AD5260BRUZ200 [ADI]

1-/2-Channel 15 V Digital Potentiometer; 1 / 2通道15 V数字电位计
AD5260BRUZ200
型号: AD5260BRUZ200
厂家: ADI    ADI
描述:

1-/2-Channel 15 V Digital Potentiometer
1 / 2通道15 V数字电位计

转换器 数字电位计 电阻器 光电二极管
文件: 总24页 (文件大小:610K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1-/2-Channel 15 V Digital Potentiometer  
AD5260/AD5262  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
A
W
B
256 positions  
AD5260: 1 channel  
AD5262: 2 channels (independently programmable)  
Potentiometer replacement  
SHDN  
AD5260  
V
DD  
RDAC  
REGISTER  
20 kΩ, 50 kΩ, 200 kΩ  
V
SS  
Low temperature coefficient: 35 ppm/°C  
4-wire, SPI-compatible serial data input  
5 V to 15 V single-supply; 5.5 V dual-supply operation  
Power on midscale preset  
V
L
POWER-ON  
RESET  
PR  
CS  
LOGIC  
8
CLK  
SDI  
SDO  
SERIAL INPUT REGISTER  
APPLICATIONS  
GND  
Mechanical potentiometer replacement  
Instrumentation: gain, offset adjustment  
Stereo channel audio level control  
Figure 1. AD5260  
A1 W1 B1  
A2 W2 B2  
Programmable voltage-to-current conversion  
Programmable filters, delays, time constants  
Line impedance matching  
SHDN  
V
DD  
Low resolution DAC replacement  
RDAC1  
RDAC2  
REGISTER  
REGISTER  
V
SS  
GENERAL DESCRIPTION  
V
L
The AD5260/AD5262 provide a single- or dual-channel, 256-  
position, digitally controlled variable resistor (VR) device.1  
These devices perform the same electronic adjustment function  
as a potentiometer or variable resistor. Each channel of the  
AD5260/AD5262 contains a fixed resistor with a wiper contact  
that taps the fixed resistor value at a point determined by a  
digital code loaded into the SPI-compatible serial-input register.  
The resistance between the wiper and either end point of the  
fixed resistor varies linearly with respect to the digital code  
transferred into the VR latch. The variable resistor offers a  
completely programmable value of resistance, between the A  
terminal and the wiper or the B terminal and the wiper. The  
fixed A-to-B terminal resistance of 20 Ω, 50 Ω, or 200 Ω has a  
nominal temperature coefficient of 35 ppm/°C. Unlike the  
majority of the digital potentiometers in the market, these  
devices can operate up to 15 V or 5 V provided proper supply  
voltages are furnished.  
POWER-ON  
RESET  
PR  
CS  
LOGIC  
8
CLK  
SDI  
SDO  
SERIAL INPUT REGISTER  
AD5262  
GND  
Figure 2. AD5262  
edge of the CLK pin. The AD5262 address bit determines the  
corresponding VR latch to be loaded with the last eight bits of  
CS  
the data word during the positive edging of  
strobe. A serial  
data output pin at the opposite end of the serial register enables  
simple daisy-chaining in multiple VR applications without  
additional external decoding logic. An optional reset pin (  
forces the wiper to the midscale position by loading 0x80 into  
the VR latch.  
PR  
)
The AD5260/AD5262 are available in thin surface-mount  
14-lead TSSOP and 16-lead TSSOP packages. All parts are  
guaranteed to operate over the extended industrial temperature  
range of −40°C to +85°C.  
Each VR has its own VR latch that holds its programmed  
resistance value. These VR latches are updated from an internal  
serial-to-parallel shift register, which is loaded from a standard  
3-wire serial-input digital interface. The AD5260 contains an  
8-bit serial register whereas the AD5262 contains a 9-bit serial  
register. Each bit is clocked into the register on the positive  
1 The terms digital potentiometers, VR, and RDAC are used interchangeably.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2002–2010 Analog Devices, Inc. All rights reserved.  
 
AD5260/AD5262  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Layout and Power Supply Bypassing ....................................... 18  
Terminal Voltage Operating Range ......................................... 18  
Power-Up Sequence ................................................................... 18  
RDAC Circuit Simulation Model............................................. 18  
Macro Model Net List for RDAC ............................................. 18  
Applications Information.............................................................. 19  
Bipolar DC or AC Operation from Dual Supplies................. 19  
Gain Control Compensation .................................................... 19  
Programmable Voltage Reference............................................ 19  
8-Bit Bipolar DAC...................................................................... 19  
Bipolar Programmable Gain Amplifier................................... 20  
Programmable Voltage Source with Boosted Output ........... 20  
Programmable 4 mA-to-20 mA Current Source ................... 20  
Programmable Bidirectional Current Source......................... 21  
Programmable Low-Pass Filter ................................................ 21  
Programmable Oscillator .......................................................... 21  
Resistance Scaling ...................................................................... 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—20 kΩ, 50 kΩ, 200 kΩ Versions .. 3  
Timing Diagrams.......................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 9  
Test Circuits..................................................................................... 14  
Theory of Operation ...................................................................... 15  
Digital Interfacing ...................................................................... 15  
Daisy-Chain Operation ............................................................. 16  
RDAC Structure.......................................................................... 16  
Programming the Variable Resistor......................................... 16  
Programming the Potentiometer Divider............................... 17  
REVISION HISTORY  
8/10—Rev. 0 to Rev. A  
Changes to Figure 11 Caption and Figure 12 ................................9  
Changes to Figure 31...................................................................... 12  
Changes to Figure 35 Caption ...................................................... 13  
Changes to Figure 43 and Figure 46............................................. 14  
Deleted Potentiometer Family Selection Guide ......................... 18  
Change to Programmable Voltage Source with Boosted Output  
Section.............................................................................................. 20  
Changes to Figure 64...................................................................... 21  
Updated Outline Dimensions....................................................... 23  
Changes to Ordering Guide.......................................................... 24  
Updated Format..................................................................Universal  
Deleted Figure 1; Renumbered Sequentially................................. 1  
Changes to General Description Section ...................................... 1  
Changes to Conditions of Channel Resistance Matching  
(AD5262 only) Parameter, Voltage Divider Temperature  
Coefficient Parameter, Full-Scale Error Parameter, and Zero-  
Scale Error Parameter, Table 1........................................................ 3  
Changes to Table 2 and Table 3....................................................... 5  
Changes to Table 4............................................................................ 6  
Changes to Table 5............................................................................ 7  
Changes to Table 6............................................................................ 8  
3/02—Revision 0: Initial Version  
Rev. A | Page 2 of 24  
 
AD5260/AD5262  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—20 kΩ, 50 kΩ, 200 kΩ VERSIONS  
VDD = +15 V, VSS = 0 V, or VDD = +5 V, VSS = –5 V; VL = +5 V; VA = +5 V, VB = 0 V, 40°C < TA < +85°C, unless otherwise noted.  
The AD5260/AD5262 contain 1968 transistors. Die size: 89 mil × 105 mil (9345 sq mil).  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max Unit  
DC CHARACTERISTICS RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
Specifications apply to all VRs  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
Wiper = no connect  
IW = 1 V/RAB  
R-DNL  
R-INL  
ΔRAB  
ΔRAB/ΔT  
RW  
ΔRWB/RWB  
−1  
−1  
−30  
±±  
±ꢀ  
+1  
+1  
30  
LSB  
LSB  
%
ppm/°C  
Ω
35  
60  
0.1  
150  
Channel Resistance Matching (AD5262 only)  
Channel 1 and Channel 2 RWB  
DX = 0x80  
,
%
Resistance Drift  
ΔRAB  
0.05  
%
DC CHARACTERISTICS POTENTIOMETER DIVIDER MODE  
Resolution  
Specifications apply to all VRs  
N
8
Bits  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
ΔVW/ΔT  
WFSE  
VWZSE  
−1  
−1  
±1/4  
±1/2  
5
−1  
1
+1  
+1  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = half scale  
Code = full scale  
Code = zero scale  
−2  
0
+0  
2
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range5  
VA, B, W  
CA,B  
VSS  
VDD  
V
pF  
Ax and Bx Capacitance6  
f = 5 MHz, measured to GND,  
code = half scale  
f = 1 MHz, measured to GND,  
code = half scale  
25  
55  
1
Wx Capacitance6  
CW  
pF  
Common-Mode Leakage Current  
Shutdown Current7  
DIGITAL INPUTS and OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
ICM  
ISHDN  
VA = VB = VDD/2  
nA  
μA  
5
VIH  
VIL  
VIH  
VIL  
VOH  
VOL  
IIL  
2.4  
2.1  
4.9  
V
V
V
V
V
V
μA  
pF  
0.8  
0.6  
VL = 3 V, VSS = 0 V  
VL = 3 V, VSS = 0 V  
RPULL-UP = 2 kΩ to 5 V  
IOL = 1.6 mA, VLOGIC = 5 V  
VIN = 0 V or 5 V  
Input Logic Low  
Output Logic High (SDO)  
Output Logic Low (SDO)  
Input Current8  
0.4  
±1  
Input Capacitance6  
CIL  
5
POWER SUPPLIES  
Logic Supply  
VL  
VDD RANGE  
VDD/SS RANGE  
IL  
IDD  
ISS  
PDISS  
2.7  
4.5  
±4.5  
5.5  
16.5  
±5.5  
60  
1
1
V
V
V
μA  
μA  
μA  
mW  
Power Single-Supply Range  
Power Dual-Supply Range  
Logic Supply Current  
Positive Supply Current  
Negative Supply Current  
Power Dissipation9  
VSS = 0 V  
VL = 5 V  
VIH = 5 V or VIL = 0 V  
VSS= −5 V  
VIH = 5 V or VIL = 0 V,  
VDD = +5 V, VSS = –5 V  
0.3  
Power Supply Sensitivity  
PSS  
ΔVDD= +5 V, ±10%  
0.003  
0.01  
%/%  
Rev. A | Page 3 of 24  
 
 
 
 
 
AD5260/AD5262  
Parameter  
DYNAMIC CHARACTERISTICS6, 10  
Symbol  
Conditions  
Min  
Typ1  
Max Unit  
Bandwidth –3 dB  
Total Harmonic Distortion  
BW  
THDW  
RAB = 20 kΩ/50 kΩ/200 kΩ  
VA = 1 VRMS, VB = 0 V, f = 1 kHz,  
RAB = 20 kΩ  
310/130/30  
0.014  
kHz  
%
VW Settling Time  
Crosstalk11  
tS  
VA = +5 V, VB = −5 V, ±1 LSB  
error band, RAB = 20 kΩ  
VA = VDD, VB = 0 V, measure VW  
with adjacent RDAC making  
full-scale code change (AD5262  
only)  
5
1
μs  
CT  
nV-sec  
Analog Crosstalk  
CTA  
VA1 = VDD, VB1 = 0 V, measure VW1  
with VW2 = 5 V p-p at f = 10 kHz,  
RAB = 20 kΩ/200 kΩ (AD5262  
only)  
–64  
13  
dB  
Resistor Noise Voltage  
INTERFACE TIMING CHARACTERISTICS6, 12  
Clock Frequency  
Input Clock Pulse Width  
Data Setup Time  
eN_WB  
RWB = 20 kΩ, f = 1 kHz  
nV/√Hz  
Specifications apply to all parts  
fCLK  
tCH, tCL  
tDS  
tDH  
tPD  
25  
MHz  
ns  
ns  
ns  
ns  
Clock level high or low  
RL = 1 kΩ, CL< 20 pF  
20  
10  
10  
1
Data Hold Time  
CLK to SDO Propagation Delay13  
160  
CS  
CS  
tCSS  
5
ns  
Setup Time  
tCSW  
tRS  
tCSH  
tCS1  
20  
50  
0
ns  
ns  
ns  
ns  
High Pulse Width  
Reset Pulse Width  
CS  
CLK Fall to Rise Hold Time  
CS  
10  
Rise to Clock Rise Setup  
1 Typical values represent average readings at 25°C and VDD = +5 V, VSS = 5 V.  
2 Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. IW = VDD/R for both VDD = +5 V and  
VSS = −5V.  
3 VAB = VDD, wiper = no connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output digital-to-analog converter. VA = VDD and VB = 0 V.  
DNL specification limits of ±1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Terminal B, and Terminal W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
7 Measured at the Ax terminals. All Ax terminals are open-circuit in shutdown mode.  
8 Worst-case supply current consumed when all logic-input levels set at 2.4 V, which is the standard characteristic of CMOS logic.  
9 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
10 All dynamic characteristics use VDD = +5 V, VSS = −5 V, VL = +5 V.  
11 Measured at VW where an adjacent VW is making a full-scale voltage change.  
12 See Figure 5 for location of measured values. All input control voltages are specified with tR = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
Switching characteristics are measured using VL = 5 V.  
13 Propagation delay depends on value of VDD, RL, and CL.  
Rev. A | Page 4 of 24  
AD5260/AD5262  
TIMING DIAGRAMS  
Table 2. AD5260 8-Bit Serial Data Word Format  
Data  
B7 (MSB)  
B6  
D6  
26  
B5  
D5  
25  
B4  
D4  
24  
B3  
D3  
23  
B2  
D2  
22  
B1  
D1  
21  
B0 (LSB)  
D7  
27  
D0  
20  
Table 3. AD5262 9-Bit Serial Data Word Format  
ADDR  
Data  
B3  
B8  
A0  
28  
B7 (MSB)  
B6  
D6  
26  
B5  
D5  
25  
B4  
D4  
24  
B2  
D2  
22  
B1  
B0 (LSB)  
D7  
27  
D3  
23  
D1  
21  
D0  
20  
1
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI  
0
1
CLK  
CS  
0
1
RDAC REGISTER LOAD  
0
1
V
OUT  
0
Figure 3. AD5260 Timing Diagram  
1
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI  
0
1
CLK  
CS  
0
1
RDAC REGISTER LOAD  
0
1
V
OUT  
0
Figure 4. AD5262 Timing Diagram  
1
0
SDI  
(DATA IN)  
Ax OR Dx  
Dx  
tDS  
tDH  
1
0
SDO  
(DATA OUT)  
A'x OR D'x  
D'x  
tPD  
tCH  
tCS1  
1
0
CLK  
CS  
tCSH  
tCL  
tCSS  
1
0
tCSW  
tS  
V
DD  
V
OUT  
±1 LSB  
±1 LSB ERROR BRAND  
0V  
Figure 5. Detailed Timing Diagram  
tRS  
1
PR  
0
tS  
V
DD  
0V  
±1 LSBD  
±1 LSB ERROR BAND  
Figure 6. Preset Timing Diagram  
Rev. A | Page 5 of 24  
 
 
 
 
AD5260/AD5262  
ABSOLUTE MAXIMUM RATINGS  
TA =25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
Rating  
VDD to GND  
VSS to GND  
VDD to VSS  
−0.3 V to +17 V  
0 V to −7 V  
17 V  
VL to GND  
0 V to +7 V  
VSS, VDD  
VA, VB, VW to GND  
AX to BX, AX to WX, BX to WX  
Intermittent1  
Continuous  
ESD CAUTION  
±20 mA  
±5 mA  
Digital Inputs and Output Voltage  
to GND  
−0.3 V to VL + 0.3 V, or  
+7 V (whichever is less)  
Operating Temperature Range  
Maximum Junction Temperature  
−40°C to +85°C  
150°C  
(TJ MAX  
)
Storage Temperature Range  
Lead Temperature (Soldering,10 sec)  
Vapor Phase (60 sec)  
Infrared (15 sec)  
−65°C to +150°C  
300°C  
215°C  
220°C  
Thermal Resistance2 θJA  
14-Lead TSSOP  
16-Lead TSSOP  
206°C/W  
150°C/W  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance setting.  
2 Package power dissipation = (TJ MAX − TA)/θJA  
.
Rev. A | Page 6 of 24  
 
 
 
AD5260/AD5262  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
A
W
B
SDO  
NC  
AD5260  
TOP VIEW  
(Not to Scale)  
V
L
V
V
SS  
DD  
SHDN  
CLK  
SDI  
GND  
PR  
8
CS  
NC = NO CONNECT  
Figure 7. AD5260 Pin Configuration  
Table 5. AD5260 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
A
A Terminal.  
2
3
W
B
Wiper Terminal.  
B Terminal.  
4
5
VDD  
SHDN  
CLK  
SDI  
CS  
Positive Power Supply. Specified for operation at both 5 V or 15 V (sum of |VDD| + |VSS| ≤ 15 V).  
Active Low Input. Terminal A, open-circuit. Shutdown controls variable resistor.  
Serial Clock Input, Positive Edge Triggered.  
6
7
8
Serial Data Input.  
Chip Select Input, Active Low. When CS returns high, data is loaded into the RDAC register.  
Active Low Preset to Midscale. Sets RDAC registers to 0x80.  
Ground.  
Negative Power Supply. Specified for operation from 0 V to −5 V.  
Logic Supply Voltage. Needs to be the same voltage as the digital logic controlling the AD5260.  
No Connect. Users should not connect anything other than a dummy pad on this pin.  
Serial Data Output. Open-drain transistor requires a pull-up resistor.  
9
PR  
10  
11  
12  
13  
14  
GND  
VSS  
VL  
NC  
SDO  
Rev. A | Page 7 of 24  
 
AD5260/AD5262  
16  
1
2
3
4
5
6
7
8
A2  
SDO  
A1  
15 W2  
14 B2  
W1  
B1  
AD5262  
TOP VIEW  
(Not to Scale)  
13  
12  
11  
10  
9
V
V
L
V
DD  
SS  
SHDN  
CLK  
SDI  
GND  
PR  
CS  
Figure 8. AD5262 Pin Configuration  
Table 6. AD5262 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
5
6
7
8
9
SDO  
A1  
W1  
B1  
VDD  
SHDN  
CLK  
SDI  
CS  
Serial Data Output. Open-drain transistor requires a pull-up resistor.  
A Terminal RDAC 1.  
Wiper RDAC 1, Address A0 = 0.  
B Terminal RDAC 1.  
Positive Power Supply. Specified for operation at both 5 V or 15 V. (Sum of |VDD| + |VSS| ≤ 15 V)  
Active Low Input. Terminal A, open-circuit. Shutdown controls variable Resistor 1 through Resistor R2.  
Serial Clock Input, Positive Edge Triggered.  
Serial Data Input.  
Chip Select Input, Active Low. When CS returns high, data in the serial input register is decoded, based on the  
Address Bit A0, and loaded into the target RDAC register.  
Active Low Preset to Midscale. Sets RDAC registers to 0x80.  
10  
11  
12  
13  
14  
15  
16  
PR  
GND  
VSS  
VL  
B2  
W2  
A2  
Ground.  
Negative Power Supply. Specified for operation at either 0 V or −5 V (sum of |VDD| + |VSS| < 15 V).  
Logic Supply Voltage. Needs to be same voltage as the digital logic controlling the AD5262.  
B Terminal RDAC 2.  
Wiper RDAC 2, Address A0 = 1.  
A Terminal RDAC 2.  
Rev. A | Page 8 of 24  
AD5260/AD5262  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.5  
0.4  
0.8  
0.7  
0.6  
V
V
R
= +5V  
= –5V  
= 20k  
DD  
SS  
T
T
T
T
= +85°C  
= +125°C  
= +25°C  
= –40°C  
A
A
A
A
AB  
0.3  
+5V  
0.2  
0.5  
0.1  
0.4  
0.3  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0.2  
+12V  
±5V  
0.1  
0
–0.1  
+15V  
192  
–0.2  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 12. DNL vs. Code  
Figure 9. R-INL vs. Code vs. Supply Voltages  
0.3  
0.2  
0.10  
0.05  
+5V  
±5V  
+15V  
0.1  
0
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.1  
–0.2  
–0.3  
–0.4  
+5V  
±5V  
+12V  
+15V  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 13. INL vs. Code vs. Supply Voltages  
Figure 10. R-DNL vs. Code vs. Supply Voltages  
0.5  
0.4  
1.0  
0.8  
V
V
R
= +5V  
= –5V  
= 20k  
DD  
SS  
±5V  
+15V  
+5V  
T
= +125°C  
A
0.3  
0.6  
AB  
0.2  
0.4  
T
= +85°C  
A
0.1  
T
= –40°C  
0.2  
A
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
T
= +25°C  
A
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 14. DNL vs. Code vs. Supply Voltages  
Figure 11. INL vs. Code  
Rev. A | Page 9 of 24  
 
AD5260/AD5262  
1.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
AVG + 3σ  
0.5  
0
V
/V = +15/0V  
DD SS  
AVG  
AVG – 3σ  
V
/V = ±5V  
DD SS  
V
/V = +5V/0V  
DD SS  
–0.5  
–1.0  
0
5
10  
|V – V | (V)  
15  
20  
20  
15  
–40  
–20  
0
20  
40  
60  
80  
100  
100  
125  
TEMPERATURE (°C)  
DD  
SS  
Figure 15. INL vs. Supply Voltages  
Figure 18. Full-Scale Error vs. Temperature  
2.0  
1.5  
1.0  
0.5  
2.5  
2.0  
1.5  
1.0  
0.5  
0
AVG + 3σ  
AVG  
V
/V = +5V/0V  
DD SS  
AVG – 3σ  
0
V
/V = ±5V  
DD SS  
–0.5  
–1.0  
V
/V = +15/0V  
DD SS  
–1.5  
–2.0  
0
5
10  
|V – V | (V)  
15  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
DD  
SS  
Figure 19. Zero-Scale Error vs. Temperature  
Figure 16. R-INL vs. Supply Voltages  
1
124  
104  
84  
64  
44  
24  
4
R
@ V /V = +5V/0V  
DD SS  
ON  
V
V
V
= 5V  
= 5V  
= 0V  
LOGIC  
IH  
IL  
0.1  
R
@ V /V = +5V/–5V  
DD SS  
ON  
0.01  
0.001  
V
/V = +15/0V  
DD SS  
R
@ V /V = +15V/0V  
DD SS  
ON  
V
/V = ±5V  
DD SS  
–5  
–1  
3
7
11  
–40  
–7  
26  
59  
92  
V
(V)  
TEMPERATURE (°C)  
DD  
Figure 17. Wiper On Resistance vs. Bias Voltage  
Figure 20. Supply Current vs. Temperature  
Rev. A | Page 10 of 24  
AD5260/AD5262  
120  
100  
80  
28.0  
27.5  
27.0  
26.5  
26.0  
25.5  
25.0  
24.5  
20kΩ  
50kΩ  
60  
V
/V = +15/0V  
DD SS  
40  
20  
V
/V = ±5V  
DD SS  
0
–20  
–40  
–60  
200kΩ  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40  
–7  
26  
59  
92  
125  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 21. ILOGIC vs. Temperature  
Figure 24. Potentiometer Mode Tempco ΔVWB/ΔT vs. Code  
1000  
100  
10  
6
T
= 25°C  
A
CODE = 0xFF  
0x80  
0
–6  
V
V
/V = 5V/0V  
DD SS  
0x40  
= 5V  
LOGIC  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
0x20  
0x10  
0x08  
0x04  
V
/V = 5V/0V  
DD SS  
V
= 3V  
LOGIC  
0x02  
0x01  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
1k  
10k  
100k  
1M  
V
FREQUENCY (Hz)  
IH  
Figure 22. ILOGIC vs. Digital Input Voltage  
Figure 25. Gain vs. Frequency vs. Code, RAB = 20 kΩ  
6
0
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
A
CODE = 0xFF  
0x80  
–6  
0x40  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
20k  
50kΩ  
0x20  
0x10  
0x08  
0x04  
0x02  
0x01  
–10  
–20  
200kΩ  
1k  
10k  
100k  
1M  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
FREQUENCY (Hz)  
Figure 23. Rheostat Mode Tempco ΔRWB /ΔT vs. Code  
Figure 26. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
Rev. A | Page 11 of 24  
AD5260/AD5262  
600  
500  
400  
300  
200  
100  
0
6
T
= 25°C  
A
CODE = 0xFF  
0
–6  
0x80  
0x40  
0x20  
0x10  
0x08  
CODE 0xFF  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
V
/V = ±5V  
DD SS  
0x04  
0x02  
0x01  
V
/V = +5V/0V  
DD SS  
CODE 0x55  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 30. ILOGIC vs. Frequency  
Figure 27. Gain vs. Frequency vs. Code, RAB = 200 kΩ  
60  
50  
40  
30  
20  
10  
0
6
0
CODE = 0x80, V = V , V = 0V  
f–3dB = 310kHz, R = 20kΩ  
f–3dB = 131kHz, R = 50kΩ  
A
DD  
B
–6  
–PSRR @ V  
= ±5V DC ± 10% p-p AC  
DD  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
f–3dB = 30kHz, R = 200kΩ  
+PSRR @ V  
= ±5V DC ± 10% p-p AC  
DD  
–3dB  
BANDWIDTHS  
V
V
= 50mV rms  
IN  
/V = ±5V  
DD SS  
1k  
10k  
100k  
1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
FREQUENCY (Hz)  
Figure 28. −3 dB Bandwidth  
Figure 31. PSRR vs. Frequency  
0.3  
0.2  
CODE = 0x80  
/V = ±5V  
V
DD SS  
T
= 25°C  
A
0.1  
0
R = 20k  
20mV/DIV  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
R = 50kΩ  
R = 200kΩ  
5V/DIV  
100  
1k  
10k  
100k  
1µs/DIV  
FREQUENCY (Hz)  
Figure 32. Midscale Glitch Energy, Code 0x80 to 0x7F  
Figure 29. Normalized Gain Flatness vs. Frequency  
Rev. A | Page 12 of 24  
 
AD5260/AD5262  
0.10  
0.05  
CODE = 0x80  
/V = ±5V  
SAMPLE SIZE = 135 UNITS  
V
DD SS  
AVG – 3σ  
0
AVG  
–0.05  
–0.10  
–0.15  
–0.20  
5V/DIV  
5V/DIV  
AVG + 3σ  
0
50  
100 150 200 250 300 350 400 450 500  
HOURS OF OPERATION AT 150°C  
20µs/DIV  
Figure 36. Long-Term Resistance Drift  
Figure 33. Large Signal Settling Time  
40  
30  
20  
10  
0
CODE SET TO MIDSCALE  
= 150°C  
3 LOTS  
T
A
SAMPLE SIZE = 135 UNITS  
10mV/DIV  
–0.50 –0.40 –0.30 –0.20  
–0.10  
0
0.10 0.20  
40ns/DIV  
CHANNEL-TO-CHANNEL R MATCH (%)  
AB  
Figure 34. Digital Feedthrough vs. Time  
Figure 37. Channel-to-Channel Resistance Matching (AD5262)  
100  
10  
V
T
= V = OPEN  
B
= 25°C  
A
A
1
R
= 20k  
AB  
R
= 50kΩ  
AB  
0.1  
0.01  
R
= 200kΩ  
AB  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
Figure 35. Theoretical Maximum Current vs. Code  
Rev. A | Page 13 of 24  
AD5260/AD5262  
TEST CIRCUITS  
Figure 38 to Figure 46 define the test conditions used in Table 1.  
0.1V  
R
=
W
I
W
DUT  
CODE = 0x00  
V+ = V  
1LSB = V+/2  
W
DUT  
A
DD  
N
B
0.1V  
I
W
W
V+  
B
V
MS  
V
TO V  
SS DD  
A = NC  
Figure 43. Incremental On Resistance  
Figure 38. Potentiometer Divider Nonlinearity Error (INL, DNL)  
NC  
NC  
NC = NO CONNECT  
DUT  
I
W
V
A
I
DD  
A
B
CM  
W
W
DUT  
B
V
GND  
SS  
V
CM  
V
MS  
NC  
Figure 44. Common-Mode Leakage Current  
Figure 39. Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
V
LOGIC  
I
LOGIC  
CS  
CLK  
SDI  
DUT  
I
= V /R  
DD NOMINAL  
W
A
V
W
W
V
MS2  
DIGITAL INPUT  
VOLTAGE  
B
V
R
= (V  
– V  
)/I  
MS1  
W
MS1  
MS2 W  
Figure 40. Wiper Resistance  
Figure 45. VLOGIC Current vs. Digital Input Voltage  
V
DD  
A1  
A2  
RDAC2  
W2  
V
A
RDAC1  
V+ = V ± 10%  
V
DD  
IN  
V  
MS  
DD  
W1  
PSRR (dB) = 20 log  
V
(
)
NC  
OUT  
V  
V
DD  
A
V  
V  
%
%
MS  
B2  
V
W
SS  
V+  
PSS (%/%) =  
MS  
B1  
DD  
B
V
C
= 20 log (V  
/V )  
TA  
OUT IN  
NC = NO CONNECT  
Figure 41. Power Supply Sensitivity (PSS, PSSR)  
Figure 46. Analog Crosstalk  
A
+13V  
W
V
IN  
DUT  
AD8610  
–13V  
V
OUT  
OFFSET  
GND  
B
Figure 42. Gain vs. Frequency  
Rev. A | Page 14 of 24  
 
 
 
AD5260/AD5262  
THEORY OF OPERATION  
The AD5260/AD5262 provide a single- or dual-channel, 256-  
position, digitally controlled variable resistor (VR) device and  
operate up to 15 V maximum voltage. Changing the programmed  
VR settings is accomplished by clocking an 8-/9-bit serial data  
word into the SDI (serial data input) pin. For the AD5262, the  
format of this data word is one address bit. A0 represents the  
first bit, B8, followed by eight data bits, B7 to B0, with MSB  
first. Table 2 and Table 3 provide the serial register data word  
format. See Table 7 for the AD5262 address assignment to decode  
the location of the VR latch receiving the serial register data in  
Bit B7 through Bit B0. VR outputs can be changed one at a time  
in random sequence. The AD5260/AD5262 preset to a midscale,  
simplifying fault condition recovery at power-up. Midscale can  
V
V
DD  
L
CS  
A1  
W1  
B1  
RDAC  
LATCH  
1
CLK  
PR  
EN  
SDI  
ADDR  
DEC  
A0  
SER  
REG  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A2  
W2  
B2  
RDAC  
LATCH  
2
PR  
SDO  
PR  
also be achieved at any time by asserting the  
pin. Both parts  
have an internal power-on preset that places the wiper in a  
midscale preset condition at power-on. Operation of the power-  
on preset function depends only on the state of the VL pin.  
POWER-  
ON  
PRESET  
PR  
SHDN  
GND  
V
SS  
Figure 47. AD5262 Block Diagram  
SHDN  
The AD5260/AD5262 contain a power shutdown  
pin  
that places the RDAC in an almost zero power consumption  
state where Terminals Ax are open circuited and the Wiper W  
is connected to B, resulting in only leakage currents being con-  
sumed in the VR structure. In the shutdown mode, the VR latch  
settings are maintained so that, when returning to operational  
mode from power shutdown, the VR settings return to their  
previous resistance values.  
The positive-edge sensitive CLK input requires clean transitions  
to avoid clocking incorrect data into the serial input register. Stand-  
ard logic families work well. If mechanical switches are used for  
product evaluation, they should be debounced by a flip-flop or  
other suitable means. Figure 47 shows more detail of the inter-  
CS  
nal digital circuitry. When  
is low, the clock loads data into  
the serial input register on each positive clock edge (see Table 8).  
Table 8. Truth Table1  
Table 7. AD5262 Address Decode Table  
A0  
Latch Loaded  
CS  
PR  
SHDN  
CLK  
Register Activity  
0
RDAC1  
Low Low High High  
No SR effect, enables SDO pin.  
1
RDAC2  
Low High High  
Shift one bit in from the SDI pin.  
The eighth previously entered  
bit is shifted out of the SDO pin.  
Load SR data into RDAC latch.  
No operation.  
Sets all RDAC latches to half  
scale, wiper centered, and SDO  
latch cleared.  
DIGITAL INTERFACING  
The AD5260/AD5262 contain a 4-wire SPI-compatible digital  
X
X
X
High High  
High High High  
CS  
interface (SDI, SDO, , and CLK). For the AD5260, the 8-bit  
serial word must be loaded with the MSB first. The format of  
the word is shown in Table 2. For the AD5262, the 9-bit serial  
word must be loaded with Address Bit A0 first, then the MSB  
of the data. The format of the word is shown in Table 3.  
X
Low High  
X
X
High  
High  
Latches all RDAC latches to 0x80.  
Open circuits all Resistor A  
High High Low  
terminals, connects W to B, and  
turns off SDO output transistor.  
1
= positive edge, X = don’t care, SR = shift register.  
The data setup and data hold times in Table 1 determine the  
data valid time requirements. The AD5260 uses an 8-bit serial  
input data register word that is transferred to the internal  
CS  
RDAC register when the  
AD5262, the last nine bits of the data word entered into the  
CS  
line returns to logic high. For the  
serial register are held when  
CS  
returns high. Any extra bits are  
goes high, it gates the address  
ignored. At the same time  
decoder, enabling one of two positive edge-triggered AD5262  
RDAC latches (see Figure 48).  
Rev. A | Page 15 of 24  
 
 
 
 
 
AD5260/AD5262  
AD5260/AD5262  
CS  
registers, and the  
operation.  
pin is then pulled high to complete the  
CS  
RDAC1  
RDAC2  
ADDR  
DECODE  
V
DD  
CLK  
SDI  
SERIAL  
REGISTER  
AD5260  
AD5260  
U2  
R
P
2.2kΩ  
MICRO-  
CONTROLLER  
U1  
Figure 48. Equivalent Input Control Logic  
MOSI  
SDI SDO  
SDI SDO  
SCLK SS  
CLK  
CLK  
CS  
CS  
The target RDAC latch is loaded with the last eight bits of  
the serial data word completing one RDAC update. For the  
AD5262, two separate 9-bit data words must be clocked in to  
change both VR settings.  
Figure 52. Daisy-Chain Configuration  
SHDN  
During shutdown (  
), the SDO output pin is forced to the  
RDAC STRUCTURE  
off (logic high) state to disable power dissipation in the pull-up  
resistor. See Figure 49 for the equivalent SDO output circuit  
schematic.  
The RDAC contains a string of equal resistor segments with an  
array of analog switches that act as the wiper connection. The  
number of positions is the resolution of the device. The AD5260/  
AD5262 have 256 connection points, allowing it to provide better  
than 0.4% settability resolution. Figure 53 shows an equivalent  
structure of the connections between the three terminals that  
make up one channel of the RDAC. SWA and SWB are always  
on, while one of the switches SW(0) to SW(2N – 1) is on one at a  
time, depending on the resistance position decoded from the  
data bits. Because the switch is not ideal, there is a 60 Ω wiper  
resistance, RW. Wiper resistance is a function of supply voltage  
and temperature. The lower the supply voltage is, the higher the  
wiper resistance becomes. Similarly, the higher the temperature  
is, the higher the wiper resistance becomes. Users should be  
aware of the contribution of the wiper resistance when accurate  
prediction of the output resistance is needed.  
SHDN  
SDO  
CS  
D
Q
SERIAL  
REGISTER  
SDI  
CLK  
PR  
CK RS  
Figure 49. Detail SDO Output Schematic of the AD5260  
All digital inputs are protected with a series input resistor and  
parallel Zener ESD structure as shown in Figure 50. This applies  
CS  
PR SHDN  
to the , SDI, SDO,  
,
, and CLK digital input pins.  
340  
LOGIC  
Ax  
SHDN  
R
S
Figure 50. ESD Protection of Digital Pins  
A, B, W  
R
R
S
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
V
SS  
S
Figure 51. ESD Protection of Resistor Terminals  
DAISY-CHAIN OPERATION  
Wx  
The serial data output (SDO) pin contains an open-drain N-  
channel FET. This output requires a pull-up resistor to transfer  
data to the SDI pin of the next package. This allows for daisy-  
chaining several RDACs from a single processor serial data line.  
The pull-up resistor termination voltage can be larger than the  
RDAC  
LATCH  
AND  
DECODE  
R
S
VDD supply voltage. It is recommended to increase the clock  
Bx  
DIGITAL CIRCUITRY  
OMITTED FOR CLARITY  
N
= R /2  
AB  
R
S
period when using a pull-up resistor to the SDI pin of the  
following device in series because capacitive loading at the  
daisy-chain node connecting SDO and SDI between devices  
may induce time delay to subsequent devices. Users should  
be aware of this potential problem to achieve data transfer  
successfully (see Figure 52). If two AD5260s are daisy-chained,  
this requires a total of 16 bits of data. The first eight bits, complying  
with the format shown in Table 2, go to U2, and the second  
Figure 53. Simplified RDAC Architecture  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
The nominal resistances of the RDAC between Terminal A and  
Terminal B are available with values of 20 kΩ, 50 kΩ, and 200 kΩ.  
The final three digits of the part number determine the nominal  
resistance value, for example, 20 kΩ = 20, 50 kΩ = 50, 200 kΩ =  
200. The nominal resistance (RAB) of the VR has 256 contact points  
CS  
eight bits with the same format go to U1. The  
pin should be  
kept low until all 16 bits are clocked into their respective serial  
Rev. A | Page 16 of 24  
 
 
 
 
 
 
AD5260/AD5262  
accessed by the wiper terminal, plus the B terminal contact. The  
8-bit data in the RDAC latch is decoded to select one of the 256  
possible settings. Assuming a 20 kΩ part is used, the wipers first  
connection starts at the B terminal for data 0x00. Because there  
is a 60 Ω wiper contact resistance, such a connection yields a  
minimum of 60 Ω resistance between Terminal W and Terminal B.  
The second connection is the first tap point corresponding to  
138 Ω (RWB = RAB/256 RW = 78 Ω + 60 Ω) for Data 0x01. The third  
connection is the next tap point representing 216 Ω (78 × 2 + 60)  
for Data 0x02, and so on. Each LSB data value increase moves  
the wiper up the resistor ladder until the last tap point is reached at  
19,982 Ω (RAB − 1 LSB + RW). The wiper does not directly connect  
to the B terminal. See Figure 53 for a simplified diagram of the  
equivalent RDAC circuit.  
set for the RDAC latch codes shown in Table 10. The result is  
the same if Terminal B is tied to Terminal W.  
Table 10. RWA vs. Code  
RDAC (Dec)  
RWA (Ω)  
Output State  
Full scale  
Half scale  
1 LSB  
256  
128  
1
60  
10,060  
19,982  
20,060  
0
Zero scale  
20  
R
R
WB  
WA  
16  
12  
8
The general equation determining the digitally programmed  
output resistance between W and B is  
D
256  
R
WB (D) =  
×RAB + RW  
(1)  
4
where D is the decimal equivalent of the binary code that is  
R
= 20k  
AB  
loaded in the 8-bit RDAC register and RAB is the nominal end-  
to-end resistance.  
0
0
64  
128  
CODE (Decimal)  
192  
256  
For example, when RAB = 20 kΩ, VB = 0 V, and the A terminal is  
open circuit, the following output resistance values of RWB are  
set for the RDAC latch codes shown in Table 9. The result is the  
same if Terminal A is tied to W.  
Figure 54. AD5260/AD5262 Equivalent RDAC Circuit  
The typical distribution of the nominal resistance RAB from  
channel to channel matches within 1%. Device-to-device  
matching is process lot-dependent with the worst case of  
30% variation. However, because the resistance element  
is processed in thin film technology, the change in RAB with  
temperature has a low 35 ppm/°C temperature coefficient.  
Table 9. RWB vs. Code  
RDAC (Dec)  
RWB (Ω) Output State  
256  
128  
1
19,982  
10,060  
138  
Full scale (RAB – 1 LSB + RW)  
Midscale  
1 LSB  
PROGRAMMING THE POTENTIOMETER DIVIDER  
0
60  
Zero-scale (wiper contact resistance)  
Voltage Output Operation  
The digital potentiometer easily generates output voltages at  
wiper-to-B and wiper-to-A to be proportional to the input  
voltage at A-to-B. Ignore the effect of the wiper resistance. For  
example, connecting the A terminal to 5 V and the B terminal  
to ground produces an output voltage at W-to-B starting at 0 V  
up to 1 LSB less than 5 V. Each LSB of voltage is equal to the  
voltage applied across Terminal A and Terminal B divided by  
the 256 positions of the potentiometer divider. Because the  
AD5260/AD5262 operate from dual supplies, the general  
equation defining the output voltage at VW with respect to  
ground for any given input voltage applied to Terminal A and  
Terminal B is  
Note that in the zero-scale condition, a finite wiper resistance of  
60 Ω is present. Care should be taken to limit the current flow  
between W and B in this state to no more than 20 mA to avoid  
degradation or possible destruction of the internal switches.  
Like the mechanical potentiometer the RDAC replaces, the  
AD5260/AD5262 are completely symmetrical. The resistance  
between Wiper W and Terminal A also produces a digitally  
controlled complementary resistance, RWA. Figure 54 shows the  
symmetrical programmability of the various terminal connec-  
tions. When RWA is used, the B terminal can be left floating or  
tied to the wiper. Setting the resistance value for RWA starts at a  
maximum value of resistance and decreases as the data loaded  
in the latch is increased in value. The general equation for this  
operation is  
D
VW (D) =  
×VAB +VB  
(3)  
256  
256 D  
256  
Operation of the digital potentiometer in the divider mode  
R
WA (D) =  
×RAB + RW  
(2)  
results in more accurate operation over temperature. Unlike the  
rheostat mode, the output voltage is dependent on the ratio of  
the internal resistors, RWA and RWB, and not the absolute values;  
therefore, the drift reduces to 5 ppm/°C.  
For example, when RAB = 20 kΩ, VA = 0 V, and the B terminal is  
open circuit, the following output resistance values of RWA are  
Rev. A | Page 17 of 24  
 
 
 
 
AD5260/AD5262  
voltage range of the three terminals extends from VSS to VDD  
regardless of the digital input level.  
LAYOUT AND POWER SUPPLY BYPASSING  
It is good practice to employ a compact, minimum lead length  
layout design. The leads to the input should be as direct as  
possible with a minimum conductor length. Ground paths  
should have low resistance and low inductance.  
POWER-UP SEQUENCE  
Because there are diodes to limit the voltage compliance at  
Terminal A, Terminal B, and Terminal W (see Figure 56), it is  
important to power VDD/VSS first before applying any voltage to  
the A, B, and W terminals. Otherwise, the diode becomes forward  
biased such that VDD/VSS are powered unintentionally and may  
affect the rest of the users circuit. The ideal power-up sequence  
is in the following order: GND, VDD, VSS, VL, the digital inputs,  
and VA/VB/VW. The order of powering VA/VB/VW and the digital  
inputs is not important as long as they are powered after VDD/VSS.  
Similarly, it is also good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to  
the device should be bypassed with 0.01 μF to 0.1 μF disc or  
chip ceramic capacitors. Low ESR 1 μF to 10 μF tantalum or  
electrolytic capacitors should also be applied at the supplies to  
minimize any transient disturbance (see Figure 55). Note that  
the digital ground should also be joined remotely to the analog  
ground to minimize the ground bounce.  
RDAC CIRCUIT SIMULATION MODEL  
V
V
DD  
DD  
The internal parasitic capacitances and the external capacitive  
loads dominate the ac characteristics of the RDACs. Configured  
as a potentiometer divider, the −3 dB bandwidth of the AD5260  
(20 kΩ resistor) measures 310 kHz at half scale. Figure 28 provides  
the large signal Bode plot characteristics of the three available  
resistor versions 20 kΩ, 50 kΩ, and 200 kΩ. A parasitic simula-  
tion model is shown in Figure 57. The following section provides a  
macro model net list for the 20 kΩ RDAC.  
+
C1  
C2  
C3  
C4  
10µF  
0.1µF  
0.1µF  
+
10µF  
V
V
GND  
SS  
SS  
Figure 55. Power Supply Bypassing  
TERMINAL VOLTAGE OPERATING RANGE  
RDAC  
20k  
The AD5260/AD5262 positive VDD and negative VSS power  
supply defines the boundary conditions for proper 3-terminal  
digital potentiometer operation. Supply signals present on the  
A, B, and W terminals that exceed VDD or VSS are clamped by  
the internal forward-biased diodes (see Figure 56).  
A
B
C
W
C
C
B
A
25pF  
25pF  
55pF  
W
V
DD  
Figure 57. RDAC Circuit Simulation Model for RDAC 20 kΩ  
A
MACRO MODEL NET LIST FOR RDAC  
PARAM D=256, RDAC=20E3  
W
B
*
SUBCKT DPOT (A,W,B)  
*
V
SS  
CA  
RWA  
CW  
RWB  
CB  
*
A
A
W
W
B
0
W
0
B
0
25E-12  
{(1-D/256)*RDAC+60}  
55E-12  
{D/256*RDAC+60}  
25E-12  
Figure 56. Maximum Terminal Voltages Set by VDD and VSS  
The ground pin of the AD5260/AD5262 device is primarily  
used as a digital ground reference, which needs to be tied to the  
common ground of the PCB. The digital input control signals to  
the AD5260/AD5262 must be referenced to the device ground  
pin (GND), and must satisfy the logic level defined in Table 1.  
An internal level shift circuit ensures that the common-mode  
.ENDS DPOT  
Rev. A | Page 18 of 24  
 
 
 
 
AD5260/AD5262  
APPLICATIONS INFORMATION  
it avoids the ringing or oscillation at the worst case. For critical  
applications, C2 should be found empirically to suit the need.  
In general, C2 in the range of a few picofarads (pF) to no more  
than a few tenths of pF is usually adequate for the compensation.  
BIPOLAR DC OR AC OPERATION FROM DUAL  
SUPPLIES  
The AD5260/AD5262 can be operated from dual supplies  
enabling control of ground referenced ac signals or bipolar  
operation. The ac signal, as high as VDD/VSS, can be applied  
directly across Terminal A and Terminal B with output taken  
from Terminal W. See Figure 58 for a typical circuit connection.  
Similarly, there are W and A terminal capacitances connected to  
the output (not shown). Fortunately, their effect at this node is less  
significant, and the compensation can be avoided in most cases.  
PROGRAMMABLE VOLTAGE REFERENCE  
+5.0V  
For voltage divider mode operation, shown in Figure 60, it is  
common to buffer the output of the digital potentiometer unless  
the load is much larger than RWB. Not only does the buffer serve  
the purpose of impedance conversion, but it also allows a  
heavier load to be driven.  
V
DD  
V
DD  
SS  
CS  
±5V p-p  
MICROCONTROLLER  
SCLK  
±2.5V p-p  
D = 0x80  
CLK  
SDI  
MOSI  
GND  
5V  
GND  
V
1
U1  
SS  
V
IN  
–5.0V  
AD5260  
5V  
3
V
Figure 58. Bipolar Operation from Dual Supplies  
OUT  
A
W
GND  
GAIN CONTROL COMPENSATION  
V
O
B
AD8601  
A1  
2
AD1582  
Digital potentiometers are commonly used in gain control as in  
the noninverting gain amplifier shown in Figure 59.  
C2  
4.7pF  
Figure 60. Programmable Voltage Reference  
8-BIT BIPOLAR DAC  
R2  
200k  
Figure 61 shows a low cost 8-bit bipolar DAC. It offers the same  
number of adjustable steps but not the precision of conventional  
DACs. The linearity and temperature coefficients, especially at low  
values codes, are skewed by the effects of the digital potentiometer  
wiper resistance. The output of this circuit is  
B
A
R1  
47kΩ  
W
C1  
25pF  
V
U1  
O
V
i
2D  
256  
Figure 59. Typical Noninvertng Gain Amplifier  
VO  
=
1 ×V  
(4)  
REF  
Note that when the RDAC B terminal parasitic capacitance is  
connected to the op amp noninverting node, it introduces a zero  
for the 1/βO term with +20 dB/dec, whereas a typical op amp  
gain bandwidth product (GBP) has −20 dB/dec characteristics.  
A large R2 and finite C1 can cause this zeros frequency to fall  
well below the crossover frequency. Therefore, the rate of  
closure becomes 40 dB/dec and the system has 0 phase margin  
at the crossover frequency. The output may ring or oscillate if  
the input is a rectangular pulse or step function. Similarly, it is  
also likely to ring when switching between two gain values  
because this is equivalent to a step change at the input.  
+5V  
AD5260  
V
i
U2  
V
O
OP2177  
U1  
W
B
V
IN  
A
A2  
–5V  
–5V  
R
R
V
OUT  
+5V  
+5V  
W1  
REF  
REF  
TRIM  
GND  
ADR425  
OP2177  
A1  
–5V  
Depending on the op amp GBP, reducing the feedback resistor  
may extend the zero’s frequency far enough to overcome the  
problem. A better approach, however, is to include a compensa-  
tion capacitor, C2, to cancel the effect caused by C1. Optimum  
compensation occurs when R1 × C1 = R2 × C2. This is not an  
option because of the variation of R2. As a result, the R1 × C1 =  
R2 × C2 relationship can be used, and scale C2 as if R2 is at its  
maximum value. Doing so may overcompensate and compromise  
the performance slightly when R2 is set at low values. However,  
Figure 61. 8-Bit Bipolar DAC  
Rev. A | Page 19 of 24  
 
 
 
 
 
AD5260/AD5262  
BIPOLAR PROGRAMMABLE GAIN AMPLIFIER  
PROGRAMMABLE VOLTAGE SOURCE WITH  
BOOSTED OUTPUT  
For applications that require bipolar gain, Figure 62 shows one  
implementation. Digital Potentiometer U1 sets the adjustment  
range. The wiper voltage at W2 can therefore be programmed  
between Vi and −KVi at a given U2 setting. Configuring A2 in  
the noninverting mode allows linear gain and attenuation. The  
transfer function is  
For applications that require high current adjustment such as a  
laser diode driver or tunable laser, a boosted voltage source can  
be considered (see Figure 63).  
V
i
V
O
5V  
10k  
R1  
P1  
R
BIAS  
VO  
Vi  
R2  
R1  
D2  
256  
⎞ ⎛  
⎠ ⎝  
= 1+  
×
×
(1+ K  
)
K  
(5)  
A
B
⎟ ⎜  
C
C
W
U1  
N1  
SIGNAL  
LO  
I
L
A1  
where K is the ratio of RWB1/RWA1 set by U1.  
V
DD  
U1 = AD5260  
A1 = AD8601, AD8605, AD8541  
P1 = FDP360P, NDS9430  
N1 = FDV301N, 2N7002  
U2  
V
OP2177  
O
AD5262  
W2  
B2  
Figure 63. Programmable Boosted Voltage Source  
R2  
R1  
C1  
A2  
A1  
A2  
V
SS  
In this circuit, the inverting input of the op amp forces VO to be  
equal to the wiper voltage set by the digital potentiometer. The  
load current is then delivered by the supply via the P-channel  
FET, P1. The N-channel FET, N1, simplifies the op amp driving  
requirement. A1 must be the rail-to-rail input type. Resistor R1  
is needed to prevent P1 from turning off once it is on. The choice  
of R1 is a balance between the power loss of this resistor and  
the output turn-off time. N1 can be any general-purpose signal  
FET. However, P1 is driven in the saturation state, and there-  
fore, its power handling must be adequate to dissipate (Vi − VO)  
× IL power. This circuit can source a maximum of 100 mA at 5 V  
supply. Higher current can be achieved with P1 in a larger pack-  
age. Note that a single N-channel FET can replace P1, N1, and  
R1 altogether. However, the output swing is limited unless sepa-  
rate power supplies are used. For a precision application, a  
voltage reference such as the ADR423, ADR292, or AD1584 can  
be applied at the input of the digital potentiometer.  
B1  
W1  
V
i
–KV  
i
V
DD  
U1  
AD5262  
OP2177  
A1  
V
SS  
Figure 62. Bipolar Programmable Gain Amplifier  
Similar to the previous example, in the simpler and more  
common case, where K = 1, with a single digital potentiometer,  
AD5260, U1 is replaced by a matched pair of resistors to apply  
Vi and −Vi at the ends of the digital potentiometer. The relation-  
ship becomes  
R2 2D2  
⎞⎛  
VO = 1+  
1 ×V  
(6)  
⎟⎜  
i
R1 256  
⎠⎝  
If R2 is large, a few picofarad compensation capacitors may be  
needed to avoid any gain peaking.  
PROGRAMMABLE 4 mA-TO-20 mA CURRENT  
SOURCE  
Table 11 shows the result of adjusting D, with A2 configured as  
a unity gain, a gain of 2, and a gain of 10. The result is a bipolar  
amplifier with linearly programmable gain and 256-step  
resolution.  
A programmable 4 mA-to-20 mA current source can be  
implemented with the circuit shown in Figure 64. REF191 is a  
unique low supply headroom and high current handling  
precision reference that can deliver 20 mA at 2.048 V. The load  
current is simply the voltage across Terminal B to Terminal W  
of the digital potentiometer, divided by RS.  
Table 11. Result of Bipolar Gain Amplifier  
D
R1 = ∞, R2 = 0  
R1 = R2  
R2 = 9 × R1  
V
REF ×D  
RS  
0
64  
128  
192  
255  
−1  
−0.5  
0
+0.5  
+0.968  
−2  
−1  
0
+1  
−10  
−5  
0
+5  
+9.680  
IL  
=
(7)  
+1.937  
Rev. A | Page 20 of 24  
 
 
 
 
AD5260/AD5262  
+5V  
1
1
Q =  
+
(11)  
R1C1 R2C2  
2
U1  
V
S
Users can first select any convenient value for the capacitors. To  
achieve maximally flat bandwidth where Q = 0.707, let C1 be  
twice the size of C2 and let R1 = R2. As a result, users can adjust  
R1 and R2 to the same settings to achieve the desirable bandwidth.  
C1  
REF191  
3
0V TO (2.048V + V )  
L
SLEEP  
OUTPUT  
6
B
A
W
C1  
1µF  
AD5260  
GND  
4
+5V  
U2  
+2.5V  
R
S
102  
OP1177  
+
R1  
R2  
–2.048 TO V  
L
A
B
A
B
V
L
V
i
R
L
AD8601  
–2.5V  
V
O
W
W
100Ω  
I
L
–5V  
R
R
Figure 64. Programmable 4-to-20 mA Current Source  
C2  
The circuit is simple, but be aware that dual-supply op amps are  
ideal because the ground potential of REF191 can swing from  
−2.048 V at zero scale to VL at full scale of the potentiometer  
setting. Although the circuit works under single supply, the  
programmable resolution of the system is reduced.  
ADJUSTED TO  
SAME SETTINGS  
Figure 66. Sallen Key Low-Pass Filter  
PROGRAMMABLE OSCILLATOR  
In a classic Wien-bridge oscillator (see Figure 67), the Wien  
network (R, R, C, C’) provides positive feedback, whereas R1  
and R2 provide negative feedback. At the resonant frequency, fo,  
the overall phase shift is zero, and the positive feedback causes  
the circuit to oscillate. With R = R, C = C, and R2 = R2A//(R2B +  
RDIODE), the oscillation frequency is  
PROGRAMMABLE BIDIRECTIONAL CURRENT  
SOURCE  
For applications that require bidirectional current control or  
higher voltage compliance, a Howland current pump can be a  
solution (see Figure 65). If the resistors are matched, the load  
current is  
1
RC  
1
ωO  
=
or fO  
=
(12)  
(13)  
(14)  
(
R2A + R2B  
R2B  
)
R1  
2πRC  
IL  
=
×VW  
(8)  
where R is equal to RWA such that  
R1'  
150k  
R2'  
15kΩ  
256 D  
256  
R =  
RAB  
C1  
10pF  
+15V  
At resonance, setting  
R2  
= 2  
R1  
A2  
C2  
10pF  
AD8016  
–15V  
+5V  
+15V  
balances the bridge. In practice, R2/R1 should be set slightly  
R
50Ω  
L
larger than 2 to ensure the oscillation can start. However, the  
alternate turn-on of the diodes, D1 and D2, ensures R2/R1 to  
be smaller than 2 momentarily and therefore stabilizes the  
oscillation.  
A
R1  
150kΩ  
AD5260  
W
V
I
OP2177  
L
B
R2A  
14.95kΩ  
R
500Ω  
L
A1  
–5V  
When the frequency is set, the oscillation amplitude can be  
tuned by R2B because  
L
–15V  
Figure 65. Programmable Bidirectional Current Source  
2
3
VO = ID R2B +VD  
(15)  
PROGRAMMABLE LOW-PASS FILTER  
Digital Potentiometer AD5262 can be used to construct a  
second-order, Sallen-Key low-pass filter (see Figure 66). The  
design equations are  
VO, ID, and VD are interdependent variables. With proper  
selection of R2B, an equilibrium is reached such that VO  
converges. R2B can be in series with a discrete resistor to  
increase the amplitude, but the total resistance cannot be too  
large to saturate the output.  
2
VO  
Vi  
ωO  
ωO  
=
(9)  
S2 +  
S +ωO  
2
Q
In both circuits in Figure 66 and Figure 67, the frequency tuning  
requires that both RDACs be adjusted to the same settings.  
Because the two channels are adjusted one at a time, an intermedi-  
1
ωO  
=
(10)  
R1R2C1C2  
Rev. A | Page 21 of 24  
 
 
 
 
AD5260/AD5262  
ate state occurs that may not be acceptable for certain applications.  
As a result, different devices can also be used in daisy-chained  
mode so that parts can be programmed to the same setting  
simultaneously.  
In voltage divider mode, a much lower resistance can be achieved  
by paralleling a discrete resistor as shown in Figure 69. The  
equivalent resistance becomes  
D
256  
RWB _ eq  
=
(R1// R2)+ RW  
(16)  
(17)  
FREQUENCY  
ADJUSTMENT  
C'  
R'  
2.2nF  
10kΩ  
VP  
D
RWA _ eq = 1−  
(R1//R2) + R  
A
B
B
R
10kΩ  
W
C
2.2nF  
256  
+5V  
W
W
A
A
U1  
V
OP1177  
–5V  
O
AD5262  
W
R2  
R1  
R1 = R1' = R2B = AD5262  
D1 = D2 = 1N4148  
VN  
R2A  
2.1kΩ  
D1  
D2  
R2B  
B
R2 << R1  
10kΩ  
B
A
R1  
1kΩ  
W
Figure 69. Lowering the Nominal Resistance  
AMPLITUDE  
ADJUSTMENT  
Figure 68 and Figure 69 show that the digital potentiometers  
change steps linearly. However, log taper adjustment is usually  
preferred in applications like audio control. Figure 70 shows  
another method of resistance scaling. In this circuit, the smaller  
R2 is with respect to RAB, the more the pseudo-log taper  
characteristic behaves.  
Figure 67. Programmable Oscillator with Amplitude Control  
RESISTANCE SCALING  
The AD5260/AD5262 offer 20 kΩ, 50 kΩ, and 200 kΩ nominal  
resistance. For users who need lower resistance and still main-  
tain the numbers of step adjustment, they can place multiple  
devices in parallel. For example, Figure 68 shows a simple  
scheme of paralleling both channels of the AD5262. To adjust  
half of the resistance linearly per step, users need to program  
both channels coherently with the same settings.  
V
i
A
R1  
W
V
O
B
R2  
V
DD  
Figure 70. Resistor Scaling with Log Adjustment Characteristics  
A2  
B2  
A1  
B1  
W1  
W2  
LD  
Figure 68. Reduce Resistance by Half with Linear Adjustment Characteristics  
Rev. A | Page 22 of 24  
 
 
 
 
 
AD5260/AD5262  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 71. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
16  
9
4.50  
4.40  
4.30  
6.40  
BSC  
1
8
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 72. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
Rev. A | Page 23 of 24  
 
AD5260/AD5262  
ORDERING GUIDE  
Model1  
AD5260BRUZ20  
AD5260BRUZ20-RL7  
AD5260BRUZ50  
AD5260BRUZ50-REEL7  
AD5260BRUZ200  
AD5260BRUZ200-RL7  
AD5262BRU20  
AD5262BRU20-REEL7  
AD5262BRU50  
AD5262BRU50-REEL7  
AD5262BRU200  
AD5262BRU200-REEL7  
AD5262BRUZ20  
AD5262BRUZ20-RL7  
AD5262BRUZ50  
RAB (kΩ)  
20  
20  
50  
50  
200  
200  
20  
20  
50  
Temperature  
Package Description  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
Evaluation Board  
Package Option  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-14  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
No. of Parts per Container  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
96  
1000  
96  
1000  
96  
1000  
96  
1000  
96  
1000  
96  
1000  
96  
1000  
96  
50  
200  
200  
20  
20  
50  
50  
200  
200  
AD5262BRUZ50-RL7  
AD5262BRUZ200  
AD5262BRUZ200-RL7  
EVAL-AD5262EBZ  
1000  
96  
1000  
1 Z = RoHS Compliant Part.  
©2002–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02695-0-8/10(A)  
Rev. A | Page 24 of 24  
 
 
 
 
 
 
 
 

相关型号:

AD5260BRUZ200-RL7

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5260BRUZ50

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5260BRUZ50-REEL7

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5260_10

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5262

2-Channel, 256-Position Digital Potentiometer
ADI

AD5262BRU20

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5262BRU20-REEL7

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5262BRU200

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5262BRU200-REEL7

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5262BRU50

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5262BRU50-REEL7

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5262BRUZ20

1-/2-Channel 15 V Digital Potentiometer
ADI