resistance, the OP400, with lower current  
noise than the OP471, will provide lower total noise.  
2
En =  
e
(
2 + i R 2 + e  
)
(
)
( )  
n
n
S
t
where:  
En = total input referred noise  
en = op amp voltage noise  
in = op amp current noise  
et = source resistance thermal noise  
RS = source resistance  
The total noise is referred to the input and at the output would  
be amplified by the circuit gain.  
REV. A  
–7–  
OP471  
1000  
For reference, typical source resistances of some signal sources  
are listed in Table I.  
OP11  
OP400  
TABLE I.  
Source  
OP471  
OP470  
Device  
Impedance  
Comments  
100  
Strain gauge  
< 500 W  
Typically used in  
low-frequency applications.  
RESISTOR  
Magnetic  
tapehead  
< 1,500 W  
< 1,500 W  
Low IB very important to reduce  
self-magnetization problems  
when direct coupling is used.  
OP471 IB can be neglected.  
NOISE ONLY  
10  
100  
1k  
10k  
100k  
Magnetic  
phonograph  
cartridges  
Similar need for low IB in direct  
coupled applications. OP471  
will not introduce any  
RS – SOURCE RESISTANCE ꢄ  
Figure 6. Peak-to-Peak Noise (0.1 Hz to 10 Hz) vs. Source  
Resistance (Includes Resistor Noise)  
self -magnetization problem.  
Figure 6 shows peak-to-peak noise versus source resistance over  
the 0.1 Hz to 10 Hz range. Once again, at low values of RS, the  
voltage noise of the OP471 is the major contributor to peak-to-peak  
noise. Current noise becomes the major contributor as RS increases.  
The crossover point between the OP471 and the OP400 for  
peak-to-peak noise is at RS = 17 W.  
Linear variable < 1,500 W  
differential  
transformer  
Used in rugged servo-feedback  
applications. Bandwidth of  
interest is 400 Hz to 5 kHz.  
*For further information regarding noise calculations, see “Minimization of  
Noise in Op Amp Applications,” Application Note AN-15.  
The OP470 is a lower noise version of the OP471, with a typical  
noise voltage density of 3.2 nV/÷Hz @ 1 kHz. The OP470 offers  
lower offset voltage and higher gain than the OP471, but is a slower  
speed device, with a slew rate of 2 V/ms compared to a slew rate  
of 8 V/ms for the OP471.  
R3  
1.24kꢄ  
R1  
5ꢄ  
C1  
OP471  
DUT  
R2  
2F  
5ꢄ  
OP27E  
C4  
R6  
0.22F  
R5  
909ꢄ  
600kꢄ  
R10  
R11  
65.4kꢄ  
65.4kꢄ  
R4  
D1  
D2  
R14  
OP15E  
R9  
200ꢄ  
1N4148  
1N4148  
4.99kꢄ  
C3  
e
OUT  
OP15E  
0.22F  
C5  
306kꢄ  
1F  
R13  
5.9kꢄ  
R8  
10kꢄ  
C2  
R12  
0.032F  
10kꢄ  
GAIN = 50,000  
= 15V  
V
S
Figure 7. Peak-to-Peak Voltage Noise Test Circuit (0.1 Hz to 10 Hz)  
–8–  
REV. A  
OP471  
100  
80  
60  
40  
20  
0
Noise Measurements - Peak-to-Peak Voltage Noise  
The circuit of Figure 7 is a test setup for measuring peak-to-peak  
voltage noise. To measure the 500 nV peak-to-peak noise speci-  
fication of the OP471 in the 0.1 Hz to 10 Hz range, the following  
precautions must be observed:  
1. The device must be warmed up for at least five minutes. As  
shown in the warm-up drift curve, the offset voltage typically  
changes 13 mV due to increasing chip temperature after  
power-up. In the 10-second measurement interval, these  
temperature-induced effects can exceed tens-of-nanovolts.  
2. For similar reasons, the device must be well-shielded from  
air currents. Shielding also minimizes thermocouple effects.  
3. Sudden motion in the vicinity of the device can also “feedthrough”  
to increase the observed noise.  
0.01  
0.1  
1
10  
100  
FREQUENCY – Hz  
4. The test time to measure 0.1 Hz to 10 Hz noise should not exceed  
10 seconds. As shown in the noise-tester frequency-response curve  
of Figure 8, the 0.1 Hz corner is defined by only one pole. The  
test time of 10 seconds acts as an additional pole to eliminate  
noise contribution from the frequency band below 0.1 Hz.  
Figure 8. 0.1 Hz to 10 Hz Peak-to-Peak Voltage Noise  
Test Circuit Frequency Response  
Noise Measurement - Noise Voltage Density  
The circuit of Figure 9 shows a quick and reliable method of  
measuring the noise voltage density of quad op amps. Each  
individual amplifier is series connected and is in unity-gain, save  
the final amplifier which is in a noninverting gain of 101. Since  
the ac noise voltages of each amplifier are uncorrelated, they  
add in rms fashion to yield:  
5. A noise voltage density test is recommended when measuring  
noise on a large number of units. A 10 Hz noise voltage density  
measurement will correlate well with a 0.1 Hz to 10 Hz  
peak-to-peak noise reading, since both results are determined  
by the white noise and the location of the 1/f corner frequency.  
Ê
2
2
2
2
ˆ
¯
eOUT =101 enA +enB + enC + enD  
6. Power should be supplied to the test circuit by well bypassed,  
low noise supplies, e.g, batteries. These will minimize output  
noise introduced through the amplifier supply pins.  
Ë
The OP471 is a monolithic device with four identical amplifiers.  
The noise voltage density of each individual amplifier will  
match, giving:  
Ê
2
ˆ
¯
eOUT = 101 4en  
= 101 2e  
(
)
n
Ë
R1  
R2  
10kꢄ  
100ꢄ  
1/4  
OP471  
e
OUT  
1/4  
OP471  
TO SPECTRUM ANALYZER  
1/4  
OP471  
1/4  
OP471  
e
V
(nV Hz) = 101(2e )  
n
OUT  
= 15V  
S
Figure 9. Noise Voltage DensityTest Circuit  
REV. A  
–9–  
OP471  
Noise Measurement - Current Noise Density  
The test circuit shown in Figure 10 can be used to measure current  
noise density. The formula relating the voltage output to current  
noise density is:  
adds phase shift in the feedback network and reduces stability. A  
simple circuit to eliminate this effect is shown in Figure 11. The  
added components, C1 and R3, decouple the amplifier from the  
load capacitance and provide additional stability. The values of  
C1 and R3 shown in Figure 11 are for load capacitances of up  
to 1,000 pF when used with the OP471.  
Ê enOUT ˆ2  
2
- 40nV / Hz  
Á
˜
(
)
In applications where the OP471’s inverting or noninverting inputs  
are driven by a low source impedance (under 100 W) or connected  
to ground, if V+ is applied before V–, or when V– is disconnected,  
excessive parasitic currents will flow.  
Ë
¯
G
in  
=
RS  
where:  
Most applications use dual tracking supplies and with the device  
supply pins properly bypassed, power-up will not present a  
problem. A source resistance of at least 100 W in series with all  
inputs (Figure 11) will limit the parasitic currents to a safe level  
if V– is disconnected. It should be noted that any source resistance,  
even 100 W, adds noise to the circuit. Where noise is required to  
be kept at a minimum, a germanium or Schottky diode can be  
used to clamp the V– pin and eliminate the parasitic current  
flow instead of using series limiting resistors. For most applica-  
tions, only one diode clamp is required per board or system.  
G = gain of 10,000  
RS = 100 kW source resistance  
Capacative Load Driving and Power Supply Considerations  
The OP471 is unity-gain stable and is capable of driving large  
capacitive loads without oscillating. Nonetheless, good supply  
bypassing is highly recommended. Proper supply bypassing  
reduces problems caused by supply line noise and improves the  
capacitive load driving capability of the OP471.  
R3  
1.24kꢄ  
R
f
R2  
R1  
100kꢄ  
5ꢄ  
OP471  
DUT  
e
OUT TO  
OP27E  
n
SPECTRUM ANALYZER  
OP471  
R5  
8.06kꢄ  
8V/s  
R4  
200ꢄ  
GAIN = 10,000  
= 15V  
Figure 12. Pulsed Operation  
Unity-Gain Buffer Applications  
When Rf £ 100 W and the input is driven with a fast, large signal  
pulse (>1 V), the output waveform will look as shown in Figure 12.  
V
S
Figure 10. Current Noise Density Test Circuit  
V+  
C2  
During the fast feedthrough-like portion of the output, the input  
protection diodes effectively short the output to the input, and a  
current, limited only by the output short-circuit protection, will  
be drawn by the signal generator. With Rf 500 W, the output  
is capable of handling the current requirements (IL £ 20 mA at  
10 V); the amplifier will stay in its active mode and a smooth  
transition will occur.  
10F  
+
C3  
0.1F  
R2  
C1  
R1  
200pF  
V
R3  
IN  
When Rf > 3 kW, a pole created by Rf and the amplifier’s input  
capacitance (2.6 pF) creates additional phase shift and reduces  
phase margin. A small capacitor (20 pF to 50 pF) in parallel with  
Rf helps eliminate this problem.  
50ꢄ  
V
OP471  
OUT  
100*  
C4  
C
L
10F  
1000pF  
+
C5  
0.1F  
*
APPLICATIONS  
Low Noise Amplifier  
*SEETEXT  
V–  
A simple method of reducing amplifier noise by paralleling  
amplifiers is shown in Figure 13. Amplifier noise, depicted in  
Figure 14, is around 5 nV/÷Hz @ 1 kHz (R.T.I.). Gain for each  
paralleled amplifier and the entire circuit is 100. The 200 W  
resistors limit circulating currents and provide an effective output  
resistance of 50 W. The amplifier is stable with a 10 nF capacitive  
load and can supply up to 30 mA of output drive.  
PLACE SUPPLY DECOUPLING  
CAPACITORS AT OP471  
Figure 11. Driving Large Capacitive Loads  
In the standard feedback amplifier, the op amp’s output resistance  
combines with the load capacitance to form a lowpass filter that  
–10–  
REV. A  
OP471  
High-Speed Differential Line Driver  
The circuit of Figure 15 is a unique line driver widely used in  
professional audio applications. With ±18 V supplies, the line  
driver can deliver a differential signal of 30 V p-p into a 1.5 kW  
load. The output of the differential line driver looks exactly like  
a transformer. Either output can be shorted to ground without  
changing the circuit gain of 5, so the amplifier can easily be set  
for inverting, noninverting, or differential operation. The line  
driver can drive unbalanced loads, like a true transformer.  
100  
90  
10  
0%  
+15V  
V
R3  
IN  
200ꢄ  
1/4  
R1  
OP471E  
50ꢄ  
Figure 14. Noise Density of Low-Noise Amplifier, G = 100  
R2  
5kꢄ  
–15V  
R4  
10kꢄ  
R6  
200ꢄ  
1/4  
R11  
R4  
OP471E  
50ꢄ  
50ꢄ  
1/4  
–OUT  
OP471  
R5  
5kꢄ  
R8  
V
= 100V  
IN  
R2  
OUT  
10kꢄ  
2kꢄ  
R14  
R9  
1kꢄ  
R7  
IN  
200ꢄ  
1/4  
2kꢄ  
R7  
R1  
1/4  
R13  
OP471E  
50ꢄ  
10kꢄ  
OP471  
10kꢄ  
R6  
R9  
R8  
2kꢄ  
10kꢄ  
R12  
5kꢄ  
1kꢄ  
R10  
R12  
R3  
50ꢄ  
200ꢄ  
1/4  
OP471  
1/4  
2kꢄ  
+OUT  
R10  
OP471E  
50ꢄ  
R5  
R11  
10kꢄ  
5kꢄ  
Figure 15. High-Speed Differential Line Driver  
Figure 13. Low-Noise Amplifier  
High-Output Amplifier  
The amplifier shown in Figure 16 is capable of driving 20 V p-p  
into a floating 400 W load. Design of the amplifier is based on a  
bridge configuration. A1 amplifies the input signal and drives  
the load with the help of A2. Amplifier A3 is a unity-gain inverter  
which drives the load with help from A4. Gain of the high output  
amplifier with the component values shown is 10, but can  
easily be changed by varying R1 or R2.  
+15V  
C1  
10F  
R5  
+
5kꢄ  
C2  
0.1F  
R2  
R6  
9kꢄ  
5kꢄ  
R1  
1kꢄ  
R3  
R7  
1/4  
1/4  
50ꢄ  
50ꢄ  
OP471E  
A3  
OP471E  
A1  
V
IN  
C3  
0.1F  
R4  
R8  
1/4  
1/4  
R
L
50ꢄ  
50ꢄ  
C4  
OP471E  
A4  
OP471E  
A2  
10F  
+
–15V  
Figure 16. High-Output Amplifier  
–11–  
REV. A  
OP471  
Quad Programmable Gain Amplifier  
where n equals the decimal equivalent of the 8-bit digital code  
present at the DAC. If the digital code present at the DAC  
consists of all zeros, the feedback loop will be open causing the  
op amp output to saturate. The 20 MW resistors placed in parallel  
with the DAC feedback loop eliminates this problem with a very  
small reduction in gain accuracy.  
The combination of the quad OP471 and the DAC8408, a quad  
8-bit CMOS DAC, creates a space-saving quad programmable gain  
amplifier. The digital code present at the DAC, which is easily  
set by a microprocessor, determines the ratio between the fixed  
DAC feedback resistor and the impedance the DAC ladder presents  
to the op amp feedback loop. Gain of each amplifier is:  
VOUT  
VIN  
256  
n
= –  
V
DD  
DAC-8408ET  
R
A
FB  
V
A
IN  
V
A
REF  
+15V  
R1  
20Mꢄ  
I
OUT1A  
DAC A  
DAC B  
1/4  
V
A
OUT  
OP470E  
I
OUT2A/2B  
–15V  
R
B
FB  
V
B
C
IN  
B
V
REF  
R2  
20Mꢄ  
I
OUT1B  
1/4  
V
B
OUT  
OP470E  
R
C
FB  
V
IN  
C
V
REF  
R3  
20Mꢄ  
I
OUT1C  
DAC C  
DAC D  
1/4  
V
C
OUT  
OP470E  
I
OUT2C/2D  
R
D
FB  
V
D
IN  
V
D
REF  
R4  
20Mꢄ  
I
OUT1D  
1/4  
V
D
OUT  
OP470E  
DAC DATA BUS  
PINS 9 (LSB) – 16 (MSB)  
DGND  
Figure 17. Quad Programmable Gain Amplifier  
–12–  
REV. A  
OP471  
R2 = R1  
Low Phase Error Amplifier  
R2  
The simple amplifier depicted in Figure 18 utilizes monolithic  
matched operational amplifiers and a few resistors to substan-  
tially reduce phase error compared to conventional amplifier  
designs. At a given gain, the frequency range for a specified phase  
accuracy is over a decade greater than for a standard single op  
amp amplifier.  
R2  
K1  
1/4  
OP471E  
A2  
V2  
The low phase error amplifier performs second-order frequency  
compensation through the response of op amp A2 in the feed-  
back loop of A1. Both op amps must be extremely well matched  
in frequency response. At low frequencies, the A1 feedback loop  
forces V2/(K1 + 1) = VIN. The A2 feedback loop forces Vo/(K1 +1)  
R1  
K1  
1/4  
R1  
OP471E  
A1  
V
IN  
V
O
= V2/(K1 + 1) yielding an overall transfer function of VO/VIN  
K1 + 1. The dc gain is determined by the resistor divider at  
=
V
= (K + 1)V  
1 IN  
O
the output, VO, and is not directly affected by the resistor divider  
around A2. Note that similar to a conventional single op amp  
amplifier, the dc gain is set by resistor ratios only. Minimum  
gain for the low phase error amplifier is 10.  
ASSUME: A1 AND A2 ARE MATCHED.  
T
A
(s) =  
s
O
Figure 18. Low Phase Error Amplifier  
Figure 19 compares the phase error performance of the low  
phase error amplifier with a conventional single op amp amplifier  
and a cascaded two-stage amplifier. The low phase error amplifier  
shows a much lower phase error, particularly for frequencies where  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
/␤␻T < 0.1. For example, phase error of –0.1occurs at 0.002 /␤␻  
T
SINGLE OP AMP  
(CONVENTIONAL  
DESIGN)  
for the single op amp amplifier, but at 0.11 /␤␻T for the low  
phase error amplifier.  
For more detailed information on the low phase error amplifier,  
see Application Note AN-107.  
CASCADED  
(TWO STAGES)  
LOW-PHASE ERROR  
AMPLIFIER  
0.001  
0.005 0.01  
0.05 0.1  
0.5  
1
FREQUENCY RATIO – 1/,  
/ꢆ  
T
Figure 19. Phase Error Comparison  
REV. A  
–13–  
OP471  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
14-Lead PDIP Package  
(N-14)  
0.795 (20.19)  
0.725 (18.42)  
14  
8
7
0.280 (7.11)  
0.240 (6.10)  
1
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
0.060 (1.52)  
0.015 (0.38)  
0.195 (4.95)  
0.115 (2.93)  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
PLANE  
14-Lead CERDIP Package  
(Q-14)  
0.005 (0.13) MIN 0.098 (2.49) MAX  
14  
8
0.310 (7.87)  
0.220 (5.59)  
PIN 1  
1
7
0.320 (8.13)  
0.290 (7.37)  
0.100 (2.54) BSC  
0.785 (19.94) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
0.023 (0.58)  
0.014 (0.36)  
0.070 (1.78)  
0.030 (0.76)  
15  
0
PLANE  
16-Lead SOIC Package  
(R-16)  
0.4133 (10.50)  
0.3977 (10.00)  
16  
1
9
8
0.2992 (7.60)  
0.2914 (7.40)  
0.4193 (10.65)  
0.3937 (10.00)  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
0.050 (1.27)  
BSC  
45ꢁ  
8ꢁ  
0ꢁ  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
0.0500 (1.27)  
0.0157 (0.40)  
0.0125 (0.32)  
0.0091 (0.23)  
PLANE  
–14–  
REV. A  
OP471  
Revision History  
Location  
Page  
Data Sheet changed from REV. 0 to REV. A.  
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Deleted DICE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Deleted WAFER TEST CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
REV. A  
–15–  
–16–  

相关型号:

OP471

High Speed, Low Noise Quad Operational Amplifier
ADI

OP471ARCMDA

High Speed, Low Noise Quad Operational Amplifier
ADI

OP471ATC/883

IC QUAD OP-AMP, 1200 uV OFFSET-MAX, 6.5 MHz BAND WIDTH, CQCC28, LCC-28, Operational Amplifier
ADI

OP471ATCMDA

High Speed, Low Noise Quad Operational Amplifier
ADI

OP471AY

Operational Amplifier
ETC

OP471AY/883C

IC QUAD OP-AMP, 1200 uV OFFSET-MAX, 6.5 MHz BAND WIDTH, CDIP14, HERMETIC SEALED, CERDIP-14, Operational Amplifier
ADI

OP471AYMDA

High Speed, Low Noise Quad Operational Amplifier
ADI

OP471BIEY

IC QUAD OP-AMP, 1100 uV OFFSET-MAX, 6.5 MHz BAND WIDTH, CDIP14, HERMETIC SEALED, CERDIP-14, Operational Amplifier
ADI

OP471BIFY

IC QUAD OP-AMP, 2000 uV OFFSET-MAX, 6.5 MHz BAND WIDTH, CDIP14, HERMETIC SEALED, CERDIP-14, Operational Amplifier
ADI

OP471BIGS

IC QUAD OP-AMP, 2500 uV OFFSET-MAX, 6.5 MHz BAND WIDTH, PDSO16, PLASTIC, SOL-16, Operational Amplifier
ADI

OP471EY

High Speed, Low Noise Quad Operational Amplifier
ADI

OP471FY

High Speed, Low Noise Quad Operational Amplifier
ADI