OP497 [ADI]

Precision Picoampere Input Current Quad Operational Amplifier; 精密Picoampere输入电流四路运算放大器
OP497
型号: OP497
厂家: ADI    ADI
描述:

Precision Picoampere Input Current Quad Operational Amplifier
精密Picoampere输入电流四路运算放大器

运算放大器
文件: 总12页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Picoampere Input Current  
Quad Operational Amplifier  
a
OP497  
FEATURES  
PIN CONNECTIONS  
Low Offset Voltage: 50 V max  
Low Offset Voltage Drift: 0.5 V/؇C max  
Very Low Bias Current  
16-Lead Wide Body SOIC  
(S-Suffix)  
25؇C: 100 pA max  
–55؇C to +125؇C: 450 pA max  
OUT D  
–IN D  
+IN D  
OUT A  
–IN A  
1
2
3
4
5
16  
15  
14  
13  
12  
11  
Very High Open-Loop Gain: 2000 V/mV min  
Low Supply Current (per Amplifier): 625 A max  
Operates from ؎2 V to ؎20 V Supplies  
High Common-Mode Rejection: 120 dB min  
+
+
+
+IN A  
V+  
V–  
OP497  
+IN C  
+IN B  
–IN B  
OUT B  
NC  
APPLICATIONS  
+
–IN C  
6
7
8
Strain Gage and Bridge Amplifiers  
High Stability Thermocouple Amplifiers  
Instrumentation Amplifiers  
Photo-Current Monitors  
10 OUT C  
NC  
9
NC = NO CONNECT  
High Gain Linearity Amplifiers  
Long-Term Integrators/Filters  
Sample-and-Hold Amplifiers  
Peak Detectors  
Logarithmic Amplifiers  
Battery-Powered Systems  
14-Lead Plastic Dip  
(P-Suffix)  
14-Lead Ceramic Dip  
(Y-Suffix)  
GENERAL DESCRIPTION  
OUT A  
1
2
3
4
5
6
7
14 OUT D  
The OP497 is a quad op amp with precision performance in the  
space-saving, industry standard 16-lead SOlC package. Its com-  
bination of exceptional precision with low power and extremely  
low input bias current makes the quad OP497 useful in a wide  
variety of applications.  
IN A  
+IN A  
V+  
IN D  
13  
12  
+
+
+IN D  
11 V–  
OP497  
+IN C  
+IN B  
IN B  
OUT B  
10  
9
+
+
IN C  
Precision performance of the OP497 includes very low offset,  
under 50 µV, and low drift, below 0.5 µV/°C. Open-loop gain  
exceeds 2000 V/mV ensuring high linearity in every application.  
Errors due to common-mode signals are eliminated by the OP497’s  
common-mode rejection of over 120 dB. The OP497’s power  
supply rejection of over 120 dB minimizes offset voltage changes  
experienced in battery-powered systems. Supply current of the  
OP497 is under 625 µA per amplifier, and it can operate with  
supply voltages as low as 2 V.  
OUT C  
8
1000  
V
V
= ؎15V  
= 0V  
S
CM  
The OP497 utilizes a superbeta input stage with bias current can-  
cellation to maintain picoamp bias currents at all temperatures.  
This is in contrast to FET input op amps whose bias currents start  
in the picoamp range at 25°C, but double for every 10°C rise in  
temperature, to reach the nanoamp range above 85°C. Input bias  
current of the OP497 is under 100 pA at 25°C and is under 450  
pA over the military temperature range.  
100  
I  
B
+I  
B
I
OS  
10  
Combining precision, low power, and low bias current, the  
OP497 is ideal for a number of applications, including instru-  
mentation amplifiers, log amplifiers, photo-diode preamplifiers,  
and long-term integrators. For a single device, see the OP97; for a  
dual device, see the OP297.  
75  
50  
25  
0
25  
50  
75  
100  
125  
TEMPERATURE –  
C
Input Bias, Offset Current vs. Temperature  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
OP497–SPECIFICATIONS (@ V = 15 V, T = 25؇C, unless otherwise noted.)  
S
A
A
F
C/G  
Parameter  
Symbol  
Condition  
Min Typ Max Min Typ Max Min Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
Vos  
20  
40  
50  
40  
70  
80  
75  
150  
150  
80  
120 250  
140 300  
150  
µV  
–40°C +85°C  
–55°C +125°C  
100  
Average Input Offset  
Voltage Drift  
TCVOS  
TMIN – TMAX  
0.2 0.5  
0.1  
0.4 1.0  
0.1  
0.6 1.5  
0.1  
µV/°C  
Long-Term Input Offset  
Voltage Stability  
µV/Mo  
Input Bias Current  
IB  
VCM = 0 V  
–40° ≤ TA +85°C  
–55° ≤ TA +125°C  
30  
100  
40  
60  
110 600  
150  
200  
60  
80  
130 600  
200  
300  
pA  
80  
450  
Average Input Bias  
Current Drift  
TCIB  
Ios  
–40° ≤ TA +85°C  
–55° ≤ TA +125°C  
0.3  
0.7  
30  
50  
60  
0.3  
0.7  
50  
80  
90  
0.5  
15  
pA/°C  
pA  
Input Offset Current  
V
CM = OV  
100  
400  
150  
200  
600  
200  
300  
600  
–40° ≤ TA +85°C  
–55° ≤ TA +125°C  
35  
Average Input Offset  
Current Drift  
TCIOS  
IVR  
0.2  
0.3  
+13 tl4  
+13 +13.5  
114 135  
108 120  
0.4  
pA/°C  
V
Input Voltage Range1  
+ 13 +14  
+13 +13.5  
120 140  
114 130  
+13 +14  
+13 +13.5  
114 135  
108 120  
T
MIN – TMAX  
VCM 13 V  
MIN – TMAX  
Common-Mode Rejection CMR  
Large Signal Voltage Gain AVO  
=
dB  
T
VO = 10 V,  
RL = 2 kΩ  
2000 6000  
1500 4000  
800 2000  
1000 3000  
1200 4000  
800 2000  
800 3000  
V/mV  
–40° ≤ TA +85°C  
–55° ≤ TA +125°C 1200 4000  
Input Resistance  
Differential Mode  
Input Resistance  
Common Mode  
RIN  
30  
30  
30  
MΩ  
RINCM  
CIN  
500  
3
500  
3
500  
3
GΩ  
pF  
Input Capacitance  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
VO  
RL = 2 kΩ  
13  
13 14  
13.7  
13  
13  
13.7  
14  
13  
13  
13.7V  
14  
RL = 10 kΩ  
TMIN – TMAX  
RL = 10 kΩ  
13  
13.5  
25  
13  
13.5  
25  
13  
13.5  
25  
Short Circuit  
ISC  
mA  
dB  
POWER SUPPLY  
Power Supply  
PSRR  
Vs = 2 V to 20 V 120 140  
Vs = 2.5 V to 20 V  
114 135  
108 120  
114 135  
108 120  
525 625  
580 750  
2
2.5  
Rejection Ratio  
T
MIN – TMAX  
No Load  
MIN – TMAX  
Operating Range  
MIN – TMAX  
114 130  
Supply Current  
(per Amplifier)  
Supply Voltage Range  
ISY  
VS  
525 625  
580 750  
20  
525 625  
580 750  
20  
µA  
T
2
2.5  
2
2.5  
20  
20  
V
T
20  
20  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
0.05 0.15  
500  
0.05 0.15  
500  
0.05 0.15  
500  
V/µS  
kHz  
Gain Bandwidth Product GBW  
Channel Separation  
CS  
VO = 20 Vp-p,  
fo = 10 Hz  
150  
150  
150  
dB  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
0.1 Hz to 10 Hz  
0.3  
17  
15  
20  
0.3  
17  
15  
20  
0.3  
17  
15  
20  
µV/p-p  
nV/Hz  
nV/Hz  
fA/Hz  
en = 10 Hz  
en = 1 kHz  
in = 10 Hz  
Current Noise Density  
NOTE  
1Guaranteed by CMR Test.  
Specifications subject to change without notice.  
–2–  
REV. D  
OP497  
ABSOLUTE MAXIMUM RATINGS1  
ORDERING GUIDE  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V  
Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 V  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range  
Y Package . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
OP497A, C (Y) . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
OP497F, G (Y) . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
OP497F, G (P, S) . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Junction Temperature  
Y Package . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +175°C  
P, S Package . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . 300°C  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
OP497AY* –55°C to +125°C 14-Lead Cerdip  
OP497CY* –55°C to +125°C 14-Lead Cerdip  
Q-14  
Q-14  
OP497FP  
OP497FS  
–40°C to +85°C  
–40°C to +85°C  
14-Lead Plastic DIP N-14  
16-Lead SOIC R-16  
14-Lead Plastic DIP N-14  
16-Lead SOIC R-16  
OP497GP –40°C to +85°C  
OP497GS  
–40°C to +85°C  
*Not for new design; obsolete April 2002.  
For a military processed devices, please refer to the Standard  
Microcircuit Drawing (SMD) available at www.dscc.dla.mil/  
programs.milspec./default.asp.  
3
SMD Part Number  
ADI Part Number  
Package Type  
JA  
JC  
Unit  
5962–9452101M2A*  
5962–9452101MCA  
OP497BRC  
OP497BY  
14-Pin Cerdip (Y)  
14-Pin Plastic DIP (P)  
16-Pin SOIC (S)  
NOTES  
94  
76  
92  
10  
33  
23  
°C/W  
°C/W  
°C/W  
*Not for new designs; obsolete April 2002.  
1Absolute Maximum Ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
2For supply voltages less than 20 V, the absolute maximum input voltage is  
equal to the supply voltage.  
DICE CHARACTERISTICS  
3HIA is specified for worst-case mounting conditions, i.e., JA is specified for  
device in socket for cerdip, P-DIP packages; JA is specified for device soldered  
to printed circuit board for SOIC package.  
1/4  
V
1
20V pp @ 10Hz  
OP497  
+
2k  
50k⍀  
50⍀  
1/4  
OP497  
V
2
+
V
1
CHANNEL SEPARATION = 20 log  
(
)
V
/10000  
2
Channel Separation Test Circuit  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the OP497 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. D  
–3–  
(25؇C, Vs = 15 V, unless otherwise noted.)  
OP497Typical Performance Characteristics  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
0
60  
T
V
V
= 25؇C  
T
A
= 25؇C  
A
S
=
15V  
= 0V  
V
V
=
CM  
15V  
= 0V  
T = 25؇C  
A
S
V
=
15V  
= 0V  
50  
40  
30  
20  
10  
0
CM  
S
V
CM  
0
0
10  
20  
30  
40  
50  
60  
10080 60 40 20  
0
20 40 60 80 100  
10080 60 40 20  
0
20 40 60 80 100  
INPUT OFFSET CURRENT pA  
INPUT OFFSET VOLTAGE V  
INPUT BIAS CURRENT pA  
TPC 3. Typical Distribution of  
Input Offset Current  
TPC 1. Typical Distribution of  
Input Offset Voltage  
TPC 2. Typical Distribution of  
Input Bias Current  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
1000  
T
V
= 25 C  
= ؎15V  
A
V
V
= ؎15V  
S
V
= ؎15V  
= 0V  
S
S
= 0V  
CM  
V
CM  
I  
B
+I  
B
100  
I  
B
+I  
B
I
OS  
10  
15  
10  
5  
0
5
10  
15  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
75 50 25  
0
25 50 75 100 125  
COMMON-MODE VOLTAGE Volts  
TCV V/؇C  
TEMPERATURE ؇C  
OS  
TPC 6. Input Bias Current vs.  
Common-Mode Voltage  
TPC 4. Typical Distribution of  
TCVOS  
TPC 5. Input Bias, Offset  
Current vs. Temperature  
100  
10  
1
10000  
1000  
100  
؎3  
؎2  
؎1  
0
BALANCED OR UNBALANCED  
BALANCED OR UNBALANCED  
T
V
V
= 25؇C  
= ؎15V  
A
V
V
=
15V  
S
CM  
V
=
15V  
S
CM  
= 0V  
S
V
= 0V  
= 0V  
CM  
55 C  
T
125 C  
A
T
= +25 C  
1M  
A
0.1  
10  
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
1k  
10k  
100k  
10M  
100  
0
1
2
3
4
5
SOURCE RESISTANCE  
TIME AFTER POWER APPLIED Minutes  
SOURCE RESISTANCE  
TPC 9. Effective TCVOS vs.  
Source Resistance  
TPC 8. Effective Offset Voltage  
vs. Source Resistance  
TPC 7. Input Offset Voltage  
Warm-Up Drift  
–4–  
REV. D  
OP497  
1000  
100  
10  
10  
1
T = 25؇C  
A
T
V
= 25؇C  
= 2V TO 20V  
A
S
V
= ؎2V TO ؎20V  
S
5mV  
1s  
100  
90  
CURRENT NOISE  
10Hz  
VOLTAGE NOISE  
1kHz  
0.1  
10  
0%  
V
T
= 15V  
= 25؇C  
S
A
1
0.01  
0
2
4
6
8
10  
2
3
4
5
6
7
10  
10  
1
10  
100  
1000  
10  
10  
10  
10  
TIME Secs  
FREQUENCY Hz  
SOURCE RESISTANCE ⍀  
TPC 10. Voltage Noise Density  
vs. Frequency  
TPC 12. 0.1 Hz to 10 Hz Noise Voltage  
TPC 11. Total Noise Density vs.  
Source Resistance  
100  
80  
10000  
1000  
100  
R
V
= 2k  
= ؎15V  
= ؎10V  
V
C
R
= ؎15V  
= 30pF  
= 1M⍀  
= 25؇C  
L
S
S
T
= 55؇C  
A
L
L
T
A
= +25C  
V
CN  
GAIN  
T
A
T
= +125؇C  
A
60  
T
A
= +125؇C  
PHASE  
40  
90  
T
T
= +25؇C  
A
20  
135  
180  
225  
= 55؇C  
A
0
20  
40  
V
V
= ؎15V  
= ؎10V  
S
O
1
10  
LOAD RESISTANCE k⍀  
20  
100  
1k  
10k  
100k  
1M  
10M  
15  
10  
5  
0
5
10  
15  
FREQUENCY Hz  
OUTPUT VOLTAGE V  
TPC 13. Open-Loop Gain,  
Phase vs. Frequency  
TPC 14. Open-Loop Gain vs.  
Load Resistance  
TPC 15. Open-Loop Gain Linearity  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
35  
V
T
= ؎15V  
= 25؇C  
V
T
= ؎15V  
= 25؇C  
S
V = ؎15V  
S
S
A
T
A
= 25؇C  
A
A
30  
25  
20  
15  
10  
5
= +1  
VCL  
1%THD  
R
= 10k⍀  
L
PSR  
+PSR  
60  
60  
40  
40  
20  
20  
0
0
0
100  
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k 1M  
1k  
10k  
100k  
FREQUENCY Hz  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 16. Common-Mode  
Rejection vs. Frequency  
TPC 17. Power Supply  
Rejection vs. Frequency  
TPC 18. Maximum Output  
Swing vs. Frequency  
–5–  
REV. D  
OP497  
+V  
S
+V  
S
35  
30  
T
A
= 25؇C  
T
A
= 25؇C  
V
= ؎15V  
= 25؇C  
S
R
= 10k⍀  
L
0.5  
1.0  
1.5  
0.5  
1.0  
1.5  
T
A
A
= +1  
VCL  
1%THD  
25 fO = 1kHz  
20  
15  
10  
5
1.5  
1.0  
0.5  
1.5  
1.0  
0.5  
V  
V  
S
S
0
10  
0
؎5  
؎10  
؎15  
؎20  
0
؎5  
؎10  
؎15  
؎20  
100  
LOAD RESISTANCE ⍀  
10k  
1k  
SUPPLY VOLTAGE V  
SUPPLY VOLTAGE V  
TPC 19. Input Common-Mode  
Voltage Range vs. Supply Voltage  
TPC 21. Output Voltage Swing vs.  
Supply Voltage  
TPC 20. Maximum Output Swing  
vs. Load Resistance  
700  
35  
1000  
100  
10  
T
= 55 C  
A
V
T
=
15V  
S
A
30  
25  
20  
15  
NO LOAD  
= 25 C  
+125 C  
600  
T
A
= +25 C  
+25 C  
T
A
= +125 C  
500  
V
= ؎15V  
55 C  
S
OUTPUT SHORTED  
1
TO GROUND  
A
= +1  
V
400  
300  
200  
15  
20  
25  
30  
35  
T
A
= +25 C  
T
A
= +125 C  
0.1  
0.01  
0.001  
T
A
= 55 C  
0
؎5  
؎10  
؎15  
؎20  
0
1
2
3
4
1
10  
100  
1k  
10k  
100k  
SUPPLY VOLTAGE V  
TIME FROM OUTPUT SHORT Mins  
TPC 22. Supply Current  
(per Amplifier) vs. Supply Voltage  
TPC 24. Short-Circuit Current vs.  
Time Temperature  
TPC 23. Closed-Loop Output  
Impedance vs. Frequency  
V+  
70  
V
T
= ؎15V  
= 25 C  
S
A
60  
50  
40  
30  
20  
10  
0
A
= +1  
= 100mV pp  
VCL  
V
OUT  
V
OUT  
2.5k  
IN  
2.5k⍀  
+IN  
10  
100  
1k  
10k  
LOAD CAPACITANCE pF  
V–  
TPC 25. Small-Signal Overshoot  
vs. Capacitance Load  
TPC 26. Simplified Schematic Showing One Amplifier  
–6–  
REV. D  
OP497  
APPLICATIONS INFORMATION  
Extremely low bias current over the full military temperature range  
makes the OP497 attractive for use in sample-and-hold amplifiers,  
peak detectors, and log amplifiers that must operate over a wide  
temperature range. Balancing input resistances is not necessary  
with the OP497. Offset voltage and TCVOS are degraded only  
minimally by high source resistance, even when unbalanced.  
100  
90  
The input pins of the OP497 are protected against large differen-  
tial voltage by back-to-back diodes and current-limiting resistors.  
Common-mode voltages at the inputs are not restricted, and may  
vary over the full range of the supply voltages used.  
10  
0%  
50s  
2V  
The OP497 requires very little operating headroom about the  
supply rails, and is specified for operation with supplies as low  
as 2 V. Typically, the common-mode range extends to within  
1 V of either rail. The output typically swings to within 1 V of  
the rails when using a 10 kload.  
Figure 3. Large-Signal Transient Response (AVCL = 1)  
GUARDING AND SHIELDING  
To maintain the extremely high input impedances of the OP497,  
care must be taken in circuit board layout and manufacturing.  
Board surfaces must be kept scrupulously clean and free of mois-  
ture. Conformal coating is recommended to provide a humidity  
barrier. Even a clean PC board can have 100 pA of leakage currents  
between adjacent traces, so guard rings should be used around  
the inputs. Guard traces are operated at a voltage close to that  
on the inputs, as shown in Figure 4, so that leakage currents  
become minimal. In noninverting applications, the guard ring  
should be connected to the common-mode voltage at the invert-  
ing input. In inverting applications, both inputs remain at ground,  
so the guard trace should be grounded. Guard traces should be  
on both sides of the circuit board.  
AC PERFORMANCE  
The OP497’s ac characteristics are highly stable over its full  
operating temperature range. Unity-gain small-signal response is  
shown in Figure 1. Extremely tolerant of capacitive loading on  
the output, the OP497 displays excellent response even with  
1000 pF loads (Figure 2).  
100  
90  
UNITY GAIN FOLLOWER  
NONINVERTING AMPLIFIER  
1/4  
OP497  
+
1/4  
OP497  
+
10  
0%  
20mV  
5s  
INVERTING AMPLIFIER  
MINI-DIP  
BOTTOM VIEW  
Figure 1. Small-Signal Transient Response  
(CLOAD = 100 pF, AVCL = 1)  
1
8
1/4  
A
OP497  
+
B
100  
90  
Figure 4. Guard Ring Layout and Connections  
10  
0%  
20MV  
5s  
Figure 2. Small-Signal Transient Response  
(CLOAD = 1000 pF, AVCL = 1)  
REV. D  
–7–  
OP497  
OPEN-LOOP GAIN LINEARITY  
PRECISION CURRENT PUMP  
The OP497 has both an extremely high gain of 2000 V/mv mini-  
mum and constant gain linearity. This enhances the precision of  
the OP497 and provides for very high accuracy in high closed-loop  
gain applications. Figure 5 illustrates the typical open-loop gain  
linearity of the OP 497 over the military temperature range.  
Maximum output current of the precision current pump shown  
in Figure 7 is 10 mA. Voltage compliance is 10 V with 15 V  
supplies. Output impedance of the current transmitter exceeds  
3 Mwith linearity better than 16 bits.  
R3  
10k⍀  
R1  
R
= 10k  
= ؎15V  
= 0V  
L
S
10k⍀  
2
3
V
V
R5  
10k⍀  
1/4  
OP497  
I
OUT  
؎10mA  
CM  
1
R2  
10k⍀  
V
IN  
+
T
A
= +125 C  
+15V  
8
5
R4  
10k⍀  
7
T
T
= +25C  
1/4  
A
OP497  
6
V
V
IN  
IN  
4
I
=
=
= 10mA/V  
OUT  
R5 100⍀  
= 55 C  
A
15V  
Figure 7. Precision Current Pump  
PRECISION POSITIVE PEAK DETECTOR  
In Figure 8, the CH must be of polystyrene, Teflon*, or polyeth-  
ylene to minimize dielectric absorption and leakage. The droop  
rate is determined by the size of CH and the bias current of the  
OP497.  
15  
10  
5  
0
5
10  
15  
OUTPUT VOLTAGE Volts  
Figure 5. Open-Loop Linearity of the OP497  
APPLICATIONS  
1k  
Precision Absolute Value Amplifier  
+15V  
0.1F  
The circuit of Figure 6 is a precision absolute value amplifier  
with an input impedance of 30 M. The high gain and low  
TCVOS of the OP497 ensure accurate operation with microvolt  
input signals. In this circuit, the input always appears as a com-  
mon-mode signal to the op amps. The CMR of the OP497  
exceeds 120 dB, yielding an error of less than 2 ppm.  
1N4148  
2
6
8
1/4  
OP497  
1
2N930  
1/4  
7
1k⍀  
V
3
OUT  
OP497  
1k⍀  
V
IN  
5
4
C
0.1F  
H
1k⍀  
15V  
+15V  
RESET  
C2  
0.1F  
R1  
1k⍀  
R3  
1k⍀  
Figure 8. Precision Positive Peak Detector  
C1  
30pF  
D1  
1N4148  
SIMPLE BRIDGE CONDITIONING AMPLIFIER  
Figure 9 shows a simple bridge conditioning amplifier using  
the OP497. The transfer function is:  
6
5
8
1/4  
OP497  
2
3
7
1/4  
OP497  
1
0V < V  
< 10V  
OUT  
D2  
1N4148  
R2  
2k⍀  
V
C3  
0.1F  
IN  
R RF  
4
VOUT =V  
REF   
R + ∆RR  
15V  
The REF43 provides an accurate and stable reference voltage  
for the bridge. To maintain the highest circuit accuracy, RF  
should be 0.1% or better with a low temperature coefficient.  
Figure 6. Precision Absolute Value Amplifier  
*Teflon is a registered trademark of the Dupont Company.  
–8–  
REV. D  
OP497  
+5V  
2
C2  
100pF  
V
REF  
2.5 V  
R
6
R
F
REF43  
R2  
33k⍀  
R
6
4
2
3
1/4  
OP497  
7
1/4  
OP497  
V
OUT  
1
V
OUT  
I
O
5
R + R  
R
1
2
Q1  
7
6
3
+5V  
Q2  
6
5
R
R
5
14  
R  
R + R  
F
MAT-04E  
8
V
OUT  
= V  
REF  
(
)
13  
8
1/4  
I
7
Q4  
REF  
9
OP497  
4
Q3  
10  
V+  
C1  
12  
R1  
133k⍀  
100pF  
I
IN  
2
3
8
V
IN  
5V  
1/4  
OP497  
1
R3  
50k⍀  
R4  
50k⍀  
Figure 9. A Simple Bridge Conditioning Amplifier Using  
the OP497  
4
15V  
V–  
NONLINEAR CIRCUITS  
Figure 10. Squaring Amplifier  
Due to its low input bias currents, the OP497 is an ideal log  
amplifier in nonlinear circuits such as the square and square  
root circuits shown in Figures 10 and 11. Using the squaring  
circuit of Figure 10 as an example, the analysis begins by writing a  
voltage-loop equation across transistors Q1, Q2, Q3, and Q4.  
A similar analysis made for the square-root circuit of Figure 11  
leads to its transfer function:  
V
I
REF  
(
IN )(  
)
VOUT = R2  
R1  
In these circuits, IREF is a function of the negative power sup-  
ply. To maintain accuracy, the negative supply should be well  
regulated. For applications where very high accuracy is required,  
a voltage reference may be used to set IREF. An important con-  
sideration for the squaring circuit is that a sufficiently large  
input voltage can force the output beyond the operating range  
S1   
IIN  
I
IIN  
I
IO  
IS3  
IREF  
IS4  
VT1In  
+VT 2In  
=VT 3In I  
+VT 4In  
S2   
All the transistors of the MAT04 are precisely matched and at  
the same temperature, so the IS and VT terms cancel, giving:  
of the output op amp. Resistor R4 can be changed to scale IREF  
,
or Rl and R2 can be varied to keep the output voltage within  
the usable range.  
2InIIN = InIO + InIREF = In I × I  
Exponentiating both sides of thick equation leads to:  
(
)
O
REF  
R2  
33k  
2
)
I
(
IN  
C2  
IO  
=
100pF  
6
5
IREF  
1/4  
7
V
OUT  
I
O
OP497  
Op amp A2 forms a current-to-voltage converter which gives  
OUT = R2 × IO. Substituting (VIN/R1) for IIN and the above  
equation for IO, yields:  
V
1
Q1  
2
I
MAT-04E  
REF  
I
IN  
3
7
C1  
2  
14  
Q4  
12  
100pF  
R2 VIN  
13  
8
VOUT  
=
V+  
I
R1   
REF   
6
9
Q2  
5
Q3  
R1  
33k⍀  
10  
8
2
3
V
IN  
1/4  
1
OP497  
R5  
2k⍀  
R3  
50k⍀  
R4  
50k⍀  
4
V–  
15V  
Figure 11. Square-Root Amplifier  
Unadjusted accuracy of the square-root circuit is better than  
0.1% over an input voltage range of 100 mV to 10 V. For a  
similar input voltage range, the accuracy of the squaring circuit  
is better than 0.5%.  
REV. D  
–9–  
OP497  
OP497 SPICE MACRO-MODEL  
The model uses typical parameters for the OP497. The poles and  
zeros in the model were determined from the actual open and  
closed-loop gain and phase response of the OP497. In this way,  
the model presents an accurate ac representation of the actual  
device. The model assumes an ambient temperature of 25°C.  
Figure 12 and Table I show the node and net list for a SPICE  
macro-model of the OP497. The model is a simplified version of  
the actual device and simulates important dc parameters such as  
VOS, IOS, IB, AVO, CMR, VO, and ISY. AC parameters such as slew  
rate, gain and phase response, and CMR change with frequency  
are also simulated by the model.  
99  
V1  
13  
؎
R3  
5
R4  
6
D3  
12  
C2  
R
8
7
2
IN2  
Q1  
Q2  
IN  
C3  
G1  
R7  
R1  
R2  
10  
11  
D1  
D2  
98  
C
I
OS  
IN  
R5  
R6  
D4  
؎
E
REF  
R
IN1  
14  
V2  
+  
+IN  
9
1
؎
I
E
1
OS  
50  
CCM  
CNZ  
RNZ1  
RCM1  
19  
20  
15  
16  
17  
18  
C5  
R10  
C5  
R15  
؎
؎
ECM  
RCM2  
ENZ  
RNZ2  
G2  
G2  
98  
99  
D7  
D8  
G5  
R16  
21  
G6  
G7  
R18  
I
SY  
V3  
D5  
23  
24  
+ –  
L1  
V
20  
O
22  
27  
+  
D6  
25 26  
G4  
V4  
R17  
R19  
D9  
D10  
50  
Figure 12. OP497 Macro Model  
–10–  
REV. D  
OP497  
Table I. OP497 SPICE Net-List  
* NEGATIVE ZERO AT 1.8 MHz  
* Node assignments  
*
*
*
*
*
*
noninverting input  
inverting input  
*
E1  
R8  
C4  
R9  
*
17 98  
17 18  
17 18  
18 98  
12 21  
1E6  
–88.419E-15  
1
1E6  
positive supply  
negative supply  
output  
*SUBCKT OP497  
1
2
99  
50 27  
* POLE AT 6 MHz  
*
*
* INPUT STAGE AND POLE AT 6 MHz  
*
G2  
R15  
C8  
*
98 19  
20 98  
20 98  
18 21  
1E6  
26.526E-15  
1E-6  
RIN1 1  
7
2500  
RIN2 2  
8
2500  
R1  
R2  
R3  
R4  
CIN  
C2  
I1  
8
7
5
6
7
5
4
7
3
3
99  
99  
8
6
50  
8
7
8
6.782E8  
6.782E8  
542.57  
542.57  
3E-12  
24.445E-12  
0.1E-3  
15E-12  
POLY(1) 16  
10 QX  
11 QX  
25.374  
25.374  
DX  
* POLE AT 1.8 MHz  
*
G6  
R20  
C10  
*
98 20  
20 98  
20 98  
19 21  
1E6  
88.419E-15  
1E-6  
* OUTPUT STAGE  
*
IOS  
EOS 9  
21 40E-6  
1
R16  
R17  
ISY  
V3  
D5  
V4  
D6  
D7  
G4  
D9  
D8  
G5  
D10  
G6  
R18  
G7  
R19  
L1  
99 21  
21 50  
99 50  
23 22  
20 23  
22 24  
24 20  
99 25  
25 50  
50 25  
99 26  
26 50  
50 26  
22 99  
99 22  
50 22  
22 50  
22 27  
160 k  
160 k  
331E-6  
1.9  
DX  
1.9  
DX  
DX  
20 22  
DY  
DX  
22 20  
DY  
99 20  
200  
20 50  
200  
0.1E-6  
Q1  
Q2  
R5  
R6  
D1  
D2  
*
5
6
10  
11  
8
9
4
4
9
9
8
DX  
EREF98  
*
0
21  
0
1
5E-3  
*GAIN STAGE AND DOMINANT POLE AT 0.11 Hz  
*
R7  
C3  
G1 98  
V1  
V2  
D3 12  
D4 14  
*
5E-3  
5E-3  
5E-3  
1
2
98  
98  
12  
13  
9
2.1703E9  
666.67E-12  
5
1.275  
1.275  
DX  
99  
11  
13  
12  
DX  
*
* MODELS USED  
*COMMON-MODE GAIN NETWORK WITH ZERO AT 50 MHz  
*
*
.MODEL QX NPN (BF = 1.25E6)  
.MODEL DX (IS = 1E-15)  
.MODEL DZ D(IS = 1E-15 BV = 50)  
.ENDS OP497  
RCM1 15 16  
CCM 15 16  
RCM2 16 98  
ECM 15 98  
1E6  
3.18E-9  
1
3
21  
177.83E-3  
REV. D  
–11–  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
14-Lead Ceramic DIP  
(Y-Suffix)  
16-Lead Wide-Body SOIC  
(S-Suffix)  
0.005 (0.13)  
0.098 (2.49)  
MAX  
0.4133 (10.50)  
0.3977 (10.00)  
MIN  
14  
1
8
7
16  
1
9
8
PIN 1  
0.2992 (7.60)  
0.2914 (7.40)  
0.060 (1.52)  
0.015 (0.38)  
0.310 (7.87)  
0.220 (5.59)  
0.4193 (10.65)  
0.3937 (10.00)  
0.785 (19.94) MAX  
0.200 (5.08)  
MAX  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
0.050 (1.27)  
BSC  
0.150  
(3.81)  
MIN  
؋
 45؇  
0.320 (8.13)  
0.290 (7.37)  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
8؇  
0؇  
0.023 (0.58) 0.100 0.070 (1.78)  
0.014 (0.36) (2.54) 0.030 (0.76)  
BSC  
0°15°  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0157 (0.40)  
0.0125 (0.32)  
0.0091 (0.23)  
SEATING PLANE  
14-Lead Epoxy DIP  
(P-Suffix)  
14  
1
8
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
7
0.325 (8.25)  
0.300 (7.62)  
0.015 (0.381)  
MIN  
0.795 (20.19)  
0.725 (18.41)  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.160 (4.06)  
0.115 (2.92) 0.022 (0.558)  
0.014 (0.36)  
0.100  
(2.54)  
BSC  
0.070 (1.77)  
0.045 (1.15)  
0°15°  
Revision History  
Location  
Page  
11/01—Data Sheet changed from REV. C to REV. D.  
Edits to PIN CONNECTIONS headings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Deleted WAFER TEST LIMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
–12–  

相关型号:

OP497AY

Precision Picoampere Input Current Quad Operational Amplifier
ADI

OP497BRC

IC QUAD OP-AMP, Operational Amplifier
ADI

OP497BRC/883

IC QUAD OP-AMP, 150 uV OFFSET-MAX, 0.5 MHz BAND WIDTH, CQCC20, LCC-20, Operational Amplifier
ADI

OP497BRC/883C

IC QUAD OP-AMP, 150 uV OFFSET-MAX, 0.5 MHz BAND WIDTH, CQCC20, LCC-20, Operational Amplifier
ADI

OP497BY

Operational Amplifier
ETC

OP497CY

Precision Picoampere Input Current Quad Operational Amplifier
ADI

OP497FP

Precision Picoampere Input Current Quad Operational Amplifier
ADI

OP497FPZ

Precision Picoampere Input Current Quad Operational Amplifier
ADI

OP497FPZ1

Precision Picoampere Input Current Quad Operational Amplifier
ADI

OP497FS

Precision Picoampere Input Current Quad Operational Amplifier
ADI

OP497FS-REEL

Precision Picoampere Input Current Quad Operational Amplifier
ADI

OP497FS-REEL7

QUAD OP-AMP, 150uV OFFSET-MAX, 0.5MHz BAND WIDTH, PDSO16
ADI