OP495GBC [ADI]

DUAL/QUAD RAIL-TO-RAIL OPERATIONAL AMPLIFIERS; 双/四路轨到轨运算放大器
OP495GBC
型号: OP495GBC
厂家: ADI    ADI
描述:

DUAL/QUAD RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
双/四路轨到轨运算放大器

运算放大器
文件: 总12页 (文件大小:330K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual/Quad Rail-to-Rail  
Operational Amplifiers  
a
OP295/OP495  
P IN CO NNECTIO NS  
FEATURES  
Rail-to-Rail Output Sw ing  
8-Lead Narrow-Body SO  
8-Lead Epoxy D IP  
(P Suffix)  
Single-Supply Operation: +3 V to +36 V  
Low Offset Voltage: 300 V  
Gain Bandw idth Product: 75 kHz  
High Open-Loop Gain: 1000 V/ m V  
Unity-Gain Stable  
(S Suffix)  
8
7
OUT A  
1
2
3
4
V+  
OUT A  
–IN A  
+IN A  
V–  
1
8
7
6
5
V+  
OUT B  
–IN B  
–IN A  
+IN A  
V–  
2
3
4
OUT B  
OP295  
6
Low Supply Current/ Per Am plifier: 150 A m ax  
–IN B  
+IN B  
5
+IN B  
APPLICATIONS  
Battery Operated Instrum entation  
Servo Am plifiers  
Actuator Drives  
Sensor Conditioners  
Pow er Supply Control  
OP295  
14-Lead Epoxy D IP  
(P Suffix)  
16-Lead SO (300 Mil)  
(S Suffix)  
16 OUT D  
15 –IN D  
OUT A  
1
2
3
4
5
6
7
8
OUT A  
1
2
14 OUT D  
–IN D  
–IN A  
+IN A  
V+  
–IN A  
+IN A  
13  
12 +IN D  
14  
+IN D  
3
4
5
13 V–  
OP495  
V+  
11  
10  
V–  
OP495  
12  
+IN B  
+IN C  
+IN B  
+IN C  
11  
10  
9
–IN C  
OUT C  
NC  
–IN B  
OUT B  
NC  
6
7
9
8
–IN B  
–IN C  
GENERAL D ESCRIP TIO N  
OUT B  
OUT C  
Rail-to-rail output swing combined with dc accuracy are the key  
features of the OP495 quad and OP295 dual CBCMOS opera-  
tional amplifiers. By using a bipolar front end, lower noise and  
higher accuracy than that of CMOS designs has been achieved.  
Both input and output ranges include the negative supply, pro-  
viding the user “zero-in/zero-out” capability. For users of 3.3  
volt systems such as lithium batteries, the OP295/OP495 is  
specified for three volt operation.  
NC = NO CONNECT  
that require driving inductive loads, such as transformers, in-  
creases in efficiency are also possible. Stability while driving  
capacitive loads is another benefit of this design over CMOS  
rail-to-rail amplifiers. T his is useful for driving coax cable or  
large FET transistors. T he OP295/OP495 is stable with loads in  
excess of 300 pF.  
Maximum offset voltage is specified at 300 µV for +5 volt opera-  
tion, and the open-loop gain is a minimum of 1000 V/mV. T his  
yields performance that can be used to implement high accuracy  
systems, even in single supply designs.  
T he OP295 and OP495 are specified over the extended indus-  
trial (–40°C to +125°C) temperature range. OP295s are avail-  
able in 8-pin plastic and ceramic DIP plus SO-8 surface mount  
packages. OP495s are available in 14-pin plastic and SO-16  
surface mount packages. Contact your local sales office for  
MIL-ST D-883 data sheet.  
T he ability to swing rail-to-rail and supply +15 mA to the load  
makes the OP295/OP495 an ideal driver for power transistors  
and “H” bridges. T his allows designs to achieve higher efficien-  
cies and to transfer more power to the load than previously pos-  
sible without the use of discrete components. For applications  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1995  
One Technology Way, P.O. Box 9106, Norw ood. MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
OP295/OP495–SPECIFICATIONS  
(@ V = +5.0 V, V = +2.5 V, T = +25؇C unless otherwise noted)  
S
CM  
A
ELECTRICAL CHARACTERISTICS  
P aram eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
VOS  
IB  
30  
8
300  
800  
20  
30  
±3  
µV  
µV  
nA  
nA  
nA  
nA  
–40°C T A +125°C  
–40°C T A +125°C  
–40°C T A +125°C  
Input Bias Current  
Input Offset Current  
IOS  
±1  
±5  
Input Voltage Range  
VCM  
0
+4.0  
V
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
CMRR  
AVO  
0 V VCM 4.0 V, –40°C T A +125°C  
RL = 10 k, 0.005 VOUT 4.0 V  
RL = 10 k, –40°C TA +125°C  
90  
1000  
500  
110  
10,000  
dB  
V/mV  
V/mV  
µV/°C  
Offset Voltage Drift  
VOS/T  
1
5
OUT PUT CHARACT ERIST ICS  
Output Voltage Swing High  
VOH  
RL = 100 kto GND  
RL = 10 kto GND  
IOUT = 1 mA, –40°C T A +125°C  
RL = 100 kto GND  
RL = 10 kto GND  
4.98  
4.90  
5.0  
4.94  
4.7  
0.7  
0.7  
90  
V
V
V
mV  
mV  
mV  
mA  
Output Voltage Swing Low  
Output Current  
VOL  
2
2
IOUT = 1 mA, –40°C T A +125°C  
IOUT  
±11  
±18  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
±1.5 V VS ±15 V  
±1.5 V VS ±15 V,  
–40°C T A +125°C  
90  
85  
110  
dB  
dB  
Supply Current Per Amplifier  
ISY  
VOUT = 2.5 V, RL = , –40°C TA +125°C  
150  
µA  
DYNAMIC PERFORMANCE  
Skew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
θO  
RL = 10 kΩ  
0.03  
75  
86  
V/µs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
1.5  
51  
<0.1  
µV p-p  
nV/Hz  
pA/Hz  
p-p  
Specifications subject to change without notice.  
ELECTRICAL CHARACTERISTICS (@ V = +3.0 V, V = +1.5 V, T = +25؇C unless otherwise noted)  
S
CM  
A
P aram eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
Input Bias Current  
VOS  
IB  
30  
8
500  
20  
µV  
nA  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection Ratio  
Large Voltage Gain  
IOS  
VCM  
CMRR  
AVO  
VOS/T  
±1  
±3  
+2.0  
nA  
V
dB  
V/mV  
µV/°C  
0
90  
0 V VCM 2.0 V, –40°C T A +125°C  
RL = 10 kΩ  
110  
750  
1
Offset Voltage Drift  
OUT PUT CHARACT ERIST ICS  
Output Voltage Swing High  
Output Voltage Swing Low  
VOH  
VOL  
RL = 10 kto GND  
RL = 10 kto GND  
2.9  
V
mV  
0.7  
2
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
±1.5 V VS ±15 V  
±1.5 V VS ±15 V,  
–40°C T A +125°C  
VOUT = 1.5 V, RL = , –40°C TA +125°C  
90  
85  
110  
dB  
dB  
µA  
Supply Current Per Amplifier  
150  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
θO  
RL = 10 kΩ  
0.03  
75  
85  
V/µs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
1.6  
53  
<0.1  
µV p-p  
nV/Hz  
pA/Hz  
p-p  
Specifications subject to change without notice.  
–2–  
REV. B  
OP295/OP495  
(@ V = ±15.0 V, T = +25؇C unless otherwise noted)  
S
A
ELECTRICAL CHARACTERISTICS  
P aram eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
VOS  
IB  
30  
7
300  
800  
20  
30  
±3  
µV  
µV  
nA  
nA  
–40°C T A +125°C  
VCM = 0 V  
VCM = 0 V, –40°C T A +125°C  
VCM = 0 V  
Input Bias Current  
Input Offset Current  
IOS  
±1  
nA  
VCM = 0 V, –40°C T A +125°C  
±5  
nA  
Input Voltage Range  
VCM  
CMRR  
AVO  
–15  
90  
1000  
+13.5  
V
dB  
V/mV  
µV/°C  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Offset Voltage Drift  
–15.0 V VCM +13.5 V, –40°C TA +125°C  
RL = 10 kΩ  
110  
4000  
1
VOS/T  
OUT PUT CHARACT ERIST ICS  
Output Voltage Swing High  
VOH  
VOL  
IOUT  
RL = 100 kto GND  
RL = 10 kto GND  
RL = 100 kto GND  
RL = 10 kto GND  
14.95  
14.80  
V
V
V
V
Output Voltage Swing Low  
Output Current  
–14.95  
–14.85  
±15  
±25  
mA  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = ±1.5 V to ±15 V  
90  
85  
110  
dB  
dB  
VS = ±1.5 V to ±15 V, –40°C TA +125°C  
VO = 0 V, RL = , VS = ±18 V,  
–40°C T A +125°C  
Supply Current  
175  
µA  
Supply Voltage Range  
VS  
+3 (±1.5)  
+36 (±18)  
V
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
θO  
RL = 10 kΩ  
0.03  
85  
83  
V/µs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f =1 kHz  
1.25  
45  
µV p-p  
nV/Hz  
Current Noise Density  
in  
f = 1 kHz  
<0.1  
pA/Hz  
Specifications subject to change without notice.  
(@ V = +5.0 V, V = 2.5 V, T = +25؇C unless otherwise noted)  
WAFER TEST LIMITS  
P aram eter  
S
CM  
A
Sym bol  
Conditions  
Lim it  
Units  
Offset Voltage  
Input Bias Current  
Vos  
IB  
IOS  
VCM  
CMRR  
PSRR  
AVO  
VOH  
ISY  
300  
20  
±2  
0 to +4  
90  
90  
1000  
4.9  
150  
µV max  
nA max  
nA max  
V min  
dB min  
µV/V  
V/mV min  
V min  
µA max  
Input Offset Current  
Input Voltage Range1  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Output Voltage Swing High  
Supply Current Per Amplifier  
0 V VCM 4 V  
±1.5 V VS ±15 V  
RL = 10 kΩ  
RL = 10 kΩ  
VOUT = 2.5 V, RL = ∞  
NOT ES  
Electrical tests and wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard  
product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.  
1Guaranteed by CMRR test.  
O RD ERING GUID E  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model  
Model  
OP295GP  
OP295GS  
OP295GBC +25°C  
–40°C to +125°C 8-Pin Plastic DIP N-8  
–40°C to +125°C 8-Pin SOIC SO-8  
OP495GP  
OP495GS  
OP495GBC +25°C  
–40°C to +125°C 14-Pin Plastic DIP N-14  
–40°C to +125°C 16-Pin SOL R-16  
DICE  
DICE  
REV. B  
–3–  
OP295/OP495  
ABSO LUTE MAXIMUM RATINGS1  
D ICE CH ARACTERISTICS  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±18 V  
Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±18 V  
Differential Input Voltage2. . . . . . . . . . . . . . . . . . . . . . . +36 V  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . Indefinite  
Storage T emperature Range  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating T emperature Range  
OP295G, OP495G . . . . . . . . . . . . . . . . . . . –40°C to +125°C  
Junction T emperature Range  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature Range (Soldering, 60 Sec) . . . . . . . +300°C  
3
P ackage Type  
JC  
Unit  
JA  
8-Pin Plastic DIP (P)  
8-Pin SOIC (S)  
14-Pin Plastic DIP (P)  
16-Pin SO (S)  
103  
158  
83  
43  
43  
39  
30  
°C/W  
°C/W  
°C/W  
°C/W  
98  
OP295 Die Size 0.066 × 0.080 inch, 5,280 sq. m ils.  
Substrate (Die Backside) Is Connected to V+.  
Transistor Count, 74.  
NOT ES  
1Absolute maximum ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
2For supply voltages less than ±18 V, the absolute maximum input voltage is equal  
to the supply voltage.  
3θJA is specified for the worst case conditions, i.e., θJA is specified for device in socket  
for cerdip, P-DIP, and LCC packages; θJA is specified for device soldered in circuit  
board for SOIC package.  
OP495 Die Size 0.113 × 0.083 inch, 9,380 sq. m ils.  
Substrate (Die Backside) Is Connected to V+.  
Transistor Count, 196.  
Typical Characteristics  
140  
15.2  
VS = ±15V  
RL = 100k  
15.0  
120  
14.8  
14.6  
14.4  
14.2  
RL = 10k  
RL = 2k  
100  
80  
VS = +36V  
VS = +5V  
VS = +3V  
–14.4  
–14.6  
–14.8  
–15.0  
–15.2  
60  
RL = 2k  
RL = 10k  
RL = 100k  
40  
20  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE – °C  
TEMPERATURE – °C  
Supply Current Per Am plifier vs. Tem perature  
Output Voltage Swing vs. Tem perature  
–4–  
REV. B  
Typical Characteristics–OP295/OP495  
5.10  
3.10  
V
= +5V  
V
= +3V  
S
S
5.00  
4.90  
4.80  
4.70  
4.60  
4.50  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
R
= 100k  
= 10k  
L
R
R
= 100k  
= 10k  
L
R
L
L
R
= 2k  
L
R
= 2k  
L
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE – °C  
TEMPERATURE – °C  
Output Voltage Swing vs. Tem perature  
Output Voltage Swing vs. Tem perature  
200  
175  
150  
125  
100  
75  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
BASED ON 1200 OP AMPS  
BASED ON 600 OP AMPS  
VS = +5V  
V
T
= +5V  
S
A
= +25°C  
TA = +25°C  
50  
25  
0
–100  
0
–50  
0
50  
100  
150  
200  
250  
300  
–250 –200 –150 –100 –50  
0
50  
100 150 200 250  
INPUT OFFSET VOLTAGE – µV  
INPUT OFFSET VOLTAGE – µV  
OP295 Input Offset (VOS) Distribution  
OP495 Input Offset (VOS) Distribution  
250  
225  
200  
175  
150  
125  
100  
75  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
BASED ON 1200 OP AMPS  
BASED ON 600 OP AMPS  
VS = +5V  
V
= +5V  
S
–40° ≤ T +85°C  
A
–40° ≤ TA +85°C  
50  
25  
0
0
0
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
0
0.4  
0.8  
1.2  
T
1.6 2.0  
µV/°C  
OS  
2.4  
2.8  
3.2  
– V  
TC – VOS µV/°C  
C
OP295 TC–VOS Distribution  
OP495 TC–VOS Distribution  
REV. B  
–5–  
OP295/OP495–Typical Characteristics  
100  
20  
V
V
= ±15V  
= ±10V  
S
V
= +5V  
S
O
16  
12  
8
R
= 100k  
L
10  
R
= 10k  
L
4
R
= 2k  
L
1
–50  
0
–50  
0
75  
100  
25  
50  
–25  
–25  
0
25  
50  
75  
100  
TEMPERATURE – °C  
TEMPERATURE – °C  
Open-Loop Gain vs. Tem perature  
Input Bias Current vs. Tem perature  
12  
40  
35  
30  
25  
20  
15  
10  
5
V
S
= +5V  
= +4V  
SOURCE  
V
O
10  
8
V
= ±15V  
SINK  
S
SOURCE  
R
= 100k  
= 10k  
L
6
R
L
SINK  
4
V
= +5V  
S
R
= 2k  
L
2
0
–50  
0
–50  
–25  
0
25  
50  
75  
100  
–25  
0
25  
50  
75  
100  
TEMPERATURE – °C  
TEMPERATURE – °C  
Output Current vs. Tem perature  
Open-Loop Gain vs. Tem perature  
1V  
100mV  
10mV  
1mV  
SOURCE  
V
= +5V  
S
T
= +25°C  
A
SINK  
100µV  
1µA  
10µA  
100µA  
1mA  
10mA  
LOAD CURRENT  
Output Voltage to Supply Rail vs. Load Current  
–6–  
REV. B  
OP295/OP495  
0.1µF  
AP P LICATIO NS  
Rail-to-Rail Applications Infor m ation  
LED  
T he OP295/OP495 has a wide common-mode input range ex-  
tending from ground to within about 800 mV of the positive  
supply. T here is a tendency to use the OP295/OP495 in buffer  
applications where the input voltage could exceed the common-  
mode input range. T his may initially appear to work because of  
the high input range and rail-to-rail output range. But above the  
common-mode input range the amplifier is, of course, highly  
nonlinear. For this reason it is always required that there be  
some minimal amount of gain when rail-to-rail output swing is  
desired. Based on the input common-mode range this gain  
should be at least 1.2.  
R1  
10µF  
Q2  
2N3906  
3
5
R6  
VIN  
10Ω  
2
6
MAT- 03  
Q1  
1
Q2  
R5  
10kΩ  
C2  
10µF  
7
2
3
8
VOUT  
R7  
OP295/  
OP495  
1
510Ω  
4
C1  
1500pF  
R2  
27kΩ  
R3  
R4  
Low D r op-O ut Refer ence  
R8  
100Ω  
T he OP295/OP495 can be used to gain up a 2.5 V or other low  
voltage reference to 4.5 volts for use with high resolution A/D  
converters that operate from +5 volt only supplies. T he circuit  
in Figure 1 will supply up to 10 mA. Its no-load drop-out volt-  
age is only 20 mV. T his circuit will supply over 3.5 mA with a  
+5 volt supply.  
Figure 2. Low Noise Single Supply Pream plifier  
T he input noise is controlled by the MAT 03 transistor pair and  
the collector current level. Increasing the collector current re-  
duces the voltage noise. T his particular circuit was tested with  
1.85 mA and 0.5 mA of current. Under these two cases, the in-  
put voltage noise was 3.1 nV/Hz and 10 nV/Hz, respectively.  
T he high collector currents do lead to a tradeoff in supply cur-  
rent, bias current, and current noise. All of these parameters will  
increase with increasing collector current. For example, typically  
the MAT 03 has an hFE = 165. T his leads to bias currents of  
11 µA and 3 µA, respectively. Based on the high bias currents,  
this circuit is best suited for applications with low source imped-  
ance such as magnetic pickups or low impedance strain gages.  
Furthermore, a high source impedance will degrade the noise  
performance. For example, a 1 kresistor generates 4 nV/Hz  
of broadband noise, which is already greater than the noise of  
the preamp.  
16k  
+5V  
0.001µF  
+5V  
20k  
10Ω  
VOUT = 4.5V  
2
REF43  
4
6
1/2  
OP295/  
OP495  
1 TO 10µF  
Figure 1. 4.5 Volt, Low Drop-Out Reference  
Low Noise, Single Supply P r eam plifier  
Most single supply op amps are designed to draw low supply  
current, at the expense of having higher voltage noise. T his  
tradeoff may be necessary because the system must be powered  
by a battery. However, this condition is worsened because all  
circuit resistances tend to be higher; as a result, in addition to  
the op amps voltage noise, Johnson noise (resistor thermal  
noise) is also a significant contributor to the total noise of the  
system.  
T he collector current is set by R1 in combination with the LED  
and Q2. T he LED is a 1.6 V “Zener” that has a temperature co-  
efficient close to that of Q2’s base-emitter junction, which pro-  
vides a constant 1.0 V drop across R1. With R1 equal to 270 ,  
the tail current is 3.7 mA and the collector current is half that,  
or 1.85 mA. T he value of R1 can be altered to adjust the collec-  
tor current. Whenever R1 is changed, R3 and R4 should also be  
adjusted. T o maintain a common-mode input range that in-  
cludes ground, the collectors of the Q1 and Q2 should not go  
above 0.5 V—otherwise they could saturate. T hus, R3 and R4  
have to be small enough to prevent this condition. T heir values  
and the overall performance for two different values of R1 are  
summarized in T able I. Lastly, the potentiometer, R8, is needed  
to adjust the offset voltage to null it to zero. Similar perfor-  
mance can be obtained using an OP90 as the output amplifier  
with a savings of about 185 µA of supply current. However, the  
output swing will not include the positive rail, and the band-  
width will reduce to approximately 250 Hz.  
T he choice of monolithic op amps that combine the characteris-  
tics of low noise and single supply operation is rather limited.  
Most single supply op amps have noise on the order of 30 nV/Hz  
to 60 nV/Hz and single supply amplifiers with noise below  
5 nV/Hz do not exist.  
In order to achieve both low noise and low supply voltage opera-  
tion, discrete designs may provide the best solution. T he circuit  
on Figure 2 uses the OP295/OP495 rail-to-rail amplifier and a  
matched PNP transistor pair—the MAT 03—to achieve zero-in/  
zero-out single supply operation with an input voltage noise of  
3.1 nV/Hz at 100 Hz. R5 and R6 set the gain of 1000, making  
this circuit ideal for maximizing dynamic range when amplifying  
low level signals in single supply applications. The OP295/OP495  
provides rail-to-rail output swings, allowing this circuit to oper-  
ate with 0 to 5 volt outputs. Only half of the OP295/OP495 is  
used, leaving the other uncommitted op amp for use elsewhere.  
REV. B  
–7–  
OP295/OP495  
Table I. Single Supply Low Noise P ream p P erform ance  
unless this was a low distortion application such as audio. If this  
is used to drive inductive loads, be sure to add diode clamps to  
protect the bridge from inductive kickback.  
IC = 1.85 m A  
IC = 0.5 m A  
R1  
270 Ω  
1.0 kΩ  
D ir ect Access Ar r angem ent  
R3, R4  
200 Ω  
910 Ω  
OP295/OP495 can be used in a single supply Direct Access Ar-  
rangement (DAA) as is shown an in Figure 4. T his figure shows  
a portion of a typical DM capable of operating from a single  
+5 volt supply and it may also work on +3 volt supplies with  
minor modifications. Amplifiers A2 and A3 are configured so  
that the transmit signal T XA is inverted by A2 and is not in-  
verted by A3. T his arrangement drives the transformer differen-  
tially so that the drive to the transformer is effectively doubled  
over a single amplifier arrangement. T his application takes ad-  
vantage of the OP295/OP495’s ability to drive capacitive loads,  
and to save power in single supply applications.  
en @ 100 Hz  
en @ 10 Hz  
ISY  
3.15 nV/Hz  
4.2 nV/Hz  
4.0 mA  
11 µA  
1 kHz  
1000  
8.6 nV/Hz  
10.2 nV/Hz  
1.3 mA  
3 µA  
1 kHz  
1000  
IB  
Bandwidth  
Closed-Loop Gain  
D r iving H eavy Loads  
T he OP295/OP495 is well suited to drive loads by using a  
power transistor, Darlington or FET to increase the current to  
the load. T he ability to swing to either rail can assure that the  
device is turned on hard. T his results in more power to the load  
and an increase in efficiency over using standard op amps with  
their limited output swing. Driving power FET s is also possible  
with the OP295/OP495 because of its ability to drive capacitive  
loads of several hundred picofarads without oscillating.  
390pF  
37.4kΩ  
20kΩ  
0.1µF  
OP295/  
OP495  
A1  
RXA  
0.0047µF  
Without the addition of external transistors the OP295/OP495  
can drive loads in excess of ±15 mA with ±15 or +30 volt  
supplies. T his drive capability is somewhat decreased at lower  
supply voltages. At ±5 volt supplies the drive current is ±11 mA.  
3.3kΩ  
20kΩ  
475Ω  
OP295/  
OP495  
A2  
22.1kΩ  
Driving motors or actuators in two directions in a single supply  
application is often accomplished using an “H” bridge. T he  
principle is demonstrated in Figure 3a. From a single +5 volt  
supply this driver is capable of driving loads from 0.8 V to 4.2 V  
in both directions. Figure 3b shows the voltages at the inverting  
and noninverting outputs of the driver. There is a small crossover  
glitch that is frequency dependent and would not cause problems  
0.1µF  
20kΩ  
750pF  
TXA  
1:1  
0.033µF  
20kΩ  
20kΩ  
OP295/  
OP495  
A3  
2.5V REF  
+5V  
Figure 4. Direct Access Arrangem ent  
2N2222  
10k  
2N2222  
A Single Supply Instr um entation Am plifier  
T he OP295/OP495 can be configured as a single supply instru-  
OUTPUTS  
0 V 2.5V  
5k  
IN  
mentation amplifier as in Figure 5. For our example, VREF is set  
V+  
1.67V  
10k  
equal to  
and VO is measured with respect to VREF. T he in-  
2N2907  
2
2N2907  
10k  
put common-mode voltage range includes ground and the out-  
put swings to both rails.  
V+  
1/2  
OP295/  
5
6
8
4
OP495  
1/2  
VIN  
7
Figure 3a. “H” Bridge  
VO  
OP295/  
OP495  
3
2
1
100  
90  
R1  
R2  
R4  
100k  
R3  
20k  
20k  
100k  
VREF  
RG  
200k  
RG  
V
IN + VREF  
VO  
= 5 +  
(
)
10  
0%  
Figure 5. Single Supply Instrum entation Am plifier  
2V  
2V  
1ms  
Resistor RG sets the gain of the instrumentation amplifier. Mini-  
mum gain is 6 (with no RG). All resistors should be matched in  
absolute value as well as temperature coefficient to maximize  
Figure 3b. “H” Bridge Outputs  
–8–  
REV. B  
OP295/OP495  
common-mode rejection performance and minimize drift. T his  
instrumentation amplifier can operate from a supply voltage as  
low as 3 volts.  
T o calibrate, immerse the thermocouple measuring junction in a  
0°C ice bath, adjust the 500 Zero Adjust pot to zero volts out.  
T hen immerse the thermocouple in a 250°C temperature bath  
or oven and adjust the Scale Adjust pot for an output voltage of  
2.50 V, which is equivalent to 250°C. Within this temperature  
range, the K-type thermocouple is quite accurate and produces  
a fairly linear transfer characteristic. Accuracy of ±3°C is achiev-  
able without linearization.  
A Single Supply RTD Ther m om eter Am plifier  
T his RT D amplifier takes advantage of the rail-to-rail swing of  
the OP295/OP495 to achieve a high bridge voltage in spite of a  
low 5 V supply. T he OP295/OP495 amplifier servos a constant  
200 µA current to the bridge. T he return current drops across  
the parallel resistors 6.19 kand the 2.55 M, developing a  
voltage that is servoed to 1.235 V, which is established by the  
AD589 bandgap reference. T he 3-wire RT D provides an equal  
line resistance drop in both 100 legs of the bridge, thus im-  
proving the accuracy.  
Even if the battery voltage is allowed to decay to as low as 7 volts,  
the rail-to-rail swing allows temperature measurements to  
700°C. However, linearization may be necessary for tempera-  
tures above 250°C where the thermocouple becomes rather  
nonlinear. T he circuit draws just under 500 µA supply current  
from a 9 V battery.  
T he AMP04 amplifies the differential bridge signal and converts  
it to a single-ended output. T he gain is set by the series resis-  
tance of the 332 resistor plus the 50 potentiometer. T he  
gain scales the output to produce a 4.5 V full scale. T he  
0.22 µF capacitor to the output provides a 7 Hz low-pass filter  
to keep noise at a minimum.  
A 5 V O nly, 12-Bit D AC That Swings 0 V to 4.095 V  
Figure 8 shows a complete voltage output DAC with wide out-  
put voltage swing operating off a single +5 V supply. T he serial  
input 12-bit D/A converter is configured as a voltage output  
device with the 1.235 V reference feeding the current output pin  
(IOUT ) of the DAC. T he VREF which is normally the input now  
becomes the output.  
ZERO ADJ  
200Ω  
50Ω  
10-TURNS  
+5V  
7
T he output voltage from the DAC is the binary weighted volt-  
age of the reference, which is gained up by the output amplifier  
such that the DAC has a 1 mV per bit transfer function.  
332Ω  
26.7k  
0.5%  
26.7k  
0.5%  
1
3
2
0.22µF  
8
VO  
AMP04  
6
+5V  
+5V  
4.5V = 450°C  
0V = 0°C  
5
100Ω  
RTD  
1
1/2  
4
100Ω  
0.5%  
8
OP295/  
OP495  
+5V  
8
R1  
2
1
V
17.8k  
DD  
R
FB  
2
3
D
4096  
1.235  
37.4k  
3
I
3
2
V
=
(4.096V)  
V
+5V  
O
REF  
+1.23V  
DAC8043  
OUT  
6.19k  
1%  
OP295/  
OP495  
1
2.55M  
1%  
AD589  
GND CLK SRI LD  
4
AD589  
4
6
5
7
R4  
100kΩ  
Figure 6. Low Power RTD Am plifier  
R2  
41.2k  
DIGITAL  
A Cold Junction Com pensated, Batter y P ower ed  
Ther m ocouple Am plifier  
CONTROL  
R3  
5kΩ  
TOTAL POWER DISSIPATION = 1.6mW  
T he OP295/OP495s 150 µA quiescent current per amplifier  
consumption makes it useful for battery powered temperature  
measuring instruments. T he K-type thermocouple terminates  
into an isothermal block where the terminated junctions’ ambi-  
ent temperatures can be continuously monitored and corrected  
by summing an equal but opposite thermal EMF to the ampli-  
fier, thereby canceling the error introduced by the cold junctions.  
Figure 8. A 5 Volt 12-Bit DAC with 0 V to +4.095 Output  
Swing  
4–20 m A Cur r ent Loop Tr ansm itter  
Figure 9 shows a self powered 4–20 mA current loop transmit-  
ter. T he entire circuit floats up from the single supply (12 V to  
36 V) return. T he supply current carries the signal within the 4  
to 20 mA range. T hus the 4 mA establishes the baseline  
24.9k  
1.235V  
AD589  
ISOTHERMAL  
9V  
SCALE  
BLOCK  
NULL ADJ  
6
2
24.3k  
1%  
REF02  
GND  
4
7.15k  
ADJUST  
1%  
1N914  
20k  
1.33MΩ  
100k  
10-TURN  
SPAN ADJ  
4.99k  
1%  
1.5M  
1%  
24.9k  
1%  
5V  
ALUMEL  
10kΩ  
10-TURN  
182k 1.21M  
100Ω  
8
2
3
1%  
1%  
+12V  
TO  
8
4
AL  
COLD  
JUNCTIONS  
OP295/  
OP495  
4
VIN  
0 + 3V  
3
2
500Ω  
10-TURN  
V
1
220Ω  
O
+36V  
1
0V = 0°C  
5V = 500°C  
ZERO  
ADJUST  
CR  
1/2  
OP295/  
OP495  
2N1711  
CHROMEL  
K-TYPE  
475Ω  
1%  
2.1k  
1%  
4–20mA  
RL  
100Ω  
THERMOCOUPLE  
40.7µV/°C  
220pF  
100k  
1%  
100Ω  
1%  
HP  
5082-2800  
Figure 7. Battery Powered, Cold-J unction Com pensated  
Therm ocouple Am plifier  
Figure 9. 4–20 m A Current Loop Transm itter  
REV. B  
–9–  
OP295/OP495  
current budget with which the circuit must operate. T his circuit  
consumes only 1.4 mA maximum quiescent current, making 2.6  
mA of current available to power additional signal conditioning  
circuitry or to power a bridge circuit.  
current limit loop. At this point A2’s lower output resistance  
dominates the drive to the power MOSFET transistor, thereby  
effectively removing the A1 voltage regulation loop from the  
circuit.  
A 3 Volt Low-D r opout Linear Voltage Regulator  
If the output current greater than 1 amp persists, the current  
limit loop forces a reduction of current to the load, which causes  
a corresponding drop in output voltage. As the output voltage  
drops, the current limit threshold also drops fractionally, result-  
ing in a decreasing output current as the output voltage de-  
creases, to the limit of less than 0.2 A at 1 V output. T his  
“fold-back” effect reduces the power dissipation considerably  
during a short circuit condition, thus making the power supply  
far more forgiving in terms of the thermal design requirements.  
Small heat sinking on the power MOSFET can be tolerated.  
Figure 10 shows a simple 3 V voltage regulator design. T he  
regulator can deliver 50 mA load current while allowing a 0.2 V  
dropout voltage. T he OP295/OP495’s rail-to-rail output swing  
handily drives the MJE350 pass transistor without requiring spe-  
cial drive circuitry. At no load, its output can swing less than the  
pass transistor’s base-emitter voltage, turning the device nearly  
off. At full load, and at low emitter-collector voltages, the tran-  
sistor beta tends to decrease. T he additional base current is eas-  
ily handled by the OP295/OP495 output.  
T he amplifier servos the output to a constant voltage, which  
feeds a portion of the signal to the error amplifier.  
T he OP295s rail-to-rail swing exacts higher gate drive to  
the power MOSFET , providing a fuller enhancement to the  
transistor. T he regulator exhibits 0.2 V dropout at 500 mA of  
load current. At 1 amp output, the dropout voltage is typically  
5.6 volts.  
Higher output current, to 100 mA, is achievable at a higher  
dropout voltage of 3.8 V.  
IL < 50mA  
MJE 350  
RSENSE  
0.1  
1/4W  
IO (NORM) = 0.5A  
IO (MAX) = 1A  
VO  
100µF  
IRF9531  
44.2k  
S
D
VIN  
5V TO 3.2V  
+5V VO  
1%  
8
3
2
G
210k  
1%  
205k  
1%  
6V  
1/2  
OP295/  
OP495  
1
30.9k  
1%  
8
5
6
4
A2  
7
1N4148  
1000pF  
1/2  
OP295/  
OP495  
45.3k  
1%  
45.3k  
1%  
1.235V  
AD589  
100k  
5%  
0.01µF  
43k  
3
2
124k  
1%  
A1  
124k  
1
1%  
1/2  
OP295/  
OP495  
4
Figure 10. 3 V Low Dropout Voltage Regulator  
Figure 11 shows the regulator’s recovery characteristic when its  
output underwent a 20 mA to 50 mA step current change.  
2.500V  
REF43  
2
6
4
2V  
100  
Figure 12. Low Dropout, 500 m A Voltage Regulator with  
Fold-Back Current Lim iting  
50mA  
90  
STEP  
CURRENT  
CONTROL  
Squar e Wave O scillator  
WAVEFORM  
20mA  
T he circuit in Figure 13 is a square wave oscillator (note the  
positive feedback). T he rail-to-rail swing of the OP295/OP495  
helps maintain a constant oscillation frequency even if the sup-  
ply voltage varies considerably. Consider a battery powered sys-  
tem where the voltages are not regulated and drop over time.  
T he rail-to-rail swing ensures that the noninverting input sees  
the full V+/2, rather than only a fraction of it.  
OUTPUT  
10  
0%  
20mV  
1ms  
Figure 11. Output Step Load Current Recovery  
T he constant frequency comes from the fact that the 58.7 kΩ  
feedback sets up Schmitt T rigger threshold levels that are di-  
rectly proportional to the supply voltage, as are the RC charge  
voltage levels. As a result, the RC charge time, and therefore the  
frequency, remains constant independent of supply voltage. T he  
slew rate of the amplifier limits the oscillation frequency to a  
maximum of about 800 Hz at a +5 V supply.  
Low-D r opout, 500 m A Voltage Regulator with Fold-Back  
Cur r ent Lim iting  
Adding a second amplifier in the regulation loop as shown in  
Figure 12 provides an output current monitor as well as fold-  
back current limiting protection.  
Amplifier A1 provides error amplification for the normal voltage  
regulation loop. As long as the output current is less than 1 am-  
pere, amplifier A2’s output swings to ground, reverse biasing the  
diode and effectively taking itself out of the circuit. However, as  
the output current exceeds 1 amp, the voltage that develops  
across the 0.1 sense resistor forces the amplifier A2’s output  
to go high, forward-biasing the diode, which in turn closes the  
Single Supply D iffer ential Speaker D r iver  
Connected as a differential speaker driver, the OP295/OP495  
can deliver a minimum of 10 mA to the load. With a 600 Ω  
load, the OP295/OP495 can swing close to 5 volts peak-to-peak  
across the load.  
–10–  
REV. B  
OP295/OP495  
V+  
R2  
2
1
1
5
6
7
8
9
8
9
5
2
2
3
3
6
5E3  
CIN  
IOS  
D1  
D2  
EOS  
Q1  
Q2  
R3  
2E-12  
0.5E-9  
DZ  
100k  
58.7k  
DZ  
POLY (1) (31,39) 30E-6 0.024  
4
4
8
4
3
2
5
7
QP  
QP  
1/2  
1
FREQ OUT  
1
OP295/  
OP495  
50 25.8E3  
50 25.8E3  
fOSC  
=
< 350Hz @ V+ = +5V  
RC  
100k  
R4  
*
* GAIN ST AGE  
*
R
C
R7  
G1  
EREF 98  
R5  
R6  
*
10 98 270E6  
98 10 POLY (1) (9,8) –4.26712E-9 27.8E-6  
(39, 0) 1  
99 39 100E3  
39 50 100E3  
Figure 13. Square Wave Oscillator Has Stable Frequency  
Regardless of Supply Changes  
0
90.9k  
* COMMON MODE ST AGE  
*
10k  
V+  
ECM 30 98 POLY(2) (1,39) (2,39) 0 0.5 0.5  
2.2µF  
R12  
R13  
*
30 31 1E6  
31 98 100  
1/4  
V
IN  
OP295/  
OP495  
10k  
100k  
SPEAKER  
* OUT PUT ST AGE  
*
I2  
V2  
18 50 1.59E-6  
99 12 DC 2.2763  
10 14 50 QNA 1.0  
14 50 33  
15 10 13 13 MN L=9E-6 W=102E-6 AD=15E-10 AD=15E-10  
13 10 50 50 MN L=9E-6 W=50E-6 AD=75E-11 AS=75E-11  
10 22 DX  
1/4  
1/4  
OP295/  
OP495  
OP295/  
OP495  
Q4  
R11  
M3  
M4  
D8  
V3  
M2  
Q5  
Q6  
R8  
20k  
20k  
V+  
22 50 DC  
6
Figure 14. Single Supply Differential Speaker Driver  
20 10 14 14 MN L=9E-6 W=2000E-6 AD=30E-9 AS=30E-9  
17 17 99 QPA 1.0  
18 17 99 QPA 4.0  
18 99 2.2E6  
18 19 99 QPA 1.0  
H igh Accur acy, Single-Supply, Low P ower Com par ator  
T he OP295/OP495 makes an accurate open-loop comparator.  
With a single +5 V supply, the offset error is less than 300 µV. Fig-  
ure 15 shows the OP295/OP495s response time when operating  
open-loop with 4 mV overdrive. It exhibits a 4 ms response time at  
the rising edge and a 1.5 ms response time at the falling edge.  
Q7  
R9  
99 19  
8
C2  
M6  
M1  
D4  
V4  
18 99 20E-12  
15 12 17 99 MP L=9E-6 W=27E-6 AD=405E-12 AS=405E-12  
20 18 19 99 MP L=9E-6 W=2000E-6 AD=30E-9 AS=30E-9  
21 18 DX  
99 21 DC  
10 11 6E3  
6
1V  
R10  
C3  
100  
90  
11 20 50E-12  
INPUT  
.MODEL QNA NPN (IS=1.19E-16 BF=253 NF=0.99 VAF=193 IKF=2.76E-3  
+ ISE=2.57E-13 NE=5 BR=0.4 NR=0.988 VAR=15 IKR=1.465E-4  
+ ISC=6.9E-16 NC=0.99 RB=2.0E3 IRB=7.73E-6 RBM=132.8 RE=4  
RC=209  
(5mV OVERDRIVE  
@ OP295 INPUT)  
+ CJE=2.1E-13 VJE=0.573 MJE=0.364 FC=0.5 CJC=1.64E-13 VJC=0.534  
MJC=0.5  
OUTPUT  
+ CJS=1.37E-12 VJS=0.59 MJS=0.5 T F=0.43E-9 PT F=30)  
.MODEL QPA PNP (IS=5.21E-17 BF=131 NF=0.99 VAF=62 IKF=8.35E-4  
+ ISE=1.09E-14 NE=2.61 BR=0.5 NR=0.984 VAR=15 IKR=3.96E-5  
+ ISC=7.58E-16 NC=0.985 RB=1.52E3 IRB=1.67E-5 RBM=368.5 RE=6.31  
RC=354.4  
10  
0%  
2V  
5ms  
+ CJE=1.1E-13 VJE=0.745 MJE=0.33 FC=0.5 CJC=2.37E-13 VJC=0.762  
MJC=0.4  
Figure 15. Open-Loop Com parator Response Tim e with  
5 m V Overdrive  
+ CJS =7.11E-13 VJS=0.45 MJS=0.412 T F=1.0E-9 PT F=30)  
.MODEL MN NMOS (LEVEL=3 VT O=1.3 RS=0.3 RD=0.3  
+ TOX=8.5E-8 LD=1.48E-6 NSUB=1.53E16 UO=650 DELTA=10 VMAX=2E5  
+ XJ=1.75E-6 KAPPA=0.8 ET A=0.066 T HET A=0.01 T PG=1 CJ=2.9E-4  
PB=0.837  
O P 295/O P 495 SP ICE MO D EL Macr o-Model  
* Node Assignments  
*
*
Noninverting Input  
Inverting Input  
+ MJ=0.407 CJSW=0.5E-9 MJSW=0.33)  
*
*
Positive Supply  
Negative Supply  
.MODEL MP PMOS (LEVEL=3 VT O=–1.1 RS=0.7 RD=0.7  
+ T OX=9.5E-8 LD=1.4E-6 NSUB=2.4E15 UO=650 DELT A=5.6 VMAX=1E5  
+ XJ=1.75E-6 KAPPA=1.7 ET A=0.71 T HET A=5.9E-3 T PG=–1 CJ=1.55E-4  
PB=0.56  
+ MJ=0.442 CJSW=0.4E-9 MJSW=0.33)  
.MODEL DX D(IS=1E-15)  
*
Output  
*
*
.SUBCKT OP295  
1
2
99  
50  
20  
*
.MODEL DZ D (IS=1E-15, BV=7)  
.MODEL QP PNP (BF=125)  
* INPUT ST AGE  
*
.ENDS  
I1  
R1  
99  
1
4
6
2E-6  
5E3  
REV. B  
–11–  
OP295/OP495  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm)  
8-Lead Narrow-Body SO (S Suffix)  
8 Lead P lastic D IP (P Suffix)  
8
1
5
4
0.280 (7.11)  
0.240 (6.10)  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.070 (1.77)  
0.045 (1.15)  
0.2440 (6.20)  
0.2284 (5.80)  
0.325 (8.25)  
0.300 (7.62)  
0.430 (10.92)  
0.348 (8.84)  
0.015  
0.1968 (5.00)  
0.1890 (4.80)  
0.210  
(5.33)  
MAX  
0.0196 (0.50)  
0.0099 (0.25)  
0.195 (4.95)  
0.115 (2.93)  
(0.381) TYP  
x 45  
°
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
0.130  
(3.30)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
0.160 (4.06)  
0.115 (2.93)  
8
0
°
°
0.0500 (1.27)  
0.0160 (0.41)  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
SEATING  
0°- 15°  
0.022 (0.558)  
0.014 (0.356)  
0.100  
(2.54)  
BSC  
PLANE  
16-Lead Wide-Body SO (S Suffix)  
14-Lead P lastic D IP (P Suffix)  
14  
1
8
0.280 (7.11)  
0.240 (6.10)  
9
16  
PIN 1  
0.2992 (7.60)  
0.2914 (7.40)  
7
0.325 (8.25)  
0.300 (7.62)  
0.795 (20.19)  
0.725 (18.42)  
0.4193 (10.65)  
PIN 1  
0.3937 (10.00)  
8
0.015  
(0.381)  
MIN  
1
0.210  
(5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.160 (4.06)  
0.115 (2.92)  
0.1043 (2.65)  
0.4133 (10.50)  
0.0926 (2.35)  
0.3977 (10.10)  
0.0291 (0.74)  
0.0098 (0.25)  
15°  
0°  
x 45  
°
SEATING  
PLANE  
0.022 (0.558)  
0.014 (0.36)  
0.070 (1.77)  
0.045 (1.15)  
0.100  
(2.54)  
BSC  
0.0500 (1.27)  
0.0157 (0.40)  
8
0
°
°
0.0118 (0.30)  
0.0040 (0.10)  
0.0500 (1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0125 (0.32)  
0.0091 (0.23)  
–12–  
REV. B  

相关型号:

OP495GP

DUAL/QUAD RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
ADI

OP495GPZ

Dual/Quad Rail-to-Rail Operational Amplifiers
ADI

OP495GS

DUAL/QUAD RAIL-TO-RAIL OPERATIONAL AMPLIFIERS
ADI

OP495GS-REEL

Dual/Quad Rail-to-Rail Operational Amplifiers
ADI

OP495GS-REEL7

IC QUAD OP-AMP, 800 uV OFFSET-MAX, 0.085 MHz BAND WIDTH, PDSO16, MS-013AA, SOIC-16, Operational Amplifier
ADI

OP495GSZ

Dual/Quad Rail-to-Rail Operational Amplifiers
ADI

OP495GSZ-REEL

Dual/Quad Rail-to-Rail Operational Amplifiers
ADI

OP496

Micropower, Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP496GBC

IC QUAD OP-AMP, 300 uV OFFSET-MAX, 0.35 MHz BAND WIDTH, UUC14, 0.062 X 0.092 INCH, DIE-14, Operational Amplifier
ADI

OP496GP

Micropower, Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP496GRU

Voltage-Feedback Operational Amplifier
ETC

OP496GS

Micropower, Rail-to-Rail Input and Output Operational Amplifiers
ADI