OP492GSZ-REEL1 [ADI]

Dual/Quad Single-Supply Operational Amplifiers;
OP492GSZ-REEL1
型号: OP492GSZ-REEL1
厂家: ADI    ADI
描述:

Dual/Quad Single-Supply Operational Amplifiers

文件: 总20页 (文件大小:386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual/Quad Single-Supply  
Operational Amplifiers  
OP292/OP492  
PIN CONFIGURATIONS  
FEATURES  
Single-supply operation: 4.5 V to 33 V  
Input common-mode includes ground  
Output swings to ground  
High slew rate: 3 V/μs  
OUTA  
–INA  
+INA  
–V  
1
2
3
4
8
7
6
5
+V  
OP292  
OUTB  
–INB  
+INB  
TOP VIEW  
(Not to Scale)  
High gain bandwidth: 4 MHz  
Low input offset voltage  
Figure 1. 8-Lead Narrow-Body SOIC (S-Suffix)  
High open-loop gain  
No phase inversion  
OUTD  
14  
OUTA  
–INA  
+INA  
+V  
1
2
3
4
5
6
7
13 –IND  
12 +IND  
11 –V  
OP492  
APPLICATIONS  
TOP VIEW  
(Not to Scale)  
+INB  
–INB  
OUTB  
10 +INC  
Disk drives  
Mobile phones  
9
8
–INC  
OUTC  
Servo controls  
Figure 2. 14-Lead Narrow-Body SOIC (S-Suffix)  
Modems and fax machines  
Pagers  
Power supply monitors and controls  
Battery-operated instrumentation  
GENERAL DESCRIPTION  
The OP292/OP492 are low cost, general-purpose dual and quad  
operational amplifiers designed for single-supply applications  
and are ideal for 5 V systems.  
The OP292/OP492 series is unity-gain stable and features an  
outstanding combination of speed and performance for single-  
or dual-supply operation. The OP292/OP492 provide a high  
slew rate, high bandwidth, with open-loop gain exceeding  
40,000 and offset voltage under 800 Ω (OP292) and 1 mV  
(OP492). With these combinations of features and low supply  
current, the OP292/OP492 series is an excellent choice for  
battery-operated applications.  
Fabricated on Analog Devices, Inc., CBCMOS process, the  
OP292/OP492 series has a PNP input stage that allows the input  
voltage range to include ground. A BiCMOS output stage  
enables the output to swing to ground while sinking current.  
The OP292/OP492 series performance is specified for single- or  
dual-supply voltage operation over the extended industrial  
temperature range (−40°C to +125°C).  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1993–2009 Analog Devices, Inc. All rights reserved.  
 
OP292/OP492  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Applications....................................................................... 14  
Direct Access Arrangement for Telephone Line Interface ... 14  
Single-Supply Instrumentation Amplifier .............................. 14  
DAC Output Amplifier.............................................................. 14  
50 Hz/60 Hz Single-Supply Notch Filter................................. 15  
Four-Pole Bessel Low-Pass Filter ............................................. 15  
Low Cost, Linearized Thermistor Amplifier.............................. 15  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Typical Performance Characteristics ............................................. 7  
Applications Information .............................................................. 13  
Phase Reversal............................................................................. 13  
Power Supply Considerations................................................... 13  
Single-Supply Ultrasonic Clamping/Limiting Receiver  
Amplifier ..................................................................................... 16  
Precision Single-Supply Voltage Comparator ........................ 16  
Programmable Precision Window Comparator .................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
REVISION HISTORY  
5/09—Rev. B to Rev. C  
Deleted 8-Lead PDIP and 14-Lead PDIP........................Universal  
Changes to Features Section and General Description Section. 1  
Changed VS = 5 V to VS = 15 V.................................................... 4  
Changes to Table 3 and Table 4....................................................... 6  
Changes to Figure 21 Caption and Figure 24 Caption .............. 10  
Changes to Figure 29...................................................................... 11  
Changes to Figure 35...................................................................... 13  
Deleted OP292 SPICE Macro-model Section............................. 14  
Changes to Figure 38...................................................................... 14  
Changes to Figure 39 and Figure 41............................................. 15  
Deleted OP492 SPICE Macro-model Section............................. 16  
Changes to Figure 44...................................................................... 16  
Updated Outline Dimensions....................................................... 17  
Changes to Ordering Guide .......................................................... 17  
10/02—Rev. A to Rev. B  
Edits to Outline Dimensions......................................................... 18  
1/02—Rev. 0 to Rev. A  
Deleted Wafer Test Limits ............................................................... 4  
Deleted Dice Characteristics........................................................... 4  
Edits to Ordering Guide ................................................................ 20  
Rev. C | Page 2 of 20  
 
OP292/OP492  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VS = 5 V, VCM = 0 V, VO = 2 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
OP292  
VOS  
VOS  
IB  
0.1  
0.3  
0.5  
0.1  
0.3  
0.5  
450  
0.75  
3.0  
7
0.8  
1.2  
2.5  
1
1.5  
2.5  
700  
2.5  
5.0  
50  
mV  
mV  
mV  
mV  
mV  
mV  
nA  
μA  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
OP492  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Bias Current  
Input Offset Current  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
μA  
nA  
IOS  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
100  
0.4  
700  
1.2  
4.0  
nA  
μA  
V
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 4.0 V  
75  
70  
65  
25  
10  
5
95  
93  
90  
200  
100  
50  
2
1
6
400  
1.5  
2
dB  
dB  
dB  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 0.1 V to 4 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
V/mV  
V/mV  
V/mV  
μV/°C  
μV/Month  
pA/°C  
pA/°C  
pA/°C  
pA/°C  
Offset Voltage Drift  
Long-Term VOS Drift1  
Bias Current Drift  
ΔVOS/ΔT  
ΔVOS/ΔT  
ΔIB/ΔT  
10  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Offset Current Drift  
ΔIOS/ΔT  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
High  
VOUT  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ to GND  
4.0  
3.8  
3.7  
4.3  
4.1  
3.9  
8
12  
280  
300  
8
V
V
V
mV  
mV  
mV  
mV  
mA  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to V+  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ to V+  
Low  
VOUT  
20  
20  
450  
550  
−40°C ≤ TA ≤ +125°C  
Short-Circuit Current Limit  
POWER SUPPLY  
ISC  
5
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 4.5 V to 30 V, VO = 2 V  
−40°C ≤ TA ≤ +125°C  
VO = 2 V  
75  
70  
95  
90  
0.8  
dB  
dB  
mA  
Supply Current Per Amp  
1.2  
Rev. C | Page 3 of 20  
 
OP292/OP492  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
RL = 10 kΩ  
−40°C ≤ TA ≤ +125°C  
3
2
4
75  
100  
V/μs  
V/μs  
MHz  
Degrees  
dB  
1
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise  
GBP  
φm  
CS  
fO = 1 kHz  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
25  
15  
0.7  
μV p-p  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
Current Noise Density  
1 Long-term offset voltage drift is guaranteed by 1,000 hours life test performed on three independent wafer lots at 125°C with LTPD of 1.3.  
VS = 15 V, VCM = 0 V, VO = 2 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
VOS  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
OP292  
1.0  
1.2  
1.5  
1.4  
1.7  
2
375  
0.5  
7
2.0  
2.5  
3
2.5  
2.8  
3
700  
1
50  
100  
1.2  
+11  
mV  
mV  
mV  
mV  
mV  
mV  
nA  
μA  
nA  
nA  
μA  
V
dB  
dB  
V/mV  
V/mV  
V/mV  
μV/°C  
pA/°C  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
OP492  
VOS  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Bias Current  
IB  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
20  
0.4  
Input Voltage Range1  
Common-Mode Rejection Ratio  
−11  
78  
75  
25  
10  
5
CMRR  
AVO  
VCM = 11 V  
100  
95  
120  
75  
60  
4
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 10 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
Offset Voltage Drift  
Bias Current Drift  
ΔVOS/ΔT  
ΔIB/ΔT  
10  
3
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
VO  
RL = 2 kΩ to GND  
11  
10  
13.8  
13.5  
12.2  
11  
14.3  
14.0  
10.5  
V
V
V
mV  
mA  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
Short circuit to GND  
Short-Circuit Current Limit  
POWER SUPPLY  
ISC  
8
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.25 V to 15 V  
−40°C ≤ TA ≤ +125°C  
VO = 0 V  
75  
70  
86  
83  
1
dB  
dB  
mA  
Supply Current Per Amp  
1.4  
Rev. C | Page 4 of 20  
OP292/OP492  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
RL =10 kΩ  
−40°C ≤ TA ≤ +125°C  
2.5  
2
4
3
4
75  
100  
V/μs  
V/μs  
MHz  
Degrees  
dB  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise  
GBP  
φm  
CS  
fO = 1 kHz  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
25  
15  
0.7  
μV p-p  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
Current Noise Density  
1 Input voltage range is guaranteed by CMRR tests.  
Rev. C | Page 5 of 20  
OP292/OP492  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
33 V  
−15 V to +14 V  
V1  
Unlimited  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +125°C  
300°C  
Input Voltage Range1  
Differential Input Voltage1  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature Range (Soldering, 60 sec)  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in the circuit board for the surface-mount packages.  
1 For supply voltages less than 36 V, the absolute maximum input voltage is  
equal to the supply voltage.  
Table 4. Thermal Resistance  
Package Type  
8-Lead SOIC  
14-Lead SOIC  
θJA  
θJC  
43  
36  
Unit  
°C/W  
°C/W  
158  
120  
ESD CAUTION  
Rev. C | Page 6 of 20  
 
 
 
OP292/OP492  
TYPICAL PERFORMANCE CHARACTERISTICS  
160  
140  
120  
100  
80  
200  
V
V
= 5V  
S
V
V
= 5V  
S
= 0V  
175  
150  
125  
100  
75  
CM  
= 25°C  
= 0V  
CM  
= 25°C  
T
A
T
A
720 OP AMPS  
600 OP AMPS  
60  
40  
50  
20  
25  
0
0
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6  
–500 –400 –300 –200 –100  
0
100 200 300 400 500  
INPUT OFFSET VOLTAGE, V (mV)  
OS  
INPUT OFFSET VOLTAGE, V (µV)  
OS  
Figure 3. OP292 Input Offset Voltage Distribution @ 5 V  
Figure 6. OP492 Input Offset Voltage Distribution @ 5 V  
320  
280  
240  
200  
160  
120  
80  
240  
200  
160  
120  
80  
V
V
= ±15V  
S
V
V
= ±15V  
S
= 0V  
CM  
= 0V  
CM  
T
= 25°C  
A
T
= 25°C  
A
720 OP AMPS  
600 OP AMPS  
40  
40  
0
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
OS  
1.6  
1.8  
2.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
OS  
1.6  
1.8  
2.0  
INPUT OFFSET VOLTAGE, V (mV)  
INPUT OFFSET VOLTAGE, V (mV)  
Figure 4. OP292 Input Offset Voltage Distribution @ 15 V  
Figure 7. OP492 Input Offset Voltage Distribution @ 15 V  
160  
140  
120  
100  
80  
160  
140  
V
V
= 5V  
S
V
V
= 5V  
S
= 0V  
CM  
= 0V  
CM  
–40°C T +125°C  
A
–40°C T +125°C  
A
600 OP AMPS  
600 OP AMPS  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
0
0
0.4  
0.8  
1.2  
1.6  
2.0  
OS  
2.4  
2.8  
3.2  
3.6  
4.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
OS  
3.0  
3.5  
4.0  
4.5  
5.0  
TCV (µV/°C)  
TCV (µV/°C)  
Figure 5. OP292 Temperature Drift (TCVOS) Distribution @ 5 V  
Figure 8. OP492 Temperature Drift (TCVOS) Distribution @ 5 V  
Rev. C | Page 7 of 20  
 
OP292/OP492  
200  
240  
210  
V
V
= ±15V  
S
V
V
= 5V  
S
= 0V  
CM  
175  
150  
125  
100  
75  
= 0V  
CM  
–40°C T +125°C  
A
–40°C T +125°C  
A
600 OP AMPS  
180  
150  
120  
90  
600 OP AMPS  
60  
50  
30  
25  
0
0
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
TCV (µV/°C)  
OS  
TCV (µV/°C)  
OS  
Figure 9. OP292 Temperature Drift (TCVOS) Distribution @ 15 V  
Figure 12. OP492 Temperature Drift (TCVOS) Distribution @ 15 V  
600  
900  
V
V
= 5V  
= 4V  
S
V
V
= 5V  
= 4V  
800  
700  
600  
500  
400  
300  
200  
100  
0
S
O
500  
400  
300  
200  
100  
0
R = 10k  
L
O
R
= 10k  
L
R
= 2kΩ  
L
R
= 2kΩ  
L
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. OP492 Open-Loop Gain vs. Temperature @ 5 V  
Figure 10. OP292 Open-Loop Gain vs. Temperature @ 5 V  
400  
350  
300  
250  
200  
150  
100  
50  
250  
200  
V
V
= ±15V  
= ±10V  
V
V
= ±15V  
= ±10V  
S
S
O
O
R
= 10kΩ  
L
150  
100  
50  
R
= 10kΩ  
L
R
= 2kΩ  
R
= 2kΩ  
L
L
0
0
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. OP492 Open-Loop Gain vs. Temperature @ 15 V  
Figure 11. OP292 Open-Loop Gain vs. Temperature @ 15 V  
Rev. C | Page 8 of 20  
OP292/OP492  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
V
V
= ±15V  
= +5V  
S
S
V
V
= ±15V  
= +5V  
S
S
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. OP292 Supply Current per Amplifier vs. Temperature  
Figure 18. OP492 Supply Current per Amplifier vs. Temperature  
6
6
V
V
= ±15V  
= ±10V  
V
V
= ±15V  
= ±10V  
+SR  
S
S
O
O
+SR  
5
4
3
2
1
0
5
4
3
2
1
0
–SR  
–SR  
+SR  
+SR  
–SR  
–SR  
V
V
= 5V  
= 0.1V, 4V  
V
V
= 5V  
= 0.1V, 4V  
S
S
O
O
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. OP292 Slew Rate vs. Temperature  
Figure 19. OP492 Slew Rate vs. Temperature  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
T
= 25°C  
= 10kΩ  
= 10kΩ  
A
A
V+ = 5V  
V– = 0V  
R
V
S
R
L
= 10k  
L
GAIN  
GAIN  
PHASE  
MARGIN  
= 92°  
PHASE  
MARGIN  
= 83°  
135  
+135  
PHASE  
PHASE  
90  
45  
+90  
+45  
0
0
–45  
–45  
–10  
–10  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. OP292/OP492 Open-Loop Gain and Phase vs. Frequency @ 5 V  
Figure 20. OP292/OP492 Open-Loop Gain and Phase vs. Frequency @ 15 V  
Rev. C | Page 9 of 20  
OP292/OP492  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
T
= 25°C  
A
T
= 25°C  
= ±15V  
V+ = 5V  
V– = 0V  
A
V
S
–10  
–10  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. OP292/OP492 Closed-Loop Gain vs. Frequency @ 5 V  
Figure 24. OP292/OP492 Closed-Loop Gain vs. Frequency @ 15 V  
120  
120  
T
= 25°C  
A
T
= 25°C  
= ±15V  
A
V+ = 5V  
V– = 0V  
V
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
S
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. OP292/OP492 CMR vs. Frequency @ 5 V  
Figure 25. OP292/OP492 CMR vs. Frequency @ 15 V  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
T
= 25°C  
= 5V  
T
= 25°C  
V = ±15V  
S
A
A
V
S
+PSSR  
–PSSR  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
FREQUENCY (Hz)  
Figure 23. OP292/OP492 PSR vs. Frequency @ 5 V  
Figure 26. OP292/OP492 PSR vs. Frequency @ 15 V  
Rev. C | Page 10 of 20  
OP292/OP492  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
15.0  
14.0  
V
= ±15V  
R
= 100k  
S
L
V
= 5V  
S
R
= 10kΩ  
L
13.0  
R
= 100kΩ  
= 10kΩ  
L
R
= 2kΩ  
L
12.0  
11.0  
R
L
10.0  
R
= 2kΩ  
–14.0  
–14.5  
–15.0  
L
R
= 2kΩ  
L
R
= 10kΩ  
L
R
= 100kΩ  
L
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 27. OP292/OP492 VOUT Swing vs. Temperature @ 5 V  
Figure 30. OP292/OP492 VOUT Swing vs. Temperature @ 15 V  
10  
600  
V
V
= ±15V  
= 0V  
V
V
= 5V  
S
S
= 0V  
CM  
CM  
500  
400  
300  
200  
100  
0
OP492  
OP492  
1
OP292  
OP292  
0.1  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 28. OP292/OP492 Input Bias Current vs. Temperature @ 5 V  
Figure 31. OP292/OP492 Input Bias Current vs. Temperature @ 15 V  
–40  
–60  
0.50  
0.48  
0.46  
–RAIL  
0.44  
+15V  
0.42  
0.40  
0.38  
0.36  
0.34  
0.32  
0.30  
0.28  
0.26  
0.24  
0.22  
0.20  
0.18  
V
R
V
= +5V, ±15V  
= 2k  
= 3V p-p  
S
L
–80  
–90  
O
A
V
IN  
–100  
–110  
–120  
–15V  
+RAIL  
0
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
FREQUENCY (Hz)  
V
(V)  
IN  
Figure 29. OP292/OP492 Channel Separation  
Figure 32. OP292/OP492 IB Current vs. Common-Mode Voltage  
Rev. C | Page 11 of 20  
OP292/OP492  
CH A 800dV FS  
100dV/DIV  
MKR: 16.9µV/Hz  
0Hz  
MKR: 1000Hz  
25kHz  
BW: 150Hz  
Figure 33. Voltage Noise Density  
Rev. C | Page 12 of 20  
OP292/OP492  
APPLICATIONS INFORMATION  
PHASE REVERSAL  
1V/DIV  
The OP492 has built-in protection against phase reversal when  
the input voltage goes to either supply rail. In fact, it is safe for  
the input to exceed either supply rail by up to 0.6 V with no risk  
of phase reversal. However, the input should not go beyond the  
positive supply rail by more than 0.9 V; otherwise, the output  
will reverse phase. If this condition occurs, the problem can be  
fixed by adding a 5 kΩ current limiting resistor in series with  
the input pin. With this addition, the input can go to more than  
5 V beyond the positive rail without phase reversal.  
5V  
0V  
10V p-p  
OP492  
2k  
4ms/DIV  
Figure 35. No Negative Rail Phase Reversal, Even with Input Signal  
at 5 V Below Ground  
An input voltage that is as much as 5 V below the negative rail  
will not result in phase reversal.  
POWER SUPPLY CONSIDERATIONS  
The OP292/OP492 are designed to operate equally well at single  
+5 V or 15 V supplies. The lowest supply voltage recommended  
is 4.5 V.  
1V  
100  
90  
5V  
It is a good design practice to bypass the supply pins with a  
0.1 μF ceramic capacitor. It helps improve filtering of high  
frequency noise.  
0V  
OP492  
11.8V p-p  
2kΩ  
10  
0%  
For dual-supply operation, the negative supply (V−) must be  
applied at the same time, or before V+. If V+ is applied before V−,  
or in the case of a loss of the V− supply, while either input is  
connected to ground or another low impedance source, excessive  
input current may result. Potentially damaging levels of input  
current can destroy the amplifier. If this condition can exist,  
simply add a l kΩ or larger resistor in series with the input to  
eliminate the problem.  
5µs  
Figure 34. Output Phase Reverse If Input Exceeds  
the Positive Supply (V+) by More Than 0.9 V  
Rev. C | Page 13 of 20  
 
OP292/OP492  
TYPICAL APPLICATIONS  
DIRECT ACCESS ARRANGEMENT FOR TELEPHONE  
LINE INTERFACE  
5V  
5
8
1/2  
OP292  
7
V
V
IN  
OUT  
Figure 36 shows a 5 V single-supply transmit/receive telephone line  
interface for a modem circuit. It allows full duplex transmission  
of modem signals on a transformer-coupled 600 V line in a  
differential manner. The transmit section gain can be set for the  
specific modem device output. Similarly, the receive amplifier  
gain can be appropriately selected based on the modem device  
input requirements. The circuit operates on a single 5 V supply.  
The standard value resistors allow the use of a SIP-packaged  
resistor array; coupled with a quad op amp in a single package,  
this offers a compact, low part count solution.  
4
1/2  
OP292  
1
V
20kΩ  
5kΩ  
5kΩ  
20kΩ  
REF  
40kΩ  
5 +  
V
=
+V  
REF  
OUT  
R
G
R
G
Figure 37. Single-Supply Instrumentation Amplifier  
In this configuration, the output can swing to near 0 V;  
however, be careful because the common-mode voltage range of  
the input cannot operate to 0 V. This is because of the limitation  
of the circuit configuration where the first amplifier must be able to  
swing below ground to attain a 0 V common-mode voltage,  
which it cannot do. Depending on the gain of the instrumentation  
amplifier, the input common-mode extends to within about 0.3 V  
of zero. The worst-case common-mode limit for a given gain  
can be easily calculated.  
TX GAIN ADJUST  
50kΩ  
TO  
TELEPHONE  
LINE  
0.1µF  
20kΩ  
TRANSMIT  
TXA  
300kΩ  
300kΩ  
1:1  
T1  
1/4  
OP492  
20kΩ  
20kΩ  
DAC OUTPUT AMPLIFIER  
6.2V  
6.2V  
The OP292/OP492 are ideal for buffering the output of single-  
supply DACs. Figure 38 shows a typical amplifier used to buffer  
the output of a CMOS DAC that is connected for single-supply  
operation. To do that, the normally current output 12-bit CMOS  
DAC (R-2R ladder type) is connected backward to produce a  
voltage output. This operating configuration necessitates a low  
voltage reference. In this case, a 1.235 V low power reference is  
used. The relatively high output impedance (10 kΩ) is buffered  
by the OP292, and at the same time, gained up to a much more  
usable level. The potentiometer provides an accurate gain trim  
for a 4.095 V full-scale, allowing 1 mV increment per LSB of  
control resolution.  
1/4  
OP492  
5V DC  
MODEM  
5kΩ  
100pF 5kΩ  
10µF  
20kΩ  
5V  
RX GAIN ADJUST  
20k50kΩ  
0.1µF  
20kΩ  
20kΩ  
0.1µF  
1/4  
OP492  
RECEIVE  
RXA  
20kΩ  
The DAC8043 device comes in an 8-lead PDIP package, providing  
a cost-effective, compact solution to a 12-bit analog channel.  
Figure 36. Universal Direct Access Arrangement for Telephone Line Interface  
5V  
SINGLE-SUPPLY INSTRUMENTATION AMPLIFIER  
1/2  
OP292  
V
OUT  
5V  
A low cost, single-supply instrumentation amplifier can be built  
as shown in Figure 37. The circuit uses two op amps to form a  
high input impedance differential amplifier. Gain can be set by  
selecting resistor RG, which can be calculated using the transfer  
function equation. Normally, VREF is set to 0 V. Then the output  
voltage is a function of the gain times the differential input  
voltage. However, the output can be offset by setting VREF from  
0 V to 4 V, as long as the input common-mode voltage of the  
amplifier is not exceeded.  
5V  
1mV/LSB  
0V – 4.095V  
FS  
DAC8043  
V
DD
V
1
2
3
4
REF  
8
7
6
5
7.5kΩ  
NC  
R
CLK  
FB  
20kΩ  
1.235V  
SRI  
I
OUT  
8.45kΩ  
AD589  
LD  
GND  
500kΩ  
LD SRI CLK  
DIGITAL  
CONTROL  
Figure 38. 12-Bit Single-Supply DAC with Serial Bus Control  
Rev. C | Page 14 of 20  
 
 
 
 
OP292/OP492  
50 Hz/60 Hz SINGLE-SUPPLY NOTCH FILTER  
5V  
5V  
6
Figure 39 shows a notch filter that achieves nearly 30 dB of  
60 Hz rejection while powered by only a single 12 V supply.  
The circuit also works well on 5 V systems. The filter uses a  
twin-T configuration, whose frequency selectivity depends  
heavily on the relative matching of the capacitors and resistors in  
the twin-T section. Mylar is a good choice for the capacitors of  
the twin-T, and the relative matching of the capacitors and resistors  
determines the pass-band symmetry of the filter. Using 1%  
resistors and 5% capacitors produces satisfactory results.  
2
3
1/2  
7
8
4
0.022µF  
5kΩ  
V
OP292  
OUT  
5
1
1/2  
OP292  
0.01µF  
1.1k14.3kΩ  
V
IN  
1.78k16.2kΩ  
5kΩ  
100µF  
2200pF  
3300pF  
Figure 40. Four-Pole Bessel Low-Pass Filter Using Sallen-Key Topology  
LOW COST, LINEARIZED THERMISTOR AMPLIFIER  
An inexpensive thermometer amplifier circuit can be implemented  
using low cost thermistors. One such implementation is shown  
in Figure 41. The circuit measures temperature over the range  
of 0°C to 70°C to an accuracy of 0.3°C as the linearization  
circuit works well within a narrow temperature range. However, it  
can measure higher temperatures but at a slightly reduced accuracy.  
To achieve the aforementioned accuracy, the nonlinearity of the  
thermistor must be corrected. This is done by connecting the  
thermistor in parallel with the 10 kΩ in the feedback loop of the  
first stage amplifier. A constant operating current of 281 μA is  
supplied by the resistor R1 with the 5 V reference from the  
REF195 such that the self-heating error of the thermistor is  
kept below 0.1°C.  
The amount of rejection and the Q of the filter is solely determined  
by one resistor and is shown in the table with Figure 39. The  
bottom amplifier is used to split the supply to bias the amplifier  
to midlevel. The circuit can be modified to reject 50 Hz by simply  
changing the resistors in the twin-T section (Rl through R4)  
from 2.67 kΩ to 3.16 kΩ and by changing R5 to ½ of 3.16 kΩ. For  
best results, the common value resistors can be from a resistor  
array for optimum matching characteristics.  
R2  
2.67kΩ  
R1  
C1  
1µF  
C2  
1µF  
12V  
2.67kΩ  
1/4  
OP492  
1/4  
OP492  
V
V
OUT  
IN  
In many cases, the thermistor is placed some distance from the  
signal conditioning circuit. Under this condition, a 0.1 μF capacitor  
placed across R2 will help to suppress noise pickup.  
R3  
2.67kΩ  
R4  
2.67kΩ  
R6  
100kΩ  
R5  
1.335kΩ  
(2.67k ÷ 2)  
C3  
2µF  
(1µF × 2)  
R
Q
R7  
1kΩ  
This linearization network creates an offset voltage that is corrected  
by summing a compensating current with Potentiometer P1.  
The temperature dependent signal is amplified by the second  
stage, producing a transfer coefficient of −10 mV/°C at the output.  
8kΩ  
12V  
R8  
100kΩ  
6V  
1/4  
OP492  
R9  
100kΩ  
+
C4  
1µF  
To calibrate, a precision decade box can be used in place of the  
thermistor. For 0°C trim, the decade box is set to 32.650 kΩ,  
and P1 is adjusted until the output of the circuit reads 0 V. To  
trim the circuit at the full-scale temperature of 70°C, the decade  
box is then set to 1.752 kΩ, and P2 is adjusted until the circuit  
reads −0.70 V.  
R
(k)  
REJECTION (dB) VOLTAGE GAIN  
FILTER Q  
Q
1.0  
1.33  
1.50  
1.60  
1.80  
1.90  
1.95  
0.75  
1.00  
1.25  
2.50  
5.00  
10.00  
40  
35  
30  
25  
20  
15  
2.0  
3.0  
8.0  
18  
1
R
T
10kNTC  
15V  
38  
2
R1  
17.8kΩ  
2
NOTES  
R1  
P2  
200Ω  
70°CTRIM  
REF195  
1.0µF  
1. FOR 50Hz APPLICATION CHANGE R12 TO R4 TO 3.16kΩ  
AND R5 TO 1.58k(3.16k÷ 2)  
17.8kΩ  
R3  
10kΩ  
R6  
7.87kΩ  
1µF  
1/2  
Figure 39. Single-Supply 50 Hz/60 Hz Notch Filter  
OP292  
5V  
R4  
41.2kΩ  
1/2  
OP292  
FOUR-POLE BESSEL LOW-PASS FILTER  
V
OUT  
–10mV/°C  
R5  
The linear phase filter in Figure 40 is designed to roll off at a  
voice-band cutoff frequency of 3.6 kHz. The four poles are  
formed by two cascading stages of 2-pole Sallen-Key filters.  
806kΩ  
P1  
10kΩ  
CTRIM  
1
2
R
= ALPHATHERMISTOR 13A1002-C3.  
T
R1 = 0.1% IMPERIAL ASTRONICS M015.  
NOTES  
1. ALL RESISTORS ARE 1%, 25ppm/°C EXCEPT R5 = 1%, 100ppm/°C.  
Figure 41. Low Cost Linearized Thermistor Amplifier  
Rev. C | Page 15 of 20  
 
 
 
 
OP292/OP492  
SINGLE-SUPPLY ULTRASONIC  
CLAMPING/LIMITING RECEIVER AMPLIFIER  
PRECISION SINGLE-SUPPLY VOLTAGE  
COMPARATOR  
Figure 42 shows an ultrasonic receiver amplifier using the  
nonlinear impedance of low cost diodes to effectively control  
the gain for wide dynamic range. This circuit amplifies a 40 kHz  
ultrasonic signal through a pair of low cost clamping amplifiers  
before feeding a band-pass filter to extract a clean 40 kHz signal  
for processing.  
The OP292/OP492 have excellent overload recovery characteristics,  
making them suitable for precision comparator applications.  
Figure 43 shows the saturation recovery characteristics of the  
OP492. The amplifier exhibits very little propagation delay. The  
amplifier compares a signal to precisely <0.5 mV offset error.  
1V  
The signal is ac-coupled into the false-ground bias node by  
virtue of the capacitive piezoelectric sensing element. Rather  
than using an amplifier to generate a supply splitting bias, the  
false ground voltage is generated by a low cost resistive voltage  
divider.  
100  
90  
+5V  
1kΩ  
3V p-p  
OP492  
2kΩ  
–15V  
Each amplifier stage provides ac gain while passing on the dc  
self-bias. As long as the output signal at each stage is less than  
the forward voltage of a diode, each amplifier has unrestricted  
gain to amplify low level signals. However, as the signal strength  
increases, the feedback diodes begin to conduct, shunting  
the feedback current, and thus reducing the gain. Although  
distorting the waveform, the diodes effectively maintain a  
relatively constant amplitude even with large signals that  
otherwise would saturate the amplifier. In addition, this design  
is considerably more stable than the feedback type AGC.  
10  
0%  
20kΩ  
2.21kΩ  
5V  
5µs  
Figure 43. OP492 Has Fast Overload Recovery for Comparator Applications  
PROGRAMMABLE PRECISION WINDOW  
COMPARATOR  
The OP292/OP492 can be used for precise level detection, such  
as in test equipment where a signal is measured within a range  
(see Figure 44). A pair of 12-bit DACs sets the threshold voltage  
level. The DACs have serial interface, which minimizes  
interconnection requirements. The DAC8512 has a control  
resolution of 1 mV/bit. Therefore, for 5 V supply operation, the  
maximum DAC output is 4.095 V. However, the OP292 accepts  
a maximum input of 4.0 V.  
The overall circuit has a gain range from −2 to −400, where the  
inversion comes from the band-pass filter stage. Operating with  
a Q of 5, the filter restores a clean, undistorted signal to the output.  
The circuit also works well with 5 V supply systems.  
12V  
5V  
68pF  
5V  
600kΩ  
12V  
DAC8512  
3
12V  
8
RECEIVER  
1
2
3
8
7
1
1/2  
OP292  
7.5V  
DAC  
REF  
1/4  
OP492  
56.2kΩ  
2
1MΩ  
14kΩ  
CS  
CLK  
SDI  
DECODE  
HIGH  
1/4  
OP492  
4
1/4  
OP492  
68pF  
6
5
V
OUT  
CONTROL  
PANASONIC  
EFR-RTB40K2  
4
12V  
600kΩ  
7.5V  
LD  
390kΩ  
100kΩ  
10kΩ  
10kΩ  
0.01µF  
CLR  
6.04kΩ  
1MΩ  
1µF  
5V  
0.01µF  
0.01µF  
DAC8512  
6
5
1
8
7
6
5
1/2  
OP292  
7
REF  
DAC  
2
3
4
Figure 42. 40 kHz Ultrasonic Clamping/Limiting Receiver Amplifier  
LOW  
CONTROL  
ANALOG  
INPUT  
Figure 44. Programmable Window Comparator with  
12-Bit Threshold Level Control  
Rev. C | Page 16 of 20  
 
 
 
 
OP292/OP492  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 45. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 46. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
OP292GS  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead Narrow Body SOIC_N  
8-Lead Narrow Body SOIC_N  
8-Lead Narrow Body SOIC_N  
8-Lead Narrow Body SOIC_N  
14-Lead Narrow Body SOIC_N  
14-Lead Narrow Body SOIC_N  
14-Lead Narrow Body SOIC_N  
14-Lead Narrow Body SOIC_N  
R-8  
R-8  
R-8  
R-8  
OP292GS-REEL  
OP292GSZ1  
OP292GSZ-REEL1  
OP492GS  
R-14  
R-14  
R-14  
R-14  
OP492GS-REEL  
OP492GSZ1  
OP492GSZ-REEL1  
1 Z = RoHS Compliant Part.  
Rev. C | Page 17 of 20  
 
 
OP292/OP492  
NOTES  
Rev. C | Page 18 of 20  
OP292/OP492  
NOTES  
Rev. C | Page 19 of 20  
OP292/OP492  
NOTES  
©1993–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00310-0-5/09(C)  
Rev. C | Page 20 of 20  
 
 
 

相关型号:

OP492GSZ1

Dual/Quad Single-Supply Operational Amplifiers
ADI

OP492Y

IC QUAD OP-AMP, 500 uV OFFSET-MAX, 3 MHz BAND WIDTH, CDIP8, Operational Amplifier
ADI

OP492_15

Dual/Quad Single-Supply Operational Amplifiers
ADI

OP493

Precision, Micropower Operational Amplifiers
ADI

OP493EP

Precision, Micropower Operational Amplifiers
ADI

OP493ES

Precision, Micropower Operational Amplifiers
ADI

OP493ES-REEL

Precision, Micropower Operational Amplifiers
ADI

OP493FP

Precision, Micropower Operational Amplifiers
ADI

OP493FS

Precision, Micropower Operational Amplifiers
ADI

OP493FS-REEL

Precision, Micropower Operational Amplifiers
ADI

OP493GBC

Precision, Micropower Operational Amplifiers
ADI

OP495

DUAL/QUAD RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
ADI