SSM3302ACPZ [ADI]

2 ×10 W Filterless Class-D; 2 × 10瓦无滤波器D类
SSM3302ACPZ
型号: SSM3302ACPZ
厂家: ADI    ADI
描述:

2 ×10 W Filterless Class-D
2 × 10瓦无滤波器D类

文件: 总20页 (文件大小:1111K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 ×10 W Filterless Class-D  
Stereo Audio Amplifier  
SSM3302  
Data Sheet  
load or with 82% efficiency at 10 W into 4 Ω from a 12 V supply,  
and it has an SNR of >98 dB.  
FEATURES  
Filterless stereo Class-D amplifier with Σ-Δ modulation  
2 × 10 W into 4 Ω load and 2 × 8 W into 8 Ω load at 12 V supply  
with <1% total harmonic distortion plus noise (THD + N)  
91% efficiency at 12 V, 8 W into 8 Ω speaker  
98 dB signal-to-noise ratio (SNR)  
Single-supply operation from 7 V to 18 V  
Flexible gain adjustment pin from 9 dB to 24 dB  
Fixed input impedance of 40 kΩ  
Mono output mode pin for 1 × 20 W output power into 2 Ω  
10 µA shutdown current  
Short-circuit and thermal protection  
Available in a 40-lead, 6 mm × 6 mm LFCSP  
Pop-and-click suppression  
Spread spectrum pulse density modulation (PDM) is used to  
provide lower EMI radiated emissions compared with other  
Class-D architectures. The SSM3302 includes an optional  
modulation select pin (ultralow EMI emission mode) that  
significantly reduces the radiated emissions at the Class-D  
outputs, particularly above 100 MHz. The SSM3302 can pass  
FCC Class-B emissions testing with an unshielded 20 inch cable  
using common-mode choke-based filtering.  
The fully differential input of the SSM3302 provides excellent  
rejection of common-mode noise on the input. The device also  
includes a highly flexible gain select pin that only requires one  
series resistor to choose a gain between 9 dB and 24 dB, with no  
change to the input impedance. The benefit of this is to improve  
gain matching between multiple SSM3302 devices within a single  
application compared with using external resistors to set gain.  
User-selectable ultralow EMI emissions mode  
Thermal warning indicator  
Power-on reset  
APPLICATIONS  
The SSM3302 includes an integrated voltage regulator that  
generates a 5 V rail.  
Mobile computing  
Flat panel televisions  
Media docking stations  
Portable electronics  
Sound bars  
The SSM3302 has a micropower shutdown mode with a typical  
shutdown current of 10 µA. Shutdown is enabled by applying a  
SD  
logic low to the  
pin. The device also includes pop-and-click  
suppression circuitry that minimizes voltage glitches at the output  
during turn on and turn off, reducing audible noise during  
activation and deactivation.  
GENERAL DESCRIPTION  
The SSM3302 is a fully integrated, high efficiency, stereo Class-D  
audio amplifier. The application circuit requires minimal external  
components and operates from a single 7 V to 18 V supply. The  
device is capable of delivering 2 × 10 W of continuous output  
power into a 4 Ω load (or 2 × 8 W into 8 Ω) with <1% THD + N  
from a 12 V supply. In addition, while mono mode is activated,  
the user can drive a load as small as 2 Ω up to 20 W continuous  
output power by stacking the stereo output terminals.  
Other included features to simplify system level integration of  
the SSM3302 are input low-pass filtering to suppress out-of-  
band DAC noise interference to the pulse density modulator,  
fixed input impedance to simplify component selection across  
multiple platform production builds, and a thermal warning  
indicator pin.  
The SSM3302 is specified over the commercial temperature  
range (−40°C to +85°C). It has built-in thermal shutdown and  
output short-circuit protection. It is available in a halide-free,  
40-lead, 6 mm × 6 mm lead frame chip scale package (LFCSP).  
The SSM3302 features a high efficiency, low noise modulation  
scheme that requires no external LC output filters. This scheme  
continues to provide high efficiency even at low output power.  
The SSM3302 operates with 90% efficiency at 7 W into an 8 Ω  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2012 Analog Devices, Inc. All rights reserved.  
 
SSM3302  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Analog Supply............................................................................. 16  
Gain Selection............................................................................. 16  
Amplifier Protection.................................................................. 16  
Pop-and-Click Suppression ...................................................... 16  
EMI Noise.................................................................................... 16  
Mono Mode................................................................................. 16  
Output Modulation Description .............................................. 17  
Layout .......................................................................................... 17  
Input Capacitor Selection.......................................................... 17  
Bootstrap Capacitors.................................................................. 17  
Power Supply Decoupling ......................................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Typical Application Circuits.......................................................... 14  
Applications Information .............................................................. 16  
Overview...................................................................................... 16  
REVISION HISTORY  
2/12—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
Data Sheet  
SSM3302  
FUNCTIONAL BLOCK DIAGRAM  
PVDD  
THERM  
SSM3302  
BOOTR+  
40k  
OUTR+  
INR+  
GAIN  
CONTROL  
MODULATOR  
FET  
DRIVER  
40kΩ  
(Σ-)  
INR–  
OUTR–  
BOOTR–  
BIAS  
SDNR  
EDGE  
INTERNAL  
OSCILLATOR  
EDGE  
CONTROL  
MONO  
BIAS  
BOOTL+  
SDNL  
40kΩ  
OUTL+  
INL+  
GAIN  
CONTROL  
MODULATOR  
FET  
DRIVER  
40kΩ  
(Σ-)  
INL–  
OUTL–  
BOOTL–  
VREG  
AGND  
VREG  
(AVDD)  
REGEN  
PGND  
GAIN  
Figure 1.  
Rev. 0 | Page 3 of 20  
 
SSM3302  
Data Sheet  
SPECIFICATIONS  
PVDD = 12 V, TA = 25oC, RL = 8 Ω + 64 μH, EDGE = AGND, gain = 9 dB, VREG = off, unless otherwise noted.  
Table 1.  
Parameter  
Symbol Test Conditions/Comments  
PO RL = 8 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, PVDD = 15 V  
Min  
Typ  
Max  
Unit  
DEVICE CHARACTERISTICS  
Output Power/Channel  
121  
8
2.7  
151  
10  
3.2  
201  
131  
4.8  
241  
161  
5.7  
292  
W
W
W
W
W
W
W
W
W
W
W
W
W
RL = 8 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, PVDD = 12 V  
RL = 8 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, PVDD = 7 V  
RL = 8 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, PVDD = 15 V  
RL = 8 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, PVDD = 12 V  
RL = 8 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, PVDD = 7 V  
RL = 4 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, PVDD = 15 V  
RL = 4 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, PVDD = 12 V  
RL = 4 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, PVDD = 7 V  
RL = 4 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, PVDD = 15 V  
RL = 4 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, PVDD = 12 V  
RL = 4 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, PVDD = 7 V  
RL = 2 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, PVDD = 12 V  
(mono mode)  
RL = 2 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, PVDD = 7 V  
(mono mode)  
RL = 2 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, PVDD = 12 V  
(mono mode)  
RL = 2 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, PVDD = 7 V  
(mono mode)  
9.42  
W
W
W
36.62  
12.72  
Efficiency  
η
PO = 7 W, 8 Ω, PVDD = 12 V, EDGE = low (normal operation)  
PO = 7 W, 8 Ω, PVDD = 12 V, EDGE = AVDD (ultralow  
EMI mode)  
91.5  
82  
%
%
Total Harmonic  
Distortion + Noise  
Input Common-Mode  
Voltage Range  
THD + N PO = 5 W into 8 Ω, f = 1 kHz, PVDD = 12 V  
0.01  
%
V
VCM  
1.0  
AVDD − 1  
Common-Mode  
Rejection Ratio  
Channel Separation  
Average Switching  
Frequency  
CMRR  
VCM = 2.5 V 100 mV at 1 kHz, output referred  
PO = 0.5 W, f = 1 kHz  
43  
dB  
XTALK  
fSW  
80  
300  
dB  
kHz  
Differential Output  
Offset Voltage  
VOOS  
Gain = 9 dB  
3.0  
18  
mV  
POWER SUPPLY  
Supply Voltage Range  
PVDD  
Guaranteed from PSRR test  
7
V
Power Supply Rejection  
Ratio  
PSRRDC  
PVDD = 7 V to 15 V, dc input floating  
70  
dB  
PSRRAC  
ISYPVDD  
VRIPPLE = 100 mV at 1 kHz, inputs are ac grounded, CIN = 0.1 μF  
VIN = 0 V, load = 8 Ω + 68 μH, PVDD = 15 V, VREGEN = AVDD  
(internal VREG active)  
80  
12.2  
dB  
mA  
Supply Current (Stereo)  
VIN = 0 V, load = 8 Ω + 68 μH, PVDD = 15 V, VREGEN = AGND  
(internal VREG disabled)  
VIN = 0 V, load = 8 Ω + 68 μH, PVDD = 12 V, VREGEN = AGND  
(internal VREG disabled)  
VIN = 0 V, load = 8 Ω + 68 μH, PVDD = 7 V, VREGEN = AGND  
(internal VREG disabled)  
6.2  
5
mA  
mA  
mA  
3
Rev. 0 | Page 4 of 20  
 
Data Sheet  
SSM3302  
Parameter  
Symbol Test Conditions/Comments  
ISYAVDD  
VIN = 0 V, load = 8 Ω + 68 μH, PVDD = 15 V, VREGEN = AGND  
Min  
Typ  
Max  
Unit  
5.85  
mA  
(internal VREG disabled)  
VIN = 0 V, load = 8 Ω + 68 μH, PVDD = 12 V, VREGEN = AGND  
(internal VREG disabled)  
VIN = 0 V, load = 8 Ω + 68 μH, PVDD = 7 V, VREGEN = AGND  
(internal VREG disabled)  
5.8  
5.6  
10  
mA  
mA  
μA  
Shutdown Current  
ISD  
SD = AGND  
ANALOG SUPPLY  
External Supply Voltage  
On-Board Regulator  
Regulator Current  
Regulator Power Supply  
Rejection  
AVDD  
VVREG  
IVREG  
Permissible range for external AVDD, VREGEN = AGND  
4.5  
5.5  
V
V
mA  
dB  
5
20  
70  
PSRRVREG  
GAIN CONTROL  
Closed-Loop Voltage Gain AV  
See Table 5 for gain options  
9
24  
dB  
kΩ  
Input Impedance  
SHUTDOWN CONTROL  
Input Voltage High  
Input Voltage Low  
Turn-On Time  
ZIN  
40  
VIH  
VIL  
tWU  
tSD  
1.35  
V
V
ms  
μs  
kΩ  
0.35  
SD rising edge from AGND to AVDD  
SD falling edge from AVDD to AGND  
SD = GND  
40  
Turn-Off Time  
500  
56  
Output Impedance  
ZOUT  
AMPLIFIER PROTECTION  
Overcurrent Threshold  
IOC  
6
A
Overtemperature  
Warning  
TWARN  
120  
°C  
Overtemperature  
Shutdown  
Recovery Temperature  
NOISE PERFORMANCE  
Output Voltage Noise  
TSD  
145  
85  
°C  
°C  
TREC  
en  
PVDD = 12 V, f = 20 Hz to 20 kHz, inputs are ac grounded,  
gain = 9 dB, A-weighted  
PO = 10 W, RL = 8 Ω  
100  
98  
μV rms  
dB  
Signal-to-Noise Ratio  
SNR  
1 Although the SSM3302 has good audio quality above 2 × 10 W into 4 Ω, continuous output power beyond 2 × 10 W into 4 Ω must be avoided due to device packaging  
limitations.  
2 Mono mode. Output power beyond 20 W needs special care for thermally considered printed circuit board (PCB) design.  
Rev. 0 | Page 5 of 20  
SSM3302  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings apply at 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA (junction to air) is specified for the worst-case conditions,  
that is, a device soldered in a circuit board for surface-mount  
packages. θJA and θJC are determined according to JESD51-9 on  
a 4-layer printed circuit board (PCB) with natural convection  
cooling.  
Table 2.  
Parameter  
Power Supply Voltage (PVDD)  
Analog Supply Voltage (AVDD)  
Input Voltage  
Rating  
−0.3 V to +25 V  
−0.3 V to +6 V  
−0.3 V to +6 V  
4 kV  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +165°C  
300°C  
ESD Susceptibility  
Table 3. Thermal Resistance  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
Package Type  
θJA  
θJC  
Unit  
40-Lead, 6 mm × 6 mm LFCSP  
31  
2.5  
°C/W  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 6 of 20  
 
Data Sheet  
SSM3302  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
BOOTL+  
OUTL+  
1
2
3
4
5
6
7
8
9
30 BOOTR+  
29 OUTR+  
28 OUTR+  
27 OUTR–  
26 OUTR–  
25 BOOTR–  
24 AGND  
OUTL+  
SSM3302  
TOP VIEW  
(Not to Scale)  
OUTL–  
OUTL–  
BOOTL–  
AGND  
VREG/AVDD  
SDNL  
23 REGEN  
22  
SDNR  
EDGE 10  
21 GAIN  
NOTES  
1. USE MULTIPLE VIAS TO CONNECT THE EXPOSED PAD  
TO THE GROUND PLANE.  
2. PINS LABELED NC CAN BE ALLOWED TO FLOAT,  
BUT IT IS BETTER TO CONNECT THESE PINS TO  
GROUND. AVOID ROUTING HIGH SPEED SIGNALS  
THROUGH THESE PINS BECAUSE NOISE COUPLING  
MAY RESULT.  
Figure 2. Pin Configuration (Top Side View)  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
BOOTL+  
OUTL+  
Description  
1
Bootstrap Input/Output for Left Channel, Noninverting Output.  
Noninverting Output for Left Channel.  
2, 3  
4, 5  
OUTL−  
Inverting Output for Left Channel.  
6
BOOTL−  
AGND  
VREG/AVDD  
SDNL  
Bootstrap Input/Output for Left Channel, Inverting Output.  
Analog Ground.  
5 V Regulator Output (if REGEN = high)/AVDD Input (if REGEN = low).  
Shutdown, Left Channel. Active low digital input.  
Edge Control (Low Emission Mode). Active high digital input.  
Noninverting Input for Left Channel.  
7
8
9
10  
11  
12  
13, 18  
EDGE  
INL+  
INL−  
NC  
Inverting Input for Left Channel.  
This pin is not connected internally (see Figure 2).  
14, 15  
16  
TEST  
Test Pins. Tie to AGND.  
MONO  
Mono Output Mode Enable.  
17  
THERM  
INR−  
Overtemperature Warning (Open Collector).  
Inverting Input for Right Channel.  
19  
20  
INR+  
Noninverting Input for Right Channel.  
Gain Select from 9 dB to 24 dB.  
21  
GAIN  
22  
SDNR  
Shutdown, Right Channel. Active low digital input.  
5 V Regulator Enable, Active High.  
23  
REGEN  
AGND  
BOOTR−  
OUTR−  
OUTR+  
BOOTR+  
24  
Analog Ground.  
25  
Bootstrap Input/Output for Right Channel, Inverting Output.  
Inverting Output for Right Channel.  
26, 27  
28, 29  
30  
Noninverting Output for Right Channel.  
Bootstrap Input/Output for Right Channel, Noninverting Output.  
Power Stage Ground.  
31, 32, 33, 38, 39, 40 PGND  
34, 35, 36, 37  
PVDD  
Power Stage Power Supply.  
Exposed Pad  
Thermal Exposed Pad. Use multiple vias to connect this pad to the ground plane.  
Rev. 0 | Page 7 of 20  
 
 
SSM3302  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise stated, all data at PVDD = 12 V, EDGE = low, MONO = low, REGEN = high, and GAIN = 9 dB.  
100  
10  
1
100  
R
= 8+ 33µH  
R = 8+ 33µH  
L
GAIN = 9dB  
PVDD = 12V  
L
GAIN = 9dB  
EDGE = LOW  
PVDD = 7V  
10  
PVDD = 12V  
1
0.1  
PVDD = 18V  
EDGE = HIGH  
0.1  
EDGE = LOW  
0.01  
0.01  
0.001  
0.0001  
0.001  
0.001  
0.01  
0.1  
1
10  
100  
1µ  
0.01m 0.1m  
1m  
10m 100m  
1
10  
100  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 3. THD + N vs. Output Power into 8 Ω;  
PVDD = 7 V, PVDD = 12 V, PVDD = 18 V  
Figure 6. THD + N vs. Output Power into 8 Ω;  
EDGE = High, EDGE = Low  
100  
10  
100  
10  
R
= 4+ 15µH  
R
= 4+ 15µH  
L
L
PVDD = 7V  
GAIN = 9dB  
EDGE = LOW  
GAIN = 9dB  
PVDD = 12V  
PVDD = 18V  
1
0.1  
1
0.1  
EDGE = HIGH  
EDGE = LOW  
0.01  
0.01  
0.001  
0.0001  
0.001  
0.001  
0.01  
0.1  
1
10  
100  
1µ  
0.01m 0.1m  
1m  
10m 100m  
1
10  
100  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 4. THD + N vs. Output Power into 4 Ω;  
PVDD = 7 V, PVDD = 12 V, PVDD = 18 V  
Figure 7. THD + N vs. Output Power into 4 Ω;  
EDGE = High, EDGE = Low  
100  
10  
100  
10  
R
= 2+ 7.5µH  
R
= 2+ 7.5µH  
L
PVDD = 7V  
L
GAIN = 9dB  
GAIN = 9dB  
PVDD = 12V  
1
1
EDGE = LOW  
PVDD = 18V  
0.1  
0.1  
EDGE = HIGH  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
1µ  
0.01m 0.1m  
1m  
10m 100m  
1
10  
100  
1µ  
0.01m 0.1m  
1m  
10m 100m  
1
10  
100  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 5. THD + N vs. Output Power into 2 Ω;  
Mono Mode; Gain = 9 dB; PVDD = 7 V, PVDD = 12 V, 1 PVDD = 8 V  
Figure 8. THD + N vs. Output Power into 2 Ω;  
EDGE = High, EDGE = Low  
Rev. 0 | Page 8 of 20  
 
Data Sheet  
SSM3302  
100  
100  
10  
PVDD = 7V  
PVDD = 12V  
R = 8+ 33µH  
L
GAIN = 9dB  
R
= 8+ 33µH  
L
GAIN = 9dB  
EDGE = LOW  
10  
1
EDGE = LOW  
P
= 2.5W  
O
P = 7.5W  
O
1
0.1  
0.1  
P
= 2.5W  
O
P
= 0.25W  
O
0.01  
0.01  
P
= 0.5W  
1k  
P
= 5W  
O
O
0.001  
0.001  
10  
100  
10k  
100k  
100k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
Figure 9. THD + N vs. Frequency;  
RL = 8 Ω; PVDD = 7 V; PO = 0.25 W, PO = 0.5 W, PO = 2.5 W  
Figure 12. THD + N vs. Frequency;  
RL = 8 Ω; PVDD = 12 V; PO = 2.5 W, PO = 5 W, PO = 7.5 W  
100  
10  
100  
10  
PVDD = 7V  
PVDD = 12V  
R
= 4+ 15µH  
R = 4+ 15µH  
L
L
GAIN = 9dB  
GAIN = 9dB  
EDGE = LOW  
EDGE = LOW  
P
= 5W  
O
1
0.1  
1
0.1  
P
= 0.5W  
O
P = 5W  
O
P
= 2.5W  
O
0.01  
0.01  
P
= 2.5W  
O
P
= 10W  
O
0.001  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 10. THD + N vs. Frequency;  
RL = 4 Ω; PVDD = 7 V; PO = 0.5 W, PO = 2.5 W, PO = 5 W  
Figure 13. THD + N vs. Frequency;  
RL = 4 Ω; PVDD = 12 V; PO = 2.5 W, PO = 5 W, PO = 10 W  
100  
10  
100  
10  
PVDD = 7V  
PVDD = 12V  
R
= 2+ 7.5µH  
R = 4+ 7.5µH  
L
L
GAIN = 9dB  
EDGE = 0V  
MONO = 5V  
GAIN = 9dB  
EDGE = LOW  
MONO = 5V  
P
= 3.5W  
O
1
0.1  
1
0.1  
P
= 0.5W  
O
P = 0.5W  
O
P
= 2.5W  
O
0.01  
0.01  
P
= 2.5W  
O
P
= 5W  
O
0.001  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 11. THD + N vs. Frequency;  
RL = 2 Ω; Mono Mode; PVDD = 7 V; PO = 0.5 W, PO = 2.5 W, PO = 3.5 W  
Figure 14. THD + N vs. Frequency;  
RL = 2 Ω; Mono Mode; PVDD = 12 V; PO = 0.5 W, PO = 2.5 W, PO = 5 W  
Rev. 0 | Page 9 of 20  
SSM3302  
Data Sheet  
100  
16  
14  
PVDD = 18V  
= 8+ 33µH  
GAIN = 9dB  
NO LOAD  
R
L
10  
1
EDGE = LOW  
8+ 33µH  
12  
10  
8
4+ 15µH  
0.1  
6
P
= 5W  
O
P
= 2.5W  
O
4
0.01  
2
P
= 10W  
O
0
0.001  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
100k  
100k  
SUPPLY VOLTAGE (V)  
Figure 18. Quiescent Current vs. Supply Voltage,  
RL = 8 Ω + 33 μH, No Load, , RL = 4 Ω + 15 μH  
Figure 15. THD + N vs. Frequency;  
RL = 8 Ω; PVDD = 18 V; PO = 2.5 W, PO = 5 W, PO = 10 W  
16  
14  
100  
10  
PVDD = 18V  
= 4+ 15µH  
GAIN = 9dB  
EDGE = 0  
NO LOAD  
R
L
12  
10  
8
4+ 15µH  
1
0.1  
2+ 7.5µH  
6
P
= 5W  
O
P
= 10W  
O
4
0.01  
2
P
= 2.5W  
O
0
0.001  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
SUPPLY VOLTAGE (V)  
Figure 16. THD + N vs. Frequency;  
RL = 4 Ω; PVDD = 18 V; PO = 2.5 W, PO = 5 W, PO = 10 W  
Figure 19. Quiescent Current vs. Supply Voltage,  
Mono Mode, No Load, RL = 4 Ω + 15 μH, RL = 2 Ω + 7.5 μH  
100  
10  
25  
20  
15  
10  
5
PVDD = 18V  
= 2+ 7.5µH  
GAIN = 9dB  
EDGE = 0  
MONO = 5V  
R = 8+ 33µH  
L
GAIN = 9dB  
EDGE = 0  
R
L
1
0.1  
THD = 10%  
P
= 0.5W  
O
P
= 5W  
O
THD + N = 1%  
0.01  
P
= 2.5W  
O
0
0.001  
7
9
11  
13  
15  
17  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
SUPPLY VOLTAGE (V)  
Figure 20. Maximum Output Power vs. Supply Voltage;  
RL = 8 Ω; THD + N = 1%, THD + N = 10%  
Figure 17. THD + N vs. Frequency;  
RL = 2 Ω; Mono Mode; PVDD = 18 V; PO = 0.5 W, PO = 2.5 W, PO = 5 W  
Rev. 0 | Page 10 of 20  
Data Sheet  
SSM3302  
30  
800  
700  
600  
500  
400  
300  
200  
100  
0
R
= 4+ 15µH  
L
GAIN = 9dB  
EDGE = 0  
25  
20  
15  
10  
5
PVDD = 7V  
THD = 10%  
PVDD = 12V  
THD + N = 1%  
PVDD = 18V  
R
= 4+ 15µH  
GAIN = 9dB  
REGEN = 5V  
L
0
7
8
9
10  
11  
12  
13  
14  
15  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
40  
30  
SUPPLY VOLTAGE (V)  
OUTPUT POWER (W)  
Figure 21. Maximum Output Power vs. Supply Voltage;  
RL = 4 Ω; THD + N = 1%, THD + N = 10%  
Figure 24. Supply Current vs. Output Power into 4 Ω;  
PVDD = 7 V, PVDD = 12 V, PVDD = 18 V  
60  
3500  
3000  
2500  
2000  
1500  
1000  
500  
R
= 2+ 7.5µH  
L
GAIN = 9dB  
EDGE = 0  
MONO  
50  
40  
30  
20  
10  
0
PVDD = 12V  
PVDD = 7V  
THD = 10%  
THD = 1%  
PVDD = 18V  
R
= 2+ 7.5µH  
GAIN = 9dB  
REGEN = 5V  
L
0
7
9
11  
13  
15  
17  
0
5
10  
15  
20  
25  
30  
35  
SUPPLY VOLTAGE (V)  
OUTPUT POWER (W)  
Figure 22. Maximum Output Power vs. Supply Voltage;  
RL = 2 Ω; Mono Mode; THD + N = 1%, THD + N = 10%  
Figure 25. Supply Current vs. Output Power into 2 Ω;  
Mono Mode; PVDD = 7 V, PVDD = 12 V, PVDD = 18 V  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
90  
PVDD =7V  
80  
PVDD = 7V  
PVDD = 18V  
PVDD = 12V  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 12V  
PVDD = 18V  
R
= 8+ 33µH  
GAIN = 9dB  
EDGE = LOW  
R
= 8+ 33µH  
L
L
GAIN = 9dB  
REGEN = 5V  
0
5
10  
15  
20  
25  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 26. Efficiency vs. Output Power into 8 Ω;  
PVDD = 7 V, PVDD = 12 V, PVDD = 18 V  
Figure 23. Supply Current vs. Output Power into 8 Ω;  
PVDD = 7 V, PVDD = 12 V, PVDD = 18 V  
Rev. 0 | Page 11 of 20  
SSM3302  
Data Sheet  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 7V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
EDGE = LOW  
EDGE = HIGH  
PVDD = 18V  
PVDD = 12V  
R
= 4+ 15µH  
L
GAIN = 9dB  
EDGE = LOW  
0
0
0
5
10  
15  
20  
25  
30  
40  
30  
0
5
10  
15  
20  
25  
30  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 27. Efficiency vs. Output Power into 4 Ω;  
PVDD = 7 V, PVDD = 12 V, PVDD = 18 V  
Figure 30. Efficiency vs. Output Power into 4 Ω;  
PVDD = 12 V; EDGE = High, EDGE = Low  
100  
90  
100  
90  
PVDD = 7V  
EDGE = LOW  
80  
80  
EDGE = HIGH  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 18V  
PVDD = 12V  
R
= 2+ 7.5µH  
L
GAIN = 9dB  
EDGE = LOW  
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 28. Efficiency vs. Output Power into 2 Ω;  
Mono Mode; PVDD = 7 V, PVDD = 12 V, PVDD = 18 V  
Figure 31. Efficiency vs. Output Power into 2 Ω;  
Mono Mode; PVDD = 12 V; EDGE = High, EDGE = Low  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
EDGE = LOW  
–10  
EDGE = HIGH  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
5
10  
15  
20  
25  
20  
200  
2,000  
20,000  
OUTPUT POWER (W)  
FREQUENCY (Hz)  
Figure 29. Efficiency vs. Output Power into 8 Ω;  
PVDD = 12 V; EDGE = High, EDGE = Low  
Figure 32. CMRR vs. Frequency, VRIPPLE = 100 mV rms, AC-Coupled  
Rev. 0 | Page 12 of 20  
Data Sheet  
SSM3302  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 33. PSRR vs. Frequency, VRIPPLE = 100 mV rms  
Figure 35. Turn-On Response  
SDNL SDNR  
Pin Rising Edge and Output)  
(Showing  
Pin or  
0
–20  
–40  
–60  
–80  
–100  
–120  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 36. Turn-Off Response  
SDNL SDNR  
Pin Falling Edge and Output)  
Figure 34. Crosstalk vs. Frequency,  
PO = 0.5 W, RL = 8 Ω  
(Showing  
Pin or  
Rev. 0 | Page 13 of 20  
SSM3302  
Data Sheet  
TYPICAL APPLICATION CIRCUITS  
PV  
7V TO 18V  
DD  
470µF  
10µF  
2× 1µF  
OVERTEMPERATURE  
WARNING  
PVDD  
THERM  
SSM3302  
BOOTR+  
0.22µF  
0.1µF  
0.1µF  
40k  
40kΩ  
OUTR+  
INR+  
INR–  
RIGHT INPUT+  
RIGHT INPUT–  
GAIN  
CONTROL  
MODULATOR  
FET  
DRIVER  
(Σ-)  
OUTR–  
BOOTR–  
0.22µF  
BIAS  
SHUTDOWN – RIGHT  
SDNR  
EDGE  
INTERNAL  
OSCILLATOR  
EDGE  
CONTROL  
EMISSION  
CONTROL  
MONO  
SHUTDOWN – LEFT  
BIAS  
BOOTL+  
SDNL  
INL+  
0.22µF  
0.22µF  
0.1µF  
0.1µF  
40kΩ  
40kΩ  
OUTL+  
LEFT INPUT+  
LEFT INPUT–  
GAIN  
CONTROL  
MODULATOR  
FET  
DRIVER  
(Σ-)  
INL–  
OUTL–  
BOOTL–  
VREG  
AGND  
VREG/  
AVDD  
REGEN  
PGND  
GAIN  
R
5V  
GAIN  
GAIN SELECT  
2.2µF  
GAIN = 9dB, 12dB, 15dB, 18dB, or 24dB  
REGULATOR  
ENABLE  
Figure 37. Stereo Mode Configuration  
Rev. 0 | Page 14 of 20  
 
Data Sheet  
SSM3302  
PV  
7V TO 18V  
DD  
470µF  
10µF  
2× 1µF  
OVERTEMPERATURE  
WARNING  
PVDD  
THERM  
SSM3302  
BOOTR+  
0.22µF  
0.22µF  
40k  
40kΩ  
OUTR+  
INR+  
INR–  
GAIN  
CONTROL  
MODULATOR  
FET  
DRIVER  
(Σ-)  
OUTR–  
BOOTR–  
BIAS  
SDNR  
AVDD  
EDGE  
INTERNAL  
OSCILLATOR  
EDGE  
CONTROL  
EMISSION  
CONTROL  
MONO  
SHUTDOWN  
BIAS  
BOOTR+  
SDNL  
INL+  
0.22µF  
0.22µF  
0.1µF  
0.1µF  
40kΩ  
40kΩ  
OUTR+  
INPUT+  
INPUT–  
GAIN  
CONTROL  
MODULATOR  
FET  
DRIVER  
(Σ-)  
INL–  
OUTR–  
BOOTR–  
VREG  
AGND  
VREG/  
AVDD  
REGEN  
PGND  
GAIN  
R
5V  
GAIN  
GAIN SELECT  
2.2µF  
GAIN = 9dB, 12dB, 15dB, 18dB, or 24dB  
REGULATOR  
ENABLE  
Figure 38. Mono Mode Configuration  
Rev. 0 | Page 15 of 20  
SSM3302  
Data Sheet  
APPLICATIONS INFORMATION  
OVERVIEW  
AMPLIFIER PROTECTION  
The SSM3302 includes protection circuitry to prevent damage  
in case of overcurrent and overtemperature conditions. Shorts  
across the output terminals, or between either terminal and  
PVDD or PGND, are also detected; in this case, the output  
transistors do not switch until the fault is removed.  
The SSM3302 stereo Class-D audio amplifier features a filterless  
modulation scheme that greatly reduces the external component  
count, conserving board space and reducing system cost. The  
SSM3302 does not require an output filter; it relies on the inherent  
inductance of the speaker coil and the natural filtering of the  
speaker and human ear to recover the audio component of the  
square wave output.  
If the temperature exceeds the threshold temperature (approxi-  
mately 145°C), the chip is disabled until the temperature drops  
below the recovery threshold (85°C). This hysteresis prevents  
rapid cycling of the output at high temperatures.  
Most Class-D amplifiers use some variation of pulse-width  
modulation (PWM), but the SSM3302 uses Σ-Δ modulation to  
determine the switching pattern of the output devices, resulting in  
several important benefits. Unlike pulse-width modulators, Σ-Δ  
modulators do not produce a sharp peak with many harmonics in  
the AM broadcast band. In addition, Σ-Δ modulation reduces the  
amplitude of spectral components at high frequencies, reducing  
EMI emission that might otherwise be radiated by speakers and  
long cable traces. Due to the inherent spread spectrum nature of  
Σ-Δ modulation, the need for oscillator synchronization is elim-  
inated for designs incorporating multiple SSM3302 amplifiers.  
Additionally, a temperature warning signal is available on the  
THERM pin. If the die temperature rises above 120°C, a logic  
high is output on this pin.  
POP-AND-CLICK SUPPRESSION  
Voltage transients at the outputs of the audio amplifiers may occur  
when shutdown is activated or deactivated. Voltage transients as  
small as 10 mV can be heard as an audible pop in the speaker.  
Clicks and pops are defined as undesirable audible transients  
generated by the amplifier system that do not come from the  
system input signal.  
The SSM3302 also integrates overcurrent and overtemperature  
protection, as well as an overtemperature warning indicator pin.  
Such transients may be generated when the amplifier system  
changes its operating mode. For example, system power-up and  
power-down can be sources of audible transients.  
ANALOG SUPPLY  
The SSM3302 includes an integrated low dropout (LDO) linear  
regulator to generate a 5 V supply for the input stage. This regulator  
can be enabled using the REGEN pin. This analog supply voltage is  
available at the VREG/AVDD pin. Connect a 2.2 ꢀF decoupling  
capacitor from this pin to the AGND pin.  
The SSM3302 has a pop-and-click suppression architecture that  
reduces these output transients, resulting in noiseless activation  
and deactivation.  
EMI NOISE  
Alternatively, an external 5 V analog supply can be connected to  
the AVDD pin. In this case, tie REGEN low to disable the  
internal regulator.  
The SSM3302 uses a proprietary modulation and spread spectrum  
technology to minimize EMI emissions from the device. The  
SSM3302 can pass FCC Class-B emissions testing with unshielded  
20 inch cable using ferrite bead-based filtering. For applica  
tions that have difficulty passing FCC Class-B emission tests, the  
SSM3302 includes a modulation select pin (ultralow EMI emission  
mode) that significantly reduces the radiated emissions at the  
Class-D outputs, particularly above 100 MHz. Note that reducing  
the supply voltage greatly reduces radiated emissions.  
The internal 5 V regulator can supply up to 20 mA of current to  
the VREG pin if other analog circuits use the same supply. The  
regulator includes short-circuit protection, but no current  
limiter or other protection is provided.  
GAIN SELECTION  
The preset gain of SSM3302 can be selected between 9 dB and  
24 dB with one external resistor and no change to the input imped-  
ance. Gain can be further adjusted to a user-defined setting by  
inserting series external resistors at the inputs. A major benefit  
of fixed input impedance is that there is no need to recalculate  
the input corner frequency (fc) when gain is adjusted. The same  
input coupling components can be used for all gain settings.  
MONO MODE  
The SSM3302 can also be configured to stack its stereo outputs  
into a monaural amplifier configuration by enabling the mono  
output mode using the MONO pin. The user can drive a load as  
small as 2 Ω up to 20 W continuous output power—a particularly  
useful feature for driving the subwoofer in a 2.1 audio system.  
Table 5. Gain Function Descriptions  
To activate this operation, pull up the MONO pin to the level of  
VREG/AVDD. In mono mode, OUTL+ and OUTR+ (Pin 2/Pin 3  
and Pin 28/Pin 29) provide the noninverting output, and OUTL−  
and OUTR− (Pin 4/Pin 5 and Pin 26/Pin 27) provide the inverting  
output. While the device is in mono mode, audio input is taken  
only from the left channel set of inputs: INL+ and INL− (Pin 11  
and Pin 12).  
Gain Setting (dB)  
GAIN Pin Configuration  
Tie to AVDD  
24  
18  
15  
12  
9
Tie to AVDD through 47 kΩ  
Open  
Tie to AGND through 47 kΩ  
Tie to AGND  
Rev. 0 | Page 16 of 20  
 
 
Data Sheet  
SSM3302  
Because the mono mode uses output sense circuitry attached to  
the left channel outputs, run PCB traces directly from the speaker  
to the left channel outputs and then extend the PCB traces to  
the right channel outputs.  
and minimum inductance, ensure that track widths are at least  
200 mil for every inch of length and use 1 oz. or 2 oz. copper. Use  
large traces for the power supply inputs and amplifier outputs.  
Proper grounding guidelines help to improve audio performance,  
minimize crosstalk between channels, and prevent switching  
noise from coupling into the audio signal.  
OUTPUT MODULATION DESCRIPTION  
The SSM3302 uses three-level, Σ-Δ output modulation. Each  
output can swing from PGND to PVDD and vice versa. Ideally,  
when no input signal is present, the output differential voltage is  
0 V because there is no need to generate a pulse. In a real-world  
situation, however, there are always noise sources present.  
To maintain high output swing and high peak output power,  
ensure that the PCB traces that connect the output pins to the  
load and supply pins are as wide as possible to maintain the  
minimum trace resistances. It is also recommended that a large  
ground plane be used for minimum impedances. In addition,  
good PCB layout isolates critical analog paths from sources of  
high interference. High frequency circuits (analog and digital)  
should be separated from low frequency circuits.  
Due to this constant presence of noise, a differential pulse is  
occasionally generated in response to this stimulus. A small  
amount of current flows into the inductive load when the  
differential pulse is generated. However, most of the time, the  
output differential voltage is 0 V. This feature ensures that the  
current flowing through the inductive load is small.  
Properly designed multilayer PCBs can reduce EMI emission  
and increase immunity to the RF field by a factor of 10 or more  
compared with double-sided boards. A multilayer board allows  
a complete layer to be used for the ground plane, whereas the  
ground plane side of a double-sided board is often disrupted by  
signal crossover.  
When the user sends an input signal, an output pulse is generated  
to follow the input voltage. The differential pulse density is  
increased by raising the input signal level. Figure 39 depicts three-  
level, Σ-Δ output modulation with and without input stimulus.  
If the system has separate ground planes for small signal and  
high power connections, there should be no overlap between  
these planes. Stitch the power plane to the SSM3302 exposed pad  
using multiple vias. Proper layout improves heat conduction  
into the board, allowing operation at larger output power levels  
without overtemperature issues.  
OUTPUT = 0V  
+5V  
OUTR+/  
OUTL+  
0V  
+5V  
OUTR–/  
OUTL–  
0V  
+5V  
VOUT  
0V  
–5V  
OUTPUT > 0V  
INPUT CAPACITOR SELECTION  
+5V  
OUTR+/  
OUTL+  
Input capacitors are required if the input signal is not biased within  
the recommended input dc common-mode voltage range, if  
high-pass filtering is needed, or if a single-ended source is used.  
If high-pass filtering is needed at the input, the input capacitor  
and the input resistor of the SSM3302 form a high-pass filter  
with a corner frequency determined by the following equation:  
0V  
+5V  
OUTR–/  
OUTL–  
0V  
+5V  
VOUT  
0V  
OUTPUT < 0V  
+5V  
OUTR+/  
OUTL+  
0V  
+5V  
fC = 1/(2π × RIN × CIN)  
OUTR–/  
OUTL–  
0V  
0V  
The input capacitor can significantly affect the performance of  
the circuit. Failure to use input capacitors degrades the output  
offset of the amplifier.  
VOUT  
–5V  
Figure 39. Three-Level, Σ-Δ Output Modulation With and  
Without Input Stimulus  
BOOTSTRAP CAPACITORS  
LAYOUT  
The output stage of the SSM3302 uses a high-side NMOS driver,  
rather than PMOS driver. To generate the gate drive voltage for  
the high-side NMOS driver, a bootstrap capacitor for each output  
terminal acts as a floating power supply for the switching cycle.  
Using 0.22 μF ceramic capacitors with a voltage rating of 6.3 V  
or greater is recommended.  
As output power increases, care must be taken to lay out PCB traces  
and wires properly among the amplifier, load, and power supply;  
a poor layout increases voltage drops, consequently decreasing  
efficiency. A good practice is to use short, wide PCB tracks to  
decrease voltage drops and minimize inductance. For lowest DCR  
Rev. 0 | Page 17 of 20  
 
 
SSM3302  
Data Sheet  
For high frequency transient noises, place two separate 1 ꢀF  
POWER SUPPLY DECOUPLING  
capacitors as close as possible to the PVDD pins of the device.  
Connect one of the 1 ꢀF capacitors between the left-side PVDD  
terminals and PGND terminals, and connect the other 1 ꢀF  
capacitor between the right-side PVDD terminals and PGND  
terminals. Placing the decoupling capacitor as close as possible  
to the SSM3302 helps to achieve the best performance.  
To ensure high efficiency, low total harmonic distortion, and high  
power supply rejection ratio, proper power supply decoupling  
is necessary. Noise transients on the power supply lines are  
short-duration voltage spikes. These spikes can contain frequency  
components that extend into the hundreds of megahertz. Decouple  
the power supply input with a good quality, low ESL, low ESR  
bulk capacitor larger than 220 ꢀF. This capacitor bypasses low  
frequency noises to the ground plane.  
Rev. 0 | Page 18 of 20  
 
Data Sheet  
SSM3302  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
31  
30  
40  
1
0.50  
BSC  
4.45  
4.30 SQ  
4.25  
EXPOSED  
PAD  
21  
20  
10  
11  
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WJJD.  
Figure 40. 40-Lead Lead Free Chip Scale Package [LFCSP_WQ]  
6 mm × 6 mm Body, Very Very Thin Quad  
(CP-40-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
SSM3302ACPZ  
SSM3302ACPZ-RL  
SSM3302ACPZ-R7  
EVAL-SSM3302Z  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
40-Lead Lead Free Chip Scale Package [LFCSP_WQ]  
40-Lead Lead Free Chip Scale Package [LFCSP_WQ]  
40-Lead Lead Free Chip Scale Package [LFCSP_WQ]  
Evaluation Board  
CP-40-10  
CP-40-10  
CP-40-10  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 19 of 20  
 
SSM3302  
NOTES  
Data Sheet  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10198-0-2/12(0)  
Rev. 0 | Page 20 of 20  

相关型号:

SSM3302ACPZ-R7

2 ×10 W Filterless Class-D
ADI

SSM3302ACPZ-RL

2 ×10 W Filterless Class-D
ADI

SSM330AF

Rectifier Diode,
SURGE

SSM3310GH

P-channel Enhancement-mode Power MOSFET
SSC

SSM3310GJ

P-channel Enhancement-mode Power MOSFET
SSC

SSM33LPT

SCHOTTKY BARRIER RECTIFIER
CHENMKO

SSM33LSPT

SCHOTTKY BARRIER RECTIFIER
CHENMKO

SSM33PT

SCHOTTKY BARRIER RECTIFIER
CHENMKO

SSM340AF

Rectifier Diode,
SURGE

SSM340S3

Rectifier Diode, 1 Phase, 1 Element, 3A, 400V V(RRM), Silicon, HERMETIC SEALED, MELF-2
SENSITRON

SSM340S3S

Rectifier Diode, 1 Phase, 1 Element, 3A, Silicon,
SENSITRON

SSM34APT

SCHOTTKY BARRIER RECTIFIER
CHENMKO