AD5204BR100 [ADI]

4-/6-Channel Digital Potentiometers; 4- / 6通道数字电位器
AD5204BR100
型号: AD5204BR100
厂家: ADI    ADI
描述:

4-/6-Channel Digital Potentiometers
4- / 6通道数字电位器

电位器
文件: 总11页 (文件大小:176K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4-/6-Channel  
a
Digital Potentiometers  
AD5204/AD5206  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
256 Position  
Multiple Independently Programmable Channels  
AD5204—4-Channel  
AD5206—6-Channel  
Potentiometer Replacement  
10 k, 50 k, 100 k⍀  
3-Wire SPI-Compatible Serial Data Input  
+2.7 V to +5.5 V Single Supply; ؎2.7 V Dual Supply  
Operation  
AD5204  
V
DD  
CS  
A1  
W1  
B1  
CLK  
D7  
D0  
EN  
RDAC  
LATCH  
#1  
ADDR  
DEC  
A2  
A1  
A0  
DO  
SDO  
R
D7  
Power ON Midscale Preset  
SER  
REG  
A4  
W4  
B4  
APPLICATIONS  
D7  
D0  
Mechanical Potentiometer Replacement  
Instrumentation: Gain, Offset Adjustment  
Programmable Voltage-to-Current Conversion  
Programmable Filters, Delays, Time Constants  
Line Impedance Matching  
RDAC  
LATCH  
#4  
DI  
D0  
SDI  
SHDN  
8
R
V
POWER-  
ON  
PRESET  
SS  
PR  
GND  
GENERAL DESCRIPTION  
AD5206  
V
CS  
DD  
The AD5204/AD5206 provides four-/six-channel, 256 position  
digitally-controlled Variable Resistor (VR) devices. These de-  
vices perform the same electronic adjustment function as a  
potentiometer or variable resistor. Each channel of the AD5204/  
AD5206 contains a fixed resistor with a wiper contact that taps  
the fixed resistor value at a point determined by a digital code  
loaded into the SPI-compatible serial-input register. The resis-  
tance between the wiper and either endpoint of the fixed resistor  
varies linearly with respect to the digital code transferred into  
the VR latch. The variable resistor offers a completely program-  
mable value of resistance between the A terminal and the wiper  
or the B Terminal and the wiper. The fixed A-to-B terminal  
resistance of 10 k, 50 k, or 100 khas a nominal tempera-  
ture coefficient of 700 ppm/°C.  
A1  
W1  
B1  
CLK  
D7  
EN  
RDAC  
LATCH  
#1  
ADDR  
DEC  
A2  
A1  
A0  
R
D0  
D7  
SER  
REG  
A6  
W6  
B6  
D7  
D0  
RDAC  
LATCH  
#6  
DI  
D0  
SDI  
8
R
POWER-  
ON  
PRESET  
GND  
V
SS  
Each VR has its own VR latch which holds its programmed  
resistance value. These VR latches are updated from an internal  
serial-to-parallel shift register that is loaded from a standard  
3-wire serial-input digital interface. Eleven data bits make up  
the data word clocked into the serial input register. The first  
three bits are decoded to determine which VR latch will be  
loaded with the last eight bits of the data word when the CS  
strobe is returned to logic high. A serial data output pin at  
the opposite end of the serial register (AD5204 only) allows  
simple daisy-chaining in multiple VR applications without  
additional external decoding logic.  
An optional reset (PR) pin forces all the AD5204 wipers to the  
midscale position by loading 80H into the VR latch.  
The AD5204/AD5206 is available in both surface mount  
(SOL-24), TSSOP-24 and the 24-lead plastic DIP package. All  
parts are guaranteed to operate over the extended industrial  
temperature range of –40°C to +85°C. For additional single,  
dual, and quad channel devices, see the AD8400/AD8402/  
AD8403 products.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AD5204/AD5206–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (V = +5 V ؎ 10% or +3 V ؎ 10%, V = 0 V, V = +V , V = 0 V, –40؇C < T < +85؇C  
unless otherwise noted.)  
DD  
SS  
A
DD  
B
A
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Units  
DC CHARACTERISTICS RHEOSTAT MODE Specifications Apply to All VRs  
Resistor Differential NL2  
Resistor Nonlinearity Error2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Nominal Resistance Match  
Wiper Resistance  
R-DNL  
R-INL  
RAB  
RAB/T  
R/RAB  
RW  
RWB, VA = No Connect  
RWB, VA = No Connect  
TA = +25°C  
VAB = VDD, Wiper = No Connect  
CH1 to 2, 3, 4, or 5, 6; VAB = VDD  
IW = 1 V/R, VDD = +5 V  
–1  
–2  
–30  
±1/4  
±1/2  
+1  
+2  
+30  
LSB  
LSB  
%
ppm/°C  
%
700  
0.25  
50  
1.5  
100  
DC CHARACTERISTICS POTENTIOMETER DIVIDER MODE Specifications Apply to All VRs  
Resolution  
N
DNL  
INL  
8
–1  
–2  
Bits  
LSB  
LSB  
ppm/°C  
LSB  
Differential Nonlinearity4  
±1/4  
±1/2  
15  
–1  
+1  
+1  
+2  
Integral Nonlinearity4  
Voltage Divider Temperature Coefficient VW/T  
Full-Scale Error  
Zero-Scale Error  
Code = 40H  
Code = 7FH  
Code = 00H  
VWFSE  
VWZSE  
–2  
0
0
+2  
LSB  
RESISTOR TERMINALS  
Voltage Range5  
VA, VB, VW  
CA, CB  
CW  
IA_SD  
ICM  
VSS  
VDD  
V
Capacitance6 Ax, Bx  
Capacitance6 Wx  
f = 1 MHz, Measured to GND, Code = 40H  
f = 1 MHz, Measured to GND, Code = 40H  
45  
60  
0.01  
1
pF  
pF  
µA  
nA  
Shutdown Current7  
Common-Mode Leakage  
5
VA = VB = VW = 0, VDD = +2.7 V, VSS = –2.5 V  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Output Logic High  
Output Logic Low  
VIH  
VIL  
VOH  
VOL  
IIL  
VDD = +5 V/+3 V  
VDD = +5 V/+3 V  
RPULL–UP = 1 kto +5 V  
IOL = 1.6 mA, VLOGIC = +5 V  
VIN = 0 V or +5 V  
2.4/2.1  
4.9  
V
V
V
V
µA  
pF  
0.8/0.6  
0.4  
±1  
Input Current  
Input Capacitance6  
CIL  
5
POWER SUPPLIES  
Power Single Supply Range  
Power Dual Supply Range  
Positive Supply Current  
Negative Supply Current  
Power Dissipation8  
VDD Range  
VDD/SS Range  
IDD  
ISS  
PDISS  
VSS = 0 V  
2.7  
±2.3  
5.5  
±2.7  
60  
60  
0.3  
V
V
µA  
µA  
mW  
%/%  
VIH = +5 V or VIL = 0 V  
VSS = –2.5 V, VDD = +2.7 V  
VIH = +5 V or VIL = 0 V  
VDD = +5 V ± 10%  
12  
12  
Power Supply Sensitivity  
PSS  
0.0002 0.005  
DYNAMIC CHARACTERISTICS6, 9  
Bandwidth –3 dB  
BW_10K  
BW_50K  
BW_100K  
THDW  
tS  
RAB = 10 kΩ  
RAB = 50 kΩ  
RAB = 100 kΩ  
VA = 1.414 V rms, VB = 0 V dc, f = 1 kHz  
VA = 5 V, VB = 0 V, ±1 LSB Error Band  
RWB = 5 k, f = 1 kHz, PR = 0  
721  
137  
69  
0.004  
2/9/18  
9
kHz  
kHz  
kHz  
%
µs  
nV/Hz  
Total Harmonic Distortion  
VW Settling Time (10K/50K/100K)  
Resistor Noise Voltage  
eN_WB  
INTERFACE TIMING CHARACTERISTICS Applies to All Parts6, 10  
Input Clock Pulsewidth  
Data Setup Time  
tCH, tCL  
tDS  
tDH  
tPD  
tCSS  
tCSW  
tRS  
tCSH0  
tCSH1  
tCS1  
Clock Level High or Low  
20  
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Hold Time  
CLK to SDO Propagation Delay11  
CS Setup Time  
RL = 2 k, CL < 20 pF  
1
150  
15  
40  
90  
0
0
10  
CS High Pulsewidth  
Reset Pulsewidth  
CLK Fall to CS Fall Setup  
CLK Fall to CS Rise Hold Time  
CS Rise to Clock Rise Setup  
NOTES  
1Typicals represent average readings at +25°C and VDD = +5 V.  
2Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper posi-  
tions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. See Figure 23 test circuit. I W = VDD/R  
for both VDD = +3 V or VDD = +5 V.  
3VAB = VDD, Wiper (VW) = No connect.  
4INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. V A = VDD and VB = 0 V.  
DNL specification limits of ±1 LSB maximum are guaranteed monotonic operating conditions. See Figure 22 test circuit.  
–2–  
REV. 0  
AD5204/AD5206  
5Resistor Terminals A, B, W, have no limitations on polarity with respect to each other.  
6Guaranteed by design and not subject to production test.  
7Measured at the Ax terminals. All Ax terminals are open-circuited in shutdown mode.  
8PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
9All dynamic characteristics use VDD = +5 V.  
10See timing diagrams for location of measured values. All input control voltages are specified with t R = tF = 2.5 ns (10% to 90% of 3 V) and timed from a voltage  
level of 1.5 V. Switching characteristics are measured using both VDD = +3 V or +5 V.  
11Propagation delay depends on value of VDD, RL and CL. See Operation section.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS*  
(TA = +25°C, unless otherwise noted)  
Package Power Dissipation . . . . . . . . . . . . . . (TJ max–TA)/θJA  
Thermal Resistance θJA  
P-DIP (N-24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63°C/W  
SOIC (SOL-24) . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C/W  
TSSOP-24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143°C/W  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.3 V, +7 V  
VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V, –7 V  
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7 V  
VA, VB, VW to GND . . . . . . . . . . . . . . . . . . . . . . . . . . VSS, VDD  
Ax–Bx, Ax–Wx, Bx–Wx . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
Digital Input and Output Voltage to GND . . . . . . . 0 V, +7 V  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Maximum Junction Temperature (TJ MAX) . . . . . . . .+150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . .+300°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD5204/AD5206 features proprietary ESD protection circuitry, permanent dam-  
age may occur on devices subjected to high energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–3–  
AD5204/AD5206  
1
tRS  
SDI  
CLK  
CS  
A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
1
0
0
1
0
1
0
PR  
tS  
V
DD  
0V  
؎1 LSB  
V
OUT  
RDAC LATCH LOAD  
؎1 LSB ERROR BAND  
Figure 3. AD5204 Preset Timing Diagram  
V
DD  
V
OUT  
0V  
Figure 1. Timing Diagram  
1
0
SDI  
(DATA IN)  
Ax OR Dx  
Ax OR Dx  
tDS  
tDH  
1
0
SDO  
(DATA OUT)  
Ax OR Dx  
Ax OR Dx  
tPD_MAX  
tCS1  
tCH  
1
0
CLK  
tCSH0  
tCSH1  
tCL  
tCSS  
1
0
tCSW  
tS  
CS  
V
؎1 LSB  
DD  
V
OUT  
؎1 LSB ERROR BAND  
0V  
Figure 2. Detail Timing Diagram  
ORDERING GUIDE  
Model  
k  
Temperature Range  
Package Descriptions  
24-Lead Narrow Body (PDIP)  
24-Lead Wide Body (SOIC)  
24-Lead Thin Shrink SO Package (TSSOP)  
Package Options  
AD5204BN10  
AD5204BR10  
AD5204BRU10  
10  
10  
10  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
N-24  
R-24/SOL-24  
RU-24  
AD5204BN50  
AD5204BR50  
AD5204BRU50  
50  
50  
50  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
24-Lead Narrow Body (PDIP)  
24-Lead Wide Body (SOIC)  
24-Lead Thin Shrink SO Package (TSSOP)  
N-24  
R-24/SOL-24  
RU-24  
AD5204BN100  
AD5204BR100  
AD5204BRU100  
100  
100  
100  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
24-Lead Narrow Body (PDIP)  
24-Lead Wide Body (SOIC)  
24-Lead Thin Shrink SO Package (TSSOP)  
N-24  
R-24/SOL-24  
RU-24  
AD5206BN10  
AD5206BR10  
AD5206BRU10  
AD5206BN50  
AD5206BR50  
AD5206BRU50  
AD5206BN100  
AD5206BR100  
AD5206BRU100  
10  
10  
10  
50  
50  
50  
100  
100  
100  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
24-Lead Narrow Body (PDIP)  
24-Lead Wide Body (SOIC)  
24-Lead Thin Shrink SO Package (TSSOP)  
24-Lead Narrow Body (PDIP)  
24-Lead Wide Body (SOIC)  
24-Lead Thin Shrink SO Package (TSSOP)  
24-Lead Narrow Body (PDIP)  
24-Lead Wide Body (SOIC)  
N-24  
R-24/SOL-24  
RU-24  
N-24  
R-24/SOL-24  
RU-24  
N-24  
R-24/SOL-24  
RU-24  
24-Lead Thin Shrink SO Package (TSSOP)  
The AD5204/AD5206 contains 5,925 transistors. Die size; 92 mil × 114 mil, 10,488 sq. mil.  
–4–  
REV. 0  
AD5204/AD5206  
AD5206 PIN CONFIGURATION  
AD5204 PIN CONFIGURATION  
NC  
NC  
1
2
24 B4  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
A6  
W6  
B4  
W4  
A4  
B2  
W2  
A2  
A1  
W1  
23  
22  
21  
20  
19  
18  
17  
W4  
A4  
B2  
W2  
A2  
A1  
W1  
3
3
GND  
CS  
B6  
4
4
GND  
CS  
5
5
PR  
AD5204  
(NOT TO  
SCALE)  
AD5206  
(NOT TO  
SCALE)  
6
V
6
V
DD  
DD  
7
7
SDI  
SHDN  
SDI  
8
8
CLK  
CLK  
9
16 B1  
9
16 B1  
V
SS  
10  
11  
15  
14  
A3  
10  
11  
15  
14  
SDO  
B5  
A3  
V
W3  
W5  
W3  
SS  
13 B3  
NC 12  
13 B3  
A5 12  
NC = NO CONNECT  
AD5204 PIN FUNCTION DESCRIPTIONS  
AD5206 PIN FUNCTION DESCRIPTIONS  
Pin  
No.  
Pin  
No.  
Name  
Description  
Name  
Description  
1, 2,  
12  
3
4
1
2
3
4
5
A6  
W6  
B6  
GND  
CS  
A Terminal RDAC #6.  
Wiper RDAC #6, addr = 1012.  
B Terminal RDAC #6.  
Ground.  
Chip Select Input, Active Low. When CS  
returns high, data in the serial input register  
is decoded based on the address bits and  
loaded into the target RDAC latch.  
Positive power supply, specified for  
operation at both +3 V or +5 V. (Sum of  
|VDD| + |VSS| <5.5 V.)  
Serial Data Input. MSB First.  
Serial Clock Input, positive edge triggered.  
Negative Power Supply, specified for  
operation at both 0 V or –2.7 V. (Sum of  
|VDD| + |VSS| <5.5 V.)  
B Terminal RDAC #5.  
Wiper RDAC #5, addr = 1002.  
A Terminal RDAC #5.  
B Terminal RDAC #3.  
Wiper RDAC #3, addr = 0102.  
A Terminal RDAC #3.  
B Terminal RDAC #1.  
Wiper RDAC #1, addr = 0002.  
A Terminal RDAC #1.  
NC  
GND  
CS  
Not Connected.  
Ground.  
Chip Select Input, Active Low. When CS  
returns high, data in the serial input register  
is decoded based on the address bits and  
loaded into the target RDAC latch.  
Active low preset to midscale; sets RDAC  
registers to 80H.  
Positive power supply, specified for  
operation at both +3 V or +5 V. (Sum of  
|VDD| + |VSS| <5.5 V.)  
Active low input. Terminal A open-circuit.  
Shutdown controls Variable Resistors #1  
through #4.  
Serial Data Input. MSB First.  
Serial Clock Input, positive edge triggered.  
Serial Data Output, Open Drain transistor  
requires pull-up resistor.  
Negative Power Supply, specified for  
operation at both 0 V or –2.7 V. (Sum of  
|VDD| + |VSS| <5.5 V.)  
B Terminal RDAC #3.  
Wiper RDAC #3, addr = 0102.  
A Terminal RDAC #3.  
B Terminal RDAC #1.  
Wiper RDAC #1, addr = 0002.  
A Terminal RDAC #1.  
A Terminal RDAC #2.  
Wiper RDAC #2, addr = 0012.  
B Terminal RDAC #2.  
5
6
PR  
6
VDD  
VDD  
7
8
9
SDI  
CLK  
VSS  
7
SHDN  
8
9
10  
SDI  
CLK  
SDO  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
B5  
W5  
A5  
B3  
W3  
A3  
B1  
W1  
A1  
A2  
W2  
B2  
A4  
W4  
B4  
11  
VSS  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
B3  
W3  
A3  
B1  
W1  
A1  
A2  
W2  
B2  
A4  
W4  
B4  
A Terminal RDAC #2.  
Wiper RDAC #2, addr = 0012.  
B Terminal RDAC #2.  
A Terminal RDAC #4.  
Wiper RDAC #4, addr = 0112.  
B Terminal RDAC #4.  
A Terminal RDAC #4.  
Wiper RDAC #4, addr = 0112.  
B Terminal RDAC #4.  
–5–  
REV. 0  
–Typical Performance Characteristics  
AD5204/AD5206  
120  
110  
V
/V = 2.7V/0V  
DD SS  
100  
90  
80  
70  
60  
50  
10k⍀  
0
V
V
V
= ؎2.7V  
= –2.7V  
= 100mV rms  
–2  
DD  
SS  
A
–4  
DATA = 80  
H
50k⍀  
V
A
V
/V = 5.5V/0V  
DD SS  
100k⍀  
V
/V = ؎2.7V  
DD SS  
OP42  
40  
30  
–3.0 –2.0 –1.0  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
1k  
10k  
100k  
1M  
COMMON MODE – V  
FREQUENCY – Hz  
Figure 4. Incremental Wiper ON Resistance vs. Voltage  
Figure 7. –3 dB Bandwidth vs. Terminal Resistance,  
±2.7 V Dual Supply Operation  
–5.99  
–6.00  
0
DATA = 80  
DATA = 40  
H
–6  
–12  
–18  
H
–6.01  
–6.02  
DATA = 20  
DATA = 10  
DATA = 08  
DATA = 04  
DATA = 02  
H
H
H
H
H
10k⍀  
–6.03  
–24  
–30  
–36  
–42  
–48  
50k⍀  
V
V
V
= 2.7V  
= –2.7V  
= 100mV rms  
DD  
SS  
A
–6.04  
–6.05  
–6.06  
–6.07  
100k⍀  
DATA = 80  
H
T
= +25؇C  
A
V
A
DATA = 01  
H
V
V
V
V
= 2.7V  
A
DD  
SS  
A
A
OP42  
= –2.7V  
= 100mV rms  
= +25؇C  
–6.08  
–6.09  
–54  
–60  
V
= 0V  
OP42  
B
T
100  
1k  
10k  
100k  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 5. Gain Flatness vs. Frequency  
Figure 8. Bandwidth vs. Code, 10K Version  
0
DATA = 80  
H
–6  
–12  
–18  
DATA = 40  
H
DATA = 20  
DATA = 10  
DATA = 08  
10k⍀  
H
H
H
0
V
V
V
= 2.7V  
= 0V  
= 100mV rms  
–24  
–30  
–36  
–42  
–48  
–2  
–4  
DD  
SS  
A
DATA = 80  
H
50k⍀  
DATA = 04  
DATA = 02  
T
= +25؇C  
H
H
H
A
2.7V  
100k⍀  
DATA = 01  
V
OP42  
V
V
V
T
= 2.7V  
= –2.7V  
DD  
A
SS  
+1.5V  
–54  
–60  
= 100mV rms  
OP42  
A
= +25؇C  
A
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 6. –3 dB Bandwidth vs. Terminal Resistance,  
2.7 V Single Supply Operation  
Figure 9. Bandwidth vs. Code, 50K Version  
–6–  
REV. 0  
AD5204/AD5206  
0
8
7
6
5
4
3
2
1
T
= +25؇C  
DATA = 80  
A
H
–6  
DATA = 40  
H
–12  
–18  
I
, V /V = 5.5V/0V, DATA = 55H  
DD DD SS  
DATA = 20  
DATA = 10  
DATA = 08  
DATA = 04  
DATA = 02  
H
H
H
H
I
I
, V /V = ؎2.7V, DATA = 55H  
SS DD SS  
–24  
–30  
–36  
–42  
–48  
, V /V = 5,5V/0V, DATA = FFH  
DD DD SS  
I
, V /V = ؎2.7V, DATA = FFH  
SS DD SS  
H
H
I
, V /V = 2.7V/0V, DATA = FFH  
DATA = 01  
V
DD DD SS  
V
V
V
T
= 2.7V  
= –2.7V  
I
, V /V = ؎2.7V/0V, DATA = 55H  
DD  
DD DD SS  
A
SS  
–54  
–60  
= 100mV rms  
OP42  
A
= +25؇C  
A
0
10k  
1k  
10k  
100k  
1M  
100k  
FREQUENCY – Hz  
1M  
10M  
FREQUENCY – Hz  
Figure 10. Bandwidth vs. Code, 100K Version  
Figure 13. Supply Current vs. Clock Frequency  
2.5  
2.0  
60  
T
= +25؇C  
A
50  
V
= –3.0V ؎ 10%  
SS  
V
= 5.0V ؎ 10%  
40  
30  
DD  
SINGLE SUPPLY  
1.0  
0.1  
0.5  
0.0  
V
= V  
DD  
SS  
DUAL SUPPLY  
= 0V  
V
SS  
V
= 3.0V ؎ 10%  
DD  
20  
10  
0
10  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
SUPPLY VOLTAGE V – Volts  
DD  
Figure 14. Power Supply Rejection vs. Frequency  
Figure 11. Digital Input Trip Point vs. Supply Voltage  
100  
1.0  
I
AT V /V = ؎2.7V  
DD SS  
SS  
T
= +25؇C  
A
V
V
= +2.7V  
= –2.7V  
= +25؇C  
DD  
SS  
10  
T
A
0.1  
R
= 10k⍀  
AB  
I
AT V /V = 5.5V/0V  
DD SS  
DD  
1
0.01  
NONINVERTING TEST CIRCUIT  
INVERTING TEST CIRCUIT  
I
AT V /V = ؎2.7V  
DD SS  
DD  
0.1  
0.001  
0.01  
I
AT V /V = 2.7V/0V  
DD SS  
DD  
0.0001  
0.001  
0
10  
100  
1k  
10k  
100k  
1
2
3
4
5
6
FREQUENCY – Hz  
INCREMENTAL INPUT LOGIC VOLTAGE – Volts  
Figure 15. Total Harmonic Distortion Plus Noise vs.  
Frequency  
Figure 12. Supply Current vs. Input Logic Voltage  
–7–  
REV. 0  
AD5204/AD5206  
OPERATION  
data 00H. This B terminal connection has a wiper contact resis-  
tance of 45 . The second connection (10 kpart) is the first  
tap point located at 84 [= RBA (nominal resistance)/256 + RW  
= 84 + 45 ] for data 01H. The third connection is the next  
tap point representing 78 + 45 = 123 for data 02H. Each LSB  
data value increase moves the wiper up the resistor ladder until  
the last tap point is reached at 10006 . The wiper does not  
directly connect to the A terminal. See Figure 16 for a simplified  
diagram of the equivalent RDAC circuit.  
The AD5204/AD5206 provides a four-/six-channel, 256-position  
digitally-controlled variable resistor (VR) device. Changing the  
programmed VR settings is accomplished by clocking in a 11-  
bit serial data word into the SDI (Serial Data Input) pin. The  
format of this data word is three address bits, MSB first, fol-  
lowed by eight data bits, MSB first. Table I provides the serial  
register data word format.  
Table I. Serial-Data Word Format  
The general transfer equation determining the digitally pro-  
grammed output resistance between Wx and Bx is:  
ADDR  
DATA  
B10 B9 B8  
B7 B6 B5 B4 B3 B2 B1 B0  
R
WB (Dx) = (Dx)/256 × RBA + RW  
(1)  
where Dx is the data contained in the 8-bit RDACx latch, and  
RBA is the nominal end-to-end resistance.  
A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
LSB MSB  
LSB  
210  
28 27  
20  
For example, when VB = 0 V and A terminal is open-circuit, the  
following output resistance values will be set for the following  
RDAC latch codes (applies to the 10K potentiometer):  
See Table IV for the AD5204/AD5206 address assignments to  
decode the location of VR latch receiving the serial register data  
in Bits B7 through B0. VR outputs can be changed one at a  
time in random sequence. The AD5204 presets to a midscale by  
asserting the PR pin, simplifying fault condition recovery at  
power up. Both parts have an internal power ON preset that  
places the wiper in a preset midscale condition at power ON. In  
addition, the AD5204 contains a power shutdown SHDN pin  
which places the RDAC in a zero power consumption state  
where Terminals Ax are open circuited and the wiper Wx is  
connected to Bx resulting in only leakage currents being con-  
sumed in the VR structure. In shutdown mode the VR latch  
settings are maintained, so that, returning to operational mode  
from power shutdown, the VR settings return to their previous  
resistance values.  
Table II.  
D
(DEC)  
RWB-⍀  
Output State  
255  
128  
1
10006  
5045  
84  
Full Scale  
Midscale (PR = 0 Condition)  
1 LSB  
0
45  
Zero Scale (Wiper Contact Resistance)  
Note that in the zero-scale condition a finite wiper resistance of  
45 is present. Care should be taken to limit the current flow  
between W and B in this state to a maximum value of 20 mA to  
avoid degradation or possible destruction of the internal switch  
contact.  
Ax  
R
S
Like the mechanical potentiometer the RDAC replaces, it is  
totally symmetrical. The resistance between the Wiper W and  
SHDN  
R
Terminal A produces a digitally controlled resistance RWA  
.
S
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
When these terminals are used the B terminal should be tied to  
the wiper. Setting the resistance value for RWA starts at a maxi-  
mum value of resistance and decreases as the data loaded in the  
latch is increased in value. The general transfer equation for this  
operation is:  
R
S
Wx  
RDAC  
LATCH  
&
R
WA (Dx) = (256–Dx)/256 × RBA + RW  
(2)  
where Dx is the data contained in the 8-bit RDACx latch, and  
RBA is the nominal end-to-end resistance. For example, when  
VA = 0 V and B terminal is tied to the Wiper W the following  
output resistance values will be set for the following RDAC  
latch codes:  
DECODER  
R
S
Bx  
Table III.  
Figure 16. AD5204/AD5206 Equivalent RDAC Circuit  
D
(DEC)  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
RWA-⍀  
Output State  
The nominal resistance of the RDAC between Terminals A and  
B are available with values of 10 k, 50 kand 100 k. The  
last digits of the part number determine the nominal resistance  
value, e.g., 10 k= 10; 100 k= 100. The nominal resistance  
(RAB) of the VR has 256 contact points accessed by the wiper  
terminal, plus the B terminal contact. The eight-bit data word  
in the RDAC latch is decoded to select one of the 256 possible  
settings. The wiper’s first connection starts at the B terminal for  
255  
128  
1
84  
Full Scale  
Midscale (PR = 0 Condition)  
1 LSB  
5045  
10006  
10045  
0
Zero Scale  
–8–  
REV. 0  
AD5204/AD5206  
The typical distribution of RBA from channel-to-channel matches  
within ±1%. However, device-to-device matching is process lot  
dependent, having a ±30% variation. The change in RBA with  
temperature has a 700 ppm/°C temperature coefficient.  
transfer data to the next package’s SDI pin. The pull-up resistor  
termination voltage may be larger than the VDD supply of the  
AD5204 SDO output device, e.g., the AD5204 could operate at  
VDD = 3.3 V and the pull-up for interface to the next device  
could be set at +5 V. This allows for daisy chaining several  
RDACs from a single processor serial-data line. Clock period  
needs to be increased when using a pull-up resistor to the SDI  
pin of the following device in the series. Capacitive loading at  
the daisy chain node SDO-SDI between devices must be ac-  
counted for to successfully transfer data. When daisy chaining is  
used, the CS should be kept low until all the bits of every pack-  
age are clocked into their respective serial registers insuring that  
the address bits and data bits are in the proper decoding loca-  
tion. This would require 22 bits of address and data complying  
to the word format provided in Table I if two AD5204 four-  
channel RDACs are daisy chained. During shutdown (SHDN)  
the SDO output pin is forced to the off (logic high state) to  
disable power dissipation in the pull-up resistor. See Figure 19  
for equivalent SDO output circuit schematic.  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
The digital potentiometer easily generates an output voltage  
proportional to the input voltage applied to a given terminal.  
For example, connecting A terminal to +5 V and B terminal to  
ground produces an output voltage at the wiper which can be  
any value starting at zero volts up to 1 LSB less than +5 V. Each  
LSB of voltage is equal to the voltage applied across Terminal  
AB divided by the 256-position resolution of the potentiometer  
divider. The general equation defining the output voltage with  
respect to ground for any given input voltage applied to termi-  
nals AB is:  
V
W (Dx) = Dx/256 × VAB + VB  
(3)  
Operation of the digital potentiometer in the divider mode results  
in more accurate operation over temperature. Here the output  
voltage is dependent on the ratio of the internal resistors not the  
absolute value, therefore, the drift improves to 15 ppm/°C.  
Table IV. Input Logic Control Truth Table  
CLK CS PR SHDN Register Activity  
L
P
L
L
H
H
H
H
No SR effect, enables SDO pin.  
Shift one bit in from the SDI pin.  
The eleventh previously entered bit  
is shifted out of the SDO pin.  
Load SR data into RDAC latch based  
on A2, A1, A0 decode (Table V).  
No Operation.  
Sets all RDAC latches to midscale,  
wiper centered and SDO latch  
cleared.  
Latches all RDAC latches to 80H.  
Open circuits all Resistor A termi-  
nals, connects W to B, turns off  
SDO output transistor.  
AD5204/AD5206  
V
CS  
DD  
A1  
W1  
B1  
CLK  
D7  
EN  
RDAC  
LATCH  
#1  
X
P
H
H
ADDR  
DEC  
A2  
A1  
A0  
DO  
SDO  
(AD5204  
ONLY)  
X
X
H
X
H
L
H
H
R
D0  
D7  
SER  
REG  
A4/A6  
W4/W6  
B4/B6  
X
X
H
H
P
H
H
L
D7  
D0  
RDAC  
LATCH  
#4/#6  
DI D0  
SDI  
R
8
NOTE: P = positive edge, X = don’t care, SR = shift register.  
SHDN  
(AD5204  
ONLY)  
Table V. Address Decode Table  
PR  
(AD5204 ONLY)  
GND  
A2  
A1  
A0  
Latch Decoded  
Figure 17. Block Diagram  
DIGITAL INTERFACING  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
RDAC#1  
RDAC#2  
RDAC#3  
RDAC#4  
RDAC#5 AD5206 Only  
RDAC#6 AD5206 Only  
The AD5204/AD5206 contain a standard three-wire serial input  
control interface. The three inputs are clock (CLK), CS and  
serial data input (SDI). The positive-edge sensitive CLK input  
requires clean transitions to avoid clocking incorrect data into  
the serial input register. Standard logic families work well. If  
mechanical switches are used for product evaluation they should  
be debounced by a flip-flop or other suitable means. Figure 17  
shows more detail of the internal digital circuitry. When CS is  
taken active low the clock loads data into the serial register on  
each positive clock edge, see Table IV. When using a positive  
(VDD) and negative (VSS) supply voltage, the logic levels are still  
referenced to digital ground (GND).  
The data setup and data hold times in the specification table  
determine the data valid time requirements. The last 11 bits of  
the data word entered into the serial register are held when CS  
returns high. At the same time CS goes high it gates the address  
decoder enabling one of four or six positive edge triggered RDAC  
latches, see Figure 18 detail.  
The serial-data-output (SDO) pin contains an open drain n-  
channel FET. This output requires a pull-up resistor in order to  
–9–  
REV. 0  
AD5204/AD5206  
I
AD5204/AD5206  
MS  
RDAC 1  
RDAC 2  
I
= 1V/R  
NOMINAL  
CS  
DUT  
A
W
V+ Ϸ V  
DD  
W
ADDR  
DECODE  
V
–[V  
+ I (R II R )]  
W2  
W1 W AW BW  
V
W
R
= ––––––––––––––––––––––––––  
W
V+  
I
RDAC 4/6  
W
B
WHERE V  
= V  
WHEN I = 0  
MS W  
W1  
CLK  
SDI  
AND V  
= V  
WHEN I = 1/R  
V
W2  
MS  
W
MS  
SERIAL  
REGISTER  
Figure 18. Equivalent Input Control Logic  
Figure 24. Wiper Resistance Test Circuit  
The target RDAC latch is loaded with the last eight bits of the  
serial data word completing one DAC update. Four separate 8-  
bit data words must be clocked in to change all four VR settings.  
V
A
V+ = V ± 10%  
DD  
V  
MS  
A
B
V
PSRR (dB) = 20 LOG ( ––––– )  
DD  
W
V  
DD  
V+  
~
V  
%
SHDN  
MS  
PSS (%/%) = –––––––  
V  
V
MS  
%
DD  
CS  
SDO  
GND  
SERIAL  
REGISTER  
Q
D
SDI  
Figure 25. Power Supply Sensitivity Test Circuit (PSS,  
PSRR)  
CK  
RS  
CLK  
PR  
A
DUT  
B
Figure 19. Detail SDO Output Schematic of the AD5204  
+5V  
W
V
IN  
All digital pins are protected with a series input resistor and  
parallel Zener ESD structure shown in Figure 20. Applies to  
digital pins CS, SDI, SDO, PR, SHDN, CLK  
V
OP279  
OUT  
OFFSET  
GND  
+
OFFSET BIAS  
340k⍀  
LOGIC  
Figure 26. Inverting Programmable Gain Test Circuit  
V
SS  
+5V  
Figure 20. ESD Protection of Digital Pins  
OP279  
V
OUT  
V
IN  
W
A, B, W  
OFFSET  
GND  
DUT  
OFFSET BIAS  
A
B
V
SS  
Figure 21. ESD Protection of Resistor Terminals  
Figure 27. Noninverting Programmable Gain Test Circuit  
V+ = V  
DUT  
DD  
1LSB = V+/256  
+15V  
A
A
W
W
V+  
V
IN  
+
DUT  
B
V
V
OP42  
MS  
OUT  
B
OFFSET  
GND  
2.5V  
–15V  
Figure 22. Potentiometer Divider Nonlinearity Error Test  
Circuit (INL, DNL)  
Figure 28. Gain vs. Frequency Test Circuit  
NO CONNECT  
DUT  
0.1V  
R
=
SW  
I
DUT  
I
SW  
W
A
CODE = ØØ  
H
W
W
+
B
B
0.1V  
I
SW  
V
MS  
V
TO V  
DD  
SS  
Figure 23. Resistor Position Nonlinearity Error (Rheostat  
Operation; R-INL, R-DNL)  
Figure 29. Incremental ON Resistance Test Circuit  
–10–  
REV. 0  
AD5204/AD5206  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
24-Lead Narrow Body PDIP  
(N-24)  
1.275 (32.30)  
1.125 (28.60)  
24  
13  
0.280 (7.11)  
0.240 (6.10)  
1
12  
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.150  
(3.81)  
MIN  
0.200 (5.05)  
0.125 (3.18)  
0.015 (0.381)  
0.008 (0.204)  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
SEATING  
PLANE  
0.070 (1.77)  
0.045 (1.15)  
24-Lead SOIC  
(R-24/SOL-24)  
0.6141 (15.60)  
0.5985 (15.20)  
24  
13  
0.2992 (7.60)  
0.2914 (7.40)  
0.4193 (10.65)  
0.3937 (10.00)  
1
12  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
؋
 45؇  
8؇  
0؇  
SEATING  
PLANE  
0.0500 0.0192 (0.49)  
0.0118 (0.30)  
0.0040 (0.10)  
0.0500 (1.27)  
0.0157 (0.40)  
0.0125 (0.32)  
0.0091 (0.23)  
(1.27)  
0.0138 (0.35)  
BSC  
24-Lead Thin Shrink SO Package (TSSOP)  
(RU-24)  
0.311 (7.90)  
0.303 (7.70)  
24  
13  
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
12  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
0.0256 (0.65) 0.0118 (0.30)  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
BSC  
0.0075 (0.19)  
–11–  
REV. 0  

相关型号:

AD5204BR100-REEL

4-/6-Channel Digital Potentiometers
ADI

AD5204BR50

4-/6-Channel Digital Potentiometers
ADI

AD5204BR50-REEL

4-/6-Channel Digital Potentiometers
ADI

AD5204BRU10

4-/6-Channel Digital Potentiometers
ADI

AD5204BRU10-REEL

IC QUAD 10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO24, MO-153AD, TSSOP-24, Digital Potentiometer
ADI

AD5204BRU10-REEL7

4-/6-Channel Digital Potentiometers
ADI

AD5204BRU100

4-/6-Channel Digital Potentiometers
ADI

AD5204BRU100-REEL

IC QUAD 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO24, MO-153AD, TSSOP-24, Digital Potentiometer
ADI

AD5204BRU100-REEL7

4-/6-Channel Digital Potentiometers
ADI

AD5204BRU50

4-/6-Channel Digital Potentiometers
ADI

AD5204BRU50-REEL

4-/6-Channel Digital Potentiometers
ADI

AD5204BRU50-REEL7

4-/6-Channel Digital Potentiometers
ADI