AD5262 [ADI]

2-Channel, 256-Position Digital Potentiometer; 双通道, 256位数字电位计
AD5262
型号: AD5262
厂家: ADI    ADI
描述:

2-Channel, 256-Position Digital Potentiometer
双通道, 256位数字电位计

数字电位计
文件: 总16页 (文件大小:660K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2-Channel, 256-Position  
Digital Potentiometer  
a
AD5207  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
256-Position, 2-Channel  
Potentiometer Replacement  
10 k, 50 k, 100 kꢀ  
A1  
W1  
B1  
A2  
W2  
B2  
Power Shut-Down, Less than 5 A  
2.7 V to 5.5 V Single Supply  
2.7 V Dual Supply  
3-Wire SPI-Compatible Serial Data Input  
Midscale Preset During Power-On  
SHDN  
RDAC1 REGISTER  
R
RDAC2 REGISTER  
R
V
DD  
V
SS  
APPLICATIONS  
LOGIC  
POWER-  
CS  
ON  
Mechanical Potentiometer Replacement  
Stereo Channel Audio Level Control  
Instrumentation: Gain, Offset Adjustment  
Programmable Voltage-to-Current Conversion  
Programmable Filters, Delays, Time Constants  
Line Impedance Matching  
RESET  
8
AD5207  
CLK  
SDI  
SDO  
SERIAL INPUT REGISTER  
DGND  
Automotive Electronics Adjustment  
The first two bits are address bits. The following eight bits are  
the data bits that represent the 256 steps of the resistance value.  
The reason for two address bits instead of one is to be compatible  
with similar products such as AD8402 so that drop-in replacement  
is possible. The address bit determines the corresponding VR  
latch to be loaded with the data bits during the returned positive  
edge of CS strobe. A serial data output pin at the opposite end  
of the serial register allows simple daisy chaining in multiple  
VR applications without additional external decoding logic.  
GENERAL DESCRIPTION  
The AD5207 provides dual channel, 256-position, digitally  
controlled variable resistor (VR) devices that perform the same  
electronic adjustment function as a potentiometer or variable  
resistor. Each channel of the AD5207 contains a fixed resistor with  
a wiper contact that taps the fixed resistor value at a point  
determined by a digital code loaded into the SPI-compatible  
serial-input register. The resistance between the wiper and either  
end point of the fixed resistor varies linearly with respect to the  
digital code transferred into the VR latch. The variable resistor  
offers a completely programmable value of resistance, between  
the A Terminal and the wiper or the B Terminal and the wiper.  
The fixed A-to-B terminal resistance of 10 k, 50 kor 100 kΩ  
has a 1% channel-to-channel matching tolerance with a nomi-  
nal temperature coefficient of 500 ppm/°C. A unique switching  
circuit minimizes the high glitch inherent in traditional switched  
resistor designs and avoids any make-before-break or break-  
before-make operation.  
An internal reset block will force the wiper to the midscale posi-  
tion during every power-up condition. The SHDN pin forces an  
open circuit on the A Terminal and at the same time shorts the  
wiper to the B Terminal, achieving a microwatt power shutdown  
state. When SHDN is returned to logic high, the previous latch  
settings put the wiper in the same resistance setting prior to  
shutdown. The digital interface remains active during shutdown;  
code changes can be made to produce new wiper positions when  
the device is resumed from shutdown.  
Each VR has its own VR latch, which holds its programmed  
resistance value. These VR latches are updated from an internal  
serial-to-parallel shift register, which is loaded from a standard  
3-wire serial-input digital interface. Ten bits, to make up the  
data word, are required and clocked into the serial input register.  
The AD5207 is available in 1.1 mm thin TSSOP-14 package,  
which is suitable for PCMCIA applications. All parts are guaran-  
teed to operate over the extended industrial temperature range  
of –40°C to +125°C.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2001  
AD5207–SPECIFICATIONS  
VB = 0, –40C < TA < +125C unless otherwise noted.)  
(V = 5 V, V = 0, V = 5 V,  
ELECTRICAL CHARACTERISTICS 10 k, 50 k, 100 kVERSION  
DD  
SS  
A
Parameter  
Symbol  
Conditions  
Min  
Typ1 Max  
Unit  
DC CHARACTERISTICS  
RHEOSTAT MODE  
Specifications Apply to All VRs  
Resistor Differential Nonlinearity2  
Resistor Nonlinearity2  
R-DNL  
R-INL  
R  
RWB, VA = NC  
RWB, VA = NC  
–1  
–1.5  
–30  
+1  
+1.5  
+30  
LSB  
LSB  
%
ppm/°C  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
R
AB/T  
VAB = VDD, Wiper = No Connect  
IW = 1 V/R, VDD = 5 V  
Ch 1 to 2, VAB = VDD, TA = 25°C  
500  
50  
0.2  
RW  
R/RO  
100  
1
Nominal Resistance Match  
%
DC CHARACTERISTICS  
POTENTIOMETER DIVIDER MODE  
Specifications Apply to All VRs  
Resolution  
N
8
Bits  
Integral Nonlinearity4  
Differential Nonlinearity4  
Voltage Divider Temperature  
Coefficient  
INL  
DNL  
VW/T  
–1.5  
–1  
+1.5  
+1  
LSB  
LSB  
ppm/°C  
VDD = 5 V, VSS = 0 V  
Code = 80H  
15  
Full-Scale Error  
Zero-Scale Error  
VWFSE  
VWZSE  
Code = FFH  
Code = 00H  
–1.5  
VSS  
LSB  
LSB  
+1.5  
VDD  
RESISTOR TERMINALS  
Voltage Range5  
VA, B, W  
CA,B  
CW  
IA_SD  
RW_SD  
ICM  
|VDD| + |VSS| 5.5 V  
V
Capacitance6 AX, BX  
Capacitance6 WX  
f = 1 MHz, Measured to GND, Code = 80H  
f = 1 MHz, Measured to GND, Code = 80H  
VA = VDD, VB = 0 V, SHDN = 0  
VA = VDD, VB = 0 V, SHDN = 0, VDD = 5 V  
VA = VB = VDD/2  
45  
70  
pF  
pF  
µA  
Shutdown Current7  
5
200  
Shutdown Wiper Resistance  
Common-Mode Leakage  
1
nA  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
VIH  
VIL  
VIH  
VIL  
VOH  
VOL  
IIL  
VDD = 5 V, VSS = 0 V  
VDD = 5 V, VSS = 0 V  
VDD = 3 V, VSS = 0 V  
VDD = 3 V, VSS = 0 V  
RL = 1 kto VDD  
2.4  
V
V
V
V
V
V
µA  
pF  
0.8  
0.6  
2.1  
Output Logic High  
Output Logic Low  
Input Current  
VDD – 0.1  
IOL = 1.6 mA, VDD = 5 V  
VIN = 0 V or 5 V  
0.4  
10  
Input Capacitance6  
CIL  
10  
POWER SUPPLIES  
Power Single-Supply Range  
Power Dual-Supply Range  
Positive Supply Current  
Negative Supply Current  
Power Dissipation8  
VDD RANGE  
VDD/SS RANGE  
IDD  
ISS  
PDISS  
VSS = 0 V  
2.7  
2.2  
5.5  
2.7  
40  
V
V
µA  
µA  
mW  
%/%  
%/%  
VIH = VDD or VIL = GND, VSS = 0 V  
VIH = VDD or VIL = GND VSS = –2.5 V  
VIH = 5 V or VIL = 0 V, VDD = 5 V  
VDD = 5 V 10%, VSS = 0 V, Code = 80H  
VSS = –2.5 V 10%, VDD = 2.5 V, Code = 80H  
40  
0.2  
0.01  
0.03  
Power Supply Sensitivity, VDD  
Power Supply Sensitivity, VSS  
PSS  
PSS  
DYNAMIC CHARACTERISTICS6, 9  
Bandwidth –3 dB  
Bandwidth –3 dB  
Bandwidth –3 dB  
Total Harmonic Distortion  
BW_10 kΩ  
BW_50 kΩ  
BW_100 kΩ  
THDW  
tS  
RAB = 10 kΩ  
600  
125  
71  
0.003  
2/9/18  
9
kHz  
kHz  
kHz  
%
µs  
nVHz  
dB  
R
AB = 50 kΩ  
R
AB = 100 kΩ  
VA = 1 V rms, VB = 0 V, f = 1 kHz, RAB = 10 kΩ  
RAB = 10 k/50 k/100 k, 1 LSB Error Band  
RWB = 5 k, f = 1 kHz, RS = 0  
V
W Settling Time  
Resistor Noise Voltage  
eN_WB  
CT  
Crosstalk10  
VA = 5 V, VB = 0 V  
–65  
–2–  
REV. 0  
AD5207  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
INTERFACE TIMING  
CHARACTERISTICS  
Applies to All Parts6, 11  
Input Clock Pulsewidth  
Data Setup Time  
tCH, tCL  
tDS  
tDH  
tPD  
tCSS  
tCSW  
tCSH0  
tCSH1  
tCS1  
Clock Level High or Low  
10  
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Hold Time  
CLK to SDO Propagation Delay12  
CS Setup Time  
RL = 1 kto 5 V, CL < 20 pF  
1
25  
10  
10  
0
0
10  
CS High Pulsewidth  
CLK Fall to CS Fall Hold Time  
CLK Fall to CS Rise Hold Time  
CS Rise to Clock Rise Setup  
NOTES  
1 Typicals represent average readings at 25°C and VDD = 5 V, VSS = 0 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. I W = VDD/R for both VDD = 5 V,  
VSS = 0 V.  
3 VAB = VDD, Wiper (VW) = No connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V. DNL  
specification limits of 1 LSB maximum are Guaranteed Monotonic operating conditions.  
5 Resistor Terminals A, B, W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
7 Measured at the AX terminals. All AX terminals are open-circuited in shut-down mode.  
8 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
9 All dynamic characteristics use VDD = 5 V, VSS = 0 V.  
10 Measured at a VW pin where an adjacent VW pin is making a full-scale voltage change.  
11 See timing diagram for location of measured values. All input control voltages are specified with tR = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage level of  
1.5 V. Switching characteristics are measured using VDD = 5 V.  
12 Propagation delay depends on value of VDD, RL, and CL; see applications text.  
The AD5207 contains 474 transistors. Die Size: 67 mil × 69 mil, 4623 sq. mil.  
Specifications subject to change without notice.  
1
SDI  
A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
0
1
CLK  
0
1
RDAC REGISTER LOAD  
CS  
0
V
OUT  
Figure 1a. Timing Diagram  
1
0
SDI  
(DATA IN)  
Ax OR Dx  
Ax OR Dx  
tDS  
tDH  
1
0
SDO  
(DATA OUT)  
'
'
A'x OR D'x  
tCH  
A x OR D x  
tPD_MAX  
tCS1  
1
0
CLK  
tCSH0  
tCSS  
tCL  
tCSH1  
1
0
CS  
tCSW  
tS  
V
OUT  
DD  
V
0V  
؎1LSB ERROR BAND  
؎1LSB  
Figure 1b. Detail Timing Diagram  
–3–  
REV. 0  
AD5207  
ABSOLUTE MAXIMUM RATINGS1  
PIN FUNCTION DESCRIPTIONS  
Pin Mnemonic Description  
(TA = 25°C, unless otherwise noted)  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3, +7 V  
VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0, –3 V  
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
VA, VB, VW to GND . . . . . . . . . . . . . . . . . . . . . . . . . . VSS, VDD  
1
VSS  
Negative Power Supply, specified for opera-  
tion from 0 V to –2.7 V.  
2
3
4
5
6
B2  
A2  
W2  
DGND  
SHDN  
Terminal B of RDAC#2.  
Terminal A of RDAC#2.  
Wiper, RDAC#2, addr = 12  
Digital Ground.  
Active Low Input. Terminal A open-circuit  
and Terminal B shorted to Wiper. Shut-  
down controls both RDACs #1 and #2.  
IMAX2 (A, B, W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
20 mA  
Digital Inputs and Output Voltage to GND . . 0 V, VDD + 0.3 V  
Operating Temperature Range . . . . . . . . . . –40°C to +125°C  
Maximum Junction Temperature (TJ Max) . . . . . . . . . . 150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . . 300°C  
Thermal Resistance3 θJA, TSSOP-14 . . . . . . . . . . . . . 206°C/W  
7
CS  
Chip Select Input, Active Low. When CS  
returns high, data in the serial input register  
is decoded, based on the address bit, and  
loaded into the corresponding RDAC register.  
Serial Data Input. MSB is loaded first.  
Serial Data Output. Open Drain transistor  
requires pull-up resistor.  
Serial Clock Input. Positive Edge Triggered.  
Positive Power Supply. Specified for opera-  
tion at 2.7 V to 5.5 V.  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2 Max current is bounded by the maximum current handling of the switches,  
maximum power dissipation of the package, and maximum applied voltage  
across any two of the A, B, and W Terminals at a given resistance. Please refer to  
TPC 22 for detail.  
8
9
SDI  
SDO  
10  
11  
CLK  
VDD  
3 Package Power Dissipation = (TJ Max–TA)/θJA  
.
12  
13  
14  
W1  
A1  
B1  
Wiper, RDAC #1, addr = 02.  
Terminal A of RDAC #1.  
Terminal B of RDAC #1.  
PIN CONFIGURATION  
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
B1  
A1  
W1  
SS  
B2  
A2  
Table I. Serial-Data Word Format  
DATA  
AD5207  
TOP VIEW  
(Not to Scale)  
W2  
ADDR  
B9  
V
DD  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DGND  
SHDN  
CS  
CLK  
SDO  
SDI  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
20  
8
MSB  
29  
28  
27  
NOTES  
ADDR(RDAC1) = 00; ADDR(RDAC2 = 01).  
Data loads B9 first into SDI pin.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Qty Per  
Container  
Branding  
Information*  
Model  
kꢀ  
AD5207BRU10-REEL7  
AD5207BRU50-REEL7  
AD5207BRU100-REEL7  
10  
50  
100  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
TSSOP-14  
TSSOP-14  
TSSOP-14  
RU-14  
RU-14  
RU-14  
1,000  
1,000  
1,000  
B10  
B50  
B100  
*Three lines of information appear on the device. Line 1 lists the part number; Line 2 includes branding information and the ADI logo, and Line 3 contains the  
date code YYWW.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD5207 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
Typical Performance CharacteristicsAD5207  
0.4  
0.20  
0.15  
0.10  
0.05  
V
= 5.5V,V  
= 0V  
SS  
V
= 5.5V,V  
= 0V  
SS  
DD  
DD  
0.3  
0.2  
0.1  
0.0  
0.00  
0.05  
0.10  
0.1  
0.2  
0.3  
0.4  
0.15  
0.20  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE – Decimal  
CODE Decimal  
TPC 1. 10 kRDNL vs. Code  
TPC 4. 10 kINL vs. Code  
1.0  
0.1  
0.20  
V
= 5.5V,V  
= 0V  
SS  
DD  
0.15  
0.10  
I
@V /V = 5V/0V  
DD SS  
DD  
0.05  
I
@V /V = 2.5V  
DD SS  
0.00  
DD  
0.05  
0.10  
0.15  
0.20  
0.01  
I
@V /V = 2.5V  
DD SS  
SS  
I
@V /V = 3V/0V  
DD SS  
DD  
0.001  
0
32  
64  
96  
128  
160  
192  
224  
256  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
CODE Decimal  
V
V  
IH  
TPC 2. 10 kRINL vs. Code  
TPC 5. Supply Current vs. Logic Input Voltage  
0.3  
0.2  
20  
V
=V  
SS  
IL  
V
= 5.5V,V  
= 0V  
SS  
DD  
18  
V
=V  
IH  
DD  
16  
14  
V
= 5.5V  
DD  
0.1  
0.0  
12  
10  
8
V
= 2.7V  
DD  
0.1  
0.2  
0.3  
6
4
2
0
0
32  
64  
96  
128  
160  
192  
224  
256  
40  
20  
0
20  
40  
60  
80  
100  
CODE Decimal  
TEMPERATURE C  
TPC 3. 10 kDNL vs. Code  
TPC 6. Supply Current vs. Temperature  
–5–  
REV. 0  
AD5207  
45  
40  
35  
30  
25  
20  
1000  
900  
800  
700  
600  
V
= 5.5V  
CODE 55  
DD  
H
I
@V /V  
= 2.5V  
= 2.5V  
SS  
DD SS  
500  
400  
300  
I
@V /V  
DD SS  
DD  
15  
10  
5
I
@V /V = 5V/0V  
DD SS  
DD  
200  
100  
I
@V /V = 3V/0V  
DD SS  
DD  
0
40  
0
20  
0
20  
40  
60  
80  
100  
120  
10k  
100k  
1M  
10M  
TEMPERATURE C  
FREQUENCY Hz  
TPC 10. 10 kSupply Current vs. Clock Frequency  
TPC 7. Shutdown Current vs. Temperature  
80  
160  
140  
120  
CODE = 80 , V =V , V = 0V  
H
A
DD  
B
+PSRR @V  
= 5V DC 10% p-p AC  
DD  
60  
40  
20  
0
100  
80  
V
= 3V  
DD  
60  
40  
V
= 5V  
DD  
+PSRR @V  
= 3V DC 10% p-p AC  
DD  
PSRR @V  
= 3V DC 10% p-p AC  
DD  
20  
0
0
100  
1k  
10k  
100k  
1M  
1
2
3
SUPPLY  
4
5
6
FREQUENCY Hz  
V
V  
TPC 8. Wiper ON Resistance vs. VSUPPLY  
TPC 11. Power Supply Rejection Ratio vs. Frequency  
0
1000  
900  
800  
700  
600  
CODE FF  
H
DATA = 80  
H
6  
DATA = 40  
H
12  
DATA = 20  
H
18  
DATA = 10  
H
24  
DATA = 08  
H
I
@V /V  
= 2.5V  
= 2.5V  
SS  
DD SS  
30  
500  
400  
300  
DATA = 04  
H
36  
I
@V /V  
DD SS  
DATA = 02  
H
DD  
42  
DATA = 01  
H
I
@V /V = 5V/0V  
DD SS  
DD  
48  
54  
60  
V
= +2.7V  
= 2.7V  
= 100mV rms  
= 25C  
DD  
200  
100  
V
A
I
@V /V = 3V/0V  
DD SS  
V
DD  
SS  
OP42  
V
A
A
T
0
10k  
100k  
FREQUENCY Hz  
1M  
10M  
1k  
10k  
100k  
1M  
FREQUENCY Hz  
TPC 9. 10 kSupply Current vs. Clock Frequency  
TPC 12. 10 kGain vs. Frequency vs. Code  
–6–  
REV. 0  
AD5207  
0
6  
5.99  
6.00  
6.01  
6.02  
6.03  
6.04  
6.05  
6.06  
6.07  
6.08  
6.09  
DATA = 80  
DATA = 40  
DATA = 20  
DATA = 10  
H
H
H
H
12  
18  
24  
30  
36  
10kꢀ  
50kꢀ  
V
= +2.7V  
= 2.7V  
= 100mV rms  
DD  
DATA = 08  
DATA = 04  
H
H
V
V
SS  
100kꢀ  
A
DATA = 80  
H
T
= 25C  
DATA = 02  
DATA = 01  
A
H
H
42  
48  
54  
60  
V
A
OP42  
1k  
V
= +2.7V  
= 2.7V  
= 100mV rms  
= 25C  
DD  
V
A
V
= 0V  
B
V
V
SS  
OP42  
A
A
T
1k  
10k  
100k  
1M  
100  
10k  
100k  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 13. 50 kGain vs. Frequency vs. Code  
TPC 16. Normalized Gain Flatness vs. Frequency  
TPC 17. One Position Step Change at Half Scale  
TPC 18. Large Signal Settling Time  
0
DATA = 80  
H
6  
DATA = 40  
H
12  
DATA = 20  
H
18  
DATA = 10  
H
24  
DATA = 08  
H
30  
DATA = 04  
H
36  
DATA = 02  
H
42  
DATA = 01  
H
48  
V
= +2.7V  
= 2.7V  
= 100mV rms  
= 25C  
DD  
V
A
V
V
SS  
54  
OP42  
A
A
T
60  
1k  
10k  
100k  
FREQUENCY Hz  
1M  
TPC 14. 100 kGain vs. Frequency vs. Code  
6
4
2
10kꢀ  
50kꢀ  
0
2  
4  
6  
8  
V
= 2.7V  
= 0V  
= 100mV rms  
2.7V  
DD  
V
V
10  
12  
14  
100kꢀ  
SS  
6
OP42  
A
DATA = 80  
H
1.5V  
10k  
T
= 25C  
A
1k  
100k  
FREQUENCY Hz  
1M  
TPC 15. –3 dB Bandwidth  
REV. 0  
–7–  
AD5207  
2500  
2000  
1500  
1000  
500  
0
500  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE Decimal  
TPC 19. Digital Feedthrough vs. Time  
TPC 21. RWB/T Rheostat Mode Temperature Coefficient  
120  
100  
80  
100.0  
I
WB_MAX  
10.0  
60  
40  
R
= 10kꢀ  
AB  
20  
1.0  
0.1  
0
R
= 50kꢀ  
AB  
20  
40  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE Decimal  
CODE Decimal  
TPC 20. VWB/T Potentiometer Mode  
Temperature Coefficient  
TPC 22. IMAX vs. Code  
–8–  
REV. 0  
AD5207  
OPERATION  
The serial-data-output (SDO) pin contains an open drain  
n-channel FET. This output requires a pull-up resistor in order  
to transfer data to the next package’s SDI pin. The pull-up  
resistor termination voltage may be larger than the VDD supply  
of the AD5207 SDO output device, e.g., the AD5207 could  
operate at VDD = 3.3 V and the pull-up for interface to the next  
device could be set at 5 V. This allows for daisy chaining several  
RDACs from a single processor serial-data line. The clock period  
may need to be increased when using a pull-up resistor to the  
SDI pin of the following devices in series. Capacitive loading at  
the daisy chain node SDO–SDI between devices may add time  
delay to subsequent devices. User should be aware of this poten-  
tial problem in order to successfully achieve data transfer. See  
Figure 3. When configuring devices for daisy-chaining, the CS  
should be kept low until all the bits of every package are clocked  
into their respective serial registers, ensuring that the address bit  
and data bits are in the proper decoding location. This requires  
20 bits of address and data complying with the data word in  
Table I if two AD5207 RDACs are daisy chained. During shut-  
down SHDN, the SDO output pin is forced to OFF (logic high  
state) to disable power dissipation in the pull-up resistor. See  
Figure 4 for equivalent SDO output circuit schematic.  
The AD5207 provides a dual channel, 256-position digitally  
controlled variable resistor (VR) device. The terms VR, RDAC,  
and digital potentiometer are sometimes used interchangeably.  
Changing the programmable VR settings is accomplished by  
clocking in a 10-bit serial data word into the SDI (Serial Data  
Input) pin. The format of this data word is two address Bits, A1  
and A0. With A1 and A2 are first and second bits respectively,  
followed by eight data bits B7–B0 with MSB first. Table I pro-  
vides the serial register data word format. See Table III for the  
AD5207 address assignments to decode the location of VR latch  
receiving the serial register data in Bits B7 through B0. VR settings  
can be changed one at a time in random sequence. The AD5207  
presets to a midscale during power-on condition. AD5207 contains  
a power shutdown SHDN pin. When activated in logic low.  
Terminals A on both RDACs will be open-circuited while the  
wiper terminals WX are shorted to BX. As a result, a minimum  
amount of leakage current will be consumed in both RDACs,  
and the power dissipation is negligible. During the shutdown  
mode, the VR latch settings are maintained. Thus the previ-  
ous resistance values remain when the devices are resumed  
from the shutdown.  
+V  
DIGITAL INTERFACING  
The AD5207 contains a standard three-wire serial input control  
interface. The three inputs are clock (CLK), chip select (CS),  
and serial data input (SDI). The positive edge-sensitive CLK  
input requires clean transitions to avoid clocking incorrect data  
into the serial input register. Standard logic families work well.  
If mechanical switches are used for product evaluation, they  
should be debounced by a flip-flop or other suitable means. Fig-  
ure 2 shows more detail of the internal digital circuitry. When CS  
is low, the clock loads data into the serial register on each posi-  
tive clock edge; see Table II.  
AD5207  
R
2kꢀ  
AD5207  
P
C  
SDI  
SDO  
SDI  
SDO  
CS  
CLK  
CS  
CLK  
Figure 3. Daisy-Chain Configuration Using SDO  
Table II. Input Logic Control Truth Table  
AD5207  
V
DD  
CLK CS SHDN  
Register Activity  
CS  
L
P
L
L
H
H
No SR effect, enables SDO pin.  
A1  
RDAC  
LATCH  
#1  
Shift one bit in from the SDI pin. MSB  
first. The tenth previously entered bit  
is shifted out of the SDO pin.  
W1  
CLK  
B1  
X
P
H
Load SR data into RDAC latch based  
on A0 decode (Table III).  
No Operation.  
Open circuits all resistor A Terminals,  
connects W to B, turns off SDO out-  
put transistor.  
EN  
ADDR  
DEC  
A0  
SER  
REG  
SDO  
X
X
H
H
H
L
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A2  
W2  
B2  
RDAC  
LATCH  
#2  
NOTE  
P = positive edge, X = don’t care, SR = shift register.  
SDI  
V
SS  
Table III. Address Decode Table  
POWER-ON RESET  
SHDN  
A1  
A0  
Latch Loaded  
0
0
0
1
RDAC #1  
RDAC #2  
Figure 2. Block Diagram  
REV. 0  
–9–  
AD5207  
The data setup and data hold times in the specification table  
determine the data valid time requirements. The last ten bits of  
the data word entered into the serial register are held when CS  
returns high and any extra bits are ignored. At the same time, when  
CS goes high, it gates the address decoder enabling one of two  
positive edge-triggered AD5207 RDAC latches; see Figure 5 detail.  
Ax  
SHDN  
R
S
D7  
R
R
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S
S
SHDN  
CS  
Wx  
Bx  
SDO  
SERIAL  
REGISTER  
D
SDI  
Q
RDAC  
LATCH  
AND  
CK  
RS  
DECODER  
R
S
CLK  
INTERNAL  
RS  
Figure 4. Detail SDO Output Schematic of the AD5207  
Figure 8. Equivalent RDAC Circuit  
The target RDAC latch is loaded with the last eight bits of the  
data word to complete one RDAC update. For AD5207, it  
cannot update both channels simultaneously and therefore, two  
separate 10-bit data words must be clocked in to change both  
VR settings.  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
The nominal resistance of the RDAC between Terminals A and  
B is available with values of 10 k, 50 k, and 100 k. The last  
few digits of the part number determine the nominal resistance  
value, e.g., 10 k= 10; 50 k= 50; and 100 k= 100. The  
nominal resistance (RAB) of the VR has 256 contact points  
accessed by the wiper terminal, plus the B Terminal contact.  
The 8-bit data in the RDAC latch is decoded to select one of  
the 256 possible settings. Assume a 10 kpart is used, the  
wiper’s first connection starts at the B Terminal for data 00H.  
Since there is a 45 wiper contact resistance, such connection  
yields a minimum of 45 resistance between Terminals W and  
B. The second connection is the first tap point corresponds to  
84 (RWB = RAB/256 + RW = 39 + 45 ) for data 01H. The  
third connection is the next tap point representing 123 (39 ×  
2 + 45) for data 02H and so on. Each LSB value increase moves  
the wiper up the resistor ladder until the last tap point is reached at  
10006 (RAB – 1 LSB + RW). Figure 8 shows a simplified dia-  
gram of the equivalent RDAC circuit.  
AD5207  
CS  
RDAC1  
RDAC2  
ADDR  
DECODE  
CLK  
SDI  
SERIAL  
REGISTER  
Figure 5. Equivalent Input Control Logic  
All digital inputs are protected with a series input resistor and  
parallel Zener ESD structure shown in Figures 6 and 7. Applies  
to digital input pins CS, SDI, SDO, SHDN, and CLK. Digital  
input level for Logic 1 can be anywhere from 2.4 V to 5 V  
regardless of whether it is in single or dual supplies.  
The general equation determining the programmable output  
resistance between W and B is:  
340ꢀ  
LOGIC  
DIGITAL PIN  
D
256  
(1)  
RWB D =  
× RAB + RW  
(
)
V
SS  
where D is the data contained in the 8-bit RDAC latch, and RAB  
is the nominal end-to-end resistance.  
Figure 6. ESD Protection of Digital Pins  
For example, RAB =10 k, A Terminal can be open-circuit or  
tied to W. The following output resistance RWB will be set for  
the following RDAC latch codes.  
A,B,W  
V
SS  
Figure 7. ESD Protection of Resistor Terminals  
–10–  
REV. 0  
AD5207  
Table IV.  
position of the potentiometer divider. Since AD5207 is capable  
for dual supplies, the general equation defining the output volt-  
age with respect to ground for any given input voltage applied to  
terminals AB is:  
D
(DEC)  
RWB  
()  
Output State  
255  
128  
1
10006  
5045  
84  
Full-Scale (RAB 1 LSB + RW)  
Midscale  
1 LSB  
D
256  
256 D  
256  
(3)  
VW D =  
VA +  
VB  
(
)
0
45  
Zero-Scale (Wiper Contact Resistance)  
Operation of the digital potentiometer in the divider mode  
Note that in the zero-scale condition a finite wiper resistance of  
45 is present. Care should be taken to limit the current flow  
between W and B in this state to a maximum current of no more  
than 5 mA. Otherwise, degradation or possibly destruction of  
the internal switch contacts can occur.  
results in more accurate operation over temperature. Unlike the  
rheostat mode, the output voltage is dependent on the ratio of  
RWA and RWB and not the absolute values; therefore, the drift  
reduces to 15 ppm/°C. There is no voltage polarity constraint  
between Terminals A, B, and W as long as the terminal voltage  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between the wiper W and Terminal A also produces a  
digitally controlled resistance RWA. When these terminals are used,  
the B Terminal should be let open or tied to the wiper terminal.  
Setting the resistance value for RWA starts at a maximum value  
of resistance and decreases as the data loaded in the latch is  
increased in value. The general equation for this operation is:  
stays within VSS < VTERM < VDD  
.
RDAC CIRCUIT SIMULATION MODEL  
The internal parasitic capacitances and the external capacitive  
loads dominate the ac characteristics of the RDACs. Config-  
ured as a potentiometer divider the 3 dB bandwidth of the  
AD5207BRU10 (10 kresistor) measures 600 kHz at half  
scale. TPC 16 provides the large signal BODE plot characteris-  
tics of the three available resistor versions 10 kand 50 k.  
The gain flatness versus frequency graph, TPC 16, predicts  
filter applications performance. A parasitic simulation model has  
been developed and is shown in Figure 9. Listing I provides a  
macro model net list for the 10 kRDAC:  
256 D  
256  
(2)  
RWA D =  
× RAB + RW  
(
)
For example, when RAB = 10 k, B terminal is either open or  
tied to W, the following output resistance, RWA, will be set for  
the following RDAC latch codes.  
RDAC  
10kꢀ  
Table V.  
A
B
D
(DEC)  
RWA  
()  
C
C
B
A
C
70pF  
W
Output State  
255  
128  
1
84  
Full-Scale (RAB/256 + RW)  
Midscale  
1 LSB  
C
= 45pF  
C
= 45pF  
A
B
5045  
10006  
10045  
W
0
Zero-Scale  
Figure 9. RDAC Circuit Simulation Model for RDAC = 10 kΩ  
The typical distribution of RAB from channel to channel matches  
within 1%. Device-to-device matching is process-lot depen-  
dent and is possible to have 30% variation. The change in RAB  
with temperature has a 500 ppm/°C temperature coefficient.  
Listing I. Macro Model Net List for RDAC  
.PARAM D=255, RDAC=10E3  
*
.SUBCKT DPOT (A,W)  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
*
The digital potentiometer easily generates an output voltage  
proportional to the input voltage. Lets ignore the effect of  
the wiper resistance for the moment. For example, when con-  
necting A Terminal to 5 V and B Terminal to ground, it produces  
a programmable output voltage at the wiper starting at zero  
volts up to 1 LSB less than 5 V. Each LSB of voltage is equal  
to the voltage applied across terminal AB divided by the 256  
CA A 0 45E-12  
RAW A W {(1-D/256)*RDAC+50}  
CW W 0 70E-12  
RBW W B {D/256*RDAC+50}  
CB B 0 45E-12  
*
.ENDS DPOT  
REV. 0  
–11–  
AD5207  
TEST CIRCUITS  
5V  
Figures 10 to 18 define the test conditions used in product  
Specification table.  
OP279  
V
OUT  
V
IN  
DUT  
A
V+ =V  
DD  
1 LSB =V+/2  
W
N
OFFSET  
GND  
W
V+  
A
DUT  
B
B
V
MS  
OFFSET BIAS  
Figure 10. Potentiometer Divider Nonlinearity Error Test  
Circuit (INL, DNL)  
Figure 15. Noninverting Gain Test Circuit  
NO CONNECT  
DUT  
+15V  
A
W
I
W
A
DUT  
2.5V  
V
IN  
W
OP42  
V
OUT  
B
OFFSET  
GND  
B
V
MS  
15V  
Figure 16. Gain vs. Frequency Test Circuit  
Figure 11. Resistor Position Nonlinearity Error (Rheostat  
Operation; R-INL, R-DNL)  
0.1V  
R
=
SW  
I
SW  
DUT  
B
DUT  
CODE = ꢆꢆ  
H
I
=V /R  
NOMINAL  
DD  
W
W
V
A
MS2  
V
W
W
+
I
SW  
0.1V  
B
V
MS1  
V
TO V  
DD  
SS  
R
= [V  
V  
]/I  
W
MS2  
W
MS1  
Figure 12. Wiper Resistance Test Circuit  
Figure 17. Incremental ON Resistance Test Circuit  
NC  
V
A
V
DUT  
I
DD  
A
B
CM  
V
W
DD  
A
V+ =V 10%  
V+  
DD  
W
V  
MS  
V
GND  
SS  
V
PSRR (dB) = 20 LOG  
CM  
B
V  
DD  
V  
V  
%
V
MS  
MS  
PSS (%/%) =  
%
NC  
NC = NO CONNECT  
DD  
Figure 13. Power Supply Sensitivity Test Circuit  
(PSS, PSSR)  
Figure 18. Common-Mode Leakage Current Test Circuit  
A
DUT B  
5V  
W
V
IN  
OP279  
V
OUT  
OFFSET  
GND  
OFFSET BIAS  
Figure 14. Inverting Gain Test Circuit  
–12–  
REV. 0  
AD5207  
DIGITAL POTENTIOMETER FAMILY SELECTION GUIDE  
Resolution Power  
Number  
of VRs  
per  
Terminal  
Voltage  
Interface Nominal  
(Number  
of Wiper  
Positions)  
Supply  
Current  
Part  
Data  
Resistance  
Number Package Range  
Control  
(k)  
(IDD  
)
Packages  
Comments  
AD5201  
1
3 V, +5.5 V  
3-Wire  
10, 50  
33  
40 µA  
µSOIC-10  
Full AC Specs, Dual Supply,  
Pwr-On-Reset, Low Cost  
AD5220  
AD7376  
1
1
5.5 V  
Up/Down 10, 50, 100  
128  
40 µA  
PDIP, SO-8, µSOIC-8 No Rollover, Pwr-On-Reset  
15 V, +28 V 3-Wire  
10, 50, 100, 1000 128  
100 µA  
PDIP-14, SOL-16,  
TSSOP-14  
Single +28 V or Dual 15 V  
Supply Operation  
AD5200  
1
3 V, +5.5 V  
3-Wire  
10, 50  
256  
40 µA  
µSOIC-10  
Full AC Specs, Dual Supply,  
Pwr-On-Reset  
AD8400  
AD5260  
1
1
5.5 V  
3-Wire  
3-Wire  
1, 10, 50, 100  
20, 50, 200  
256  
256  
5 µA  
SO-8  
Full AC Specs  
5 V, +15 V  
3 V, +5.5 V  
3 V, +5.5 V  
3 V, +5.5 V  
60 µA  
TSSOP-14  
15 V or 5 V,  
TC < 50 ppm/°C  
AD5241  
AD5231*  
AD5222  
AD8402  
AD5207  
AD5232*  
AD5235*  
AD5242  
AD5262*  
AD5203  
AD5233*  
AD5204  
AD8403  
AD5206  
1
1
2
2
2
2
2
2
2
4
4
4
4
6
2-Wire  
3-Wire  
10, 100, 1000  
10, 50, 100  
256  
50 µA  
20 µA  
80 µA  
5 µA  
SO-14, TSSOP-14  
TSSOP-16  
I2C-Compatible, TC  
< 50 ppm/°C  
1024  
Nonvolatile Memory, Direct  
Program, I/D, 6 dB Settability  
Up/Down 10, 50, 100, 1000 128  
SO-14, TSSOP-14  
No Rollover, Stereo, Pwr-On-  
Reset, TC < 50 ppm/°C  
5.5 V  
3-Wire  
3-Wire  
3-Wire  
3-Wire  
2-Wire  
3-Wire  
3-Wire  
3-Wire  
3-Wire  
3-Wire  
3-Wire  
1, 10, 50, 100  
10, 50, 100  
10, 50, 100  
25, 250  
256  
256  
256  
1024  
256  
256  
64  
PDIP, SO-14,  
TSSOP-14  
Full AC Specs, nA  
Shutdown Current  
3 V, +5.5 V  
3 V, +5.5 V  
3 V, +5.5 V  
3 V, +5.5 V  
5 V, +15 V  
40 µA  
20 µA  
20 µA  
50 µA  
60 µA  
5 µA  
TSSOP-14  
Full AC specs, Dual Supply,  
Pwr-On-Reset, SDO  
TSSOP-16  
Nonvolatile Memory, Direct  
Program, I/D, 6 dB Settability  
TSSOP-16  
Nonvolatile Memory, Direct  
Program, TC < 50 ppm/°C  
10, 100, 1000  
20, 50, 200  
10, 100  
SO-16, TSSOP-16  
TSSOP-16  
I2C-Compatible, TC  
< 50 ppm/°C  
15 V or 5 V, Pwr-On-  
Reset, TC < 50 ppm/°C  
5.5 V  
PDIP, SOL-24,  
TSSOP-24  
Full AC Specs, nA  
Shutdown Current  
3 V, +5.5 V  
3 V, +5.5 V  
10, 50, 100  
10, 50, 100  
1, 10, 50, 100  
10, 50, 100  
64  
20 µA  
60 µA  
5 µA  
TSSOP-16  
Nonvolatile Memory, Direct  
Program, I/D, 6 dB Settability  
256  
256  
256  
PDIP, SOL-24,  
TSSOP-24  
Full AC Specs, Dual Supply,  
Pwr-On-Reset  
5.5 V  
PDIP, SOL-24,  
TSSOP-24  
Full AC Specs, nA  
Shutdown Current  
3 V, +5.5 V  
60 µA  
PDIP, SOL-24,  
TSSOP-24  
Full AC Specs, Dual Supply,  
Pwr-On-Reset  
*Future product, consult factory for latest status.  
Latest Digital Potentiometer Information available at www.analog.com/support/standard_linear/selection_guides/dig_pot.html  
REV. 0  
–13–  
AD5207  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm)  
14-Lead TSSOP  
(RU-14)  
0.201 (5.10)  
0.193 (4.90)  
14  
8
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
7
1
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8ꢃ  
0ꢃ  
0.0256 0.0118 (0.30)  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
(0.65)  
0.0075 (0.19)  
BSC  
–14–  
REV. 0  
–15–  
–16–  

相关型号:

AD5262BRU20

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5262BRU20-REEL7

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5262BRU200

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5262BRU200-REEL7

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5262BRU50

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5262BRU50-REEL7

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5262BRUZ20

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5262BRUZ20-RL7

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5262BRUZ200

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5262BRUZ200-REEL7

DUAL 200K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO16, TSSOP-16
ADI

AD5262BRUZ200-RL7

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5262BRUZ50

1-/2-Channel 15 V Digital Potentiometer
ADI