SSM2135_03 [ADI]

Dual Single-Supply Audio Operational Amplifier; 双路单电源音频运算放大器
SSM2135_03
型号: SSM2135_03
厂家: ADI    ADI
描述:

Dual Single-Supply Audio Operational Amplifier
双路单电源音频运算放大器

运算放大器
文件: 总16页 (文件大小:469K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Single-Supply  
Audio Operational Amplifier  
SSM2135*  
FEATURES  
PIN CONNECTIONS  
Excellent Sonic Characteristics  
High Output Drive Capability  
5.2 nV/÷Hz Equivalent Input Noise @ 1 kHz  
0.001% THD+N (VO = 2.5 V p-p @ 1 kHz)  
3.5 MHz Gain Bandwidth  
Unity-Gain Stable  
8-Lead Narrow-Body SOIC  
(S Suffix)  
V+  
OUT A  
–IN A  
OUT B  
–IN B  
+IN B  
SSM-2135  
+IN A  
Low Cost  
V–/GND  
APPLICATIONS  
Multimedia Audio Systems  
Microphone Preamplifier  
Headphone Driver  
Differential Line Receiver  
Balanced Line Driver  
Audio ADC Input Buffer  
Audio DAC l-V Converter and Filter  
Pseudo-Ground Generator  
GENERAL DESCRIPTION  
Particularly well suited for computer audio systems and portable  
digital audio units, the SSM2135 can perform preamplification,  
headphone and speaker driving, and balanced line driving and  
receiving. Additionally, the device is ideal for input signal condi-  
tioning in single-supply, sigma-delta, analog-to-digital converter  
subsystems such as the AD1878/AD1879.  
The SSM2135 Dual Audio Operational Amplifier permits excel-  
lent performance in portable or low power audio systems, with  
an operating supply range of +4 V to +36 V or ±2 V to ±18 V.  
The unity gain stable device has very low voltage noise of  
4.7 nV/÷Hz, and total harmonic distortion plus noise below 0.01%  
over normal signal levels and loads. Such characteristics are  
enhanced by wide output swing and load drive capability. A unique  
output stage* permits output swing approaching the rail under  
moderate load conditions. Under severe loading, the SSM2135  
still maintains a wide output swing with ultralow distortion.  
The SSM2135 is available in an 8-lead plastic SOIC package  
and is guaranteed for operation over the extended industrial  
temperature range of –40C to +85C.  
FUNCTIONAL BLOCK DIAGRAM  
V+  
OUT  
+IN  
9V 9V  
–IN  
V–/GND  
*Protected by U.S. Patent No. 5,146,181.  
REV. E  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
(VS = 5 V, –40؇C < TA < +85؇C, unless otherwise noted.  
SSM2135–SPECIFICATIONS Typical specifications apply at TA = +25؇C.)  
Parameter  
Symbol  
Conditions  
Min Typ Max  
Unit  
AUDIO PERFORMANCE  
Voltage Noise Density  
Current Noise Density  
Signal-To-Noise Ratio  
Headroom  
en  
in  
f = 1 kHz  
f = 1 kHz  
5.2  
0.5  
121  
5.3  
nV/÷Hz  
pA/÷Hz  
dBu  
SNR  
HR  
THD+N  
20 Hz to 20 kHz, 0 dBu = 0.775 V rms  
Clip Point = 1% THD+N, f = 1 kHz, RL = 10 kW  
AV = +1, VO = 1 V p-p, f = 1 kHz, 80 kHz LPF  
RL = 10 kW  
dBu  
Total Harmonic Distortion  
0.003  
0.005  
%
%
RL = 32 W  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Settling Time  
SR  
GBW  
tS  
RL = 2 kW, TA = 25C  
0.6  
0
0.9  
3.5  
5.8  
V/ms  
MHz  
ms  
To 0.1%, 2 V Step  
INPUT CHARACTERISTICS  
Input Voltage Range  
Input Offset Voltage  
Input Bias Current  
Input Offset Current  
VCM  
VOS  
IB  
4.0  
2.0  
750  
50  
V
mV  
nA  
VOUT = 2 V  
VCM = 0 V, VOUT = 2 V  
VCM = 0 V, VOUT = 2 V  
0.2  
300  
IOS  
nA  
Differential Input Impedance  
Common-Mode Rejection  
Large Signal Voltage Gain  
ZIN  
CMR  
AVO  
4
112  
MW  
0 V £ VCM £ 4 V, f = dc  
0.01 V £ VOUT £ 3.9 V, RL = 600 W  
87  
2
dB  
V/mV  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
VOL  
ISC  
RL = 100 kW  
RL = 600 W  
RL = 100 kW  
RL = 600 W  
4.1  
3.9  
V
V
mV  
mV  
mA  
Output Voltage Swing Low  
3.5  
3.0  
Short Circuit Current Limit  
±30  
POWER SUPPLY  
Supply Voltage Range  
VS  
Single Supply  
Dual Supply  
VS = 4 V to 6 V, f = dc  
VOUT = 2.0 V, No Load  
VS = 5 V  
4
±2  
90  
36  
±18  
V
V
dB  
Power Supply Rejection Ratio  
Supply Current  
PSRR  
ISY  
120  
2.8  
3.7  
6.0  
7.6  
mA  
mA  
VS = ±18 V, VOUT = 0 V, No Load  
Specifications subject to change without notice.  
–2–  
REV. E  
SSM2135  
THERMAL CHARACTERISTICS  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage  
Thermal Resistance*  
Single Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V  
Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 10 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . . Indefinite  
Storage Temperature Range . . . . . . . . . . . . . –65C to +150C  
Operating Temperature Range . . . . . . . . . . . . –40C to +85C  
Junction Temperature Range (TJ) . . . . . . . . . –65C to +150C  
Lead Temperature (Soldering, 60 sec) . . . . . . . . . . . . . 300C  
8-Lead SOIC  
qJA  
qJC  
158C/W  
43C/W  
*qJA is specified for worst case conditions, i.e., qJA is specified for device sol-  
dered in circuit board for SOIC package.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
ESD RATINGS  
883 (Human Body) Model . . . . . . . . . . . . . . . . . . . . . . . . 1 kV  
EIAJ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 V  
SSM2135S –40C to +85C 8-Lead SOIC  
SOIC-8  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
SSM2135 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. E  
–3–  
SSM2135–Typical Performance Characteristics  
10  
1
V
A
= 5V  
S
= +1, F = 1kHz  
= 1V p-p  
= 10k  
V
V
IN  
R
L
5V  
WITH 80kHz FILTER  
500F  
0.1  
R
L
0.01  
2.5Vdc  
0.001  
10  
100  
1k  
10k  
LOAD RESISTANCE – ⍀  
Test Circuit 1. Test Circuit for TPCs 1, 2, and 3  
TPC 3. THD+N vs. Load (See Test Circuit)  
AUDIO PRECISION  
1
THD+N(%) VS. AMPL(V p-p)  
1
V
= 5V  
S
R
= 100k  
L
V
= 2.5V p-p  
OUT  
NONINVERTING  
f = 1kHz  
WITH 80kHz FILTER  
0.1  
R
= 32⍀  
L
0.1  
R
= 10k⍀  
0.010  
INVERTING  
L
0.01  
0.001  
0.001  
0.0005  
0
10  
20  
30  
GAIN – dB  
40  
50  
60  
50m  
0.1  
1
5
TPC 1. THD+N vs. Amplitude (See Test Circuit 1; AV = +1,  
VS = 5 V, f = 1 kHz, with 80 kHz Low-Pass Filter)  
TPC 4. THD+N vs. Gain  
AUDIO PRECISION  
1
THD+N(%) VS. FREQ(Hz)  
1
V
= 5V  
S
A
= +1, f = 1kHz  
= 1V p-p  
V
V
IN  
R
= 10k⍀  
L
WITH 80kHz FILTER  
0.1  
0.010  
0.001  
0.1  
R
= 32⍀  
L
0.01  
R
= 10k⍀  
L
0.001  
0.0005  
20  
5
10  
15  
20  
25  
30  
100  
1k  
10k 20k  
SUPPLY VOLTAGE – V  
TPC 5. THD+N vs. Supply Voltage  
TPC 2. THD+N vs. Frequency (See Test Circuit 1;  
AV = +1, VIN = 1 V p-p, with 80 kHz Low-Pass Filter)  
–4–  
REV. E  
SSM2135  
AUDIO PRECISION  
10  
SMPTE(%) VS AMPL(V p-p)  
5
4
V
T
= 5V  
= 25؇C  
S
A
1
3
2
0.1  
0.010  
0.001  
1
0
1
10  
100  
FREQUENCY – Hz  
1k  
50m  
0.1  
1
5
TPC 6. SMPTE Intermodulation Distortion (AV = +1,  
VS = 5 V, f = 1 kHz, RL = 10 kW)  
TPC 9. Current Noise Density vs. Frequency  
AUDIO PRECISION  
2.0000  
AMPL(dBu) VS FREQ(Hz)  
1.5000  
1.0000  
0.5000  
0.0  
1S  
100  
90  
–0.500  
–1.000  
–1.500  
10  
0%  
–2.000  
20  
100  
1k  
10k  
100k  
TPC 7. Input Voltage Noise (20 nV/div)  
TPC 10. Frequency Response (AV = +1, VS = 5 V,  
VIN = 1 V p-p, RL = 10 kW)  
30  
V
T
= 5V  
= 25؇C  
S
A
25  
20  
15  
10  
5
5µs  
5µs  
100  
90  
10  
0%  
20mV  
20mV  
0
1
10  
100  
FREQUENCY – Hz  
1k  
TPC 8. Voltage Noise Density vs. Frequency  
TPC 11. Square Wave Response (VS = 5 V, AV = +1,  
RL = )  
REV. E  
–5–  
SSM2135  
50  
40  
30  
60  
V
T
= 5V  
= 25؇C  
S
A
V
T
= 5V  
= 25؇C  
S
A
40  
20  
AV = +100  
AV = +10  
AV = +1  
0
–20  
–40  
–60  
–80  
–100  
–120  
20  
10  
0
105  
–10  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY - Hz  
TPC 12. Crosstalk vs. Frequency (RL = 10 kW)  
TPC 15. Closed-Loop Gain vs. Frequency  
100  
80  
140  
V
T
= 5V  
= 25؇C  
V
T
= 5V  
= 25؇C  
S
S
A
A
120  
100  
80  
0
60  
45  
90  
135  
GAIN  
40  
PHASE  
60  
20  
40  
0
180  
225  
20  
0
–20  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
100  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
TPC 13. Common-Mode Rejection vs. Frequency  
TPC 16. Open-Loop Gain and Phase vs. Frequency  
50  
140  
V
= 5V  
= +1  
= 25؇C  
S
V
R
= 5V  
= 2k⍀  
= 100mV p-p  
= 25؇C  
= +1  
S
45  
40  
35  
30  
25  
20  
15  
10  
5
120  
100  
80  
A
V
A
L
T
V
IN  
A
T
A
V
NEGATIVE  
EDGE  
+PSRR  
60  
–PSRR  
40  
POSITIVE  
EDGE  
20  
0
–20  
0
10  
100  
1k  
10k  
100k  
1M  
0
100  
200  
300  
400  
500  
FREQUENCY – Hz  
LOAD CAPACITANCE –pF  
TPC 14. Power Supply Rejection vs. Frequency  
TPC 17. Small Signal Overshoot vs. Load Capacitance  
–6–  
REV. E  
SSM2135  
50  
45  
40  
35  
V
A
R
= 5V  
= +1  
= 10k⍀  
V
T
= 5V  
= 25؇C  
S
S
V
A
L
40  
35  
30  
25  
20  
15  
10  
5
f = 1kHz  
30  
25  
20  
15  
10  
THD+N = 1%  
AVCL = +100  
T
= 25؇C  
A
AVCL = +10  
5
0
AVCL = +1  
0
10  
100  
1k  
10k  
100k  
1M  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY – Hz  
SUPPLY VOLTAGE – V  
TPC 18. Output Impedance vs. Frequency  
TPC 21. Output Swing vs. Supply Voltage  
5
5.0  
4.5  
2.0  
V
T
A
= 5V  
= 25؇C  
= +1  
V
= 5.0V  
S
A
S
V
4
3
2
1
0
f = 1kHz  
THD+N = 1%  
1.5  
1.0  
+SWING  
= 2k  
R
L
4.0  
+SWING  
= 600⍀  
+SWING  
L
R
L
R
= 2k⍀  
3.5  
3.0  
0.5  
0
+SWING  
= 600⍀  
R
L
1
10  
100  
1k  
10k  
100k  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
LOAD RESISTANCE – ⍀  
TEMPERATURE – ؇C  
TPC 19. Maximum Output Voltage vs. Load Resistance  
TPC 22. Output Swing vs. Temperature and Load  
6
2.0  
V
= 5V  
S
V
0.5V  
= 5V  
S
R
= 2k⍀  
= 25؇C  
= +1  
L
V
4.0V  
OUT  
5
4
3
2
T
A
A
V
1.5  
1.0  
+SLEW RATE  
–SLEW RATE  
0.5  
0
1
0
1k  
10k  
100k  
1M  
10M  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
FREQUENCY – Hz  
TEMPERATURE – ؇C  
TPC 20. Maximum Output Swing vs. Frequency  
TPC 23. Slew Rate vs. Temperature  
REV. E  
–7–  
SSM2135  
5
4
3
2
1
0
20  
V
= 5.0V  
= 3.9V  
S
18  
T
O
16  
14  
12  
10  
8
R
= 2k⍀  
L
V
= ؎18V  
S
V = ؎15V  
S
R
= 600⍀  
L
V
= +5.0V  
S
6
4
2
0
–75  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 26. Supply Current vs. Temperature  
TPC 24. Open-Loop Gain vs. Temperature  
500  
400  
300  
200  
100  
0
70  
65  
5
4
V
= 5V  
S
V
= +5.0V  
S
GBW  
60  
3
V
= ؎15V  
S
m  
55  
50  
2
1
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 27. Input Bias Current vs. Temperature  
TPC 25. Gain Bandwidth Product and Phase Margin  
vs. Temperature  
The SSM2135 is fully protected from phase reversal for inputs  
going to the negative supply rail. However, internal ESD protec-  
tion diodes will turn on when either input is forced more than  
0.5 V below the negative rail. Under this condition, input cur-  
rent in excess of 2 mA may cause erratic output behavior, in  
which case a current limiting resistor should be included in the  
offending input if phase integrity is required with excessive input  
voltages. A 500 W or higher series input resistor will prevent  
phase inversion even with the input pulled 1 V below the nega-  
tive supply.  
APPLICATION INFORMATION  
The SSM2135 is a low voltage audio amplifier that has excep-  
tionally low noise and excellent sonic quality even when driving  
loads as small as 25 W. Designed for single supply use, the  
SSM2135’s inputs common-mode and output swing to 0 V.  
Thus with a supply voltage at 5 V, both the input and output  
will swing from 0 V to 4 V. Because of this, signal dynamic  
range can be optimized if the amplifier is biased to a 2 V reference  
rather than at half the supply voltage.  
The SSM2135 is unity-gain stable, even when driving into a fair  
amount of capacitive load. Driving up to 500 pF does not cause  
any instability in the amplifier. However, overshoot in the fre-  
quency response increases slightly.  
“Hot” plugging the input to a signal generally does not present a  
problem for the SSM2135, assuming the signal does not have  
any voltage exceeding the device’s supply voltage. If so, it is  
advisable to add a series input resistor to limit the current, as  
well as a Zener diode to clamp the input to a voltage no higher  
than the supply.  
The SSM2135 makes an excellent output amplifier for 5 V only  
audio systems such as a multimedia workstation, a CD output  
amplifier, or an audio mixing system. The amplifier has large  
output swing even at this supply voltage because it is designed  
to swing to the negative rail. In addition, it easily drives load  
impedances as low as 25 W with low distortion.  
–8–  
REV. E  
SSM2135  
APPLICATION CIRCUITS  
Low Noise Microphone Preamplifier  
Low Noise Stereo Headphone Driver Amplifier  
The SSM2135’s 4.7 nV/÷Hz input noise in conjunction with  
low distortion makes it an ideal device for amplifying low level  
signals such as those produced by microphones. Figure 3 illus-  
trates a stereo microphone input circuit feeding a multimedia  
sound codec. As shown, the gain is set at 100 (40 dB), although  
it can be set to other gains depending on the microphone output  
levels. Figure 4 shows the preamplifier’s harmonic distortion  
performance with 1 V rms output while operating from a single  
5 V supply.  
Figure 1 shows the SSM2135 used in a stereo headphone driver  
for multimedia applications with the AD1848, a 16-bit stereo  
codec. The SSM2135 is equally well suited for the serial-bused  
AD1849 stereo codec. The headphone’s impedance can be as  
low as 25 W, which covers most commercially available high fidel-  
ity headphones. Although the amplifier can operate at up to ±18 V  
supply, it is just as efficient powered by a single 5 V. At this  
voltage, the amplifier has sufficient output drive to deliver  
distortion-free sound to a low impedance headphone.  
The SSM2135 is biased to 2.25 V by the VREF pin of the AD1848  
codec. The same voltage is buffered by the 2N4124 transistor to  
provide “phantom power” to the microphone. A typical electret  
condenser microphone with an impedance range of 100 W to 1 kW  
works well with the circuit. This power booster circuit may be  
omitted for dynamic microphone elements.  
10k  
8.66k⍀  
40  
L
OUT  
2
3
35/36  
470F  
+5V  
0.1F  
V
1
1/2  
SSM2135  
CC  
34/37  
32  
GND  
10F  
L CH.  
R CH.  
V
REF  
10k  
0.1F  
10F  
8
4
0.1F  
+5V  
8
10F  
5
6
AGND  
7
1/2  
SSM2135  
100⍀  
AD1848  
L CHANNEL  
MIC IN  
2
3
470F  
1
1/2  
29  
10F  
LMIC  
35/36  
+5V  
V
SSM2135  
CC  
41  
4
10k⍀  
+5V  
R
2k⍀  
OUT  
0.1F  
10k⍀  
8.66k⍀  
34/37  
32  
GND  
2N4124  
Figure 1. A Stereo Headphone Driver for Multimedia  
Sound Codec  
V
REF  
10F  
0.1F  
10k⍀  
10F  
R CHANNEL  
MIC IN  
AD1848  
2k⍀  
Figure 2 shows the total harmonic distortion characteristics  
versus frequency driving into a 32 W load, which is a very  
typical impedance for a high quality stereo headphone. The  
SSM2135 has excellent power supply rejection, and as a result,  
is tolerant of poorly regulated supplies. However, for best sonic  
quality, the power supply should be well regulated and heavily  
bypassed to minimize supply modulation under heavy loads. A  
minimum of 10 mF bypass is recommended.  
5
6
28  
7
1/2  
RMIC  
SSM2135  
100⍀  
10k⍀  
Figure 3. Low Noise Microphone Preamp for Multimedia  
Sound Codec  
AUDIO PRECISION  
1
THD+(%) VS FREQ(Hz)  
AUDIO PRECISION  
1
THD+(%) VS FREQ(Hz)  
0.1  
0.010  
0.001  
0.1  
0.010  
20  
0.0005  
20  
100  
1k  
10k 20k  
100  
1k  
10k 20k  
Figure 4. MIC Preamp THD+N Performance (VS = 5 V,  
AV = 40 dB, VOUT = 1 V rms, with 80 kHz Low-Pass Filter)  
Figure 2. Headphone Driver THD+N vs. Frequency into a  
32 W Load (VS = 5 V, with 80 kHz Low-Pass Filter)  
REV. E  
–9–  
SSM2135  
5V SUPPLY  
AD1868  
VBL  
18-BIT  
DAC  
V
L
220F  
LEFT  
CHANNEL  
OUTPUT  
1/2  
DL  
LL  
SSM2135  
9.76k⍀  
7.68k⍀  
18-BIT  
SERIAL  
REG.  
47k⍀  
VOL  
AGND  
VOR  
V
330pF  
REF  
100pF  
CK  
7.68k⍀  
DR  
LR  
V
REF  
18-BIT  
SERIAL  
REG.  
7.68k⍀  
100pF  
DGND  
VBR  
9.76k⍀  
7.68k⍀  
220F  
RIGHT  
CHANNEL  
OUTPUT  
1/2  
SSM2135  
18-BIT  
DAC  
V
S
330pF  
47k⍀  
Figure 5. 5 V Stereo 18-Bit DAC  
18-Bit Stereo CD-DAC Output Amplifier  
Single-Supply Differential Line Receiver  
The SSM2135 makes an ideal single-supply stereo output  
amplifier for audio D/A converters because of its low noise and  
distortion. Figure 5 shows the implementation of an 18-bit  
stereo DAC channel. The output amplifier also provides low-pass  
filtering for smoothing the oversampled audio signal. The filter’s  
cutoff frequency is set at 22.5 kHz and has a maximally flat  
response from dc to 20 kHz.  
Receiving a differential signal with minimum distortion is achieved  
using the circuit in Figure 7. Unlike a difference amplifier (a  
subtractor), the circuit has a true balanced input impedance  
regardless of input drive levels. That is, each input always pre-  
sents a 20 kW impedance to the source. For best common-mode  
rejection performance, all resistors around the differential amplifier  
must be very well matched. Best results can be achieved using a  
10 kW precision resistor network.  
As mentioned above, the amplifier’s outputs can drive directly  
into a stereo headphone that has impedance as low as 25 W with  
no additional buffering required.  
10k⍀  
+5V  
10F+0.1F  
Single Supply Differential Line Driver  
Signal distribution and routing is often required in audio systems,  
particularly portable digital audio equipment for professional  
applications. Figure 6 shows a single supply line driver circuit  
that has differential output. The bottom amplifier provides a 2 V  
dc bias for the differential amplifier in order to maximize the  
output swing range. The amplifier can output a maximum of  
0.8 V rms signal with a 5 V supply. It is capable of driving into  
600 W line termination at a reduced output amplitude.  
20k⍀  
1/2  
SSM2135  
20k⍀  
DIFFERENTIAL  
AUDIO IN  
20k⍀  
10F  
10⍀  
1/2  
SSM2135  
2.0V  
AUDIO  
OUT  
+5V  
1F  
7.5k⍀  
+5V  
100⍀  
1/2  
SSM2135  
1k⍀  
5k⍀  
+5V  
10F+0.1F  
0.1F  
2.5k⍀  
1/2  
SSM2135  
100F  
AUDIO IN  
Figure 7. Single-Supply Balanced Differential  
Line Receiver  
DIFFERENTIAL  
AUDIO OUT  
1k⍀  
Pseudo-Reference Voltage Generator  
1k⍀  
For single-supply circuits, a reference voltage source is often  
10k⍀  
1/2  
SSM2135  
required for biasing purposes or signal offsetting purposes. The  
circuit in Figure 8 provides a supply splitter function with low  
output impedance. The 1 mF output capacitor serves as a charge  
reservoir to handle a sudden surge in demand by the load as  
well as providing a low ac impedance to it. The 0.1 mF feedback  
capacitor compensates the amplifier in the presence of a heavy  
capacitive load, maintaining stability.  
2.0V  
2.5k⍀  
+5V  
0.1F  
100⍀  
+5V  
1/2  
SSM2135  
7.5k⍀  
1F  
5k⍀  
The output can source or sink up to 12 mA of current with a  
5 V supply, limited only by the 100 W output resistor. Reducing  
the resistance will increase the output current capability.  
Alternatively, increasing the supply voltage to 12 V also  
improves the output drive to more than 25 mA.  
Figure 6. Single-Supply Differential Line Driver  
–10–  
REV. E  
SSM2135  
V + = 5V Æ 12V  
Logarithmic Volume Control Circuit  
S
Figure 10 shows a logarithmic version of the volume control  
function. Similar biasing is used. With an 8-bit bus, the AD7111  
provides an 88.5 dB attenuation range. Each bit resolves a  
0.375 dB attenuation. Refer to the AD7111 data sheet for attenua-  
tion levels for each input code.  
R3  
2.5k  
C1  
0.1F  
R1  
5k⍀  
R4  
100k⍀  
+5V  
0.1F  
1/2  
V +  
S
2
OUTPUT  
SSM2135  
C2  
1F  
+5V  
R2  
5k⍀  
10F+0.1F  
3
14  
47F  
DGND  
V
FB  
OUTA  
DD  
1
2
L AUDIO  
IN  
V
IN  
1/2  
SSM2135  
L AUDIO  
OUT  
AD7111  
Figure 8. Pseudo-Reference Generator  
Digital Volume Control Circuit  
47F  
AGND  
10  
Working in conjunction with the AD7528/PM7528 dual 8-bit  
D/A converter, the SSM2135 makes an efficient audio attenuator,  
as shown in Figure 9. The circuit works off a single 5 V supply.  
The DACs are biased to a 2 V reference level, which is sufficient  
to keep the DACs’ internal R-2R ladder switches operating prop-  
erly. This voltage is also the optimal midpoint of the SSM2135’s  
common-mode and output swing range. With the circuit as  
shown, the maximum input and output swing is 1.25 V rms.  
Total harmonic distortion measures a respectable 0.01% at 1 kHz  
and 0.1% at 20 kHz. The frequency response at any attenuation  
level is flat to 20 kHz.  
+5V  
0.1F  
3
14  
V
47F  
DGND  
FB  
OUTA  
DD  
1
2
R AUDIO  
IN  
V
IN  
1/2  
R AUDIO  
OUT  
AD7111  
SSM2135  
47F  
AGND  
2k  
10  
DATA IN  
AND  
CONTROL  
10  
+5V  
+5V  
0.1F  
100⍀  
7.5k  
2.0V  
1/2  
SSM2135  
2.0V  
Each DAC can be controlled independently via the 8-bit parallel  
data bus. The attenuation level is linearly controlled by the  
binary weighting of the digital data input. Total attenuation  
ranges from 0 dB to 48 dB.  
1F  
5k  
Figure 10. Single-Supply Logarithmic Volume Control  
3
AD7528/PM7528  
+5V  
10F+0.1F  
FB  
OUTA  
2
L AUDIO  
IN  
REFA  
DAC A  
1/2  
SSM2135  
L AUDIO  
OUT  
47F  
DATA IN  
6
DACA/  
DACB  
CONTROL  
SIGNAL  
15  
16  
CS  
19  
WR  
FB  
OUTB  
20  
1
18  
R AUDIO  
IN  
REFB  
DACB  
1/2  
SSM2135  
R AUDIO  
OUT  
47F  
2k⍀  
V
DGND  
5
DD  
+5V  
+5V  
17  
0.1F  
100⍀  
7.5k⍀  
1/2  
SSM2135  
0.1F  
2.0V  
2.0V  
+5V  
1F  
5k⍀  
Figure 9. Digital Volume Control  
REV. E  
–11–  
SSM2135  
*
SPICE MACROMODEL  
* CMRR STAGE & POLE AT 6 kHZ  
*
*
SSM2135 SPICE Macro-Model  
9/92, Rev. A  
JCB/ADI  
ECM  
CCM  
RCM1 50  
50  
50  
4
POLY(2)  
26.5E–12  
1E6  
3
60  
2
60  
0
1.6 1.6  
51  
51  
4
*Copyright 1993 by Analog Devices, Inc.  
*
*Node Assignments  
*
*
*
*
*
*
RCM2 51  
1
*
*
Noninverting Input  
Inverting Input  
Positive Supply  
Negative Supply  
OUTPUT STAGE  
R12 37 36 1E3  
R13 38 36 500  
C4 37  
6
20E–12  
Output  
C5 38 39 20E–12  
M1 39 36 4 4 MN L=9E–6 W=1000E–6 AD=15E–9 AS=15E–9  
M2 45 36 4 4 MN L=9E–6 W=1000E–6 AD=15E–9 AS=15E–9  
.SUBCKT SSM2135  
*
3
2
7
4
6
5
39 47 DX  
* INPUT STAGE  
D6 47 45 DX  
Q3 39 40 41 QPA 8  
R3  
R4  
C1  
I1  
IOS  
EOS 12  
4
4
19  
7
2
19  
20  
20  
18  
3
1.5E3  
1.5E3  
5.311E–12  
106E–6  
25E–09  
POLY(1) 51  
VB  
R14 7 41 375  
Q4 41 43 QNA 1  
R17 7 43 15  
7
40 DC 0.861  
7
5
4
25E–06  
1
Q5 43 39  
Q6 46 45  
6
6
15  
4
QNA 20  
QPA 20  
Q1  
Q2  
CIN  
D1  
D2  
EN  
GN1  
GN2  
*
19  
20  
3
3
2
5
0
0
3
12  
2
1
1
2
2
3
18  
18  
3E–12  
DY  
DY  
22  
PNP1  
PNP1  
R18 46  
4
Q7 36 46  
QNA 1  
M3  
*
6
36 4 4 MN L=9E–6 W=2000E–6 AD=30E–9 AS=30E–9  
0
0
0
1
* NONLINEAR MODELS USED  
25  
28  
1E–5  
1E–5  
*
.MODEL DX D (IS=1E–15)  
.MODEL DY D (IS=1E–15 BV=7)  
.MODEL PNP1 PNP (BF=220)  
* VOLTAGE NOISE SOURCE WITH FLICKER NOISE  
DN1 21  
DN2 22  
VN1 21  
22  
23  
0
DEN  
DEN  
DC 2  
DC 2  
.MODEL DEN D(IS=1E–12 RS=1016 KF=3.278E–15 AF=1)  
.MODEL DIN D(IS=1E–12 RS=100019 KF=4.173E–15 AF=1)  
.MODEL QNA NPN(IS=1.19E–16 BF=253 VAF=193 VAR=15 RB=2.0E3  
+ IRB=7.73E–6 RBM=132.8 RE=4 RC=209 CJE=2.1E–13 VJE=0.573  
+ MJE =0.364 CJC=1.64E–13 VJC=0.534 MJC=0.5 CJS=1.37E–12  
+ VJS=0.59 MJS=0.5 TF=0.43E–9 PTF=30)  
.MODEL QPA PNP(IS=5.21E–17 BF=131 VAF=62 VAR=15 RB=1.52E3  
+ IRB=1.67E 5–RBM=368.5 RE=6.31 RC=354.4 CJE=1.1E–13  
+ VJE=0.745 MJE=0.33 CJC=2.37E–13 VJC=0.762 MJC=0.4  
+ CJS=7.11E–13 VJS=0.45 MJS=0.412 TF=1.0E–9 PTF=30)  
.MODEL MN NMOS(LEVEL=3 VTO=1.3 RS=0.3 RD=0.3 TOX=8.5E–8  
+ LD=1.48E–6WD=1E–6 NSUB=1.53E16UO=650 DELTA= 10VMAX=2E5  
+ XJ=1.75E–6 KAPPA=0.8 ETA=0.066 THETA=0.01TPG=1 CJ=2.9E–4  
+ PB=0.837 MJ=0.407 CJSW=0.5E–9 MJSW=0.33)  
*
VN2  
*
0
23  
* CURRENT NOISE SOURCE WITH FLICKER NOISE  
DN3 24  
DN4 25  
VN3 24  
25  
26  
0
DIN  
DIN  
DC 2  
DC 2  
VN4  
*
0
26  
* SECOND CURRENT NOISE SOURCE  
DN5 27  
DN6 28  
VN5 27  
28  
29  
0
DIN  
DIN  
DC 2  
DC 2  
VN6  
*
0
29  
.ENDS SSM-2135  
* GAIN STAGE & DOMINANT POLE AT .2000E+01 HZ  
G2  
R7  
V3  
D4  
VB2 34  
*
34  
34  
35  
36  
36  
36  
4
35  
4
19  
39E+06  
DC  
DX  
1.6  
20 2.65E–04  
6
* SUPPLY/2 GENERATOR  
ISY  
R10  
R11  
C3  
7
7
60  
60  
4
60  
4
0.2E–3  
40E+3  
40E+3  
1E–9  
0
–12–  
REV. E  
SSM2135  
OUTLINE DIMENSIONS  
8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
؋
 45؇  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8؇  
0.51 (0.0201)  
0.33 (0.0130)  
0؇ 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.19 (0.0075)  
SEATING  
PLANE  
0.41 (0.0160)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. E  
–13–  
SSM2135  
Revision History  
Location  
Page  
2/03—Data Sheet changed from REV. D to REV. E.  
Removed 8-Lead Plastic DIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Edits to THERMAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
–14–  
REV. E  
–15–  
–16–  

相关型号:

SSM2139P

Voltage-Feedback Operational Amplifier
ETC

SSM2139S

IC DUAL OP-AMP, 500 uV OFFSET-MAX, 30 MHz BAND WIDTH, PDSO16, SOL-16, Operational Amplifier
ADI

SSM2141

High Common-Mode Rejection Differential Line Receiver
ADI

SSM2141P

High Common-Mode Rejection Differential Line Receiver
ADI

SSM2141PZ

High Common-Mode Rejection Differential Line Receiver
ADI

SSM2141S

High Common-Mode Rejection Differential Line Receiver
ADI

SSM2141S-REEL

IC INSTRUMENTATION AMPLIFIER, 2500 uV OFFSET-MAX, 3 MHz BAND WIDTH, PDSO8, SO-8, Instrumentation Amplifier
ADI

SSM2141SZ

暂无描述
ADI

SSM2141SZ-REEL

High Common-Mode Rejection Differential Line Receiver
ADI

SSM2142

Balanced Line Driver
ADI

SSM2142P

Balanced Line Driver
ADI

SSM2142P

SPECIALTY ANALOG CIRCUIT, PDIP8, PLASTIC, DIP-8
ROCHESTER