OPZ467GPZ [ADI]

IC QUAD OP-AMP, 1000 uV OFFSET-MAX, 22 MHz BAND WIDTH, PDIP14, PLASTIC, MS-001, DIP-14, Operational Amplifier;
OPZ467GPZ
型号: OPZ467GPZ
厂家: ADI    ADI
描述:

IC QUAD OP-AMP, 1000 uV OFFSET-MAX, 22 MHz BAND WIDTH, PDIP14, PLASTIC, MS-001, DIP-14, Operational Amplifier

放大器 光电二极管
文件: 总20页 (文件大小:481K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad Precision, High  
Speed Operational Amplifier  
OP467  
FEATURES  
PIN CONFIGURATIONS  
High slew rate: 170 V/μs  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
Wide bandwidth: 28 MHz  
Fast settling time: <200 ns to 0.01%  
Low offset voltage: <500 μV  
Unity-gain stable  
Low voltage operation: 5 V to 15 V  
Low supply current: <10 mA  
Drives capacitive loads  
+
+
+IN D  
12  
11 V–  
OP467  
+IN B  
–IN B  
OUT B  
10 +IN C  
+
+
9
8
–IN C  
OUT C  
Figure 1. 14-Lead CERDIP (Y Suffix) and 14-Lead PDIP (P Suffix)  
APPLICATIONS  
High speed image display drivers  
High frequency active filters  
Fast instrumentation amplifiers  
High speed detectors  
Integrators  
Photo diode preamps  
3
2
1
20 19  
+IN A  
NC  
4
5
6
7
8
18 +IN D  
1
2
3
4
5
6
7
8
16  
OUT A  
–IN A  
+IN A  
V+  
OUT D  
17  
16  
15  
14  
NC  
15 –IN D  
OP467  
(TOP VIEW)  
V+  
V–  
14  
13  
12  
11  
10  
9
+IN D  
V–  
NC  
NC  
OP467  
+IN C  
+IN B  
+IN B  
–IN B  
OUT B  
NC  
+IN C  
–IN C  
OUT C  
NC  
9
10 11 12 13  
GENERAL DESCRIPTION  
The OP467 is a quad, high speed, precision operational  
amplifier. It offers the performance of a high speed op amp  
combined with the advantages of a precision op amp in a single  
package. The OP467 is an ideal choice for applications where,  
traditionally, more than one op amp was used to achieve this  
level of speed and precision.  
NC = NO CONNECT  
NC = NO CONNECT  
Figure 2. 16-Lead SOIC (S Suffix)  
Figure 3. 20-Terminal LCC (RC Suffix)  
V+  
The internal compensation of the OP467 ensures stable unity-  
gain operation, and it can drive large capacitive loads without  
oscillation. With a gain bandwidth product of 28 MHz driving a  
30 pF load, output slew rate is 170 V/μs, and settling time to  
0.01% in less than 200 ns, the OP467 provides excellent  
dynamic accuracy in high speed data acquisition systems. The  
channel-to-channel separation is typically 60 dB at 10 MHz.  
+IN  
OUT  
–IN  
The dc performance of the OP467 includes less than 0.5 mV of  
offset, a voltage noise density below 6 nV/√Hz, and a total  
supply current under 10 mA. The common-mode rejection  
ratio (CMRR) is typically 85 dB. The power supply rejection  
ratio (PSRR) is typically 107 dB. PSRR is maintained to better than  
40 dB with input frequencies as high as 1 MHz. The low offset and  
drift plus high speed and low noise make the OP467 usable in  
applications such as high speed detectors and instrumentation.  
V–  
Figure 4. Simplified Schematic  
The OP467 is specified for operation from 5 V to 15 V over  
the extended industrial temperature range (−40°C to +85°C)  
and is available in a 14-lead PDIP, a 14-lead CERDIP, a 16-lead  
SOIC, and a 20-terminal LCC.  
Contact your local sales office for the MIL-STD-883 data sheet  
and availability.  
Rev. *  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
3–20 Analog Devices, Inc. All rights reserved.  
©
 
OP467  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Output Short-Circuit Performance.......................................... 13  
Unused Amplifiers ..................................................................... 13  
PCB Layout Considerations...................................................... 13  
Grounding................................................................................... 13  
Power Supply Considerations................................................... 13  
Signal Considerations................................................................ 13  
Phase Reversal ............................................................................ 14  
Saturation Recovery Time......................................................... 14  
High Speed Instrumentation Amplifier .................................. 14  
2 MHz Biquad Band-Pass Filter ............................................... 15  
Fast I-to-V Converter ................................................................ 16  
OP467 SPICE Marco-Model..................................................... 17  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configurations ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Wafer Test Limits.......................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
Dice Characteristics ..................................................................... 6  
ESD Caution.................................................................................. 6  
Typical Performance Characteristics ............................................. 7  
Applications Information .............................................................. 13  
REVISION HISTORY  
4/10—Rev. H to Rev. I  
3/04—Rev. D to Rev. E  
Deleted Endnote 2 From Table 1.................................................... 3  
Changes to TPC 1..............................................................................5  
Changes to Ordering Guide.............................................................4  
Updated Outline Dimensions....................................................... 16  
8/09—Rev. G to Rev. H  
Changes to Table 4............................................................................ 6  
4/01—Rev. C to Rev. D  
4/09—Rev. F to Rev. G  
Changes to Power Supply Considerations Section..................... 13  
Footnote added to Power Supply.....................................................2  
Footnote added to Max Ratings ......................................................4  
Edits to Power Supply Considerations Section........................... 11  
5/07—Rev. E to Rev. F  
Updated Format..................................................................Universal  
Changes to General Description .................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Table 3............................................................................ 5  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 20  
Rev. I | Page 2 of 20  
 
OP467  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
@ VS = ±±15. V, TA = 21°C, unless otherwise noted5  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
0.2  
0.5  
1
600  
700  
100  
150  
mV  
mV  
nA  
nA  
nA  
−40°C ≤ TA ≤ +85°C  
VCM = 0 V  
VCM = 0 V, −40°C ≤ TA ≤ +85°C  
VCM = 0 V  
Input Bias Current  
150  
150  
10  
Input Offset Current  
IOS  
VCM = 0 V, −40°C ≤ TA ≤ +85°C  
10  
nA  
Common-Mode Rejection  
Large Signal Voltage Gain  
CMR  
CMR  
AVO  
VCM  
VCM  
RL = 2 kΩ  
=
=
12 V  
80  
80  
83  
90  
88  
86  
dB  
dB  
dB  
12 V, −40°C ≤ TA ≤ +85°C  
RL = 2 kΩ, −40°C ≤ TA ≤ +85°C  
77.5  
dB  
Offset Voltage Drift  
Bias Current Drift  
Long-Term Offset Voltage Drift1  
ΔVOS/ΔT  
ΔIB/ΔT  
ΔVOS/ΔT  
3.5  
0.2  
μV/°C  
pA/°C  
μV  
750  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
VO  
RL = 2 kΩ  
RL = 2 kΩ, −40°C ≤ TA ≤ +85°C  
13.0  
12.9  
13.5  
13.12  
V
V
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
4.5 V ≤ VS ≤ 18 V  
−40°C ≤ TA ≤ +85°C  
VO = 0 V  
96  
86  
120  
115  
8
dB  
dB  
mA  
mA  
V
Supply Current  
10  
13  
18  
VO = 0 V, −40°C ≤ TA ≤ +85°C  
Supply Voltage Range  
VS  
4.5  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
Slew Rate  
GBP  
SR  
AV = +1, CL = 30 pF  
VIN = 10 V step, RL = 2 kΩ, CL = 30 pF  
AV = +1  
AV = −1  
VIN = 10 V step  
28  
MHz  
125  
170  
350  
2.7  
200  
45  
V/μs  
V/μs  
MHz  
ns  
Full-Power Bandwidth  
Settling Time  
Phase Margin  
BWρ  
tS  
θ0  
To 0.01%, VIN = 10 V step  
Degrees  
Input Capacitance  
Common Mode  
Differential  
2.0  
1.0  
pF  
pF  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
eN p-p  
eN  
iN  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.15  
6
0.8  
μV p-p  
nV/√Hz  
pA/√Hz  
1 Long-term offset voltage drift is guaranteed by 1000 hrs. Life test performed on three independent wafer lots at 125°C, with an LTPD of 1.3.  
Rev. I | Page 3 of 20  
 
OP467  
@ VS = ±±5. V, TA = 2±°C, unless otherwise noted5  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
0.3  
0.5  
1
600  
700  
100  
150  
mV  
mV  
nA  
nA  
nA  
nA  
dB  
dB  
dB  
−40°C ≤ TA ≤ +85°C  
VCM = 0 V  
VCM = 0 V, −40°C ≤ TA ≤ +85°C  
VCM = 0 V  
VCM = 0 V, −40°C ≤ TA ≤ +85°C  
VCM = 2.0 V  
VCM = 2.0 V, −40°C ≤ TA ≤ +85°C  
RL = 2 kΩ  
Input Bias Current  
125  
150  
20  
Input Offset Current  
IOS  
Common-Mode Rejection  
Large Signal Voltage Gain  
CMR  
CMR  
AVO  
76  
76  
80  
74  
85  
80  
83  
RL = 2 kΩ, −40°C ≤ TA ≤ +85°C  
dB  
Offset Voltage Drift  
Bias Current Drift  
ΔVOS/ΔT  
ΔIB/ΔT  
3.5  
0.2  
μV/°C  
pA/°C  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
VO  
RL = 2 kΩ  
RL = 2 kΩ, −40°C ≤ TA ≤ +85°C  
3.0  
3.0  
3.5  
3.20  
V
V
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
4.5 V ≤ VS ≤ 5.5 V  
−40°C ≤ TA ≤ +85°C  
VO = 0 V  
92  
83  
107  
105  
8
dB  
dB  
mA  
mA  
Supply Current  
10  
12  
VO = 0 V, −40°C ≤ TA ≤ +85°C  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
Slew Rate  
GBP  
SR  
AV = +1  
22  
MHz  
VIN = 5 V step, RL = 2 kΩ, CL = 39 pF  
AV = +1  
AV = −1  
VIN = 5 V step  
To 0.01%, VIN = 5 V step  
90  
90  
2.5  
280  
45  
V/μs  
V/μs  
MHz  
ns  
Full-Power Bandwidth  
Settling Time  
Phase Margin  
BWρ  
tS  
θ0  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
eN p-p  
eN  
iN  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.15  
7
0.8  
μV p-p  
nV/√Hz  
pA/√Hz  
Rev. * | Page 4 of 20  
OP467  
WAFER TEST LIMITS1  
@ VS = ±±5. V, TA = 2±°C, unless otherwise noted5  
Table 3.  
Parameter  
Symbol  
Conditions  
Limit  
0.5  
600  
100  
12  
80  
96  
83  
13.0  
10  
Unit  
Offset Voltage  
VOS  
IB  
IOS  
mV max  
nA max  
nA max  
V min/max  
dB min  
dB min  
dB min  
V min  
Input Bias Current  
Input Offset Current  
Input Voltage Range2  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Output Voltage Range  
Supply Current  
VCM = 0 V  
VCM = 0 V  
CMRR  
PSRR  
AVO  
VO  
ISY  
VCM = 12 V  
V = 4.5 V to 18 V  
RL = 2 kΩ  
RL = 2 kΩ  
VO = 0 V, RL = ∞  
mA max  
1 Electrical tests and wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard  
product dice. Consult sales to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.  
2 Guaranteed by CMR test.  
Rev. * | Page 5 of 20  
 
OP467  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Parameter1  
Rating  
18 V  
18 V  
26 V  
Limited  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device5 This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied5 Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability5  
Supply Voltage  
Input Voltage2  
Differential Input Voltage2  
Output Short-Circuit Duration  
Storage Temperature Range  
14-Lead CERDIP and 20-Terminal LCC  
14-Lead PDIP and 16-Lead SOIC  
Operating Temperature Range  
OP467A  
−65°C to +175°C  
−65°C to +150°C  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages5  
−55°C to +125°C  
−40°C to +85°C  
OP467G  
Junction Temperature Range  
14-Lead CERDIP and 20-Terminal LCC  
14-Lead PDIP and 16-Lead SOIC  
Lead Temperature (Soldering, 60 sec)  
Table 5.  
Package Type  
−65°C to +175°C  
−65°C to +150°C  
300°C  
1
θJA  
94  
76  
88  
78  
θJC  
10  
33  
23  
33  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
14-Lead CERDIP (Y)  
14-Lead PDIP (P)  
16-Lead SOIC (S)  
20-Terminal LCC (RC)  
1 θJA is specified for the worst-case conditions, that is, θJA is specified for device  
in socket for CERDIP, PDIP, and LCC packages, and θJA is specified for device  
soldered in circuit board for the SOIC package.  
1 Absolute maximum ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
2 For supply voltages less than 18 V, the absolute maximum input voltage is  
equal to the supply voltage.  
DICE CHARACTERISTICS  
–IN A  
2
1
14  
–IN D  
13  
+IN A  
V+  
3
4
12 +IN D  
11  
V–  
+IN B  
–IN B  
5
6
10 +IN C  
7
8
9
–IN C  
Figure 5. 0.111 Inch × 0.100 Inch DIE Size, 11,100 sq. mils,  
Substrate Connected to V+, 165 Transistors  
ESD CAUTION  
Rev. * | Page 6 o f 20  
 
 
 
OP467  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
80  
60  
40  
20  
0
80  
V
T
= ±15V  
= 25°C  
S
A
V
R
C
= ±15V  
= 1M  
= 30pF  
S
70  
60  
50  
L
L
A
= +100  
VCL  
GAIN  
40  
30  
20  
10  
0
–90  
PHASE  
A
= +10  
VCL  
–135  
–180  
A
= +1  
VCL  
–10  
–20  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 6. Open-Loop Gain, Phase vs. Frequency  
Figure 9. Closed-Loop Output Impedance vs. Frequency  
80  
V
T
= ±15V  
= 25°C  
S
A
0.3  
60  
40  
20  
0
V
= ±5V  
S
0.2  
0.1  
0.0  
V
= ±15V  
S
–0.1  
–0.2  
–0.3  
0
100k  
3.4  
5.8  
–20  
10k  
1M  
FREQUENCY (Hz)  
10M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 7. Closed-Loop Gain vs. Frequency  
Figure 10. Gain Error vs. Frequency  
25  
30  
25  
20  
15  
10  
5
A
= –1  
VCL  
20  
15  
10  
5
T
= +125°C  
A
A
= +1  
VCL  
T
= +25°C  
A
T
= –55°C  
A
V
T
R
= ±15V  
= 25°C  
= 2k  
S
A
L
0
0
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
0
±5  
±10  
±15  
±20  
SUPPLY VOLTAGE (V)  
Figure 11. Maximum VOUT Swing vs. Frequency  
Figure 8. Open-Loop Gain vs. Supply Voltage  
Rev. * | Page 7 of 20  
 
OP467  
12  
10  
8
60  
50  
40  
30  
20  
10  
0
V
T
R
= ±5V  
= 25°C  
= 2kΩ  
V
= ±15V  
= 2kΩ  
= 100mV p-p  
S
S
A
= +1  
VCL  
R
V
A
L
L
VIN  
A
= +1  
VCL  
A
= –1  
VCL  
A
= –1  
VCL  
6
4
2
0
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
10M  
1M  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
LOAD CAPACITANCE (pF)  
Figure 12. Maximum VOUT Swing vs. Frequency  
Figure 15. Small Signal Overshoot vs. Load Capacitance  
120  
100  
80  
60  
40  
20  
0
60  
50  
40  
30  
20  
10  
0
V
S
T
A
= ±15V  
= 25°C  
V
R
V
= ±15V  
= 2kΩ  
S
A
= +1  
VCL  
L
= 100mV p-p  
VIN  
A
= –1  
VCL  
1k  
10k  
100k  
1M  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
FREQUENCY (Hz)  
LOAD CAPACITANCE (pF)  
Figure 13. Common-Mode Rejection vs. Frequency  
Figure 16. Small Signal Overshoot vs. Load Capacitance  
120  
100  
80  
60  
V
= ±15V  
V
= ±15V  
= 25°C  
S
S
A
50  
40  
T
30  
1000pF  
500pF  
200pF  
20  
10000pF  
60  
10  
0
40  
–10  
–20  
–30  
–40  
C
= NETWORK  
ANALYZER  
IN  
20  
0
100  
1k  
10k  
100k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 14. Power-Supply Rejection vs. Frequency  
Figure 17. Noninverting Gain vs. Capacitive Loads  
Rev. * | Page 8 of 20  
OP467  
0
4
3
V
= ±15V  
S
V
V
C
= ±15V  
= ±5V  
= 50pF  
S
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
IN  
L
2
1
0
–1  
–2  
–3  
–4  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
100  
200  
300  
400  
500  
FREQUENCY (Hz)  
TIME (ns)  
Figure 18. Channel Separation vs. Frequency  
Figure 21. Settling Time, Negative Edge  
12  
4
3
V
V
= ±15V  
S
±5V V 15V  
S
= ±5V  
IN  
10  
8
C
= 50pF  
L
2
1
0
6
–1  
–2  
–3  
–4  
4
2
0
1
10  
100  
FREQUENCY (Hz)  
1k  
0
100  
200  
300  
400  
500  
TIME (ns)  
Figure 19. Input Current Noise Density vs. Frequency  
Figure 22. Settling Time, Positive Edge  
100  
20  
15  
T
= 25°C  
A
10  
5
10  
0
–5  
–10  
–15  
–20  
1.0  
0.1  
1
10  
100  
1k  
10k  
0
±5  
±10  
±15  
±20  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
Figure 20. Voltage Noise Density vs. Frequency  
Figure 23. Input Voltage Range vs. Supply Voltage  
Rev. * | Page 9 of 20  
OP467  
500  
400  
300  
200  
100  
0
50  
40  
V
= ±15V  
= 25°C  
S
V
V
R
C
= ±15V  
= ±5V  
= 10k  
= 50pF  
S1  
S2  
T
A
1252 × OP AMPS  
L
L
30  
20  
V
= ±15V  
S1  
10  
0
–10  
–20  
–30  
–40  
–50  
V
= ±5V  
S2  
–100 –50  
0
50  
100 150 200 250 300 350 400  
µV)  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
INPUT OFFSET VOLTAGE (V  
OS  
Figure 24. Noninverting Gain vs. Supply Voltage  
Figure 27. Input Offset Voltage Distribution  
500  
400  
300  
200  
100  
0
14  
12  
10  
8
V
= ±5V  
= 25°C  
V
T
= ±15V  
= 25°C  
S
S
A
T
A
1252 × OP AMPS  
POSITIVE  
SWING  
6
NEGATIVE  
SWING  
4
2
0
10  
–100 –50  
0
50  
100 150 200 250 300 350 400  
µV)  
100  
1k  
10k  
INPUT OFFSET VOLTAGE (V  
LOAD RESISTANCE ()  
OS  
Figure 25. Output Swing vs. Load Resistance  
Figure 28. Input Offset Voltage Distribution  
500  
400  
300  
200  
100  
0
5
4
3
2
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
S
S
A
A
1252 × OP AMPS  
POSITIVE  
SWING  
NEGATIVE  
SWING  
1
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
10  
100  
1k  
10k  
LOAD RESISTANCE ()  
TC V (µV/°C)  
OS  
Figure 26. Output Swing vs. Load Resistance  
Figure 29. TC VOS Distribution  
Rev. * | Page 10 of 20  
OP467  
500  
400  
300  
200  
100  
0
400  
V
= ±5V  
= 25°C  
S
V
R
A
= ±5V  
S
T
A
= 2kΩ  
350  
300  
250  
200  
150  
100  
50  
L
1252 × OP AMPS  
= +1  
VCL  
+SR  
–SR  
0
–75  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–50  
–25  
0
25  
50  
75  
100  
125  
TC V (µV/°C)  
OS  
TEMPERATURE (°C)  
Figure 30. TC VOS Distribution  
Figure 33. Slew Rate vs. Temperature  
60  
55  
50  
45  
40  
29.0  
28.5  
28.0  
650  
V
R
A
= ±15V  
S
= 2kΩ  
600  
550  
500  
450  
400  
350  
300  
250  
L
GBW  
= –1  
VCL  
–SR  
V
R
= ±5V  
= 2kΩ  
S
L
+SR  
ФM  
27.5  
27.0  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 31. Phase Margin and Gain Bandwidth vs. Temperature  
Figure 34. Slew Rate vs. Temperature  
400  
400  
V
R
A
= ±15V  
S
V
R
A
= ±5V  
S
= 2kΩ  
L
= 2kΩ  
350  
300  
250  
200  
150  
100  
50  
L
350  
300  
250  
200  
150  
100  
50  
= +1  
VCL  
= –1  
VCL  
+SR  
–SR  
+SR  
–SR  
0
–75  
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 32. Slew Rate vs. Temperature  
Figure 35. Slew Rate vs. Temperature  
Rev. * | Page 11 of 20  
OP467  
10  
8
5
200  
160  
120  
R
A
= 5k  
= 25°C  
F
V = ±15V  
S
4
T
0.1%  
6
3
0.1%  
4
2
2
1
0
0
–5  
–4  
–3  
90  
40  
0
–2  
–4  
–6  
–8  
0.1%  
0.1%  
–2  
–1  
–10  
0
100  
200  
SETTLING TIME (ns)  
300  
400  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
Figure 36. Output Step vs. Settling Time  
Figure 38. Input Bias Current vs. Temperature  
25  
20  
15  
V
= ±15V  
S
10  
8
T
= +125°C  
A
T
= +25°C  
A
6
T
= –55°C  
A
10  
5
4
2
0
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
0
±5  
±10  
±15  
±20  
SUPPLY VOLTAGE (V)  
Figure 37. Supply Current vs. Supply Voltage  
Figure 39. Input Offset Current vs. Temperature  
Rev. * | Page 12 of 20  
OP467  
APPLICATIONS INFORMATION  
On the other hand, ceramic chip capacitors have excellent ESR  
and effective series inductance (ESL) performance at higher  
frequencies, and because of their small size, they can be placed  
very close to the device pin, further reducing the stray inductance5  
Best results are achieved by using a combination of these two  
capacitors5 A ± μF to ꢀ. μF tantalum parallel capacitor with a  
.5ꢀ μF ceramic chip capacitor is recommended5 If additional  
isolation from high frequency resonances of the power supply is  
needed, a ferrite bead should be placed in series with the supply  
lines between the bypass capacitors and the power supply5 Note  
that addition of the ferrite bead introduces a new pole and zero  
to the frequency response of the circuit and could cause unstable  
operation if it is not selected properly5  
OUTPUT SHORT-CIRCUIT PERFORMANCE  
To achieve a wide bandwidth and high slew rate, the OP467  
output is not short-circuit protected5 Shorting the output to  
ground or to the supplies may destroy the device5  
For safe operation, the output load current should be limited so  
that the junction temperature does not exceed the absolute  
maximum junction temperature5  
The maximum internal power dissipation can be calculated by  
TJ max TA  
PD =  
θJA  
where:  
+V  
TJ and TA are junction and ambient temperatures, respectively5  
S
+
PD is device internal power dissipation5  
10µF TANTALUM  
θJA is the packaged device thermal resistance given in the data sheet5  
0.1µF CERAMIC CHIP  
UNUSED AMPLIFIERS  
It is recommended that any unused amplifiers in the quad  
package be connected as a unity-gain follower with a ꢀ kΩ  
feedback resistor with noninverting input tied to the ground plain5  
0.1µF CERAMIC CHIP  
10µF TANTALUM  
PCB LAYOUT CONSIDERATIONS  
–V  
S
Satisfactory performance of a high speed op amp largely  
depends on a good PCB layout5 To achieve the best dynamic  
performance, follow the high frequency layout technique5  
Figure 40. Recommended Power Supply Bypass  
SIGNAL CONSIDERATIONS  
GROUNDING  
Input and output traces need special attention to assure a  
minimum stray capacitance5 Input nodes are very sensitive to  
capacitive reactance, particularly when connected to a high  
impedance circuit5 Stray capacitance can inject undesirable  
signals from a noisy line into a high impedance input5 Protect  
high impedance input traces by providing guard traces around  
them, which also improves the channel separation significantly5  
A good ground plain is essential to achieve the optimum  
performance in high speed applications5 It can significantly  
reduce the undesirable effects of ground loops and IR drops by  
providing a low impedance reference point5 Best results are  
obtained with a multilayer board design with one layer assigned  
to the ground plain5 To maintain a continuous and low impedance  
ground, avoid running any traces on this layer5  
Additionally, any stray capacitance in parallel with the input  
capacitance of the op amp generates a pole in the frequency  
response of the circuit5 The additional phase shift caused by this  
pole reduces the gain margin of the circuit5 If this pole is within  
the gain range of the op amp, it causes unstable performance5 To  
reduce these undesirable effects, use the lowest impedance  
where possible5 Lowering the impedance at this node places the  
poles at a higher frequency, far above the gain range of the  
amplifier5 Stray capacitance on the PCB can be reduced by making  
the traces narrow and as short as possible5 Further reduction  
can be realized by choosing a smaller pad size, increasing the  
spacing between the traces, and using PCB material with a low  
dielectric constant insulator (dielectric constant of some common  
insulators: air = ꢀ, Teflon® = 252, and FR4 = 457, with air being  
an ideal insulator)5  
POWER SUPPLY CONSIDERATIONS  
In high frequency circuits, device lead length introduces an  
inductance in series with the circuit5 This inductance, combined  
with stray capacitance, forms a high frequency resonance circuit5  
Poles generated by these circuits cause gain peaking and additional  
phase shift, reducing the phase margin of the op amp and leading  
to an unstable operation5  
A practical solution to this problem is to reduce the resonance  
frequency low enough to take advantage of the power supply  
rejection of the amplifier5 This is easily done by placing capacitors  
across the supply line and the ground plane as close as possible  
to the device pin5 Because capacitors also have internal parasitic  
components, such as stray inductance, selecting the right capacitor  
is important5 To be effective, they should have low impedance  
over the frequency range of interest5 Tantalum capacitors are an  
excellent choice for their high capacitance/size ratio, but their  
effective series resistance (ESR) increases with frequency  
making them less effective5  
Removing segments of the ground plane directly under the  
input and output pads is recommended5  
Rev. * | Page 13 of 20  
 
OP467  
Outputs of high speed amplifiers are very sensitive to capacitive  
loads5 A capacitive load introduces a pair of pole and zero to the  
frequency response of the circuit, reducing the phase margin,  
leading to unstable operation or oscillation5  
DLY 9.824µs  
100  
90  
Generally, it is good design practice to isolate the output of the  
amplifier from any capacitive load by placing a resistor between  
the output of the amplifier and the rest of the circuits5 A series  
resistor of ꢀ. ꢁ to ꢀ.. ꢁ is normally sufficient to isolate the  
output from a capacitive load5  
10  
0%  
The OP467 is internally compensated to provide stable  
operation and is capable of driving large capacitive loads  
without oscillation5  
5V  
5V  
20ns  
Figure 42. Saturation Recovery Time, Positive Rail  
Sockets are not recommended because they increase the lead  
inductance/capacitance and reduce the power dissipation of the  
package by increasing the thermal resistance of the leads5 If  
sockets must be used, use Teflon or pin sockets with the shortest  
possible leads5  
DLY 4.806µs  
100  
90  
PHASE REVERSAL  
The OP467 is immune to phase reversal; its inputs can exceed  
the supply rails by a diode drop without any phase reversal5  
10  
ΔV1  
15.8V  
0%  
100  
90  
5V  
5V  
20ns  
OUTPUT  
Figure 43. Saturation Recovery Time, Negative Rail  
HIGH SPEED INSTRUMENTATION AMPLIFIER  
The OP467 performance lends itself to a variety of high speed  
applications, including high speed precision instrumentation  
amplifiers5 Figure 44 represents a circuit commonly used for  
data acquisition, CCD imaging, and other high speed  
applications5  
10  
INTPUT  
0%  
10V  
10V  
200µs  
The circuit gain is set by RG5 A 2 kΩ resistor sets the circuit gain  
to 2; for unity gain, remove RG5 For any other gain settings, use  
the following formula  
Figure 41. No Phase Reversal (AV = +1)  
SATURATION RECOVERY TIME  
The OP467 has a fast and symmetrical recovery time from  
either rail5 This feature is very useful in applications such as  
high speed instrumentation and measurement circuits, where  
the amplifier is frequently exposed to large signals that overload  
the amplifier5  
G = 2/RG (Resistor Value is in kΩ)  
RC is used for adjusting the dc common-mode rejection, and CC  
is used for ac common-mode rejection adjustments5  
–V  
IN  
C
C
2k  
1kΩ  
1kΩ  
2kΩ  
2kΩ  
R
10kΩ  
G
OUTPUT  
1.9kΩ  
R
5pF  
C
10kΩ  
200Ω  
10T  
+V  
IN  
Figure 44. A High Speed Instrumentation Amplifier  
Rev. * | Page 14 of 20  
 
 
OP467  
2 MHz BIQUAD BAND-PASS FILTER  
0.01% 10V STEP  
= ±15V  
V
S
NEG SLOPE  
The circuit in Figure 48 is commonly used in medical imaging  
ultrasound receivers5 The 3. MHz bandwidth is sufficient to  
accurately produce the 2 MHz center frequency, as the measured  
response shows in Figure 495 When the bandwidth of the op  
amp is too close to the center frequency of the filter, the internal  
phase shift of the amplifier causes excess phase shift at 2 MHz,  
which alters the response of the filter5 In fact, if the chosen op  
amp has a bandwidth close to 2 MHz, the combined phase shift  
of the three op amps causes the loop to oscillate5  
2.5mV  
–2.5mV  
Careful consideration must be given to the layout of this circuit  
as with any other high speed circuit5  
Figure 45. Instrumentation Amplifier Settling Time to 0.01% for a  
10 V Step Input (Negative Slope)  
If the phase shift introduced by the layout is large enough, it can  
alter the circuit performance, or worse, cause oscillation5  
0.01% 10V STEP  
V
= ±15V  
S
R6  
1k  
POS SLOPE  
C1  
50pF  
R2  
2.5mV  
R4  
2kΩ  
C2  
50pF  
2kΩ  
–2.5mV  
R1  
3kΩ  
R3  
2kΩ  
1/4  
OP467  
R5  
2kΩ  
2kΩ  
1/4  
OP467  
1/4  
OP467  
1/4  
OP467  
V
OUT  
V
Figure 46. Instrumentation Amplifier Settling Time to 0.01% for a  
10 V Step Input (Positive Slope)  
IN  
Figure 48. 2 MHz Biquad Filter  
+V  
S
+
0
–10  
–20  
–30  
–40  
2kΩ  
2kΩ  
+
TO  
INPUT  
AD9617  
1kΩ  
ERROR  
TO SCOPE  
TO  
IN-AMP  
OUTPUT  
–V  
S
549Ω  
61.9Ω  
Figure 47. Settling Time Measurement Circuit  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 49. Biquad Filter Response  
Rev. * | Page 15 of 20  
 
 
 
OP467  
+5V  
+10V  
V
V
R
I
1
2
3
4
5
6
7
8
9
DGND  
28  
27  
26  
25  
24  
23  
22  
21  
DD  
+10V  
DAC8408  
A
V
C
C
REF  
REF  
A
R
FB  
C1  
10pF  
C3  
10pF  
FB  
2
3
I
OUT 1C  
13  
12  
OUT 1A  
1
14  
OUT A  
OP467  
+15V  
OUT D  
OUT C  
OP467  
OP467  
I
I
I
OUT 2C/  
OUT 2A/  
OUT 2B  
I
OUT 2D  
I
I
OUT 1B  
OUT 1D  
R
V
B
R
D
D
FB  
FB  
0.1µF  
0.1µF  
9
4
B
V
REF  
6
5
8
REF  
C4  
10pF  
7
OUT B  
OP467  
10  
+10V  
C2  
10pF  
+10V  
DB0 (LSB)  
DS2 20  
11  
DS1  
R/W  
19  
18  
10 DB1  
11 DB2  
DIGITAL  
CONTROL  
SIGNALS  
–15V  
DB3  
DB4  
DB5  
12  
13  
14  
A/B 17  
(MSB) DB7  
16  
DB6 15  
Figure 50. Quad DAC Unipolar Operation  
FAST I-TO-V CONVERTER  
251.0ns  
The fast slew rate and fast settling time of the OP467 are well  
suited to the fast buffers and I-to-V converters used in a variety  
of applications5 The circuit in Figure ±. is a unipolar quad DAC  
consisting of only two ICs5 The current output of the DAC84.8  
is converted to a voltage by the OP467 configured as an I-to-V  
converter5 This circuit is capable of settling to .5ꢀ% within 2.. ns5  
Figure ±ꢀ and Figure ±2 show the full-scale settling time of the  
outputs5 To obtain reliable circuit performance, keep the traces  
from the IOUT of the DAC to the inverting inputs of the OP467  
short to minimize parasitic capacitance5  
100  
90  
10  
0%  
2V  
50mV  
100ns  
260.0ns  
Figure 52. Rising Edge Output Settling Time  
DAC8408  
100  
90  
DC OFFSET  
R
FB  
3pF  
2kΩ  
I-V  
OP467  
I
OUT  
2kΩ  
50kΩ  
1kΩ  
AD847  
604Ω  
60.4kΩ  
10  
0%  
Figure 53. DAC VOUT Settling Time Circuit  
2V  
50mV  
100ns  
Figure 51. Falling Edge Output Settling Time  
Rev. * | Page 16 of 20  
 
 
 
 
OP467  
OP467 SPICE MARCO-MODEL  
* Node assignments  
*
noninverting input  
* COMMON-MODE STAGE WITH ZERO AT 1.26 kHz  
*
inverting input  
positive supply  
negative supply  
ECM  
R8  
R9  
C3  
*
13 98  
13 14  
14 98  
13 14  
POLY (2) (1, 20)  
1E6  
25 . 119  
(2,20) 0 0. 5 0 . 5  
output  
126 . 721E–12  
*
. SUBCKT OP467  
*
1
2
99  
50  
27  
*POLE AT 400E6  
*
* INPUT STAGE  
*
R10  
C4  
G2  
*
15  
15  
98  
98  
98  
15  
1E6  
0 . 398E–15  
(10,20) 1E–6  
I1  
4
5
0
10E–3  
CIN  
IOS  
Q1  
Q2  
R3  
1
1
5
6
99  
99  
8
2
2
2
7
5
6
4
4
1
0
1E–12  
5E–9  
8 QN  
9 QN  
185 . 681  
185 . 681  
180 . 508  
180 . 508  
POLY (1)  
(20,0) 1  
* OUTPUT STAGE  
*
ISY  
RMP1  
RMP2  
RO1  
RO2  
L1  
GO1  
GO2  
G4  
G5  
V3  
V4  
D3  
D4  
D5  
D6  
D7  
D8  
*
99  
99  
20  
99  
26  
26  
26  
50  
23  
24  
21  
26  
15  
22  
99  
99  
50  
50  
50  
20  
50  
26  
50  
27  
99  
26  
50  
50  
26  
22  
21  
15  
23  
24  
23  
24  
–8 . 183E–3  
96 . 429E3  
96 . 429E3  
200  
200  
1E–7  
(99,15) 5E–3  
(15,50) 5E–3  
(15,26) 5E–3  
(26,15) 5E–3  
50  
50  
DX  
DX  
DX  
DX  
DY  
DY  
R4  
R5  
R6  
9
EOS  
EREF  
*
7
98  
(14,20)  
50E–6  
1
* GAIN STAGE AND DOMINANT POLE AT 1.5 kHz  
*
R7  
C2  
G1  
V1  
V2  
D1  
D2  
RC  
CC  
10 98  
10 98  
98 10  
99 11  
12 50  
10 11  
12 10  
10 28  
28 27  
3 . 714E6  
28 . 571E–12  
(5,6) 5 . 386E–3  
1 . 6  
1 . 6  
DX  
DX  
1 . 4E3  
12E–12  
* MODELS USED  
*
. MODEL QN NPN (BF=33.333E3)  
. MODEL DX D  
. MODEL DY D (BV=50)  
. ENDS OP467  
Rev. * | Page 17 of 20  
 
OP467  
99  
99  
27  
99  
99  
27  
+
V1  
R4  
6
R3  
5
D5  
RMP1  
15  
D6  
11  
G01  
I
SY  
V3  
D1  
C
C
R
28  
C3  
C
+
R01  
L1  
21  
D3  
D4  
2
10  
20  
15  
Q1  
N–  
N+  
Q2  
7
26  
I
OS  
8
9
V4  
R10  
G2  
22  
13  
14  
C
1
R7  
+
IN  
C2  
G1  
R6  
C4  
98  
R5  
R8  
4
+
E
CM  
RMP2  
G4  
R9  
23  
24  
R02  
+
+
E
REF  
98  
E
D2  
OS  
+
D7  
D8  
G5  
G02  
E
REF  
12  
I1  
+
V2  
50  
50  
50  
50  
Figure 55. SPICE Macro-Model Input and Gain Stage  
Figure 54. SPICE Macro-Model Output Stage  
Rev. * | Page 18 of 20  
OP467  
OUTLINE DIMENSIONS  
0.775 (19.69)  
0.750 (19.05)  
0.735 (18.67)  
14  
1
8
7
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 56. 14-Lead Plastic Dual In-Line Package [PDIP]  
(N-14)  
P-Suffix  
Dimensions shown in inches and (millimeters)  
0.098 (2.49) MAX  
8
0.005 (0.13) MIN  
14  
0.310 (7.87)  
0.220 (5.59)  
1
7
PIN 1  
0.100 (2.54) BSC  
0.785 (19.94) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 57. 14-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-14)  
Y-Suffix  
Dimensions shown in inches and (millimeters)  
Rev. I | Page 19 of 20  
 
OP467  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.  
0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 58. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
S-Suffix  
Dimensions shown in millimeters and (inches)  
0.200 (5.08)  
0.075 (1.91)  
REF  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.100 (2.54) REF  
0.095 (2.41)  
0.015 (0.38)  
MIN  
0.075 (1.90)  
3
19  
18  
20  
4
8
0.028 (0.71)  
0.022 (0.56)  
1
0.358 (9.09)  
0.358  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
0.342 (8.69)  
SQ  
0.050 (1.27)  
BSC  
14  
0.075 (1.91)  
13  
9
REF  
45° TYP  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
0.150 (3.81)  
BSC  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 59. 20-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-20-1) RC-Suffix  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model1  
OP467GP  
OP467GPZ  
OP467GS  
OP467GS-REEL  
OP467GSZ  
OP467GSZ-REEL  
OP467ARC/883C  
OP467AY/883C  
OP467GBC  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−55°C to +125°C  
−55°C to +125°C  
Package Description  
14-Lead PDIP  
14-Lead PDIP  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
20-Terminal LCC  
14-Lead CERDIP  
Die  
Package Option  
N-14  
N-14  
RW-16  
RW-16  
RW-16  
RW-16  
E-20-1  
Q-14  
1 Z = RoHS Compliant Part.  
©1993–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00302-0-4/10(I)  
Rev. I | Page 20 of 20  
 
 
 
 
 

相关型号:

OPZ90GPZ

IC OP-AMP, 675 uV OFFSET-MAX, 0.02 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier
ADI

OPZ97EPZ

OP-AMP, 60uV OFFSET-MAX, 0.9MHz BAND WIDTH, PDIP8, MO-095AA, PLASTIC, DIP-8
ADI

OPZ97FPZ

OP-AMP, 200uV OFFSET-MAX, 0.9MHz BAND WIDTH, PDIP8, MO-095AA, PLASTIC, DIP-8
ADI

OQ02125100J0G

Strip Terminal Block
AMPHENOL

OQ02125103J0G

Strip Terminal Block
AMPHENOL

OQ02126100J0G

Strip Terminal Block
AMPHENOL

OQ02126103J0G

Strip Terminal Block
AMPHENOL

OQ02128103J0G

Strip Terminal Block
AMPHENOL

OQ02154000J0G

Strip Terminal Block
AMPHENOL

OQ02155000J0G

Strip Terminal Block
AMPHENOL

OQ02320100J0G

Strip Terminal Block
AMPHENOL

OQ02323000J0G

Strip Terminal Block
AMPHENOL