AD5260BRU50 [ADI]

1-/2-Channel 15 V Digital Potentiometers; 1 / 2通道15 V数字电位器
AD5260BRU50
型号: AD5260BRU50
厂家: ADI    ADI
描述:

1-/2-Channel 15 V Digital Potentiometers
1 / 2通道15 V数字电位器

电位器
文件: 总20页 (文件大小:841K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1-/2-Channel  
15 V Digital Potentiometers  
a
AD5260/AD5262  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
256 Positions  
A
W
B
AD5260 – 1-Channel  
AD5262 – 2-Channel (Independently Programmable)  
Potentiometer Replacement  
SHDN  
AD5260  
20 k, 50 k, 200 k⍀  
V
DD  
RDAC  
Low Temperature Coefficient 35 ppm/؇C  
4-Wire SPI-Compatible Serial Data Input  
5 V to 15 V Single-Supply; ؎5.5 V Dual-Supply Operation  
Power ON Mid-Scale Preset  
REGISTER  
V
SS  
V
L
POWER-ON  
RESET  
PR  
CS  
LOGIC  
8
APPLICATIONS  
CLK  
SDI  
GND  
Mechanical Potentiometer Replacement  
Instrumentation: Gain, Offset Adjustment  
Stereo Channel Audio Level Control  
Programmable Voltage to Current Conversion  
Programmable Filters, Delays, Time Constants  
Line Impedance Matching  
SDO  
SERIAL INPUT REGISTER  
A1 W1 B1  
A2 W2 B2  
Low Resolution DAC Replacement  
SHDN  
GENERAL DESCRIPTION  
V
DD  
The AD5260/AD5262 provide a single- or dual-channel, 256-  
position, digitally controlled variable resistor (VR) device.* These  
devices perform the same electronic adjustment function as a  
potentiometer or variable resistor. Each channel of the AD5260/  
AD5262 contains a fixed resistor with a wiper contact that taps the  
fixed resistor value at a point determined by a digital code loaded  
into the SPI-compatible serial-input register. The resistance between  
the wiper and either end point of the fixed resistor varies linearly  
with respect to the digital code transferred into the VR latch. The  
variable resistor offers a completely programmable value of resistance,  
between the A terminal and the wiper or the B terminal and the wiper.  
The fixed A to B terminal resistance of 20 kW, 50 kW, or 200 kW has  
a nominal temperature coefficient of 35 ppm/C. Unlike the majority  
of the digital potentiometers in the market, these devices can operate  
up to 15 V or ±5 V provided proper supply voltages are furnished.  
RDAC1 REGISTER  
RDAC2 REGISTER  
V
SS  
V
L
POWER-ON  
RESET  
PR  
CS  
LOGIC  
8
CLK  
SDI  
SDO  
SERIAL INPUT REGISTER  
GND  
AD5262  
100  
R
R
WB  
WA  
75  
50  
25  
0
Each VR has its own VR latch, which holds its programmed resistance  
value. These VR latches are updated from an internal serial-to-parallel  
shift register, which is loaded from a standard 3-wire serial-input  
digital interface. The AD5260 contains an 8-bit serial register  
while the AD5262 contains a 9-bit serial register. Each bit is clocked  
into the register on the positive edge of the CLK. The AD5262  
address bit determines the corresponding VR latch to be loaded  
with the last 8 bits of the data word during the positive edging of  
CS strobe. A serial data output pin at the opposite end of the serial  
register enables simple daisy chaining in multiple VR applications  
without additional external decoding logic. An optional reset pin  
(PR) forces the wiper to the mid-scale position by loading 80H into  
the VR latch.  
0
64  
128  
192  
256  
CODE – Decimal  
Figure 1. RWA and RWB vs. Code  
The AD5260/AD5262 are available in thin surface-mount TSSOP-14  
and TSSOP-16 packages. All parts are guaranteed to operate over  
the extended industrial temperature range of –40C to +85C.  
*The terms digital potentiometers, VR, and RDAC are used interchangeably.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
(VDD = +15 V, VSS = 0 V or, VDD = +5 V, VSS = –5 V, VL = +5 V, VA = +5 V,  
AD5260/AD5262–SPECIFICATIONS V = 0 V, – 40؇C < T < +85؇C unless otherwise noted.)  
B
A
ELECTRICAL CHARACTERISTICS 20 kW, 50 kW, 200 kW VERSIONS  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS RHEOSTAT MODE Specifications apply to all VRs  
Resistor Differential NL2  
Resistor Nonlinearity2  
R-DNL  
R-INL  
RAB  
RAB/T  
RW  
RWB, VA = NC  
RWB, VA = NC  
TA = 25C  
Wiper = No Connect  
IW = 1 V/RAB  
–1  
–1  
–30  
±1/4  
±1/2  
+1  
+1  
30  
LSB  
LSB  
%
ppm/C  
W
%
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
35  
60  
0.1  
0.05  
150  
Channel Resistance Matching (AD5262 only) RWB/RWB  
Resistance Drift RAB  
Ch 1 and 2 RWB, DX = 80H  
%
DC CHARACTERISTICS POTENTIOMETER DIVIDER MODE Specifications apply to all VRs  
Resolution  
N
DNL  
INL  
8
–1  
–1  
Bits  
LSB  
LSB  
ppm/C  
LSB  
LSB  
Differential Nonlinearity4  
Integral Nonlinearity4  
±1/4  
±1/2  
5
–1  
1
+1  
+1  
Voltage Divider Temperature Coefficient DVW/DT  
Code = 80H  
Code = FFH  
Code = 00H  
Full-Scale Error  
Zero-Scale Error  
VWFSE  
VWZSE  
–2  
0
+0  
2
RESISTOR TERMINALS  
Voltage Range5  
VA, B, W  
CA,B  
VSS  
VDD  
V
pF  
Capacitance6 Ax, Bx  
f = 5 MHz,  
measured to GND, Code = 80H  
f = 1 MHz,  
measured to GND, Code = 80H  
VA =VB = VDD /2  
25  
55  
1
Capacitance6 Wx  
CW  
pF  
Common-Mode Leakage Current  
Shut Down Current7  
ICM  
ISHDN  
nA  
mA  
5
DIGITAL INPUTS and OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
VIH  
VIL  
VIH  
VIL  
VOH  
VOL  
IIL  
2.4  
2.1  
4.9  
V
V
V
V
V
V
mA  
pF  
0.8  
0.6  
VL = 3 V, VSS = 0 V  
VL = 3 V, VSS = 0 V  
RPULL-UP = 2 kW to 5 V  
IOL = 1.6 mA, VLOGIC = 5 V  
VIN = 0 V or 5 V  
Output Logic High (SDO)  
Output Logic Low (SDO)  
Input Current8  
0.4  
±1  
Input Capacitance6  
CIL  
5
POWER SUPPLIES  
Logic Supply  
VL  
VDD RANGE  
VDD/SS RANGE  
IL  
IDD  
ISS  
PDISS  
2.7  
4.5  
±4.5  
5.5  
16.5  
±5.5  
60  
1
1
V
V
V
mA  
mA  
mA  
mW  
Power Single-Supply Range  
Power Dual-Supply Range  
Logic Supply Current  
Positive Supply Current  
Negative Supply Current  
Power Dissipation9  
VSS = 0 V  
VL = 5 V  
VIH = 5 V or VIL = 0 V  
VSS = –5 V  
VIH = 5 V or VIL = 0 V,  
VDD = +5 V, VSS = –5 V  
DVDD = +5 V, ±10%  
0.3  
Power Supply Sensitivity  
PSS  
0.003  
0.01  
%/%  
DYNAMIC CHARACTERISTICS6, 10  
Bandwidth –3 dB  
Total Harmonic Distortion  
BW  
THDW  
RAB = 20 kW/50 kW/200 kW  
VA = 1 VRMS, VB = 0 V,  
f = 1 kHz, RAB = 20 kW  
VA = +5 V, VB = –5 V,  
±1 LSB error band, RAB = 20 kW  
VA = VDD, VB = 0 V,  
310/130/30  
0.014  
kHz  
%
V
W Settling Time  
tS  
5
ms  
Crosstalk11  
CT  
Measure VW with Adjacent  
RDAC Making Full-Scale  
Code Change (AD5262 only)  
VA1 = VDD, VB1 = 0V,  
Measure VW1 with  
VW2 = 5 V p-p @ f = 10 kHz,  
1
nV–s  
Analog Crosstalk  
Resistor Noise Voltage  
CTA  
–64  
13  
dB  
R
AB = 20 kW/200 kW (AD5262 only)  
eN_WB  
RWB = 20 kW  
f = 1 kHz  
nV/÷Hz  
–2–  
REV. 0  
AD5260/AD5262  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INTERFACE TIMING CHARACTERISTICS apply to all parts6, 12  
Clock Frequency  
Input Clock Pulsewidth  
Data Setup Time  
fCLK  
CH, tCL  
tDS  
25  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Clock level high or low  
20  
10  
10  
1
Data Hold Time  
tDH  
tPD  
tCSS  
tCSW  
tRS  
CLK to SDO Propagation Delay13  
CS Setup Time  
RL = 1 k, CL < 20pF  
160  
5
CS High Pulsewidth  
Reset Pulsewidth  
20  
50  
0
CLK Fall to CS Rise Hold Time  
CS Rise to Clock Rise Setup  
tCSH  
tCS1  
10  
ns  
NOTES  
The AD5260/AD5262 contains 1,968 transistors. Die Size: 89 mil. × 105 mil. 9,345 sq. mil.  
1Typicals represent average readings at 25°C and VDD = +5 V, VSS = –5 V.  
2Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions.  
R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. IW = VDD/R for both VDD = +5 V, VSS = –5 V.  
3VAB = VDD, Wiper (VW) = No connect.  
4INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0V. DNL  
specification limits of 1 LSB maximum are Guaranteed Monotonic operating conditions.  
5Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
6Guaranteed by design and not subject to production test.  
7Measured at the Ax terminals. All Ax terminals are open-circuit in shutdown mode.  
8Worst-case supply current consumed when input all logic-input levels set at 2.4 V, standard characteristic of CMOS logic.  
9PDISS is calculated from (IDD ϫ VDD). CMOS logic level inputs result in minimum power dissipation.  
10 All dynamic characteristics use VDD = +5 V, VSS = –5 V, VL = +5 V.  
11 Measured at a VW pin where an adjacent VW pin is making a full-scale voltage change.  
12 See timing diagram for location of measured values. All input control voltages are specified with tR = tF = 2ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
Switching characteristics are measured using VL = 5 V.  
13 Propagation delay depends on value of VDD, RL, and CL.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS1  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . 300°C  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
Thermal Resistance3 θ JA  
(TA = 25°C, unless otherwise noted.)  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +15 V  
V
SS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V, –7 V  
TSSOP-14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206°C/W  
TSSOP-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C/W  
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 V  
VA, VB, VW to GND . . . . . . . . . . . . . . . . . . . . . . . . . . VSS, VDD  
AX – BX, AX – WX, BX – WX  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only; functional operation of the device  
at these or any other conditions above those listed in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Intermittent2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA  
Digital Inputs and Output Voltage to GND . . . . . . . 0 V, 7 V  
Operating Temperature Range . . . . . . . . . . . . –40°C to +85°C  
Maximum Junction Temperature (TJ MAX) . . . . . . . . . . . 150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
2Maximum terminal current is bounded by the maximum current handling of the  
switches, maximum power dissipation of the package, and maximum applied  
voltage across any two of the A, B, and W terminals at a given resistance setting.  
3Package Power Dissipation = (TJ MAX – TA)/θ JA  
–3–  
REV. 0  
AD5260/AD5262  
ORDERING GUIDE  
Package  
Package  
Option  
No. of Parts  
per Container  
Branding  
Information*  
Model  
RAB (kW)  
Temperature  
Description  
AD5260BRU20  
AD5260BRU20-REEL7  
AD5260BRU50  
AD5260BRU50-REEL7  
AD5260BRU200  
AD5260BRU200-REEL7  
AD5262BRU20  
AD5262BRU20-REEL7  
AD5262BRU50  
AD5262BRU50-REEL7  
AD5262BRU200  
20  
20  
50  
50  
200  
200  
20  
20  
50  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
–40C to +85C  
TSSOP-14  
TSSOP-14  
TSSOP-14  
TSSOP-14  
TSSOP-14  
TSSOP-14  
TSSOP-16  
TSSOP-16  
TSSOP-16  
TSSOP-16  
TSSOP-16  
TSSOP-16  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
96  
1000  
96  
1000  
96  
1000  
96  
1000  
96  
1000  
96  
AD5260B20  
AD5260B20  
AD5260B50  
AD5260B50  
AD5260B200  
AD5260B200  
AD5262B20  
AD5262B20  
AD5262B50  
AD5262B50  
AD5262B200  
AD5262B200  
50  
200  
200  
AD5262BRU200-REEL7  
1000  
*
Line 1 contains part number, line 2 contains differentiating detail by part type and ADI logo symbol, line 3 contains date code YWW.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD5260/AD5262 features proprietary ESD protection circuitry, permanent damage may occur  
on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
AD5260/AD5262  
TableI. AD52608-BitSerial-DataWordFormat  
DATA  
Table II. AD5262 9-Bit Serial-Data Word Format  
ADDR  
DATA  
B7 B6 B5 B4 B3 B2 B1 B0  
D7 D6 D5 D4 D3 D2 D1 D0  
B8  
B7  
B6 B5 B4 B3  
B2 B1 B0  
A0  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
LSB  
MSB  
LSB  
27  
20  
28  
27  
20  
1
1
SDI  
SDI  
Ax OR Dx  
Dx  
D7 D6 D5 D4 D3 D2 D1 D0  
RDAC REGISTER LOAD  
(DATA IN)  
0
1
0
tDH  
tDS  
CLK  
1
0
SDO  
0
1
A
؅
x OR D  
؅
x
D
؅
x  
(DATA OUT)  
CS  
tPD_MAX  
tCS1  
0
1
tCH  
1
0
V
OUT  
CLK  
0
tCSH  
tCL  
Figure 2a. AD5260 Timing Diagram  
tCSS  
1
0
tCSW  
tS  
CS  
V
؎1 LSB  
DD  
1
V
OUT  
SDI  
A0 D7 D6 D5 D4 D3 D2 D1 D0  
؎1 LSB ERROR BAND  
0V  
0
1
CLK  
0
1
Figure 2c. Detail Timing Diagram  
RDAC REGISTER LOAD  
CS  
0
1
1
0
V
tRS  
OUT  
PR  
0
tS  
V
DD  
0V  
Figure 2b. AD5262 Timing Diagram  
V
OUT  
؎1 LSB  
؎1 LSB ERROR BAND  
Figure 2d. Preset Timing Diagram  
REV. 0  
–5–  
AD5260/AD5262  
AD5260 PIN CONFIGURATION  
AD5262 PIN CONFIGURATION  
14 SDO  
1
2
3
4
5
6
7
16  
15  
A
W
B
1
2
3
4
5
6
7
8
SDO  
A1  
A2  
NC  
13  
12  
W2  
V
L
W1  
B1  
14 B2  
V
V
AD5260 11  
AD5262  
13  
12  
V
V
DD  
SHDN  
CLK  
SS  
L
TOP VIEW  
10  
TOP VIEW  
V
GND  
PR  
DD  
SS  
(Not to Scale)  
9
(Not to Scale)  
11 GND  
SHDN  
CLK  
SDI  
SDI  
8
10  
CS  
PR  
9
CS  
AD5260 PIN FUNCTION DESCRIPTIONS  
AD5262 PIN FUNCTION DESCRIPTIONS  
Pin  
Number  
Pin  
Number  
Mnemonic  
Description  
Mnemonic  
Description  
1
2
3
4
A
W
B
A Terminal  
Wiper Terminal  
B Terminal  
Positive power supply, specified  
for operation at both 5 V or 15 V.  
(Sum of |VDD| + |VSS| £ 15 V)  
Active low input. Terminal A  
open-circuit. Shutdown controls.  
Variable Resistors of RDAC.  
Serial Clock Input, positive edge  
triggered.  
Serial Data Input  
Chip Select Input, Active Low.  
When CS returns high, data will  
be loaded into the RDAC register.  
Active low preset to mid-scale; sets  
RDAC registers to 80H.  
1
SDO  
Serial Data Output, Open Drain  
transistor requires pull-up resistor.  
A Terminal RDAC #1  
Wiper RDAC #1, address A0 = 02  
B Terminal RDAC #1  
Positive power supply, specified for  
operation at both 5 V or 15 V.  
(Sum of |VDD|+|VSS|£ 15 V)  
Active low input. Terminal A  
open-circuit. Shutdown controls  
Variable Resistors #1 through #2.  
Serial Clock Input, positive edge  
triggered.  
2
3
4
5
A1  
W1  
B1  
VDD  
VDD  
5
6
SHDN  
6
7
SHDN  
CLK  
7
8
SDI  
CS  
CLK  
8
9
SDI  
CS  
Serial Data Input.  
Chip Select Input, Active Low.  
When CS returns high, data in  
the serial input register is decoded,  
based on the address Bit A0, and  
loaded into the target RDAC register.  
Active low preset to mid-scale sets  
RDAC registers to 80H.  
9
PR  
10  
11  
GND  
VSS  
Ground  
Negative Power Supply, specified  
for operation from 0 V to –5 V.  
Logic Supply Voltage, needs to be  
same voltage as the digital logic  
controlling the AD5260.  
No Connect (Users should not  
connect anything other than dummy  
pad on this pin)  
Serial Data Output, Open Drain  
transistor requires pull-up resistor.  
10  
PR  
12  
13  
14  
VL  
11  
12  
GND  
VSS  
Ground  
Negative Power Supply, specified  
for operation at both 0 V or –5 V  
(Sum of |VDD| + |VSS| <15 V).  
Logic Supply Voltage, needs to be  
same voltage as the digital logic  
controlling the AD5262.  
NC  
SDO  
13  
VL  
14  
15  
16  
B2  
W2  
A2  
B Terminal RDAC #2  
Wiper RDAC #2, address A0 = 12  
A Terminal RDAC #2  
–6–  
REV. 0  
AD5260/AD5262  
THEORY OF OPERATION  
The positive-edge sensitive CLK input requires clean transitions  
to avoid clocking incorrect data into the serial input register.  
Standard logic families work well. If mechanical switches are used  
for product evaluation, they should be debounced by a flip-flop or  
other suitable means. Figure 3 shows more detail of the internal  
digital circuitry. When CS is low, the clock loads data into the  
serial register on each positive clock edge (see Table IV).  
The AD5260/AD5262 provide a single- or dual-channel, 256-position  
digitally controlled variable resistor (VR) device and operate up to  
15 V maximum voltage. Changing the programmed VR settings  
is accomplished by clocking an 8-/9-bit serial data word into the  
SDI (Serial Data Input) pin. For the AD5262, the format of this  
data word is one address bit. A0 represents the first bit B8, then  
followed by eight data bits B7–B0 with MSB first. Tables I and II  
provide the serial register data word format. See Table III for the  
AD5262 address assignment to decode the location of the VR latch  
receiving the serial register data in bits B7 through B0. VR outputs  
can be changed one at a time in random sequence. The AD5260/  
AD5262 presets to a mid-scale, simplifying fault condition recov-  
ery at power-up. Mid-scale can also be achieved at any time by  
asserting the PR pin. Both parts have an internal power ON preset  
that places the wiper in a mid-scale preset condition at power ON.  
Operation of the power ON preset function depends only on the  
state of the VL pin.  
Table IV. Truth Table  
CLK CS PR SHDN Register Activity  
L
*  
L
L
H
H
H
H
No SR effect, enables SDO pin  
Shift one bit in from the SDI pin.  
The eighth previously entered bit is  
shifted out of the SDO pin.  
Load SR data into RDAC latch  
No Operation  
Sets all RDAC latches to Mid-Scale,  
wiper centered, and SDO latch  
cleared.  
X
X
X
H
X
H
H
L
H
H
H
The AD5260/AD5262 contains a power shutdown SHDN pin,  
which places the RDAC in an almost zero power consumption  
state where terminals Ax are open circuited, and the wiper W is con-  
nected to B, resulting in only leakage currents being consumed in  
the VR structure. In the shutdown mode, the VR latch settings are  
maintained so that, returning to operational mode from power  
shutdown, the VR settings return to their previous resistance values.  
X
X
H
H
H
H
L
Latches all RDAC latches to 80H.  
Open circuits all resistor A–terminals,  
connects W to B, turns off SDO  
output transistor.  
*= positive edge, X = don’t care, SR = shift register  
The data setup and data hold times in the specification table  
determine the data valid time requirements. The AD5260 uses  
an 8-bit serial input data register word that is transferred to the  
internal RDAC register when the CS line returns to logic high.  
For the AD5262 the last 9 bits of the data word entered into the  
serial register are held when CS returns high. Any extra bits are  
ignored. At the same time CS goes high, it gates the address  
decoder enabling AD5262 one of two positive edge-triggered  
AD5262 RDAC latches (see Figure 4).  
Table III. AD5262 Address Decode Table  
A0  
Latch Loaded  
0
1
RDAC#1  
RDAC#2  
DIGITAL INTERFACING  
The AD5260/AD5262 contains a 4-wire SPI-compatible  
digital interface (SDI, SDO, CS, and CLK). For the AD5260,  
the 8-bit serial word must be loaded with MSB first, and the  
format of the word is shown in Table I. For the AD5262, the  
9-bit serial word must be loaded with address bit A0 first, then  
MSB of the data. The format of the word is shown in Table II.  
AD5260/AD5262  
CS  
RDAC 1  
RDAC 2  
ADDR  
DECODE  
CLK  
SDI  
SERIAL  
REGISTER  
V
V
DD  
L
Figure 4. Equivalent Input Control Logic  
CS  
A1  
W1  
B1  
The target RDAC latch is loaded with the last 8 bits of the serial data  
word completing one RDAC update. For the AD5262, two separate  
9-bit data words must be clocked in to change both VR settings.  
RDAC  
LATCH  
#1  
CLK  
PR  
EN  
During shutdown (SHDN) the SDO output pin is forced to the  
off (logic high state) to disable power dissipation in the pull-up  
resistor. See Figure 5 for equivalent SDO output circuit schematic.  
SDI  
ADDR  
DEC  
A0  
SER  
REG  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SHDN  
A2  
W2  
B2  
RDAC  
LATCH  
#2  
SDO  
CS  
PR  
D
Q
SERIAL  
SDO  
SDI  
CLK  
PR  
REGISTER  
CK RS  
POWER-  
ON  
SHDN  
PR  
PRESET  
V
GND  
SS  
Figure 5. Detail SDO Output Schematic of the AD5260  
Figure 3. AD5262 Block Diagram  
REV. 0  
–7–  
AD5260/AD5262  
All digital inputs are protected with a series input resistor and  
parallel Zener ESD structure as shown in Figure 6. This applies  
to digital input pins CS, SDI, SDO, PR, SHDN, and CLK.  
of this data sheet. An internal level shift circuit ensures that the  
common-mode voltage range of the three terminals extends  
from VSS to VDD regardless of the digital input level.  
340  
POWER-UP SEQUENCE  
LOGIC  
Since there are diodes to limit the voltage compliance at termi-  
nals A, B, and W (see Figure 9), it is important to power VDD/VSS  
first before applying any voltage to terminals A, B, and W. Other-  
wise, the diode will be forward biased such that VDD/VSS will be  
powered unintentionally and may affect the rest of the user’s circuit.  
The ideal power-up sequence is in the following order: GND,  
VDD, VSS, VL, Digital Inputs, and VA/B/W. The order of powering  
VA, VB, VW, and Digital Inputs is not important as long as they  
are powered after VDD/VSS.  
Figure 6. ESD Protection of Digital Pins  
A, B, W  
V
SS  
Daisy-Chain Operation  
Figure 7. ESD Protection of Resistor Terminals  
The serial-data output (SDO) pin contains an open drain  
n-channel FET. This output requires a pull-up resistor to trans-  
fer data to the next package’s SDI pin. This allows for daisy  
chaining several RDACs from a single processor serial data line.  
The pull-up resistor termination voltage can be larger than the VDD  
supply voltage. It is recommended to increase the Clock period  
when using a pull-up resistor to the SDI pin of the following device  
in series because capacitive loading at the daisy-chain node  
SDO-SDI between devices may induce time delay to subsequent  
devices. Users should be aware of this potential problem to achieve  
data transfer successfully (see Figure 10). If two AD5260s are daisy-  
chained, this requires a total of 16 bits of data. The first 8 bits,  
complying with the format shown in Table I, go to U2, and the  
second 8 bits with the same format go to U1. The CS should be  
kept low until all 16 bits are clocked into their respective serial  
registers, and the CS is then pulled high to complete the operation.  
LAYOUT AND POWER SUPPLY BYPASSING  
It is a good practice to employ compact, minimum-lead length  
layout design. The leads to the input should be as direct as pos-  
sible with a minimum conductor length. Ground paths should  
have low resistance and low inductance.  
Similarly, it is also a good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to the  
device should be bypassed with 0.01 mF–0.1 mF disc or chip ceram-  
ics capacitors. Low-ESR 1 mF to 10 mF tantalum or electrolytic  
capacitors should also be applied at the supplies to minimize any  
transient disturbance (see Figure 8). Notice the digital ground  
should also be joined remotely to the analog ground to minimize  
the ground bounce.  
V
DD  
V
DD  
؉
V
DD  
C1  
C3  
C4  
10F  
0.1F  
0.1F  
؉
C2  
AD5260  
AD5260  
U2  
SDI SDO  
R
P
10F  
V
V
SS  
GND  
U1  
SS  
2.2k  
C MOSI  
SDI SDO  
SCLK SS  
CLK  
CLK  
CS  
CS  
Figure 8. Power Supply Bypassing  
TERMINAL VOLTAGE OPERATING RANGE  
Figure 10. Daisy-Chain Configuration  
RDAC STRUCTURE  
The AD5260/AD5262 positive VDD and negative VSS power  
supply defines the boundary conditions for proper 3-terminal  
digital potentiometer operation. Supply signals present on termi-  
nals A, B, and W that exceed VDD or VSS will be clamped by the  
internal forward biased diodes (see Figure 9).  
The RDAC contains a string of equal resistor segments, with an  
array of analog switches, that act as the wiper connection. The  
number of positions is the resolution of the device. The AD5260/  
AD5262 have 256 connection points allowing it to provide better  
than 0.4% set-ability resolution. Figure 11 shows an equivalent  
structure of the connections between the three terminals that  
make up one channel of the RDAC. The SWA and SWB will  
always be ON, while one of the switches SW(0) to SW(2N – 1)  
will be ON one at a time depending on the resistance position  
decoded from the data bits. Since the switch is not ideal, there is  
a 60 W wiper resistance, RW. Wiper resistance is a function of  
supply voltage and temperature. The lower the supply voltage, the  
higher the wiper resistance. Similarly, the higher the temperature,  
the higher the wiper resistance. Users should be aware of the  
contribution of the wiper resistance when accurate prediction of  
the output resistance is needed.  
V
DD  
A
W
B
V
SS  
Figure 9. Maximum Terminal Voltages Set by VDD and VSS  
The ground pin of the AD5260/AD5262 device is primarily used  
as a digital ground reference, which needs to be tied to the PCB’s  
common ground. The digital input control signals to the AD5260/  
AD5262 must be referenced to the device ground pin (GND),  
and must satisfy the logic level defined in the specification table  
–8–  
REV. 0  
AD5260/AD5262  
Note that in the zero-scale condition a finite wiper resistance of  
60 W is present. Care should be taken to limit the current flow  
between W and B in this state to no more than 20 mA to avoid  
degradation or possible destruction of the internal switches.  
Ax  
SHDN  
R
R
S
S
D7  
Like the mechanical potentiometer the RDAC replaces, the  
AD5260/AD5262 parts are totally symmetrical. The resistance  
between the wiper W and terminal A also produces a digitally  
controlled complementary resistance RWA. Figure 12 shows the  
symmetrical programmability of the various terminal connections.  
When RWA is used, the B–terminal can be let floating or tied to the  
wiper. Setting the resistance value for RWA starts at a maximum  
value of resistance and decreases as the data loaded in the latch  
is increased in value. The general equation for this operation is:  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R
S
Wx  
Bx  
RDAC  
LATCH  
AND  
256 - D  
256  
DECODE  
RWA D =  
¥ R AB + RW  
(2)  
(
)
R
S
N
DIGITAL CIRCUITRY  
R
= R /2  
AB  
S
For example, RAB = 20 kW, when VA = 0 V and B–terminal is open,  
the following output resistance RWA will be set for the following  
RDAC latch codes. The result will be the same if terminal B is  
tied to W:  
OMITTED FOR CLARITY  
Figure 11. Simplified RDAC Architecture  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
D
RWA  
The nominal resistances of the RDAC between terminals A and B  
are available with values of 20 kW, 50 kW, and 200 kW. The final  
three digits of the part number determine the nominal resistance  
value, e.g., 20 kW = 20; 50 kW = 50; 200 kW = 200. The nominal  
resistance (RAB) of the VR has 256 contact points accessed by the  
wiper terminal, plus the B terminal contact. The 8-bit data in the  
RDAC latch is decoded to select one of the 256 possible settings.  
Assuming a 20 kW part is used, the wiper’s first connection starts  
at the B terminal for data 00H. Since there is a 60 W wiper contact  
resistance, such connection yields a minimum of 60 W resistance  
between terminals W and B. The second connection is the first tap  
point corresponds to 138 W (RWB = RAB/256 RW = 78 W 60 W)  
for data 01H. The third connection is the next tap point represent-  
ing 216 W (78 2 60) for data 02H and so on. Each LSB data  
value increase moves the wiper up the resistor ladder until the last  
tap point is reached at 19982 W [RAB 1 LSB RW]. The wiper  
does not directly connect to the B terminal. See Figure 11 for a  
simplified diagram of the equivalent RDAC circuit.  
(DEC)  
(W)  
Output State  
256  
128  
1
60  
Full-Scale  
Mid-Scale  
1 LSB  
10060  
19982  
20060  
0
Zero-Scale  
20  
16  
12  
8
R
R
WB  
WA  
The general equation determining the digitally programmed  
output resistance between W and B is:  
4
R
= 20K⍀  
AB  
D
0
RWB D =  
¥ R AB + RW  
(1)  
(
)
0
64  
128  
D – CODE in decimal  
192  
256  
256  
where D is the decimal equivalent of the binary code which is  
loaded in the 8-bit RDAC register, and RAB is the nominal end-  
to-end resistance.  
Figure 12. AD5260/AD5262 Equivalent RDAC Circuit  
The typical distribution of the nominal resistance RAB from  
channel to channel matches within ±1%. Device-to-device match-  
ing is process lot dependent with the worst case of ±30% variation.  
On the other hand, since the resistance element is processed in  
thin film technology, the change in RAB with temperature has a  
low 35 ppm/C temperature coefficient.  
For example, RAB = 20 kW, when VB = 0 V and A–terminal is  
open circuit, the following output resistance values RWB will be  
set for the following RDAC latch codes. The result will be the  
same if terminal A is tied to W:  
D
RWB  
(DEC) (W)  
Output State  
256  
128  
1
19982  
10060  
138  
Full-Scale (RAB – 1 LSB + RW)  
Mid-Scale  
1 LSB  
0
60  
Zero-Scale (wiper contact resistance)  
REV. 0  
–9–  
—Typical Performance Characteristics  
AD5260/AD5262  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.10  
1.0  
0.8  
؉5V  
V
SS  
R
= ؉5V  
= ؊5V  
= 20k⍀  
T
= ؉125؇C  
A
DD  
؉12V  
؎5V  
V
؉15V  
0.05  
0
؉5V  
AB  
0.6  
0.4  
T
= ؉85؇C  
A
0.2  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
0
؉12V  
0.2  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
؎5V  
T
= ؊40؇C  
A
0.1  
0
T
= ؉25؇C  
A
–0.1  
–0.2  
؉15V  
0
32  
64  
96 128 160 192 224 256  
CODE – Decimal  
0
32  
64  
96 128 160 192 224 256  
CODE – Decimal  
0
32  
64  
96 128 160 192 224 256  
CODE – Decimal  
TPC 1. R-INL vs. Code vs.  
Supply Voltages  
TPC 2. R-DNL vs. Code vs.  
Supply Voltages  
TPC 3. INL vs. Code, VDD/VSS = ±5 V  
0.5  
0.4  
0.3  
0.5  
0.4  
0.3  
0.2  
0.2  
0.1  
؎5V  
؉5V  
0.3  
T
= ؊40؇C  
A
0.2  
؎5V  
T
= ؉25؇C  
T
= ؉85؇C  
A
؉15V  
A
؉15V  
0.1  
0.1  
0
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
T
= ؉125؇C  
A
؉5V  
–0.4  
–0.5  
0
32  
64  
96 128 160 192 224 256  
CODE – Decimal  
0
32  
64  
96 128 160 192 224 256  
CODE – Decimal  
0
32  
64  
96 128 160 192 224 256  
CODE – Decimal  
TPC 4. DNL vs. Code,  
VDD/VSS = ±5 V  
TPC 6. DNL vs. Code vs.  
Supply Voltages  
TPC 5. INL vs. Code vs.  
Supply Voltages  
1.0  
0.5  
2.0  
124  
104  
84  
64  
44  
24  
4
R
@ V /V = ؉5V/0V  
DD SS  
ON  
1.5  
1.0  
AVG +3␴  
AVG +3␴  
AVG  
0.5  
R
@V /V = ؉5V/؊5V  
DD SS  
ON  
AVG –3␴  
AVG  
AVG –3␴  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
R
@ V /V = ؉15V/0V  
DD SS  
ON  
–0.5  
–1.0  
0
5
10  
15  
20  
0
5
10  
15  
20  
؊5  
؊1  
3
7
11  
15  
V
– V – V  
SS  
V
– V – V  
V
– V  
DD  
DD  
SS  
DD  
TPC 7. INL vs. Supply Voltages  
TPC 8. R-INL vs. Supply Voltages  
TPC 9. Wiper ON Resistance vs.  
Bias Voltage  
–10–  
REV. 0  
AD5260/AD5262  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1
0.1  
V
= ؉5V  
LOGIC  
V
= ؉5V  
IH  
V
= 0V  
IL  
V
/V = +5V/0V  
DD SS  
V
/V = +15V/0V  
DD SS  
V
/V = ؎5V  
DD SS  
V
/V = ؎5V  
DD SS  
V
/V = ؉15V/0V  
DD SS  
0.01  
0.001  
V
/V = +15V/0V  
DD SS  
V
/V = ؎5V  
DD SS  
V
/V = +5V/0V  
DD SS  
–40 –20  
0
20  
40  
60  
80  
100  
–40 –20  
0
20  
40  
60  
80  
100  
–40  
–7  
26  
59  
92  
125  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 10. Full-Scale Error  
TPC 11. Zero-Scale Error  
TPC 12. Supply Current vs.  
Temperature  
28.0  
27.5  
27.0  
26.5  
26.0  
25.5  
25.0  
24.5  
1k  
100  
10  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
/V = 5V/0V V = 5V  
DD SS LOGIC  
V
/V = +15V/0V  
DD SS  
20k⍀  
50k⍀  
V
/V = ؎5V  
DD SS  
–10  
–20  
V
/V = 5V/0V V  
= 3V  
200k⍀  
DD SS  
LOGIC  
– V  
–40  
–7  
26  
59  
92  
125  
0
1
2
3
4
5
0
32  
64  
96 128 160 192 224 256  
CODE – Decimal  
V
TEMPERATURE – ؇C  
IH  
TPC 15. Rheostat Mode Tempco  
DRWB/DT vs. Code  
TPC 13. ILOGIC vs. Temperature  
TPC 14. ILOGIC vs. Digital Input  
Voltage  
120  
6
T
= 25؇C  
CODE = FF  
A
H
0
–6  
100  
50k⍀  
80  
80  
40  
H
H
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
60  
20  
10  
08  
H
H
H
20k⍀  
40  
20  
0
04  
02  
H
H
–20  
200k⍀  
01  
H
–40  
–60  
0
32  
64  
96 128 160 192 224 256  
CODE – Decimal  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
TPC 16. Potentiometer Mode  
DVWB/DT vs. Code  
TPC 17. Gain vs. Frequency vs.  
Code, RAB = 20 kW  
–11–  
REV. 0  
AD5260/AD5262  
6
6
0
6
0
T
= 25؇C  
T
= 25؇C  
A
f–3dB = 310kHz, R = 20k⍀  
f–3dB = 131kHz, R = 50k⍀  
CODE = FF  
CODE = FF  
H
A
H
0
–6  
80  
40  
20  
10  
08  
80  
40  
20  
10  
08  
04  
02  
01  
H
H
H
H
H
H
H
H
H
H
–6  
–6  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
f–3dB = 30kHz, R = 200k⍀  
04  
02  
01  
H
H
H
H
H
H
V
= 50mV rms  
DD SS  
IN  
–3dB  
V
/V = ؎5V  
BANDWIDTHS  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
1k  
10k  
FREQUENCY – Hz  
100k  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
TPC 18. Gain vs. Frequency vs. Code  
TPC 19. Gain vs. Frequency vs.  
TPC 20. –3 dB Bandwidth  
RAB = 50 kW  
Code RAB = 200 kW  
600  
500  
600  
500  
400  
300  
200  
100  
0
CODE = 80 , V = V , V = 0V  
CODE = 80  
H
A
DD  
B
H
V
/V = ؎5V  
= 25؇C  
DD SS  
A
T
–PSRR @ V = ؎5V DC ؎ 10% p-p AC  
DD  
CODE FF  
H
R = 20k⍀  
400  
300  
R = 200k⍀  
V
/V = ؎5V  
DD SS  
R = 50k⍀  
200  
100  
0
V
/V = +5V/0V  
DD SS  
+PSRR @ V = ؎5V DC ؎ 10% p-p AC  
DD  
CODE 55  
H
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 21. Normalized Gain  
Flatness vs. Frequency  
TPC 22. ILOGIC vs. Frequency  
TPC 23. PSRR vs. Frequency  
20mV/DIV  
10mV/DIV  
5V/DIV  
5V/DIV  
5V/DIV  
1s/DIV  
40ns/DIV  
20s/DIV  
TPC 24. Mid-Scale Glitch  
Energy, Code 80H to 7FH  
TPC 25. Large Signal Settling Time  
TPC 26. Digital Feedthrough vs. Time  
–12–  
REV. 0  
AD5260/AD5262  
100  
10  
0.10  
0.05  
40  
30  
20  
10  
0
V
= V = OPEN  
B
CODE = 80  
H
DD SS  
SS = 135 UNITS  
A
A
CODE SET TO MID-SCALE  
T
= 25؇C  
V
= V = ؎5V  
T = 150؇C  
A
3 LOTS  
AVG –3␴  
SAMPLE SIZE = 135  
0
AVG  
1
–0.05  
–0.10  
–0.15  
–0.20  
R
= 20k⍀  
AB  
R
= 50k⍀  
AB  
AVG +3␴  
0.1  
R
= 200k⍀  
AB  
0.01  
–0.50 –0.40 –0.300.200.10  
0
0.10 0.20  
0
32  
64  
96 128 160 192 224 256  
CODE – Decimal  
0
50 100 150 200 250 300 350 400 450 500  
HOURS OF OPERATION AT 150؇C  
CHANNEL-TO-CHANNEL R MATCH – %  
AB  
TPC 27. IMAX vs. Code  
TPC 28. Long-Term Resistance Drift  
TPC 29. Channel-to-Channel  
Resistance Matching (AD5262)  
TEST CIRCUITS  
Test Circuits 1 to 9 define the test conditions used in the product specification table.  
V
A
V+ = V  
10%  
PSRR (dB) = 20 LOG  
DD  
V  
MS  
V+ = V  
DUT  
A
DD  
N
(
%
)
1LSB = V+/2  
V  
V
DD  
DD  
A
V  
MS  
W
W
V+  
V؉  
PSS (%/%) =  
V  
%
DD  
B
B
V
V
MS  
MS  
Test Circuit 1. Potentiometer Divider  
Nonlinearity Error (INL, DNL)  
Test Circuit 4. Power Supply Sensitivity (PSS, PSSR)  
A
+13V  
NC  
W
NC = NO CONNECT  
V
DUT  
DUT  
IN  
AD8610  
–13V  
V
I
OUT  
W
A
OFFSET  
GND  
W
B
B
V
MS  
Test Circuit 5. Gain vs. Frequency  
Test Circuit 2. Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
0.1V  
R
=
SW  
I
SW  
CODE = 00  
DUT  
H
W
DUT  
I
= V /R  
NOMINAL  
DD  
B
W
0.1V  
I
A
SW  
V
W
W
V
MS2  
B
V
TO V  
DD  
SS  
V
R
= [V  
– V  
]/I  
W
MS2  
MS1  
A = NC  
W
MS1  
Test Circuit 6. Incremental ON Resistance  
Test Circuit 3. Wiper Resistance  
NC  
I
V
A
B
CM  
DD  
W
DUT  
V
GND  
SS  
V
CM  
NC  
Test Circuit 7. Common-Mode Leakage Current  
REV. 0  
–13–  
AD5260/AD5262  
TEST CIRCUITS (continued)  
+5.0V  
؎5V p-p  
SS  
CS  
V
V
V
DD  
DD  
LOGIC  
I
C  
CLK  
SDI  
SCLK  
MOSI  
LOGIC  
؎2.5V p-p  
D = 80  
GND  
CS  
CLK  
SDI  
H
GND  
V
SS  
–5.0V  
DIGITAL INPUT  
VOLTAGE  
Figure 13. Bipolar Operation from Dual Supplies  
Gain Control Compensation  
Digital potentiometers are commonly used in gain control as in  
the noninverting gain amplifier shown in Figure 14.  
Test Circuit 8. VLOGIC Current vs. Digital Input Voltage  
NC  
C2  
4.7pF  
I
V
A
B
CM  
DD  
W
DUT  
R2  
V
GND  
SS  
200k  
B
V
CM  
A
R1  
W
NC  
47k⍀  
C1  
25pF  
Test Circuit 9. Analog Crosstalk  
V
O
U1  
V
i
Figure 14. Typical Noninverting Gain Amplifier  
Notice that when the RDAC B terminal parasitic capacitance is  
connected to the op amp noninverting node, it introduces a zero  
for the 1/bO term with +20 dB/dec, whereas a typical op amp GBP  
has –20 dB/dec characteristics. A large R2 and finite C1 can cause  
this Zero’s frequency to fall well below the crossover frequency.  
Hence the rate of closure becomes 40 dB/dec and the system has  
0phase margin at the crossover frequency. The output may ring  
or oscillate if the input is a rectangular pulse or step function.  
Similarly, it is also likely to ring when switching between two  
gain values because this is equivalent to a step change at the input.  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
The digital potentiometer easily generates output voltages at wiper-  
to-B and wiper-to-A to be proportional to the input voltage at  
A-to-B. Ignore the effect of the wiper resistance at the moment.  
For example, connecting A-terminal to 5 V and B-terminal to  
ground produces an output voltage at the wiper-to-B starting at  
zero volts up to 1 LSB less than 5 V. Each LSB of voltage is equal  
to the voltage applied across terminal AB divided by the 256 posi-  
tion of the potentiometer divider. Since the AD5260/AD5262  
operates from dual supplies, the general equation defining the  
output voltage at VW with respect to ground for any given input  
voltage applied to terminals AB is:  
Depending on the op amp GBP, reducing the feedback resistor  
may extend the Zero’s frequency far enough to overcome the prob-  
lem. A better approach, however, is to include a compensation  
capacitor C2 to cancel the effect caused by C1. Optimum compen-  
sation occurs when R1 C1 = R2 C2. This is not an option  
because of the variation of R2. As a result, one may use the relation-  
ship above and scale C2 as if R2 is at its maximum value. Doing so  
may overcompensate and compromise the performance slightly  
when R2 is set at low values. However, it will avoid the ringing or  
oscillation at the worst case. For critical applications, C2 should  
be found empirically to suit the need. In general, C2 in the range  
of a few pF to no more than a few tenths of pF is usually adequate  
for the compensation.  
D
256  
VW D =  
¥VAB +VB  
(3)  
(
)
Operation of the digital potentiometer in the divider mode results  
in more accurate operation over temperature. Unlike the rheostat  
mode, the output voltage is dependent on the ratio of the internal  
resistors RWA and RWB and not the absolute values; therefore, the  
drift reduces to 5 ppm/C.  
APPLICATIONS  
Bipolar DC or AC Operation from Dual Supplies  
The AD5260/AD5262 can be operated from dual supplies enabling  
control of ground referenced AC signals or bipolar operation.  
The AC signal, as high as VDD/VSS, can be applied directly across  
terminals A–B with output taken from terminal W. See Figure 13  
for a typical circuit connection.  
Similarly, there are W and A terminal capacitances connected to  
the output (not shown). Fortunately their effect at this node is less  
significant, and the compensation can be avoided in most cases.  
Programmable Voltage Reference  
For voltage divider mode operation, Figure 15, it is common  
to buffer the output of the digital potentiometer unless the load is  
much larger than RWB. Not only does the buffer serve the pur-  
pose of impedance conversion, but it also allows a heavier load  
to be driven.  
–14–  
REV. 0  
AD5260/AD5262  
Similar to the previous example, in the simpler (and much more  
usual) case, where K = 1, a single digital pot AD5260, and U1  
is replaced by a matched pair of resistors to apply Vi and – Vi at  
the ends of the digital pot. The relationship becomes:  
5V  
1
U1  
V
IN  
AD5260  
5V  
3
V
OUT  
A
W
Ê
Ë
R2ˆ Ê 2D2  
ˆ
¯
GND  
2
V
B
AD8601  
A1  
VO = 1+  
- 1 ¥Vi  
O
Á
˜ Á  
˜
(6)  
R1 256  
¯ Ë  
AD1582  
If R2 is large, a few picofarad compensation capacitors may be  
needed to avoid any gain peaking.  
Figure 15. Programmable Voltage Reference  
8-Bit Bipolar DAC  
Figure 16 shows a low cost 8-bit bipolar DAC. It offers the same  
number of adjustable steps but not the precision of conventional  
DACs. The linearity and temperature coefficients, especially at low  
values codes, are skewed by the effects of the digital potentiometer  
wiper resistance. The output of this circuit is:  
Table VIII shows the result of adjusting D, with A2 configured as a  
unity gain, a gain of 2, and a gain of 10. The result is a bipolar  
amplifier with linearly programmable gain and 256-step resolution.  
Table VIII. Result of Bipolar Gain Amplifier  
D
R1 = , R2 = 0  
R1 = R2  
R2 = 9R1  
0
64  
128  
192  
255  
–1  
–0.5  
0
0.5  
0.968  
–2  
–1  
0
–10  
–5  
0
Ê 2D  
Ë 256  
ˆ
¯
VO  
=
- 1 ¥V  
Á
˜
(4)  
REF  
1
5
+5V  
1.937  
9.680  
AD5260  
V
i
U2  
V
O
OP2177  
Programmable Voltage Source with Boosted Output  
For applications that require high current adjustment such as a  
laser diode driver or turnable laser, a boosted voltage source can  
be considered (see Figure 18).  
U1  
W
B
V
IN  
A2  
A
–5V  
R
R
V
OUT  
+5V  
؊5V  
+5V  
W1  
REF  
REF  
TRIM  
V
i
GND  
V
O
ADR425  
5V  
OP2177  
10k⍀  
R1  
P1  
R
BIAS  
A
B
C
C
A1  
W
–5V  
U1  
N1  
SIGNAL  
LO  
A1  
I
L
Figure 16. 8-Bit Bipolar DAC  
Bipolar Programmable Gain Amplifier  
For applications that require bipolar gain, Figure 17 shows one  
implementation. Digital potentiometer U1 sets the adjustment  
range. The wiper voltage at W2 can therefore be programmed  
between Vi and –KVi at a given U2 setting. Configuring A2 in  
the noninverting mode allows linear gain and attenuation. The  
transfer function is:  
U1= AD5260  
A1= AD8601, AD8605, AD8541  
P1= FDP360P, NDS9430  
N1= FDV301N, 2N7002  
Figure 18. Programmable Boosted Voltage Source  
In this circuit, the inverting input of the op amp forces the VO to be  
equal to the wiper voltage set by the digital potentiometer. The  
load current is then delivered by the supply via the P-Ch FET P1.  
The N-Ch FET N1 simplifies the op amp driving requirement.  
A1 needs to be the rail-to-rail input type. Resistor R1 is needed to  
prevent P1 from not turning off once it is on. The choice of R1 is a  
balance between the power loss of this resistor and the output turn-  
off time. N1 can be any general-purpose signal FET; on the other  
hand, P1 is driven in the saturation state, and therefore its power  
Ê
ˆ
VO  
Vi  
Ê
Ë
R2ˆ  
D2  
256  
= 1+  
¥
¥ 1+ K - K  
(
)
Á
˜
(5)  
Á
˜
R1  
¯
Ë
¯
where K is the ratio of RWB1/RWA1 set by U1.  
V
DD  
ADU52262  
V
OP2177  
O
handling must be adequate to dissipate (V – VO) IL power. This  
i
W2  
B2  
circuit can source a maximum of 100 mA at 5 V supply. Higher  
current can be achieved with P1 in a larger package. Note, a single  
N-Ch FET can replace P1, N1, and R1 altogether. However, the out-  
put swing will be limited unless separate power supplies are used.  
For precision application, a voltage reference such as ADR423,  
ADR292, and AD1584 can be applied at the input of the digital  
potentiometer.  
R2  
R1  
C1  
A2  
A2  
A1  
V
SS  
B1  
W1  
V
i
–KV  
i
V
DD  
ADU51262  
OP2177  
A1  
Programmable 4-to-20 mA Current Source  
A programmable 4-to-20 mA current source can be implemented  
with the circuit shown in Figure 19. REF191 is a unique low  
supply headroom and high current handling precision reference  
V
SS  
Figure 17. Bipolar Programmable Gain Amplifier  
REV. 0  
–15–  
AD5260/AD5262  
that can deliver 20 mA at 2.048 V. The load current is simply the  
voltage across terminals B-to-W of the digital pot divided by RS.  
Programmable Low-Pass Filter  
Digital potentiometer AD5262 can be used to construct a second  
order Sallen Key Low-Pass Filter (see Figure 21). The design  
equations are:  
VREF ¥ D  
IL  
=
(7)  
RS  
2
VO  
Vi  
wO  
w
Q
=
=
؉5V  
2
(9)  
S2 + O S + wO  
2
V
U1  
IN  
1
REF191  
3
wO  
(10)  
(11)  
0 TO (2.048 ؉ V )  
L
SLEEP  
6
R1R2C1C2  
V
OUT  
B
W
C1  
AD5260  
GND  
4
1F  
1
1
A
+5V  
Q =  
+
R1C1 R2C2  
Users can first select some convenient values for the capacitors.  
To achieve maximally flat bandwidth where Q = 0.707, let C1 be  
twice the size of C2 and let R1 = R2. As a result, users can adjust  
R1 and R2 to the same settings to achieve the desirable bandwidth.  
U2  
R
S
OP1177  
+
102⍀  
–2.048V TO V  
L
V
L
R
L
100⍀  
I
L
–5V  
C1  
Figure 19. Programmable 4-to-20 mA Current Source  
+2.5V  
The circuit is simple, but be aware that dual-supply op amps are  
ideal because the ground potential of REF191 can swing from  
–2.048 V at zero scale to VL at full scale of the potentiometer  
setting. Although the circuit works under single supply, the pro-  
grammable resolution of the system will be reduced.  
R1  
R2  
A
B
A
B
V
i
AD8601  
–2.5V  
V
O
W
W
R
R
C2  
Programmable Bidirectional Current Source  
ADJUSTED TO  
SAME SETTINGS  
For applications that require bidirectional current control or higher  
voltage compliance, a Howland current pump can be a solution  
(see Figure 20). If the resistors are matched, the load current is:  
Figure 21. Sallen Key Low-Pass Filter  
Programmable Oscillator  
R2A + R2B /R1  
(
)
(8)  
IL  
=
¥VW  
In a classic Wien-bridge oscillator, Figure 22, the Wien network  
(R, R, C, C) provides positive feedback, while R1 and R2  
provide negative feedback. At the resonant frequency, fo, the  
overall phase shift is zero, and the positive feedback causes the  
circuit to oscillate. With R = R, C = C, and R2 = R2A//(R2B+  
RDIODE), the oscillation frequency is:  
R2B  
R1  
R2  
150k  
15k⍀  
C1  
10pF  
+15V  
1
RC  
1
wO  
=
or fO  
=
(12)  
2pRC  
C2  
A2  
10pF  
AD8016  
+5V  
where R is equal to RWA such that:  
+15V  
R
L
256 – D  
256  
A
R =  
RAB  
50⍀  
R1  
(13)  
(14)  
–15V  
R2A  
150k⍀  
AD5260  
W
V
L
OP2177  
B
At resonance, setting  
14.95k⍀  
R
500⍀  
L
R2  
= 2  
R1  
A1  
–5V  
–15V  
I
L
balances the bridge. In practice, R2/R1 should be set slightly larger  
than 2 to ensure the oscillation can start. On the other hand, the  
alternate turn-on of the diodes D1 and D2 ensures R2/R1 to be  
smaller than 2 momentarily and therefore stabilizes the oscillation.  
Figure 20. Programmable Bidirectional Current Source  
Once the frequency is set, the oscillation amplitude can be tuned  
by R2B since:  
2
3
VO = IDR2B +VD  
(15)  
–16–  
REV. 0  
AD5260/AD5262  
A
B
VO, ID, and VD are interdependent variables. With proper selection  
of R2B, an equilibrium will be reached such that VO converges. R2B  
can be in series with a discrete resistor to increase the amplitude,  
but the total resistance cannot be too large to saturate the output.  
W
R2  
R1  
In both circuits in Figures 21 and 22, the frequency tuning requires  
that both RDACs be adjusted to the same settings. Since the two  
channels will be adjusted one at a time, an intermediate state will  
occur that may not be acceptable for certain applications. As a  
result, different devices can also be used in daisy-chained mode so  
that parts can be programmed to the same setting simultaneously.  
R2 << R1  
Figure 24. Lowering the Nominal Resistance  
Figures 23 and 24 show that the digital potentiometers change steps  
linearly. On the other hand, log taper adjustment is usually pre-  
ferred in applications like audio control. Figure 25 shows another  
way of resistance scaling. In this circuit, the smaller the R2 with  
respect to RAB, the more the pseudo-log taper characteristic behaves.  
FREQUENCY  
ADJUSTMENT  
C
R
2.2nF  
10k  
VP  
A
B
B
C
2.2nF  
R
10k⍀  
+5V  
W
W
A
V
i
U1  
OP1177  
–5V  
V
O
A
AD5262  
W
V
R1  
O
R1 = R1 = R2B = AD5262  
D1 = D2 = 1N4148  
VN  
B
R2  
R2A  
2.1k⍀  
D1  
D2  
R2B  
10k⍀  
B
W
A
R1  
Figure 25. Resistor Scaling with Log Adjustment  
Characteristics  
1k⍀  
AMPLITUDE  
ADJUSTMENT  
RDAC CIRCUIT SIMULATION MODEL  
Figure 22. Programmable Oscillator with  
Amplitude Control  
The internal parasitic capacitances and the external capacitive  
loads dominate the ac characteristics of the RDACs. Configured  
as a potentiometer divider, the –3 dB bandwidth of the AD5260  
(20 kW resistor) measures 310 kHz at half scale. TPC 20 provides  
the large signal BODE plot characteristics of the three available  
resistor versions 20 kW, 50 kW, and 200 kW. A parasitic simulation  
model is shown in Figure 26. Listing I provides a macro model  
net list for the 20 kW RDAC.  
Resistance Scaling  
The AD5260/AD5262 offer 20 kW, 50 kW, and 200 kW nominal  
resistance. For users who need lower resistance and still maintain the  
numbers of step adjustment, they can parallel multiple devices. For  
example, Figure 23 shows a simple scheme of paralleling both  
channels of the AD5262. To adjust half of the resistance linearly  
per step, users need to program both channels coherently with  
the same settings.  
RDAC  
20k  
A
B
V
C
W
DD  
C
C
A
B
25pF  
25pF  
55pF  
A2  
B2  
A1  
B1  
W
W1  
W2  
Figure 26. RDAC Circuit Simulation Model for RDAC = 20 kW  
LD  
Listing I. Macro Model Net List for RDAC  
PARAM D=256, RDAC=20E3  
Figure 23. Reduce Resistance by Half with Linear  
Adjustment Characteristics  
*
SUBCKT DPOT (A,W,B)  
*
In voltage divider mode, a much lower resistance can be achieved  
by paralleling a discrete resistor as shown in Figure 24. The equiva-  
lent resistance becomes:  
CA  
RWA  
CW  
RWB  
CB  
*
A
A
W
W
B
0
W
0
B
0
25E-12  
{(1-D/256)*RDAC+60}  
55E-12  
{D/256*RDAC+60}  
25E-12  
D
256  
RWB _eq  
=
R1§§ R2 + R  
(16)  
(17)  
(
)
W
Ê
Ë
D ˆ  
RWA_eq = 1-  
R1§§ R2 + R  
(
)
.ENDS DPOT  
W
Á
˜
256  
¯
REV. 0  
–17–  
AD5260/AD5262  
DIGITAL POTENTIOMETER FAMILY SELECTION GUIDE1  
Number  
of VRs per Voltage  
Number Package  
Terminal  
Interface  
Data  
Control  
Nominal  
Resistance  
(k)  
Resolution  
(No. of Wiper Current  
Positions)  
Power Supply  
Part  
Range (V)  
(IDD) (A)  
Packages  
Comments  
AD5201  
1
±3, 5.5  
3-Wire  
10, 50  
33  
40  
mSOIC-10  
Full AC Specs, Dual  
Supply, Power-On-  
Reset, Low Cost  
AD5220  
AD7376  
1
1
5.5  
UP/DOWN 10, 50, 100  
128  
40  
PDIP, SO-8,  
mSOIC-8  
No Rollover,  
Power-On-Reset  
±15, 28  
3-Wire  
3-Wire  
10, 50, 100, 128  
1000  
100  
PDIP-14,  
SOL-16,  
TSSOP-14  
Single 28 V or Dual  
±15 V Supply Operation  
AD5200  
1
±3, 5.5  
10, 50  
256  
40  
mSOIC-10  
Full AC Specs, Dual  
Supply, Power-On-Reset  
AD8400  
AD5260  
1
1
5.5  
3-Wire  
3-Wire  
1, 10, 50, 100 256  
5
SO-8  
Full AC Specs  
±5, 15  
20, 50, 200  
256  
60  
TSSOP-14  
5 V to 15 V or ±5 V  
Operation,  
TC < 50 ppm/C  
AD5241  
AD5231  
1
1
±3, 5.5  
2-Wire  
3-Wire  
10, 100,  
1000  
256  
50  
20  
SO-14,  
TSSOP-14  
I2C Compatible,  
TC < 50 ppm/C  
±2.75, 5.5  
10, 50, 100  
1024  
TSSOP-16  
Nonvolatile Memory,  
Direct Program, I/D,  
±6 dB settability  
AD5222  
2
±3, 5.5  
UP/DOWN 10, 50, 100, 128  
1000  
80  
SO-14,  
TSSOP-14  
No Rollover, Stereo,  
Power-On-Reset,  
TC < 50 ppm/C  
AD8402  
AD5207  
2
2
5.5  
3-Wire  
3-Wire  
1, 10, 50,  
100  
256  
256  
5
PDIP, SO-14, Full AC Specs, nA  
TSSOP-14  
Shutdown Current  
±3, 5.5  
10, 50, 100  
10, 50, 100  
25, 250  
40  
TSSOP-14  
Full AC Specs, Dual  
Supply, Power-On-  
Reset, SDO  
AD5232  
AD52352  
2
2
±2.75, 5.5  
±2.75, 5.5  
3-Wire  
3-Wire  
256  
20  
20  
TSSOP-16  
TSSOP-16  
Nonvolatile Memory,  
Direct Program, I/D,  
±6 dB Settability  
1024  
Nonvolatile Memory,  
Direct Program,  
TC < 50 ppm/C  
AD5242  
AD5262  
2
2
±3, 5.5  
±5, 15  
2-Wire  
3-Wire  
10, 100,  
1000  
256  
256  
50  
60  
SO-16,  
TSSOP-16  
I2C Compatible,  
TC < 50 ppm/C  
20, 50, 200  
TSSOP-16  
5 V to 15 V or ±5 V  
Operation,  
TC < 50 ppm/C  
AD5203  
AD5233  
4
4
5.5  
3-Wire  
3-Wire  
10, 100  
64  
64  
5
PDIP, SOL-24, Full AC Specs, nA  
TSSOP-24  
Shutdown Current  
±2.75, 5.5  
10, 50, 100  
20  
TSSOP-24  
Nonvolatile Memory,  
Direct Program, I/D,  
±6 dB Settability  
AD5204  
AD8403  
AD5206  
4
4
6
±3, 5.5  
5.5  
3-Wire  
3-Wire  
3-Wire  
10, 50, 100  
256  
60  
5
PDIP, SOL-24, Full AC Specs, Dual  
TSSOP-24 Supply, Power-On-Reset  
1, 10, 50, 100 256  
PDIP, SOL-24, Full AC Specs, nA  
TSSOP-24 Shutdown Current  
±3, 5.5  
10, 50, 100  
256  
60  
PDIP, SOL-24, Full AC Specs, Dual  
TSSOP-24  
Supply, Power-On-Reset  
1For the most current information on digital potentiometers, check the website at: www.analog.com/DigitalPotentiometers  
2Future product, consult factory for latest status.  
–18–  
REV. 0  
AD5260/AD5262  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
14-Lead TSSOP  
(RU-14)  
0.201 (5.10)  
0.193 (4.90)  
14  
8
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
7
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0.0256 0.0118 (0.30)  
0؇  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
(0.65)  
BSC  
0.0075 (0.19)  
16-Lead TSSOP  
(RU-16)  
0.201 (5.10)  
0.193 (4.90)  
16  
9
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
8
PIN 1  
0.0433 (1.10)  
MAX  
0.006 (0.15)  
0.002 (0.05)  
8؇  
0؇  
0.028 (0.70)  
0.020 (0.50)  
0.0256 (0.65) 0.0118 (0.30)  
0.0079 (0.20)  
0.0035 (0.090)  
SEATING  
PLANE  
BSC  
0.0075 (0.19)  
REV. 0  
–19–  
–20–  

相关型号:

AD5260BRU50-REEL7

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5260BRUZ20

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5260BRUZ20-REEL7

IC 20K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO14, TSSOP-14, Digital Potentiometer
ADI

AD5260BRUZ20-RL7

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5260BRUZ200

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5260BRUZ200-RL7

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5260BRUZ50

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5260BRUZ50-REEL7

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5260_10

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5262

2-Channel, 256-Position Digital Potentiometer
ADI

AD5262BRU20

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5262BRU20-REEL7

1-/2-Channel 15 V Digital Potentiometers
ADI