SD53-6R8-R [ADI]

1.2 A, 20 V, 700 kHz/1.4 MHz, Nonsynchronous Step-Down Regulator; 1.2 A , 20 V , 700千赫/ 1.4 MHz的非同步降压型稳压器
SD53-6R8-R
型号: SD53-6R8-R
厂家: ADI    ADI
描述:

1.2 A, 20 V, 700 kHz/1.4 MHz, Nonsynchronous Step-Down Regulator
1.2 A , 20 V , 700千赫/ 1.4 MHz的非同步降压型稳压器

稳压器 电感器 测试
文件: 总28页 (文件大小:692K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1.2 A, 20 V, 700 kHz/1.4 MHz,  
Nonsynchronous Step-Down Regulator  
ADP2300/ADP2301  
TYPICAL APPLICATIONS CIRCUIT  
FEATURES  
1.2 A maximum load current  
BST  
3.0V TO 20V  
VIN  
EN  
2ꢀ output accuracy over temperature range  
Wide input voltage range: 3.0 V to 20 V  
700 kHz (ADP2300) or 1.4 MHz (ADP2301)  
switching frequency options  
V
OUT  
ADP2300/  
ADP2301  
SW  
FB  
ON  
High efficiency up to 91ꢀ  
GND  
OFF  
Current-mode control architecture  
Output voltage from 0.8 V to 0.85 × VIN  
Automatic PFM/PWM mode switching  
Precision enable pin with hysteresis  
Integrated high-side MOSFET  
Integrated bootstrap diode  
Internal compensation and soft start  
Minimum external components  
Figure 1.  
100  
95  
90  
85  
80  
75  
70  
65  
fSW = 1.4MHz  
fSW = 700kHz  
Undervoltage lockout (UVLO)  
Overcurrent protection (OCP) and thermal shutdown (TSD)  
ADIsimPower™ online design tool  
Available in ultrasmall, 6-lead TSOT package  
APPLICATIONS  
LDO replacement for digital load applications  
Intermediate power rail conversion  
Communications and networking  
Industrial and instrumentation  
Healthcare and medical  
V
V
= 12V  
OUT  
IN  
= 5.0V  
60  
0
0.2  
0.4  
0.6  
(A)  
0.8  
1.0  
1.2  
I
OUT  
Figure 2. Efficiency vs. Output Current  
Consumer  
GENERAL DESCRIPTION  
The ADP2300/ADP2301 are compact, constant-frequency,  
current-mode, step-down dc-to-dc regulators with integrated  
power MOSFET. The ADP2300/ADP2301 devices run from  
input voltages of 3.0 V to 20 V, making them suitable for a wide  
range of applications. A precise, low voltage internal reference  
makes these devices ideal for generating a regulated output  
voltage as low as 0.8 V, with 2% accuracy, for up to 1.2 A load  
current.  
total solution size. Current-mode control provides fast and stable  
line and load transient performance. The ADP2300/ADP2301  
devices include internal soft start to prevent inrush current at  
power-up. Other key safety features include short-circuit protec-  
tion, thermal shutdown (TSD), and input undervoltage lockout  
(UVLO). The precision enable pin threshold voltage allows the  
ADP2300/ADP2301 to be easily sequenced from other input/  
output supplies. It can also be used as a programmable UVLO  
input by using a resistive divider.  
There are two frequency options: the ADP2300 runs at 700 kHz,  
and the ADP2301 runs at 1.4 MHz. These options allow users to  
make decisions based on the trade-off between efficiency and  
The ADP2300/ADP2301 are available in a 6-lead TSOT package  
and are rated for the −40°C to +125°C junction temperature range.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
ADP2300/ADP2301  
TABLE OF CONTENTS  
Thermal Shutdown .................................................................... 15  
Control Loop............................................................................... 15  
Applications Information.............................................................. 16  
Programming the Output Voltage ........................................... 16  
Voltage Conversion Limitations............................................... 16  
Low Input Voltage Considerations .......................................... 17  
Programming the Precision Enable......................................... 17  
Inductor....................................................................................... 18  
Catch Diode ................................................................................ 19  
Input Capacitor........................................................................... 19  
Output Capacitor........................................................................ 19  
Thermal Considerations............................................................ 20  
Design Example.............................................................................. 21  
Switching Frequency Selection................................................. 21  
Catch Diode Selection ............................................................... 21  
Inductor Selection...................................................................... 21  
Output Capacitor Selection....................................................... 21  
Resistive Voltage Divider Selection.......................................... 22  
Circuit Board Layout Recommendations ................................... 23  
Typical Application Circuits ......................................................... 24  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 26  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Typical Applications Circuit............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
Functional Block Diagram ............................................................ 13  
Theory of Operation ...................................................................... 14  
Basic Operation .......................................................................... 14  
PWM Mode................................................................................. 14  
Power Saving Mode.................................................................... 14  
Bootstrap Circuitry .................................................................... 14  
Precision Enable ......................................................................... 14  
Integrated Soft Start ................................................................... 14  
Current Limit .............................................................................. 14  
Short-Circuit Protection............................................................ 15  
Undervoltage Lockout (UVLO) ............................................... 15  
REVISION HISTORY  
2/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
ADP2300/ADP2301  
SPECIFICATIONS  
VIN = 3.3 V, TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted.  
Table 1.  
Parameter  
Symbol Test Conditions  
Min  
Typ  
Max  
Unit  
VIN  
Voltage Range  
Supply Current  
Shutdown Current  
VIN  
IVIN  
ISHDN  
3
20  
800  
35  
V
No switching, VIN = 12 V  
VEN = 0 V, VIN = 12 V  
VIN rising  
640  
18  
2.80  
2.40  
μA  
μA  
V
Undervoltage Lockout Threshold UVLO  
2.95  
VIN falling  
2.15  
V
FB  
Regulation Voltage  
Bias Current  
VFB  
IFB  
TJ = 0°C to +125°C  
TJ = −40°C to +125°C  
0.788  
0.784  
0.800  
0.800  
0.01  
0.812  
0.816  
0.1  
V
V
μA  
SW  
On Resistance1  
Peak Current Limit2  
Minimum On Time  
Minimum Off Time  
VBST − VSW = 5 V, ISW = 150 mA  
VBST − VSW = 5 V, VIN = 12 V  
440  
1.9  
100  
145  
70  
700  
2.5  
135  
190  
120  
0.9  
mΩ  
A
ns  
ns  
ns  
1.5  
ADP2300  
ADP2301  
ADP2300  
ADP2301  
ADP2300  
ADP2301  
OSCILLATOR FREQUENCY  
SOFT START TIME  
0.5  
1.0  
0.7  
1.4  
MHz  
MHz  
μs  
1.75  
1460  
730  
μs  
EN  
Input Threshold  
Input Hysteresis  
Pull-Down Current  
BOOTSTRAP VOLTAGE  
THERMAL SHUTDOWN  
Threshold  
VEN  
1.13  
1.2  
100  
1.2  
5.0  
1.27  
V
mV  
μA  
V
VBOOT  
No switching, VIN = 12 V  
140  
15  
°C  
°C  
Hysteresis  
1 Pin-to-pin measurements.  
2 Guaranteed by design.  
Rev. 0 | Page 3 of 28  
 
 
ADP2300/ADP2301  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Parameter  
VIN, EN  
SW  
BST to SW  
BST  
Rating  
−0.3 V to +28 V  
−1.0 V to +28 V  
−0.6 V to +6 V  
−0.3 V to +28 V  
−0.3 V to +3.3 V  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 3. Thermal Resistance1  
Package Type  
θJA  
θJC  
Unit  
FB  
6-Lead TSOT  
186.02  
66.34  
°C/W  
Operating Junction Temperature Range −40°C to +125°C  
Storage Temperature Range  
Soldering Conditions  
−65°C to +150°C  
JEDEC J-STD-020  
1 θJA and θJC are measured using natural convection on a JEDEC 4-layer board.  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Absolute maximum ratings apply individually only, not in  
combination. Unless otherwise specified, all voltages are  
referenced to GND.  
Rev. 0 | Page 4 of 28  
 
ADP2300/ADP2301  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
6
5
4
1
2
3
BST  
GND  
FB  
SW  
VIN  
EN  
ADP2300/  
ADP2301  
TOP VIEW  
(Not to Scale)  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
BST  
Boost Supply for the High-Side MOSFET Driver. A 0.1 μF capacitor is connected between the SW and BST pins  
to form a floating supply to drive the gate of the MOSFET switch above the VIN supply voltage.  
2
3
GND  
FB  
Ground. Connect this pin to the ground plane.  
Feedback Voltage Sense Input. Connect this pin to a resistive divider from VOUT. Set the voltage to 0.8 V for a  
desired VOUT  
.
4
EN  
Output Enable. Pull this pin high to enable the output. Pull this pin low to disable the output. This pin can  
also be used as a programmable UVLO input. This pin has a 1.2 μA pull-down current to GND.  
5
6
VIN  
SW  
Power Input. Connect to the input power source with a ceramic bypass capacitor to GND directly from this pin.  
Switch Node Output. Connect an inductor to VOUT and a catch diode to GND from this pin.  
Rev. 0 | Page 5 of 28  
 
ADP2300/ADP2301  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 3.3 V, TA = 25°C, VEN = VIN, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
100  
INDUCTOR: LPS6225-103MLC  
DIODE: B230A  
90  
80  
70  
60  
V
V
V
V
V
= 5.0V  
= 3.3V  
= 2.5V  
= 1.8V  
= 1.2V  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
V
V
= 12V  
= 9V  
= 5.0V  
= 3.3V  
OUT  
OUT  
OUT  
OUT  
50  
40  
INDUCTOR: LPS6225-472MLC  
DIODE: B230A  
0
0.2  
0.4  
0.6  
(A)  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
(A)  
0.8  
1.0  
1.2  
I
I
OUT  
OUT  
Figure 7. Efficiency Curve, VIN = 12 V, fSW = 700 kHz  
Figure 4. Efficiency Curve, VIN = 18 V, fSW = 1.4 MHz  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
INDUCTOR: LPS6225-472MLC  
DIODE: B230A  
V
V
V
V
= 12V  
= 9V  
= 5.0V  
= 3.3V  
OUT  
OUT  
OUT  
OUT  
V
V
V
= 2.5V  
OUT  
OUT  
OUT  
= 1.8V  
= 1.2V  
INDUCTOR: LPS6225-103MLC  
DIODE: B230A  
0
0.2  
0.4  
0.6  
(A)  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
(A)  
0.8  
1.0  
1.2  
I
I
OUT  
OUT  
Figure 8. Efficiency Curve, VIN = 5.0 V, fSW = 1.4 MHz  
Figure 5. Efficiency Curve, VIN = 18 V, fSW = 700 kHz  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
INDUCTOR: LPS6225-103MLC  
DIODE: B230A  
V
V
V
= 5.0V  
V
V
V
= 2.5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
INDUCTOR: LPS6225-472MLC  
DIODE: B230A  
= 3.3V  
= 2.5V  
= 1.8V  
= 1.2V  
0
0.2  
0.4  
0.6  
(A)  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
(A)  
0.8  
1.0  
1.2  
I
I
OUT  
OUT  
Figure 6. Efficiency Curve, VIN = 12 V, fSW = 1.4 MHz  
Figure 9. Efficiency Curve, VIN = 5.0 V, fSW = 700 kHz  
Rev. 0 | Page 6 of 28  
 
ADP2300/ADP2301  
100  
90  
80  
70  
60  
50  
40  
0.20  
0.15  
fSW = 1.4MHz  
fSW = 700kHz  
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
V
V
V
= 1.8V  
= 1.2V  
= 0.8V  
OUT  
OUT  
OUT  
INDUCTOR: LPS6225-472MLC  
DIODE: B230A  
5
8
11  
14  
17  
20  
0
0.2  
0.4  
0.6  
(A)  
0.8  
1.0  
1.2  
V
(V)  
I
IN  
OUT  
Figure 10. Efficiency Curve, VIN = 3.3 V with External 5.0 V Bootstrap Bias  
Voltage, fSW = 1.4 MHz  
Figure 13. Line Regulation, VOUT = 3.3 V, IOUT = 500 mA  
1600  
1400  
1200  
1000  
800  
100  
V
V
V
= 1.8V  
= 1.2V  
= 0.8V  
fSW = 1.4MHz  
fSW = 700kHz  
OUT  
OUT  
OUT  
90  
80  
70  
60  
50  
40  
600  
INDUCTOR: LPS6225-103MLC  
DIODE: B230A  
400  
–50  
0
0.2  
0.4  
0.6  
(A)  
0.8  
1.0  
1.2  
–20  
10  
40  
70  
100  
130  
I
TEMPERATURE (°C)  
OUT  
Figure 11. Efficiency Curve, VIN = 3.3 V with External 5.0 V Bootstrap Bias  
Voltage, fSW = 700 kHz  
Figure 14. Frequency vs. Temperature  
1600  
1400  
1200  
1000  
800  
0.20  
fSW = 1.4MHz  
fSW = 700kHz  
F
F
= 1.4MHz  
= 700kHz  
SW  
SW  
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
600  
400  
0
0.2  
0.4  
0.6  
(A)  
0.8  
1.0  
1.2  
2
5
8
11  
(V)  
14  
17  
20  
I
V
OUT  
IN  
Figure 12. Load Regulation, VOUT = 3.3 V, VIN = 12 V  
Figure 15. Frequency vs. VIN  
Rev. 0 | Page 7 of 28  
ADP2300/ADP2301  
40  
35  
30  
25  
20  
15  
10  
5
160  
140  
120  
100  
80  
fSW = 1.4MHz  
fSW = 700kHz  
60  
40  
T
T
T
= 40°C  
= +25°C  
= +125°C  
20  
J
J
J
0
0
–50  
2
5
8
11  
(V)  
14  
17  
20  
–20  
10  
40  
70  
100  
130  
V
TEMPERATURE (°C)  
IN  
Figure 16. Shutdown Current vs. VIN  
Figure 19. Minimum Off Time vs. Temperature  
0.804  
0.802  
0.800  
0.798  
0.796  
0.794  
0.792  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–50  
–20  
10  
40  
70  
100  
130  
2
5
8
11  
(V)  
14  
17  
20  
TEMPERATURE (°C)  
V
IN  
Figure 17. 0.8 V Feedback Voltage vs. Temperature  
Figure 20. Current-Limit Threshold vs. VIN, VBST − VSW = 5.0 V  
110  
105  
100  
95  
2.5  
2.0  
1.5  
1.0  
0.5  
0
90  
85  
80  
–50  
–20  
10  
40  
70  
100  
130  
–50  
–20  
10  
40  
70  
100  
130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. Minimum On Time vs. Temperature  
Figure 21. Current-Limit Threshold vs. Temperature  
Rev. 0 | Page 8 of 28  
ADP2300/ADP2301  
700  
660  
620  
580  
540  
500  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
RISING  
FALLING  
T
T
T
= 40°C  
= +25°C  
= +125°C  
J
J
J
2
5
8
11  
(V)  
14  
17  
20  
–50  
–20  
10  
40  
70  
100  
130  
V
TEMPERATURE (°C)  
IN  
Figure 22. Quiescent Current vs. VIN  
Figure 25. UVLO Threshold vs. Temperature  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
OUT  
1
IL  
SW  
4
2
V
= 5V  
= 4V  
= 3V  
GS  
GS  
GS  
V
V
B
B
W
CH1 5mV  
CH2 5V  
M400ns  
A CH2  
7.4V  
W
–50  
–20  
10  
40  
70  
100  
130  
B
CH4 500mA Ω  
W
TEMPERATURE (°C)  
Figure 26. Steady State at Heavy Load, fSW = 1.4 MHz, IOUT = 1 A  
Figure 23. MOSFET RDS(ON) vs. Temperature (Pin-to-Pin Measurements)  
1.30  
RISING  
FALLING  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
V
OUT  
1
4
IL  
SW  
2
B
B
CH1 20mV  
CH2 5V  
M10µs  
A CH2  
8V  
W
W
–50  
–20  
10  
40  
70  
100  
130  
CH4 200mA B  
W
TEMPERATURE (°C)  
Figure 27. Steady State at Light Load, fSW = 1.4 MHz, IOUT = 40 mA  
Figure 24. Enable Threshold vs. Temperature  
Rev. 0 | Page 9 of 28  
ADP2300/ADP2301  
V
V
OUT  
OUT  
IL  
1
I
OUT  
1
4
EN  
4
2
SW  
SW  
3
2
B
B
B
B
CH1 1V  
CH3 10V  
CH2 10V  
M100µs  
A CH3  
8V  
W
W
W
CH1 50mV  
W CH2 10V  
CH4 500mA B  
M100µs A CH4  
630mA  
W
CH4 500mA B  
B
W
W
Figure 28. Soft Start with 1 A Resistance Load, fSW = 1.4 MHz  
Figure 31. ADP2301 Load Transient, 0.2 A to 1.0 A, VOUT = 3.3 V, VIN = 12 V  
(fSW = 1.4 MHz, L = 4.7 μH, COUT = 22 μF)  
V
OUT  
V
I
OUT  
1
1
4
OUT  
IL  
EN  
4
2
SW  
SW  
3
2
B
B
B
B
B
CH1 1V  
CH3 10V  
CH2 10V  
M100µs  
A CH3  
8V  
CH1 200mV  
W CH2 10V  
CH4 500mA B  
M100µs A CH4  
630mA  
W
W
W
W
CH4 500mA B  
W
W
Figure 32. ADP2300 Load Transient, 0.2 A to 1.0 A, VOUT = 5.0 V, VIN = 12 V  
(fSW = 700 kHz, L = 10 μH, COUT = 22 μF)  
Figure 29. Soft Start with No Load, fSW = 1.4 MHz  
V
I
OUT  
OUT  
V
OUT  
1
1
I
OUT  
SW  
4
2
SW  
4
2
B
B
B
B
CH1 100mV  
CH2 10V  
M100µs A CH4  
630mA  
CH1 100mV  
W CH2 10V  
CH4 500mA B  
M100µs A CH4  
580mA  
W
W
W
W
CH4 500mA B  
W
Figure 30. ADP2301 Load Transient, 0.2 A to 1.0 A, VOUT = 5.0 V, VIN = 12 V  
(fSW = 1.4 MHz, L = 4.7 μH, COUT = 10 μF)  
Figure 33. ADP2300 Load Transient, 0.2 A to 1.0 A, VOUT = 3.3 V, VIN = 12 V  
(fSW = 700 kHz, L = 10 μH, COUT = 22 μF)  
Rev. 0 | Page 10 of 28  
ADP2300/ADP2301  
100  
80  
200  
160  
120  
80  
V
OUT  
60  
1
40  
20  
40  
0
0
–20  
–40  
–60  
–80  
–100  
–40  
–80  
–120  
–160  
–200  
V
IN  
SW  
3
2
CROSS FREQUENCY: 127kHz  
PHASE MARGIN: 53°  
B
B
W
1
2
CH1 5mV  
CH3 5V  
CH2 10V  
M1ms  
A CH3  
11.4V  
W
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 34. ADP2301 Line Transient,  
7 V to 15 V, VOUT = 3.3 V, IOUT = 1.2 A, fSW = 1.4 MHz  
Figure 37. ADP2301 Bode Plot, VOUT = 5.0 V, VIN = 12 V  
(fSW = 1.4 MHz, L = 4.7 μH, COUT = 10 μF)  
100  
80  
200  
160  
120  
80  
V
OUT  
60  
40  
20  
40  
1
0
0
–20  
–40  
–60  
–80  
–100  
–40  
–80  
–120  
–160  
–200  
IL  
SW  
4
2
CROSS FREQUENCY: 80kHz  
PHASE MARGIN: 68°  
B
B
B
CH1 1V  
CH2 10V  
CH4 1A Ω  
M10µs  
A CH1  
2.56V  
1
2
W
W
W
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 35. ADP2301 Short-Circuit Entry, VOUT = 3.3 V  
(fSW = 1.4 MHz)  
Figure 38. ADP2301 Bode Plot, VOUT = 3.3 V, VIN = 12 V  
(fSW = 1.4 MHz, L = 4.7 μH, COUT = 22 μF)  
100  
80  
200  
160  
120  
80  
60  
1
40  
20  
40  
V
OUT  
0
0
–20  
–40  
–60  
–80  
–100  
–40  
–80  
–120  
–160  
–200  
IL  
4
2
SW  
CROSS FREQUENCY: 27kHz  
PHASE MARGIN: 76°  
B
B
B
1
2
CH1 1V  
CH2 10V  
CH4 1A Ω  
M100µs  
A CH1  
1.2V  
W
W
W
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
Figure 36. ADP2301 Short-Circuit Recovery, VOUT = 3.3 V  
(fSW = 1.4 MHz)  
Figure 39. ADP2300 Bode Plot, VOUT = 5.0 V, VIN = 12 V  
(fSW = 700 kHz, L = 10 μH, COUT = 22 μF)  
Rev. 0 | Page 11 of 28  
ADP2300/ADP2301  
100  
200  
160  
120  
80  
80  
60  
40  
20  
40  
0
0
–20  
–40  
–60  
–40  
–80  
–120  
–160  
–200  
–80  
CROSS FREQUENCY: 47kHz  
PHASE MARGIN: 77°  
–100  
1
2
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
Figure 40. ADP2300 Bode Plot, VOUT = 3.3 V, VIN = 12 V  
(fSW = 700 kHz, L = 10 μH, COUT = 22 μF)  
Rev. 0 | Page 12 of 28  
ADP2300/ADP2301  
FUNCTIONAL BLOCK DIAGRAM  
V
IN  
VIN  
5
THERMAL  
SHUTDOWN  
SHUTDOWN  
LOGIC  
UVLO  
SHUTDOWN IC  
1.20V  
OCP  
4
EN  
ON  
250mV/A  
BST  
BOOT  
REGULATOR  
1
1.2µA  
0.90V  
0.5V  
OFF  
OVP  
R
S
Q
V
OUT  
V
= 1.1V  
SW  
BIAS  
6
RAMP  
GENERATOR  
CLK  
GENERATOR  
0.8V  
FREQUENCY FOLDBACK  
V
FB  
(fSW, ½ fSW, ¼ fSW)  
FB  
3
GND  
220k  
90pF  
2
0.7pF  
ADP2300/ADP2301  
Figure 41. ADP2300/ADP2301 Functional Block Diagram  
Rev. 0 | Page 13 of 28  
 
ADP2300/ADP2301  
THEORY OF OPERATION  
The ADP2300/ADP2301 are nonsynchronous, step-down  
dc-to-dc regulators, each with an integrated high-side power  
MOSFET. A high switching frequency and ultrasmall, 6-lead  
TSOT package allow small step-down dc-to-dc regulator  
solutions.  
Since the pulse-skip mode comparator monitors the internal  
compensation node, which represents the peak inductor current  
information, the average pulse-skip load current threshold depends  
on the input voltage (VIN), the output voltage (VOUT), the inductor,  
and the output capacitor.  
The ADP2300/ADP2301 can operate with an input voltage from  
3.0 V to 20 V while regulating an output voltage down to 0.8 V.  
Because the output voltage occasionally dips below regulation  
and then recovers, the output voltage ripple in the power saving  
mode is larger than the ripple in the PWM mode of operation.  
The ADP2300/ADP2301 are available in two fixed-frequency  
options: 700 kHz (ADP2300) and 1.4 MHz (ADP2301).  
BOOTSTRAP CIRCUITRY  
The ADP2300/ADP2301 each have an integrated boot regulator,  
which requires that a 0.1 μF ceramic capacitor (X5R or X7R) be  
placed between the BST and SW pins to provide the gate drive  
voltage for the high-side MOSFET. There must be at least a 1.2 V  
difference between the BST and SW pins to turn on the high-side  
MOSFET. This voltage should not exceed 5.5 V in case the BST  
pin is supplied with an external voltage source through a diode.  
BASIC OPERATION  
The ADP2300/ADP2301 use the fixed-frequency, peak current-  
mode PWM control architecture at medium to high loads, but  
shift to a pulse-skip mode control scheme at light loads to reduce  
the switching power losses and improve efficiency. When the  
devices operate in fixed-frequency PWM mode, output regulation  
is achieved by controlling the duty cycle of the integrated MOSFET.  
When the devices operate in pulse-skip mode at light loads, the  
output voltage is controlled in a hysteretic manner with higher  
output ripple. In this mode of operation, the regulator periodically  
stops switching for a few cycles, thus keeping the conversion  
losses minimal to improve efficiency.  
The ADP2300/ADP2301 generate a typical 5.0 V bootstrap voltage  
for a gate drive circuit by differentially sensing and regulating the  
voltage between the BST and SW pins. A diode integrated on the  
chip blocks the reverse voltage between the VIN and BST pins  
when the MOSFET switch is turned on.  
PWM MODE  
PRECISION ENABLE  
In PWM mode, the ADP2300/ADP2301 operate at a fixed  
frequency, set by an internal oscillator. At the start of each  
oscillator cycle, the MOSFET switch is turned on, sending a  
positive voltage across the inductor. The inductor current  
increases until the current-sense signal crosses the peak  
inductor current threshold that turns off the MOSFET switch;  
this threshold is set by the error amplifier output. During the  
MOSFET off time, the inductor current declines through the  
external diode until the next oscillator clock pulse starts a new  
cycle. The ADP2300/ADP2301 regulate the output voltage by  
adjusting the peak inductor current threshold.  
The ADP2300/ADP2301 feature a precision enable circuit that  
has a 1.2 V reference voltage with 100 mV hysteresis. When the  
voltage at the EN pin is greater than 1.2 V, the part is enabled. If the  
EN voltage falls below 1.1 V, the chip is disabled. The precision  
enable threshold voltage allows the ADP2300/ADP2301 to be  
easily sequenced from other input/output supplies. It can also be  
used as programmable UVLO input by using a resistive divider.  
An internal 1.2 μA pull-down current prevents errors if the EN pin  
is floating.  
INTEGRATED SOFT START  
The ADP2300/ADP2301 include internal soft start circuitry  
that ramps the output voltage in a controlled manner during  
startup, thereby limiting the inrush current. The soft start time is  
typically fixed at 1460 μs for the ADP2300 and at 730 μs for the  
ADP2301.  
POWER SAVING MODE  
To achieve higher efficiency, the ADP2300/ADP2301 smoothly  
transition to the pulse-skip mode when the output load decreases  
below the pulse-skip current threshold. When the output voltage  
dips below regulation, the ADP2300/ADP2301 enter PWM mode  
for a few oscillator cycles until the voltage increases to within  
regulation. During the idle time between bursts, the MOSFET  
switch is turned off, and the output capacitor supplies all the  
output current.  
CURRENT LIMIT  
The ADP2300/ADP2301 include current-limit protection circuitry  
to limit the amount of positive current flowing through the high-  
side MOSFET switch. The positive current limit on the power  
switch limits the amount of current that can flow from the input  
to the output.  
Rev. 0 | Page 14 of 28  
 
ADP2300/ADP2301  
SHORT-CIRCUIT PROTECTION  
UNDERVOLTAGE LOCKOUT (UVLO)  
The ADP2300/ADP2301 include frequency foldback to prevent  
output current runaway when there is a hard short on the output.  
The switching frequency is reduced when the voltage at the FB pin  
drops below a certain value, which allows more time for the  
inductor current to decline, but increases the ripple current while  
regulating the peak current. This results in a reduction in average  
output current and prevents output current runaway. The corre-  
lation between the switching frequency and the FB pin voltage  
is shown in Table 5.  
The ADP2300/ADP2301 have fixed, internally set undervoltage  
lockout circuitry. If the input voltage drops below 2.4 V, the  
ADP2300/ADP2301 shut down and the MOSFET switch turns  
off. After the voltage rises again above 2.8 V, the soft start  
period is initiated, and the part is enabled.  
THERMAL SHUTDOWN  
If the ADP2300/ADP2301 junction temperature rises above 140°C,  
the thermal shutdown circuit disables the chip. Extreme junction  
temperature can be the result of high current operation, poor  
circuit board design, or high ambient temperature. A 15°C  
hysteresis is included so that when thermal shutdown occurs,  
the ADP2300/ADP2301 do not return to operation until the on-  
chip temperature drops below 125°C. After the devices recover  
from thermal shutdown, a soft start is initiated.  
Table 5. Correlation Between the Switching Frequency  
and the FB Pin Voltage  
FB Pin Voltage  
Switching Frequency  
VFB ≥ 0.6 V  
fSW  
0.6 V > VFB > 0.2 V  
½ fSW  
VFB ≤ 0.2 V  
¼ fSW  
CONTROL LOOP  
The ADP2300/ADP2301 are internally compensated to minimize  
external component count and cost. In addition, the built-in  
slope compensation helps to prevent subharmonic oscillations  
when the ADP2300/ADP2301 operate at a duty cycle greater  
than or close to 50%.  
When a hard short (VFB ≤ 0.2 V) is removed, a soft start cycle  
is initiated to regulate the output back to its level during normal  
operation, which helps to limit the inrush current and prevent  
possible overshoot on the output voltage.  
Rev. 0 | Page 15 of 28  
 
 
ADP2300/ADP2301  
APPLICATIONS INFORMATION  
PROGRAMMING THE OUTPUT VOLTAGE  
VOLTAGE CONVERSION LIMITATIONS  
There are both lower and upper output voltage limitations for a  
given input voltage due to the minimum on time, the minimum  
off time, and the bootstrap dropout voltage.  
The output voltage of the ADP2300/ADP2301 is externally set by  
a resistive voltage divider from the output voltage to the FB pin,  
as shown in Figure 42. Suggested resistor values for the typical  
output voltage setting are listed in Table 6. The equation for the  
output voltage setting is  
The lower limit of the output voltage is constrained by the finite,  
controllable minimum on time, which can be as high as 135 ns for  
the worst case. By considering the variation of both the switching  
frequency and the input voltage, the equation for the lower limit  
of the output voltage is  
RFB1  
RFB2  
VOUT = 0.800 V× 1+  
where:  
VOUT is the output voltage.  
RFB1 is the feedback resistor from VOUT to FB.  
VOUT(min) = t MIN-ON × fSW(max) ×(VIN(max) +VD ) VD  
where:  
V
f
t
IN(max) is the maximum input voltage.  
SW(max) is the maximum switching frequency for the worst case.  
MIN-ON is the minimum controllable on time.  
RFB2 is the feedback resistor from FB to GND.  
VD is the diode forward drop.  
The upper limit of the output voltage is constrained by the mini-  
mum controllable off time, which can be as high as 120 ns in  
the ADP2301 for the worst case. By considering the variation of  
both the switching frequency and the input voltage, the equation  
for the upper limit of the output voltage is  
ADP2300/  
ADP2301  
V
OUT  
R
FB1  
FB  
R
FB2  
VOUT(max) = (1 tMIN-OFF × fSW(max) )×(VIN(min) +VD )VD  
Figure 42. Programming the Output Voltage Using a Resistive Voltage Divider  
where:  
Table 6. Suggested Values for Resistive Voltage Divider  
V
f
IN(min) is the minimum input voltage.  
SW(max) is the maximum switching frequency for the worst case.  
VD is the diode forward drop.  
MIN-OFF is the minimum controllable off time.  
VOUT (V)  
RFB1 (kΩ), 1ꢀ  
RFB2 (kΩ), 1ꢀ  
1.2  
1.8  
2.5  
3.3  
4.99  
12.7  
21.5  
31.6  
52.3  
10  
10.2  
10.2  
10.2  
10  
t
In addition, the bootstrap circuit limits the minimum input  
voltage for the desired output due to internal dropout voltage.  
To attain stable operation at light loads and ensure proper startup  
for the prebias condition, the ADP2300/ADP2301 require the  
voltage difference between the input voltage and the regulated  
output voltage (or between the input voltage and the prebias  
voltage) to be greater than 2.1 V for the worst case. If the voltage  
difference is smaller, the bootstrap circuit relies on some minimum  
load current to charge the boost capacitor for startup. Figure 43  
shows the typical required minimum input voltage vs. load current  
for the 3.3 V output voltage.  
5.0  
Rev. 0 | Page 16 of 28  
 
 
 
ADP2300/ADP2301  
5.5  
5.3  
5.1  
4.9  
4.7  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
PROGRAMMING THE PRECISION ENABLE  
FOR STARTUP  
Generally, the EN pin can be easily tied to the VIN pin so that the  
device automatically starts up when the input power is applied.  
However, the precision enable feature allows the ADP2300/  
ADP2301 to be used as a programmable UVLO by connecting  
a resistive voltage divider to VIN, as shown in Figure 46. This  
configuration prevents the start-up problems that can occur  
when VIN ramps up slowly in soft start with a relatively high  
load current.  
FOR RUNNING  
V
IN  
VIN  
V
f
= 3.3V  
OUT  
= 1.4MHz  
SW  
ADP2300/  
ADP2301  
R
EN1  
EN2  
1
10  
100  
1k  
LOAD CURRENT (mA)  
EN  
Figure 43. Minimum Input Voltage vs. Load Current  
R
Based on three conversion limitations (the minimum on time,  
the minimum off time, and the bootstrap dropout  
voltage), Figure 44 shows the voltage conversion limitations.  
22  
Figure 46. Precision Enable Used as a Programmable UVLO  
The precision enable feature also allows the ADP2300/ADP2301 to  
be sequenced precisely by using a resistive voltage divider with  
another dc-to-dc output supply, as shown in Figure 47.  
17  
12  
7
ADP2300/  
ADP2301  
R
EN1  
OTHER DC-TO-DC  
OUTPUT  
EN  
R
EN2  
Figure 47. Precision Enable Used as a Sequencing Control  
from Another DC-to-DC Output  
MAXIMUM INPUT FOR ADP2300  
MAXIMUM INPUT FOR ADP2301  
With a 1.2 μA pull-down current on the EN pin, the equation for  
the start-up voltage in Figure 46 and Figure 47 is  
MINIMUM INPUT FOR ADP2300/ADP2301  
2
0
2
4
6
8
10  
12  
14  
16  
V
(V)  
OUT  
1.2 V  
VSTARTUP  
=
+1.2 ꢀA ×REN1 +1.2 V  
Figure 44. Voltage Conversion Limitations  
REN 2  
LOW INPUT VOLTAGE CONSIDERATIONS  
where:  
STARTUP is the start-up voltage to enable the chip.  
For low input voltage between 3 V and 5 V, the internal boot  
regulator cannot provide enough 5.0 V bootstrap voltage due to  
the internal dropout voltage. As a result, the increased MOSFET  
V
R
EN1 is the resistor from the dc source to EN.  
R
EN2 is the resistor from EN to GND.  
RDS(ON) reduces the available load current. To prevent this, add  
an external small-signal Schottky diode from a 5.0 V external  
bootstrap bias voltage. Because the absolute maximum rating  
between the BST and SW pins is 6.0 V, the bias voltage should  
be less than 5.5 V. Figure 45 shows the application diagram for  
the external bootstrap circuit.  
SCHOTTKY DIODE  
3V ~ 5V  
BST  
VIN  
5V BIAS  
VOLTAGE  
ADP2300/  
ADP2301  
SW  
EN  
FB  
GND  
ON  
OFF  
Figure 45. External Bootstrap Circuit for Low Input Voltage Application  
Rev. 0 | Page 17 of 28  
 
 
 
 
 
 
ADP2300/ADP2301  
The inductor peak current is calculated using the following  
equation:  
INDUCTOR  
The high switching frequency of the ADP2300/ADP2301 allows  
the use of small inductors. For best performance, use inductor  
values between 2 ꢀH and 10 ꢀH for ADP2301, and use inductor  
values between 2 ꢀH and 22 ꢀH for ADP2300.  
ΔIRIPPLE  
IPEAK = ILOAD(max)  
+
2
The minimum current rating of the inductor must be greater  
than the inductor peak current. For ferrite core inductors with a  
quick saturation characteristic, the inductor saturation current  
rating should be higher than the switch current-limit threshold  
to prevent the inductor from reaching its saturation point. Be  
sure to validate the worst-case condition, in which there is a  
shorted output, over the intended temperature range.  
The peak-to-peak inductor current ripple is calculated using the  
following equation:  
(VIN VOUT  
L× fsw  
)
VOUT +VD  
VIN +VD  
ΔIRIPPLE  
=
×
where:  
SW is the switching frequency.  
f
Inductor conduction losses are caused by the flow of current  
through the inductor, which is associated with the internal dc  
resistance (DCR). Larger sized inductors have smaller DCR and,  
therefore, may reduce inductor conduction losses. However,  
inductor core losses are also related to the core material and the  
ac flux swing, which are affected by the peak-to-peak induc-  
tor ripple current. Because the ADP2300/ADP2301 are high  
switching frequency regulators, shielded ferrite core materials  
are recommended for their low core losses and low EMI. Some  
recommended inductors are shown in Table 7.  
L is the inductor value.  
VD is the diode forward drop.  
VIN is the input voltage.  
V
OUT is the output voltage.  
Inductors of smaller values are usually smaller in size and less  
expensive, but increase the ripple current and the output voltage  
ripple. As a guideline, the inductor peak-to-peak current ripple  
should typically be set to 30% of the maximum load current for  
optimal transient response and efficiency. Therefore, the inductor  
value is calculated using the following equation:  
(
VIN VOUT  
0.3× ILOAD(max) × fsw  
)
VOUT +VD  
L =  
×
VIN +VD  
where ILOAD(max) is the maximum load current.  
Table 7. Recommended Inductors  
Dimensions  
Vendor  
Value (μH)  
Part No.  
DCR (mΩ)  
65  
95  
105  
43  
64  
61  
84  
93  
ISAT (A)  
3.1  
2.7  
L × W × H (mm)  
6.0 × 6.0 × 2.4  
6.0 × 6.0 × 2.4  
6.0 × 6.0 × 2.4  
6.2 × 6.2 × 3.0  
5.8 × 5.8 × 1.8  
6.2 × 6.2 × 3.0  
5.8 × 5.8 × 1.8  
6.2 × 6.2 × 3.0  
5.2 × 5.2 × 3.0  
5.2 × 5.2 × 3.0  
7.6 × 7.6 × 3.5  
7.6 × 7.6 × 4.0  
7.6 × 7.6 × 4.0  
7.6 × 7.6 × 4.0  
5.0 × 5.0 × 4.5  
5.0 × 5.0 × 4.5  
5.0 × 5.0 × 4.5  
Coilcraft  
4.7  
6.8  
10  
LPS6225-472MLC  
LPS6225-682MLC  
LPS6225-103MLC  
CDRH5D28RHPNP-4R7N  
CDRH5D16NP-4R7N  
CDRH5D28RHPNP-6R8N  
CDRH5D16NP-6R8N  
CDRH5D28RHPNP-100M  
SD53-4R7-R  
2.1  
Sumida  
4.7  
4.7  
6.8  
6.8  
10  
3.7  
2.15  
3.1  
1.8  
2.45  
2.1  
1.85  
2.47  
2.6  
2.3  
1.8  
Cooper Bussmann 4.7  
39  
59  
65  
6.8  
10  
SD53-6R8-R  
DR73-100-R  
Toko  
TDK  
4.7  
6.8  
10  
B1077AS-4R7N  
B1077AS-6R8N  
B1077AS-100M  
34  
40  
58  
4.7  
6.8  
10  
VLC5045T-4R7M  
VLC5045T-6R8M  
VLC5045T-100M  
34  
46  
66  
3.3  
2.7  
2.1  
Rev. 0 | Page 18 of 28  
 
 
ADP2300/ADP2301  
CATCH DIODE  
OUTPUT CAPACITOR  
The catch diode conducts the inductor current during the off  
time of the internal MOSFET. The average current of the diode  
in normal operation is, therefore, dependent on the duty cycle  
of the regulator as well as the output load current.  
The output capacitor selection affects both the output voltage ripple  
and the loop dynamics of the regulator. The ADP2300/ADP2301  
are designed to operate with small ceramic capacitors that have low  
equivalent series resistance (ESR) and equivalent series inductance  
(ESL) and are, therefore, easily able to meet stringent output voltage  
ripple specifications.  
VOUT +VD  
VIN +VD  
IDIODE(AVG) = 1−  
× ILOAD(max)  
When the regulator operates in forced continuous conduction  
mode, the overall output voltage ripple is the sum of the voltage  
spike caused by the output capacitor ESR plus the voltage ripple  
caused by charging and discharging the output capacitor.  
where VD is the diode forward drop.  
The only reason to select a diode with a higher current rating than  
necessary in normal operation is for the worst-case condition, in  
which there is a shorted output. In this case, the diode current  
increases up to the typical peak current-limit threshold. Be sure to  
consult the diode data sheet to ensure that the diode can operate  
well within the thermal and electrical limits.  
1
ΔVRIPPLE = ΔIRIPPLE  
×
+ ESR  
COUT  
8× fsw ×COUT  
Capacitors with lower ESR are preferable to guarantee low  
output voltage ripple, as shown in the following equation:  
The reverse breakdown voltage rating of the diode must be higher  
than the highest input voltage and allow an appropriate margin  
for the ringing that may be present on the SW node. A Schottky  
diode is recommended for best efficiency because it has a low  
forward voltage drop and fast switching speed. Table 8 provides  
a list of recommended Schottky diodes.  
ΔVRIPPLE  
ΔIRIPPLE  
ESRC  
OUT  
Ceramic capacitors are manufactured with a variety of dielectrics,  
each with different behavior over temperature and applied voltage.  
X5R or X7R dielectrics are recommended for best performance,  
due to their low ESR and small temperature coefficients. Y5V  
and Z5U dielectrics are not recommended because of their poor  
temperature and dc bias characteristics.  
Table 8. Recommended Schottky Diodes  
VRRM  
(V)  
IAVG  
(A)  
Vendor  
Part No.  
MBRS230LT3  
MBRS240LT3  
B230A  
ON Semiconductor  
30  
40  
30  
40  
30  
40  
2
2
2
2
2
2
In general, most applications using the ADP2301 (1.4 MHz  
switching frequency) require a minimum output capacitor value  
of 10 μF, whereas most applications using the ADP2300 (700 kHz  
switching frequency) require a minimum output capacitor value  
of 20 μF. Some recommended output capacitors for VOUT ≤ 5.0 V  
are listed in Table 9.  
Diodes Inc.  
Vishay  
B240A  
SL23  
SS24  
Table 9. Recommended Capacitors for VOUT ≤ 5.0 V  
INPUT CAPACITOR  
Dimensions  
The input capacitor must be able to support the maximum input  
operating voltage and the maximum rms input current. The  
maximum rms input current flowing through the input  
capacitor is ILOAD(max)/2. Select an input capacitor capable of  
withstanding the rms input current for an application’s maxi-  
mum load current using the following equation:  
Vendor Value  
Part No.  
L × W × H (mm)  
3.2 × 1.6 × 1.15  
3.2 × 1.6 × 1.6  
3.2 × 1.6 × 1.6  
3.2 × 1.6 × 0.85  
Murata  
10 μF, 6.3 V GRM31MR60J106KE19  
22 μF, 6.3 V GRM31CR60J226KE19  
10 μF, 6.3 V C3216X5R0J106K  
22 μF, 6.3 V C3216X5R0J226M  
TDK  
IIN(RMS) = ILOAD(max) × D×(1D)  
where D is the duty cycle and is equal to  
VOUT +VD  
VIN +VD  
D =  
The recommended input capacitor is ceramic with X5R or X7R  
dielectrics due to its low ESR and small temperature coefficients.  
A capacitance of 10 μF should be adequate for most applications.  
To minimize supply noise, place the input capacitor as close to  
the VIN pin of the ADP2300/ADP2301 as possible.  
Rev. 0 | Page 19 of 28  
 
 
 
ADP2300/ADP2301  
The rise in temperature of the package is directly proportional  
to the power dissipation in the package. The proportionality  
constant for this relationship is the thermal resistance from the  
junction of the die to the ambient temperature, as shown in the  
following equation:  
THERMAL CONSIDERATIONS  
The ADP2300/ADP2301 store the value of the inductor current  
only during the on time of the internal MOSFET. Therefore, a small  
amount of power is dissipated inside the ADP2300/ADP2301  
package, which reduces thermal constraints.  
TR = θJA × PD  
However, when the application is operating under maximum  
load with high ambient temperature and high duty cycle, the  
heat dissipated within the package may cause the junction  
temperature of the die to exceed the maximum junction  
temperature of 125°C. If the junction temperature exceeds  
140°C, the regulator goes into thermal shutdown and recovers  
when the junction temperature drops below 125°C.  
where:  
TR is the rise in temperature of the package.  
θJA is the thermal resistance from the junction of the die to the  
ambient temperature of the package.  
PD is the power dissipation in the package.  
The junction temperature of the die is the sum of the ambient  
temperature of the environment and the temperature rise of the  
package due to power dissipation, as indicated in the following  
equation:  
TJ = TA + TR  
where:  
TJ is the junction temperature.  
TA is the ambient temperature.  
TR is the rise in temperature of the package due to power  
dissipation.  
Rev. 0 | Page 20 of 28  
 
ADP2300/ADP2301  
DESIGN EXAMPLE  
This section provides the procedures to select the external com-  
ponents, based on the example specifications listed in Table 10.  
The schematic for this design example is shown in Figure 48.  
INDUCTOR SELECTION  
Select the inductor by using the following equation:  
(
VIN VOUT  
0.3× ILOAD(max) × fsw  
)
VOUT +VD  
L =  
×
Table 10. Step-Down DC-to-DC Regulator Requirements  
VIN +VD  
Additional  
Parameter  
Specification  
Requirements  
where:  
OUT = 3.3 V.  
VIN = 12 V.  
LOAD(max) = 1.2 A.  
VD = 0.4 V.  
SW = 1.4 MHz.  
Input Voltage, VIN  
Output Voltage, VOUT 3.3 V, 1.2 A, 1ꢀ VOUT  
ripple at CCM mode  
Programmable  
UVLO Voltage  
12.0 V 10ꢀ  
None  
None  
V
I
VIN start-up voltage  
approximately 7.8 V  
None  
f
This results in L = 5.15 μH. The closest standard value is 4.7 μH;  
therefore, ΔIRIPPLE = 0.394 A.  
SWITCHING FREQUENCY SELECTION  
Select the switching frequency—700 kHz (ADP2300) or 1.4 MHz  
(ADP2301)—using the conversion limitation curve shown  
in Figure 44 to assess the conversion limitations (the minimum on  
time, the minimum off time, and the bootstrap dropout voltage).  
The inductor peak current is calculated using the following  
equation:  
ΔIRIPPLE  
IPEAK = ILOAD(max)  
+
2
For example, in Figure 44 VIN = 12 V 10% is within the conver-  
sion limitation for both the 700 kHz and 1.4 MHz switching  
frequencies for an output voltage of 3.3 V, but choosing the 1.4 MHz  
switching frequency provides the smallest sized solution. If higher  
efficiency is required, choose the 700 kHz option; however, the  
PCB footprint area of the regulator will be larger because of the  
bigger inductor and output capacitors.  
where:  
LOAD(max) = 1.2 A.  
ΔIRIPPLE = 0.394 A.  
I
Therefore, the calculated peak current for the inductor is 1.397 A.  
However, to protect the inductor from reaching its saturation  
point in the current-limit condition, the inductor should be rated  
for at least a 2.0 A saturation current for reliable operation.  
CATCH DIODE SELECTION  
OUTPUT CAPACITOR SELECTION  
Select the catch diode. A Schottky diode is recommended for best  
efficiency because it has a low forward voltage drop and faster  
switching speed. The average current of the catch diode in  
normal operation, with a typical Schottky diode forward  
voltage, can be calculated using the following equation:  
Select the output capacitor based on the output voltage ripple  
requirement, according to the following equation:  
1
ΔVRIPPLE = ΔIRIPPLE  
×
+ ESRC  
OUT  
8× fsw ×COUT  
VOUT +VD  
VIN +VD  
IDIODE(AVG) = 1−  
× ILOAD(max)  
where:  
ΔIRIPPLE = 0.394 A.  
SW = 1.4 MHz.  
ΔVRIPPLE = 33 mV.  
where:  
OUT = 3.3 V.  
VIN = 12 V.  
LOAD(max) = 1.2 A.  
VD = 0.4 V.  
Therefore, IDIODE(AVG) = 0.85 A.  
f
V
If the ESR of the ceramic capacitor is 3 mΩ, then COUT = 1.2 μF.  
I
Because the output capacitor is one of the two external components  
that control the loop stability, most applications using the ADP2301  
(1.4 MHz switching frequency) require a minimum 10 μF capaci-  
tance to ensure stability. According to the recommended external  
components in Table 11, choose 22 μF with a 6.3 V voltage rating  
for this example.  
However, for the worst-case condition, in which there is a shorted  
output, the diode current would be increased to 2 A typical, deter-  
mined by the peak switch current limit (see Table 1). In this case,  
selecting a B230A, 2.0 A/30 V surface-mount Schottky diode  
would result in more reliable operation.  
Rev. 0 | Page 21 of 28  
 
 
ADP2300/ADP2301  
The resistive voltage divider for the programmable VIN start-up  
voltage is  
RESISTIVE VOLTAGE DIVIDER SELECTION  
To select the appropriate resistive voltage divider, first calculate the  
output feedback resistive voltage divider, and then calculate the  
resistive voltage divider for the programmable VIN start-up voltage.  
1.2 V  
VSTARTUP  
=
+1.2 ꢀA ×REN1 +1.2 V  
REN 2  
The output feedback resistive voltage divider is  
If VSTARTUP = 7.8 V, choose REN2 = 10.2 kΩ, and then calculate  
RFB1  
RFB2  
REN1, which in this case is 56 kΩ.  
VOUT = 0.800 V× 1+  
For the 3.3 V output voltage, choose RFB1 = 31.6 kΩ and RFB2  
= 10.2 kΩ as the feedback resistive voltage divider, according to  
the recommended values in Table 11.  
BST  
SW  
V
= 12V  
IN  
C3  
VIN  
0.1µF  
C1  
10µF  
25V  
L1  
6.3V  
4.7µH  
2.0A  
V
= 3.3V  
OUT  
1.2A  
ADP2301  
(1.4MHz)  
C2  
22µF  
6.3V  
D1  
B230A  
R3  
56k  
1%  
R1  
31.6kΩ  
1%  
EN  
FB  
R4  
R2  
10.2kΩ  
1%  
10.2kΩ  
GND  
1%  
Figure 48. Schematic for the Design Example  
Table 11. Recommended External Components for Typical Applications at 1.2 A Output Load  
Part Number  
VIN (V)  
18  
18  
12  
12  
12  
12  
12  
9
VOUT (V)  
3.3  
5.0  
1.2  
1.8  
2.5  
3.3  
5.0  
3.3  
5.0  
1.8  
2.5  
3.3  
5.0  
2.5  
3.3  
5.0  
3.3  
5.0  
1.8  
2.5  
IOUT (A)  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
L (μH)  
COUT (μF)  
RFB1 (kΩ), 1ꢀ  
RFB2 (kΩ), 1ꢀ  
10.2  
10  
ADP2300 (700 kHz)  
10  
15  
6.8  
6.8  
10  
10  
10  
10  
10  
4.7  
4.7  
4.7  
6.8  
4.7  
4.7  
4.7  
4.7  
4.7  
2.2  
2.2  
22  
22  
2 × 22  
2 × 22  
22  
22  
22  
22  
22  
31.6  
52.3  
4.99  
12.7  
21.5  
31.6  
52.3  
31.6  
10  
10.2  
10.2  
10.2  
10  
10.2  
10  
10.2  
10.2  
10.2  
10  
10.2  
10.2  
10  
9
5
5
52.3  
12.7  
21.5  
2 × 22  
22  
ADP2301 (1.4 MHz)  
18  
18  
12  
12  
12  
9
9
5
5
22  
10  
22  
22  
10  
22  
10  
2 × 22  
22  
31.6  
52.3  
21.5  
31.6  
52.3  
31.6  
52.3  
12.7  
10.2  
10  
10.2  
10.2  
21.5  
Rev. 0 | Page 22 of 28  
 
 
 
ADP2300/ADP2301  
CIRCUIT BOARD LAYOUT RECOMMENDATIONS  
Good circuit board layout is essential to obtain the best  
performance from the ADP2300/ADP2301. Poor layout can  
affect the regulation and stability, as well as the electromagnetic  
interface (EMI) and electromagnetic compatibility (EMC)  
performance. A PCB layout example is shown in Figure 50.  
Refer to the following guidelines for a good PCB layout:  
Minimize the length of the FB trace connecting the top of the  
feedback resistive voltage divider to the output. In addition,  
keep these traces away from the high current traces and the  
switch node to avoid noise pickup.  
BST  
VIN  
Place the input capacitor, inductor, catch diode, output  
capacitor, and bootstrap capacitor close to the IC using  
short traces.  
Ensure that the high current loop traces are as short and wide  
as possible. The high current path is shown in Figure 49.  
Maximize the size of ground metal on the component side  
to improve thermal dissipation.  
Use a ground plane with several vias connecting to the  
component side ground to further reduce noise inter-  
ference on sensitive circuit nodes.  
ADP2300/  
SW  
ADP2301  
EN  
FB  
GND  
Figure 49. Typical Application Circuit with High Current Traces Shown in Blue  
INDUC TOR  
C3  
L1  
CATCH DIODE  
D1  
BST CAP  
C1  
C2  
ADP2300/ADP2301  
INPUT CAP  
Figure 50. Recommended PCB Layout for the ADP2300/ADP2301  
Rev. 0 | Page 23 of 28  
 
 
 
ADP2300/ADP2301  
TYPICAL APPLICATION CIRCUITS  
BST  
SW  
V
= 12V  
IN  
VIN  
C4  
C1  
10µF  
25V  
0.1µF  
6.3V  
L1  
6.8µH  
2.0A  
V
= 1.2V  
OUT  
1.2A  
ADP2300  
(700kHz)  
C2  
22µF  
6.3V  
C3  
22µF  
6.3V  
D1  
B230A  
R3  
100kΩ  
R1  
5%  
4.99kΩ  
1%  
EN  
FB  
R2  
10kΩ  
1%  
ON  
GND  
OFF  
Figure 51. ADP2300—700 kHz Typical Application, VIN = 12 V, VOUT = 1.2 V/1.2 A with External Enabling  
BST  
V
= 12V  
IN  
VIN  
C4  
C1  
10µF  
25V  
0.1µF  
6.3V  
L1  
6.8µH  
2.0A  
V
= 1.8V  
OUT  
1.2A  
ADP2300  
(700kHz)  
SW  
FB  
C2  
22µF  
6.3V  
C3  
22µF  
6.3V  
D1  
B230A  
R3  
100k  
R1  
5%  
12.7kΩ  
1%  
EN  
R2  
10.2kΩ  
1%  
ON  
GND  
OFF  
Figure 52. ADP2300—700 kHz Typical Application, VIN = 12 V, VOUT = 1.8 V/1.2 A with External Enabling  
BST  
V
= 12V  
C1  
IN  
VIN  
C3  
0.1µF  
6.3V  
L1  
10µH  
2.0A  
10µF  
25V  
V
= 2.5V  
OUT  
1.2A  
ADP2300  
(700kHz)  
SW  
FB  
C2  
22µF  
6.3V  
D1  
B230A  
R3  
100k  
R1  
5%  
21.5kΩ  
1%  
EN  
R2  
10.2kΩ  
1%  
ON  
GND  
OFF  
Figure 53. ADP2300—700 kHz Typical Application, VIN = 12 V, VOUT = 2.5 V/1.2 A with External Enabling  
Rev. 0 | Page 24 of 28  
 
ADP2300/ADP2301  
BST  
SW  
V
= 12V  
IN  
C3  
VIN  
0.1µF  
6.3V  
C1  
10µF  
25V  
L1  
4.7µH  
2.0V  
V
= 3.3V  
OUT  
1.2A  
ADP2301  
(1.4MHz)  
C2  
22µF  
6.3V  
D1  
B230A  
R3  
56kΩ  
1%  
R1  
31.6kΩ  
1%  
FB  
EN  
R4  
R2  
10.2kΩ  
1%  
10.2kΩ  
GND  
1%  
Figure 54. ADP2301—1.4 MHz Typical Application, VIN = 12 V, VOUT = 3.3 V/1.2 A  
(with Programmable 7.8 V Start-Up Input Voltage)  
BST  
V
= 12V  
IN  
VIN  
C3  
C1  
10µF  
25V  
0.1µF  
L1  
6.3V 4.7µH  
2.0A  
V
= 5V  
OUT  
ADP2301  
(1.4MHz)  
1.2A  
SW  
FB  
C2  
10µF  
6.3V  
D1  
B230A  
R3  
100kΩ  
R1  
5%  
52.3kΩ  
1%  
EN  
R2  
10kΩ  
1%  
ON  
GND  
OFF  
Figure 55. ADP2301—1.4 MHz Typical Application, VIN = 12 V, VOUT = 5.0 V/1.2 A with External Enabling  
BST  
V
= 18V  
C1  
IN  
VIN  
C3  
0.1µF  
6.3V  
L1  
6.8µH  
2.0A  
10µF  
25V  
V
= 5.0V  
OUT  
1.2A  
ADP2301  
(1.4MHz)  
SW  
FB  
C2  
10µF  
6.3V  
D1  
B230A  
R3  
100k  
R1  
5%  
52.3kΩ  
1%  
EN  
R2  
10.2kΩ  
1%  
ON  
GND  
OFF  
Figure 56. ADP2301—1.4 MHz Typical Application, VIN = 18 V, VOUT = 5.0 V/1.2 A with External Enabling  
BST  
V
= 9V  
IN  
VIN  
C3  
0.1µF  
6.3V  
C1  
L1  
4.7µH  
2.0A  
10µF  
25V  
V
= 3.3V  
1.2A  
OUT  
ADP2301  
(1.4MHz)  
SW  
FB  
C2  
22µF  
6.3V  
D1  
B230A  
R3  
100kΩ  
R1  
5%  
31.6kΩ  
1%  
EN  
R2  
10.2kΩ  
1%  
ON  
GND  
OFF  
Figure 57. ADP2301—1.4 MHz Typical Application, VIN = 9 V, VOUT = 3.3 V/1.2 A with External Enabling  
BST  
V
= 5V  
IN  
VIN  
C4  
0.1µF  
6.3V  
C1  
L1  
2.2µH  
2.0A  
10µF  
25V  
V
= 1.8V  
1.2A  
OUT  
ADP2301  
(1.4MHz)  
SW  
FB  
C2  
22µF  
6.3V  
C3  
22µF  
6.3V  
D1  
B230A  
R3  
100kΩ  
R1  
5%  
12.7kΩ  
1%  
EN  
R2  
10.2kΩ  
1%  
ON  
GND  
OFF  
Figure 58. ADP2301—1.4 MHz Typical Application, VIN = 5 V, VOUT = 1.8 V/1.2 A with External Enabling  
Rev. 0 | Page 25 of 28  
ADP2300/ADP2301  
OUTLINE DIMENSIONS  
2.90 BSC  
6
1
5
2
4
3
2.80 BSC  
1.60 BSC  
PIN 1  
INDICATOR  
0.95 BSC  
1.90  
BSC  
*
0.90  
0.87  
0.84  
0.20  
0.08  
*
1.00 MAX  
8°  
4°  
0°  
0.10 MAX  
SEATING  
PLANE  
0.60  
0.45  
0.30  
0.50  
0.30  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AA WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 59. 6-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Switching  
Frequency Temperature Range Package Description  
Package  
Option  
Model1  
Branding  
ADP2300AUJZ-R7  
ADP2300-EVALZ  
ADP2301AUJZ-R7  
ADP2301-EVALZ  
700 kHz  
−40°C to +85°C  
6-Lead Thin Small Outline Transistor Package [TSOT]  
Evaluation Board  
6-Lead Thin Small Outline Transistor Package [TSOT]  
Evaluation Board  
UJ-6  
L87  
1.4 MHz  
−40°C to +85°C  
UJ-6  
L86  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 26 of 28  
 
 
ADP2300/ADP2301  
NOTES  
Rev. 0 | Page 27 of 28  
ADP2300/ADP2301  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08342-0-2/10(0)  
Rev. 0 | Page 28 of 28  

相关型号:

SD530

TECHNICAL SPECIFICATIONS OF SCHOTTKY BARRIER RECTIFIER VOLTAGE RANGE - 20 to 100 Volts
DCCOM

SD5300

Quad DMOS Analog Switch Driver Improved Performance Over SD5000N and SD5400CY
CALOGIC

SD5300N

Quad DMOS Analog Switch Driver Improved Performance Over SD5000N and SD5400CY
CALOGIC

SD5300Y

Quad DMOS Analog Switch Driver Improved Performance Over SD5000N and SD5400CY
CALOGIC

SD5300YT1

Small Signal Field-Effect Transistor, 0.05A I(D), 20V, 4-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
CALOGIC

SD5300YT2

Small Signal Field-Effect Transistor, 0.05A I(D), 20V, 4-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
CALOGIC

SD5304

Hermetic Optoschmitts
ETC

SD5304-301

Photo IC,
HONEYWELL

SD530S

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS(VOLTAGE 20 to 100 Volts CURRENT - 5 Ampere)
PANJIT

SD530S-T3

5.0A DPAK SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER
WTE

SD530T

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS(VOLTAGE 20 to 100 Volts CURRENT - 5 Ampere)
PANJIT

SD530YS

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS(VOLTAGE 20 to 100 Volts CURRENT - 5 Ampere)
PANJIT