OP77BIFJ [ADI]

IC OP-AMP, 100 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, MBCY8, TO-99, 8 PIN, Operational Amplifier;
OP77BIFJ
型号: OP77BIFJ
厂家: ADI    ADI
描述:

IC OP-AMP, 100 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, MBCY8, TO-99, 8 PIN, Operational Amplifier

放大器
文件: 总16页 (文件大小:218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Next Generation OP07 Ultralow  
Offset Voltage Operational Amplifier  
OP77  
FEATURES  
PIN CONNECTIONS  
Outstanding gain linearity  
1
2
3
4
8
7
6
5
V
TRIM  
–IN  
V
TRIM  
OS  
OP77  
OS  
Ultrahigh gain, 5000 V/mV min  
Low VOS over temperature, 55 μV max  
Excellent TCVOS, 0.3 μV/°C max  
High PSRR, 3 μV/V max  
V+  
+IN  
V–  
OUT  
NC  
TOP VIEW  
(Not to Scale)  
NC = NO CONNECT  
Low power consumption, 60 mW max  
Fits OP07, 725,108A/308A, 741 sockets  
Available in die form  
Figure 1. 8-Pin Hermetic  
DIP_Q-8 (Z Suffix)  
V
TRIM  
OS  
8
V
TRIM  
V+  
OS  
7
5
1
3
OP77  
2
6
–IN  
OUT  
+IN  
NC  
4
4V– (CASE)  
TOP VIEW  
(Not to Scale)  
NC = NO CONNECT  
Figure 2. TO-99  
(J Suffix)  
GENERAL DESCRIPTION  
The OP77 significantly advances the state-of-the-art in  
precision op amps. The outstanding gain of 10,000,000 or more  
for the OP77 is maintained over the full 10 V output range. This  
exceptional gain-linearity eliminates incorrectable system  
nonlinearities common in previous monolithic op amps and  
provides superior performance in high closed-loop gain  
applications. Low initial VOS drift and rapid stabilization time,  
combined with only 50 mW of power consumption, are  
significant improvements over previous designs. These  
characteristics, plus the exceptional TCVOS of 0.3 μV/°C  
maximum and the low VOS of 25 μV maximum, eliminates the  
need for VOS adjustment and increases system accuracy over  
temperature.  
A PSRR of 3 μV/V (110 dB) and CMRR of 1.0 μV/V maximum  
virtually eliminate errors caused by power supply drifts and  
common-mode signals. This combination of outstanding  
characteristics makes the OP77 ideally suited for high resolution  
instrumentation and other tight error budget systems.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2002–2010 Analog Devices, Inc. All rights reserved.  
 
OP77  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Resistance.......................................................................6  
ESD Caution...................................................................................6  
Typical Performance Characteristics ..............................................7  
Test Circuits..................................................................................... 10  
Applications..................................................................................... 11  
Precision Current Sinks............................................................. 12  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 16  
Pin Connections ............................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Electrical Specifications............................................................... 3  
Wafer Test Limits.......................................................................... 4  
Typical Electrical Characteristics ............................................... 5  
Absolute Maximum Ratings............................................................ 6  
REVISION HISTORY  
4/10—Rev. D to Rev. E  
Removed Figure 33 and Two Subsequent Paragraphs............... 12  
6/09—Rev. C to Rev. D  
Changes to Figure 1 and Figure 2................................................... 1  
Changes to Table 1............................................................................ 3  
Removed Endnote 1 and Endnote 2 in Table 3 ............................ 4  
Changes to Figure 16........................................................................ 9  
Changes to Figure 31 and Figure 32............................................. 12  
Changes to Figure 38...................................................................... 14  
Moved Figure 39 ............................................................................. 14  
10/02—Rev. B to Rev. C  
Edits to Specifications ...................................................................... 2  
Figure 2 Caption Changed ............................................................ 10  
Figure 3 Caption Changed ............................................................ 10  
Edits to Figure 10............................................................................ 11  
Updated Outline Dimensions....................................................... 15  
2/02—Rev. A to Rev. B  
Remove 8-Lead SO PIN Connection Diagrams........................... 1  
Changes to Absolute Maximum Rating......................................... 2  
Remove OP77B column from Specifications................................ 2  
Remove OP77B column from Electrical Characteristics ........ 3, 5  
Remove OP77G column from Wafer Test Limits......................... 6  
Remove OP77G column from Typical Electrical Characteristics6  
Rev. E | Page 2 of 16  
 
OP77  
ELECTRICAL SPECIFICATIONS  
@ VS = 15 V, TA = 25°C, unless otherwise noted.  
Table 1.  
OP77E  
Typ  
10  
OP77F  
Typ  
20  
Parameter  
Symbol  
VOS  
Conditions  
Min  
Max  
Min  
Max  
Unit  
μV  
INPUT OFFSET VOLTAGE  
LONG-TERM STABILITY1  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
INPUT NOISE VOLTAGE2  
INPUT NOISE VOLTAGE DENSITY  
25  
60  
VOS/time  
IOS  
0.3  
0.4  
μV/Mo  
nA  
0.3  
1.5  
0.3  
2.8  
IB  
−0.2  
+1.2  
0.35  
10.3  
10.0  
9.6  
+2.0  
0.6  
−0.2  
+1.2  
0.38  
10.5  
10.2  
9.8  
+2.8  
0.65  
20.0  
13.5  
11.5  
35  
nA  
enp-p  
en  
0.1 Hz to 10 Hz  
fO = 10 Hz  
fO = 100 Hz2  
fO = 1000 Hz  
0.1 Hz to 10 Hz  
fO = 10 Hz  
μVp-p  
nV/√Hz  
18.0  
13.0  
11.0  
30  
INPUT NOISE CURRENT2  
inp-p  
in  
14  
15  
pAp-p  
INPUT NOISE CURRENT DENSITY  
0.32  
0.14  
0.12  
0.80  
0.23  
0.17  
0.35  
0.15  
0.13  
0.90  
0.27  
0.18  
pA√Hz  
fO = 100 Hz2  
fO = 1000 Hz  
INPUT RESISTANCE  
Differential Mode3  
Common Mode  
RIN  
RINCM  
IVR  
26  
13  
45  
200  
14  
18.5  
13  
45  
200  
14  
MΩ  
GΩ  
INPUT VOLTAGE RANGE  
COMMON-MODE REJECTION RATIO  
POWER SUPPLY REJECTION RATIO  
LARGE-SIGNAL VOLTAGE GAIN  
V
CMRR  
PSRR  
AVO  
VCM = 13 V  
VS = 3 V to 18 V  
RL ≥ 2 kΩ  
0.1  
0.7  
1.0  
3.0  
0.1  
0.7  
1.6  
3.0  
μV/V  
μV/V  
V/mV  
5000 12,000  
2000 6000  
VO = 10 V  
RL ≥ 10 kΩ  
RL ≥ 2 kΩ  
OUTPUT VOLTAGE SWING  
VO  
13.5  
12.5  
12.0  
14.0  
13.0  
12.5  
13.5  
12.5  
12.0  
14.0  
13.0  
12.5  
V
RL ≥ 1 kΩ  
SLEW RATE2  
SR  
BW  
RO  
RL ≥ 2 kΩ  
0.1  
0.4  
0.3  
0.1  
0.4  
0.3  
V/μs  
MHz  
Ω
CLOSED-LOOP BANDWIDTH2  
OPEN-LOOP OUTPUT RESISTANCE  
POWER CONSUMPTION  
AVCL + 1  
0.6  
60  
50  
3.5  
3
0.6  
60  
50  
3.5  
3
Pd  
VS = 15 V, no load  
VS = 3 V, no load  
Rp = 20 kn  
60  
4.5  
60  
4.5  
mW  
OFFSET ADJUSTMENT RANGE  
mV  
1 Long-term input offset voltage stability refers to the averaged trend line of VOS vs. time over extended periods after the first 30 days of operation. Excluding the initial  
hour of operation, changes in VOS during the first 30 operating days are typically 2.5 μV.  
2 Sample tested.  
3 Guaranteed by design.  
Rev. E | Page 3 of 16  
 
OP77  
@ VS = 15 V, 25°C ≤ TA ≤ +85°C for OP77FJ and OP77E/OP77F, unless otherwise noted.  
Table 2.  
OP77E  
OP77F  
Parameter  
Symbol Conditions  
Min  
Typ  
10  
Max Min  
Typ  
Max Unit  
INPUT OFFSET VOLTAGE  
AVERAGE INPUT OFFSET VOLTAGE DRIFT1  
VOS  
45  
20  
100  
0.6  
4.5  
85  
μV  
TCVOS  
IOS  
0.1  
0.5  
1.5  
+2.4  
8
0.3  
0.2  
μV/°C  
nA  
INPUT OFFSET CURRENT  
2.2  
0.5  
AVERAGE INPUT OFFSET CURRENT DRIFT2  
INPUT BIAS CURRENT  
TCIOS  
IB  
4.0  
1.5  
pA/°C  
−0.2  
+4.0 −0.2  
40  
+2.4  
+6.0 nA  
AVERAGE INPUT BIAS CURRENT DRIFT2  
TCIB  
IVR  
15  
13.5  
60  
pA/°C  
INPUT VOLTAGE RANGE  
13.0  
13.5  
13.0  
V
COMMON-MODE REJECTION RATIO  
POWER SUPPLY REJECTION RATIO  
LARGE-SIGNAL VOLTAGE GAIN  
CMRR  
PSRR  
AVO  
VCM = 13 V  
0.1  
1.0  
1.0  
3.0  
0.1  
3.0  
5.0  
pV/V  
μV/V  
V/mV  
VS = 3 V to 18 V  
RL ≥ 2 kΩ  
1.0  
2000 6000  
1000 4000  
VO = 10 V  
OUTPUT VOLTAGE SWING  
POWER CONSUMPTION  
VO  
Pd  
RL ≥ 2 kΩ  
12  
13.0  
60  
12  
13.0  
60  
V
VS = 15 V, no load  
75  
75  
mW  
1 OP77E: TCVOS is 100% tested on J and Z packages.  
2 Guaranteed by end-point limits.  
WAFER TEST LIMITS  
@ VS = 15 V, TA = 25°C, for OP77NBC devices, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
OP77NBC Limit  
Unit  
INPUT OFFSET VOLTAGE  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
VOS  
IOS  
IB  
40  
2.0  
2
μV max  
nA max  
nA max  
INPUT RESISTANCE  
Differential Mode  
RIN  
26  
MΩ min  
V min  
INPUT VOLTAGE RANGE  
COMMON-MODE REJECTION RATIO  
POWER SUPPLY REJECTION RATIO  
OUTPUT VOLTAGE SWING  
IVR  
13  
CMRR  
PSRR  
VO  
VCM = 13 V  
VS = 3 V to 18 V  
RL = 10 kΩ  
RL = 2 kΩ  
1
μV/V max  
μV/V max  
V min  
3
13.5  
12.5  
12.0  
2000  
RL = 1 kΩ  
LARGE-SIGNAL VOLTAGE GAIN  
AVO  
RL = 2 kΩ  
V/mV min  
VO = 10 V  
DIFFERENTIAL INPUT VOLTAGE  
POWER CONSUMPTION  
30  
60  
V max  
Pd  
VO = 0 V  
mW max  
Rev. E | Page 4 of 16  
 
OP77  
TYPICAL ELECTRICAL CHARACTERISTICS  
@ VS = 15 V, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
TCVOS  
TCVOSn  
TCIOS  
SR  
Conditions  
OP77NBC Limit  
Unit  
AVERAGE INPUT OFFSET VOLTAGE DRIFT  
NULLED INPUT OFFSET VOLTAGE DRIFT  
AVERAGE INPUT OFFSET CURRENT DRIFT  
SLEW RATE  
RS = 50 Ω  
0.1  
0.1  
0.5  
0.3  
0.6  
μV/°C  
μV/°C  
pA/°C  
V/μs  
RS = 50 Ω, RP = 20 kΩ  
RL ≥ 2 kΩ  
AVCL + 1  
BANDWIDTH  
BW  
MHz  
Rev. E | Page 5 of 16  
 
OP77  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 5.  
Parameter1  
Rating  
Supply Voltage  
22 V  
Differential Input Voltage  
Input Voltage2  
30 V  
22 V  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature (TJ)  
Lead Temperature (Soldering, 60 sec)  
Indefinite  
−65°C to +150°C  
−25°C to +85°C  
−65°C to +150°C  
300°C  
THERMAL RESISTANCE  
Table 6.  
Package Type  
1
θJA  
θJC  
18  
16  
Unit  
°C/W  
°C/W  
1Absolute Maximum Ratings apply to both dice and packaged parts, unless  
otherwise noted.  
8-Pin TO-99 H-08 (J Suffix)  
8-Lead Hermetic CERDIP Q-8 (Z Suffix)  
150  
148  
2For supply voltages less than 22 V, the absolute maximum input voltage is  
equal to the supply voltage.  
1θJA is specified for worst-case mounting conditions, i.e., θJA is specified for a  
device in socket for the TO-99 and CERDIP packages.  
ESD CAUTION  
Rev. E | Page 6 of 16  
 
 
 
 
 
OP77  
TYPICAL PERFORMANCE CHARACTERISTICS  
2
30  
20  
V
= ±15V  
= 25°C  
= 10k  
S
J, Z PACKAGES  
+0.3µV/°C  
T
A
R
L
1
0
MEAN  
S.D.  
10  
0
–10  
–1  
–2  
–20  
–30  
–0.3µV/°C  
–10  
–5  
0
5
10  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 3. Gain Linearity (Input Voltage vs. Output Voltage)  
Figure 6. Untrimmed Offset Voltage vs. Temperature  
25  
4
V
T
= ±15V  
= 25°C  
V
= ±15V  
S
A
S
3
2
1
0
20  
15  
10  
5
–1  
–2  
–3  
–4  
0
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
TEMPERATURE (°C)  
TIME AFTER POWER SUPPLY TURN-ON (Minutes)  
Figure 4. Open-Loop Gain vs. Temperature  
Figure 7. Warm-Up Drift  
16  
30  
25  
20  
15  
T
R
= 25°C  
= 2k  
A
V
= ±15V  
S
L
DEVICE IMMERSED IN  
70°C OIL BATH (20 UNITS)  
12  
8
MAXIMUM  
10  
5
4
0
AVERAGE  
MIMIMUM  
0
–10  
0
±5  
±10  
±15  
±20  
0
10  
20  
30  
40  
50  
60  
70  
POWER SUPPLY VOLTAGE (V)  
TIME (Seconds)  
Figure 5. Open-Loop Gain vs. Power Supply Voltage  
Figure 8. Offset Voltage Change Due to Thermal Shock  
Rev. E | Page 7 of 16  
 
OP77  
100  
80  
130  
120  
110  
100  
V
T
= ±15V  
= 25°C  
S
A
T
= 25°C  
A
60  
40  
90  
80  
70  
20  
0
60  
0.1  
–20  
10  
1
10  
100  
1k  
10k  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9. Closed-Loop Response for Various Gain Configurations  
Figure 12. PSRR vs. Frequency  
160  
0
4
V
T
= ±15V  
= 25°C  
S
A
V
= ±15V  
S
140  
120  
100  
80  
45  
90  
3
2
60  
40  
20  
0
135  
180  
1
0
–75  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
–50  
–25  
0
25  
50  
75  
100  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 10. Open-Loop Gain/Phase Response  
Figure 13. Input Bias Current vs. Temperature  
150  
140  
130  
120  
2.0  
T
A
= 25°C  
V
= ±15V  
S
1.5  
1.0  
110  
100  
90  
0.5  
0
80  
1
10  
100  
1k  
10k  
100k  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 11. CMRR vs. Frequency  
Figure 14. Input Offset Current vs. Temperature  
Rev. E | Page 8 of 16  
OP77  
10  
100  
V
T
= ±15V  
= 25°C  
T
= 25°C  
S
A
A
1
10  
0.1  
100  
1
1k  
10k  
100k  
0
10  
20  
30  
40  
FREQUENCY (Hz)  
TOTAL SUPPLY VOLTAGE V+ TO V– (V)  
Figure 15. Input Wideband Noise vs. Bandwidth (0.1 Hz to Frequency  
Indicated)  
Figure 18. Power Consumption vs. Power Supply  
1k  
20  
RS1 = RS2 = 200k  
V
T
= ±15V  
= 25°C  
= ±10mV  
S
A
THERMAL NOISE OF SOURCE  
RESISTORS  
INCLUDED  
V
IN  
POSITIVE SWING  
NEGATIVE SWING  
15  
10  
EXCLUDED  
100  
R
= 0  
S
10  
5
0
V
T
= ±15V  
= 25°C  
S
A
1
1
10  
100  
1k  
100  
1k  
LOAD RESISTANCE TO GROUND ()  
10k  
FREQUENCY (Hz)  
Figure 19. Maximum Output Voltage vs. Load Resistance  
Figure 16. Total Input Noise Voltage vs. Frequency  
40  
32  
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
S
A
S
A
28  
24  
20  
16  
35  
30  
25  
20  
15  
12  
8
4
0
0
1
2
3
4
1k  
10k  
100k  
1M  
TIME FROM OUTPUT BEING SHORTENED (Minutes)  
FREQUENCY (Hz)  
Figure 20. Output Short-Circuit Current vs. Time  
Figure 17. Maximum Output Swing vs. Frequency  
Rev. E | Page 9 of 16  
OP77  
TEST CIRCUITS  
200kΩ  
TYPICAL PRECISION  
OP AMP  
50Ω  
10k  
100kΩ  
V
Y
V
O
OP77  
1MΩ  
10Ω  
V
= ±10V  
IN  
V
V
X
O
V
=
V
OS  
X
4000  
–10V  
0V  
+10V  
R
L
Figure 21. Typical Offset Voltage Test Circuit  
A
650V/mV  
VO  
R
= 2kΩ  
L
2.5MΩ  
NOTES  
1. GAIN NOT CONSISTANT. CAUSES NONLINEAR ERRORS.  
2. A SPEC IS ONLY PART OF THE SOLUTION.  
V+  
VO  
100Ω  
100Ω  
2
3
7
3. CHECK SPECIFICATION TABLE 1 AND TABLE 2 FOR PERFORMANCE.  
3.3kΩ  
6
OUTPUT  
(10Hz FILTER)  
Figure 25. Open-Loop Gain Linearity  
OP77  
4.7µF  
4
Actual open-loop voltage gain can vary greatly at various output  
voltages. All automated testers use endpoint testing and therefore  
only show the average gain. This causes errors in high closed-  
loop gain circuits. Because this is difficult for manufacturers to  
test, users should make their own evaluations. This simple test  
circuit makes it easy. An ideal op amp would show a horizontal  
scope trace.  
V–  
V
O
INPUT REFERRED NOISE =  
25,000  
Figure 22. Typical Low-Frequency Noise Test Circuit  
20kΩ  
V+  
1
2
8
V
Y
7
6
OUTPUT  
INPUT  
+
OP77  
3
4
V–  
Figure 23. Optional Offset Nulling Circuit  
V
–10V  
0V  
+10V  
X
100k  
+18V  
+
*
10µF  
2
10Ω  
0.1µF  
Figure 26. Output Gain Linearity Trace  
7
This is the output gain linearity trace for the new OP77. The  
output trace is virtually horizontal at all points, assuring  
extremely high gain accuracy. The average open-loop gain is  
truly impressive—approximately 10,000,000.  
6
OP77  
3
4
10kΩ  
10kΩ  
0.1µF  
10Ω  
*
10µF  
+
–18V  
NOTES  
*
1 PER BOARD  
Figure 24. Burn-In Circuit  
Rev. E | Page 10 of 16  
 
OP77  
APPLICATIONS  
R2  
1M  
R3  
+15V  
+15V  
0.1µF  
R1  
1kΩ  
R1  
R2  
2
3
2N2222  
2
3
V
7
IN  
6
6
OP77  
OP77E  
2N2907  
4
R5  
R3  
1kΩ  
0.1µF  
R4  
R4  
–15V  
1MΩ  
I
< 100mA  
OUT  
R3  
R1 – R5  
GIVEN R3 = R4 + R5, R1 = R2  
I
= V  
–15V  
OUT  
IN  
(
)
Figure 27. Precision High-Gain Differential Amplifier  
Figure 30. 100 mA Current Source  
The high gain, gain linearity, CMRR, and low TCVOS of the  
OP77 make it possible to obtain performance not previously  
available in single-stage, very high-gain amplifier applications.  
These current sources can supply both positive and negative  
current into a grounded load.  
Note that  
R1  
R2  
R3  
R4  
For best CMR,  
must equal  
. In this example, with a  
R4  
R2  
R3  
R5  
+ 1  
10 mV differential signal, the maximum errors are as listed in  
Table 7.  
ZO  
=
R5 + R4  
R2  
R1  
Table 7. Maximum Errors  
Type  
Amount  
0.01%/V  
0.02%  
R5 + R4  
R2  
R3  
R1  
And that for ZO to be infinite  
must =  
Common-Mode Voltage  
Gain Linearity, Worst Case  
TCVOS  
TCIOS  
0.003%/°C  
0.008%/°C  
R
F
10µF  
+15V  
0.1µF  
R
S
2
3
7
INPUT  
100Ω  
6
OUTPUT  
OP77  
4
C
LOAD  
0.1µF  
–15V  
Figure 28. Isolating Large Capacitive Loads  
This circuit reduces maximum slew rate but allows driving  
capacitive loads of any size without instability. Because the boon  
resistor is inside the feedback loop, its effect on output  
impedance is reduced to insignificance by the high open-loop  
gain of the OP77.  
R3  
1kΩ  
R1  
100kΩ  
2
3
V
IN  
6
I
< 15mA  
OP77  
OUT  
R5  
10Ω  
R2  
100kΩ  
R4  
990Ω  
Figure 29. Basic Current Source  
Rev. E | Page 11 of 16  
 
 
OP77  
R1  
PRECISION CURRENT SINKS  
V+  
200  
IRF520  
OP77  
V
R
IN  
L
I
=
O
V
IN  
R1  
> 0V  
V
IN  
I
O
I
=
V
O
IN  
R1  
> 0V  
V
IN  
I
200Ω  
O
V
IN  
IRF520  
OP77  
FULL SCALE OF 1V.  
= 1A/V  
R
L
I
O
R1  
1Ω  
1W  
V–  
Figure 32. Positive Current Source  
The simple high-current sinks, shown Figure 31 and Figure 32,  
require the load to float between the power supply and the sink.  
Figure 31. Positive Current Sink  
In these circuits, the high gain, high CMRR, and low TCVOS of  
the OP77 ensure high accuracy.  
The high gain and low TCVOS ensure accurate operation with  
inputs from microvolts to volts. In Figure 33, the signal always  
appears as a common-mode signal to the op amps. The  
OP77EZ CMRR of 1 μV/V ensures errors of less than 2 ppm.  
1k  
1kΩ  
+15V  
+15V  
0.1µF  
C1  
D1  
0.1µF  
30pF  
1N4148  
2
3
7
6
2
3
7
V
D2  
OUT  
0 < V  
OP77E  
< 10V  
6
OUT  
OP77E  
4
2N4393  
V
IN  
0.1µF  
4
R3  
2kΩ  
0.1µF  
–15V  
–15V  
Figure 33. Precision Absolute Value Amplifier  
15V  
2
2
2
+
10µF  
REF-01  
REF-01  
REF-01  
V
OP77  
OUT  
100  
6
6
6
V
V
V
O
O
O
4
4
4
100Ω  
100Ω  
0.1µF  
Figure 34. Low Noise Precision Reference  
Rev. E | Page 12 of 16  
 
 
 
 
 
OP77  
Figure 34 relies upon low TCVOS of the OP77 and noise  
combined with very high CMRR to provide precision buffering  
of the averaged REF-01 voltage outputs.  
In Figure 35, CH must be of polystyrene, Teflon*, or  
polyethylene to minimize dielectric absorption and leakage.  
The droop rate is determined by the size of CH and the bias  
current of the AD820.  
*Teflon is a registered trademark of the Dupont Company  
1kΩ  
+15V  
+15V  
1N4148  
0.1µF  
0.1µF  
2
3
7
2
3
7
6
6
2N930  
OP77  
V
AD820  
4
1kΩ  
OUT  
1kΩ  
V
IN  
4
0.1µF  
C
H
0.1µF  
RESET  
–15V  
–15V  
Figure 35. Precision Positive Peak Detector  
Rev. E | Page 13 of 16  
 
OP77  
C
+15V  
0.1µF  
C
+15V  
0.1µF  
R
F
2
100kΩ  
V
IN  
R
R
c
a
6
5
R
V
O
S
D1  
1N4148  
1kΩ  
2
3
7
50kΩ  
TRIM  
V
TH  
6
R1  
2kΩ  
V
OUT  
OP77  
REF-02  
V
OUT  
R
R
OP77  
b1  
V
1.5kΩ  
IN  
3
4
TEMP  
GND  
4
0.1µF  
0.1µF  
bp  
–15V  
–15V  
Figure 36. Precision Threshold Detector/Amplifier  
Figure 37. Precision Temperature Sensor  
When VIN < VTH, amplifier output swings negative, reversing the  
biasing diode D1. VO = VTH if RL= ∞ when VIN > VTH, the loop  
closes,  
Table 8. Resistor Values  
TCVOUT Slope (S)  
10 mV/°C  
100 mV/°C 10 mV/°F  
Temperature Range −55°C to  
+125°C  
−55°C to  
+125°C  
−67°F to  
+257°C  
RF  
RS  
VIN VTH 1+  
VO = VTH  
+
(
)
Output Voltage  
Range  
−0.55 V to  
+1.25 V  
−5.5 V to  
+12.5V  
−0.67 V to  
+2.57V  
CC is selected to smooth the response of the loop.  
Zero-Scale  
0 V @ 0°C  
9.09 kΩ  
1.5 kΩ  
200 Ω  
5.11 kΩ  
0 V @ 0°C  
15 kΩ  
0 V @ 0°F  
7.5 kΩ  
Ra ( 1% Resistor)  
Rb1 ( 1% Resistor)  
Rbp (Potentiometer)  
Rc ( 1% Resistor)  
1.82 kΩ  
500 Ω  
1.21 kΩ  
200 Ω  
84.5 kΩ  
8.25 kΩ  
7
V+  
1
(OPTIONAL  
NULL)  
1
R2A  
R2B  
R1B  
R7  
C1  
1
8
R1A  
Q19  
Q9  
Q10  
Q11 Q12  
C2  
R9  
6
Q7  
Q8  
OUTPUT  
Q3 Q6  
Q4  
Q5  
Q17  
C3  
R5  
R10  
Q27  
Q16  
Q15  
3
2
R3  
R4  
NONINVERTING  
INPUT  
Q20  
Q26  
Q25  
Q1  
Q21  
Q22  
Q23  
Q24  
INVERTING  
INPUT  
Q2  
Q18  
Q14  
R6 R8  
Q13  
4
V–  
1
R2A AND R2B ARE ELECTRONICALLY ADJUSTED ON CHIP AT FACTORY.  
Figure 38. Simplified Schematic  
Rev. E | Page 14 of 16  
OP77  
OUTLINE DIMENSIONS  
0.005 (0.13)  
MIN  
0.055 (1.40)  
MAX  
8
5
0.310 (7.87)  
0.220 (5.59)  
1
4
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150 (3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 39. 8-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-8)  
Dimensions shown in inches and (millimeters)  
REFERENCE PLANE  
0.5000 (12.70)  
MIN  
0.1850 (4.70)  
0.1650 (4.19)  
0.1000 (2.54)  
BSC  
0.2500 (6.35) MIN  
0.0500 (1.27) MAX  
0.1600 (4.06)  
0.1400 (3.56)  
5
6
8
4
0.2000  
(5.08)  
BSC  
3
7
0.0450 (1.14)  
0.0270 (0.69)  
2
1
0.1000  
(2.54)  
BSC  
0.0190 (0.48)  
0.0160 (0.41)  
0.0340 (0.86)  
0.0280 (0.71)  
0.0400 (1.02) MAX  
0.0210 (0.53)  
0.0160 (0.41)  
0.0400 (1.02)  
0.0100 (0.25)  
45° BSC  
BASE & SEATING PLANE  
COMPLIANT TO JEDEC STANDARDS MO-002-AK  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 40. 8-Pin Metal Header [TO-99]  
(H-08)  
Dimensions shown in inches and (millimeters)  
Rev. E | Page 15 of 16  
 
OP77  
ORDERING GUIDE  
Model1  
OP77FJ  
Temperature Range  
Package Description  
Package Option  
H-08 (J Suffix)  
H-08 (J Suffix)  
Q-8 (Z Suffix)  
Q-8 (Z Suffix)  
−25°C to +85°C  
−25°C to +85°C  
−25°C to +85°C  
−25°C to +85°C  
8-Pin Metal Header [TO-99]  
8-Pin Metal Header [TO-99]  
8-Lead Ceramic Dual In-Line Package [CERDIP]  
8-Lead Ceramic Dual In-Line Package [CERDIP]  
Die  
OP77FJZ  
OP77EZ  
OP77FZ  
OP77NBC  
1 Z = RoHS Compliant Part.  
©2002–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00320-0-4/10(E)  
Rev. E | Page 16 of 16  
 

相关型号:

OP77BIFP

IC OP-AMP, 100 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, PDIP8, MINI, PLASTIC, DIP-8, Operational Amplifier
ADI

OP77BIFZ

IC OP-AMP, 100 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
ADI

OP77BIGP

IC OP-AMP, 150 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, PDIP8, MINI, PLASTIC, DIP-8, Operational Amplifier
ADI

OP77BIGS

IC OP-AMP, 150 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, PDSO8, PLASTIC, SO-8, Operational Amplifier
ADI

OP77BIGS-REEL7

IC OP-AMP, 150 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, PDSO8, SO-8, Operational Amplifier
ADI

OP77BIGZ

Operational Amplifier, 1 Func, 150uV Offset-Max, BIPolar, CDIP8,
ADI

OP77BIHS

IC OP-AMP, 100 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, PDSO8, PLASTIC, SO-8, Operational Amplifier
ADI

OP77BIHS-REEL7

IC OP-AMP, 100 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, PDSO8, SO-8, Operational Amplifier
ADI

OP77BJ

NEXT GENERATION OP07, ULTRALOW OFFSET VOLTAGE OPERATIONAL AMPLIFIER
ADI

OP77BJ

OP-AMP, 60uV OFFSET-MAX, 0.6MHz BAND WIDTH, MBCY8, TO-99, 8 PIN
ROCHESTER

OP77BJ/883

IC OP-AMP, 120 uV OFFSET-MAX, 0.6 MHz BAND WIDTH, MBCY8, TO-99, 8 PIN, Operational Amplifier
ADI

OP77BRC/883

NEXT GENERATION OP07, ULTRALOW OFFSET VOLTAGE OPERATIONAL AMPLIFIER
ADI