AD532SD883B [ADI]

Internally Trimmed Integrated Circuit Multiplier; 内部微调集成电路乘法器
AD532SD883B
型号: AD532SD883B
厂家: ADI    ADI
描述:

Internally Trimmed Integrated Circuit Multiplier
内部微调集成电路乘法器

文件: 总17页 (文件大小:521K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Internally Trimmed  
Integrated Circuit Multiplier  
AD532  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
X
1
Pretrimmed to 1.0% (AD532K)  
V
X
X
2
No external components required  
Guaranteed 1.0% maximum 4-quadrant error (AD532K)  
Differential Inputs for (X1 − X2) (Y1 − Y2)/10 V transfer  
function  
R
R
X
Z
Y
Y
1
OUTPUT  
V
Y
2
10R  
Monolithic construction, low cost  
V
OS  
(X – X ) (Y – Y )  
1
2
1
2
APPLICATIONS  
R
V
=
OUT  
10V  
Multiplication, division, squaring, square rooting  
Algebraic computation  
(WITH Z TIED TO OUTPUT)  
Figure 1.  
Power measurements  
Instrumentation applications  
Available in chip form  
well qualified for instrumentation applications, as it can provide  
an output signal that is the product of two transducer generated  
input signals.  
GENERAL DESCRIPTION  
The AD532 is the first pretrimmed single chip monolithic  
multiplier/divider. It guarantees a maximum multiplying error  
of ±1.0% and a ±10 V output voltage without the need for any  
external trimming resistors or output op amp. Because the AD532  
is internally trimmed, its simplicity of use provides design  
engineers with an attractive alternative to modular multipliers,  
and its monolithic construction provides significant advantages  
in size, reliability and economy. Further, the AD532 can be used  
as a direct replacement for other IC multipliers that require  
external trim networks.  
GUARANTEED PERFORMANCE OVER  
TEMPERATURE  
The AD532J and AD532K are specified for maximum multiplying  
errors of ±2% and ±1% of full scale, respectively at 25°C, and  
are rated for operation from 0°C to 70°C. The AD532S has a  
maximum multiplying error of ±1% of full scale at 25°C; it is  
also 100% tested to guarantee a maximum error of ±4% at the  
extended operating temperature limits of −55°C and +125°C.  
All devices are available in either the hermetically-sealed TO-  
100 metal can, TO-116 ceramic DIP or LCC packages. The J, K,  
and S grade chips are also available.  
FLEXIBILITY OF OPERATION  
The AD532 multiplies in four quadrants with a transfer function of  
(X1 − X2)(Y1 − Y2)/10 V, divides in two quadrants with a 10 V  
Z/(X1 − X2) transfer function, and square roots in one quadrant  
ADVANTAGES OF ON-THE-CHIP TRIMMING OF  
THE MONOLITHIC AD532  
10 V Z  
with a transfer function of ±±  
. In addition to these basic  
functions, the differential X and Y inputs provide significant  
operating flexibility both for algebraic computation and transducer  
instrumentation applications. Transfer functions, such as XY/10 V,  
(X2 − Y2)/1 0 V, ±X2/10 V, and 10 V Z/(X1 − X2), are easily attained  
and are extremely useful in many modulation and function  
generation applications, as well as in trigonometric calculations  
for airborne navigation and guidance applications, where the  
monolithic construction and small size of the AD532 offer  
considerable system advantages. In addition, the high CMRR  
(75 dB) of the differential inputs makes the AD532 especially  
1. True ratiometric trim for improved power supply rejection.  
2. Reduced power requirements since no networks across  
supplies are required.  
3. More reliable because standard monolithic assembly  
techniques can be used rather than more complex hybrid  
approaches.  
4. High impedance X and Y inputs with negligible circuit  
loading.  
5. Differential X and Y inputs for noise rejection and additional  
computational flexibility.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibilityis assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2001–2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
 
 
 
IMPORTANT LINKS for the AD532*  
Last content update 09/06/2013 05:27 pm  
PARAMETRIC SELECTION TABLES  
DESIGN SUPPORT  
Submit your support request here:  
Linear and Data Converters  
Embedded Processing and DSP  
Find Similar Products By Operating Parameters  
Telephone our Customer Interaction Centers toll free:  
DOCUMENTATION  
Americas:  
Europe:  
China:  
1-800-262-5643  
00800-266-822-82  
4006-100-006  
AN-213: Low Cost, Two-Chip, Voltage -Controlled Amplifier and Video  
Switch  
India:  
1800-419-0108  
8-800-555-45-90  
Space Qualified Parts List  
Russia:  
Quality and Reliability  
Lead(Pb)-Free Data  
EVALUATION KITS & SYMBOLS & FOOTPRINTS  
Symbols and Footprints  
SAMPLE & BUY  
AD532  
DESIGN COLLABORATION COMMUNITY  
View Price & Packaging  
Request Evaluation Board  
Request Samples  
Check Inventory & Purchase  
Collaborate Online with the ADI support team and other designers  
about select ADI products.  
Find Local Distributors  
Follow us on Twitter: www.twitter.com/ADI_News  
Like us on Facebook: www.facebook.com/AnalogDevicesInc  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet.  
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not  
constitute a change to the revision number of the product data sheet.  
This content may be frequently modified.  
AD532  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Functional Description.................................................................. 10  
AD532 Performance Characteristics ........................................... 11  
Nonlinearity ................................................................................ 11  
AC Feedthrough ......................................................................... 11  
Common-Mode Rejection........................................................ 11  
Dynamic Characteristics........................................................... 11  
Power Supply Considerations................................................... 11  
Noise Characteristics ................................................................. 11  
Applications..................................................................................... 12  
Replacing Other IC Multipliers................................................ 12  
Square Root................................................................................. 13  
Difference of Squares................................................................. 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Flexibility of Operation................................................................ 1  
Guaranteed Performance Over Temperature ........................... 1  
Advantages of On-The-Chip Trimming of The Monolithic  
AD532............................................................................................ 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Thermal Resistance .......................................................................... 5  
Chip Dimensions And Bonding Diagram ................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 8  
REVISION HISTORY  
2/11—Rev. C to Rev. D  
Updated Format..................................................................Universal  
Added Pin Configuration and Function Descriptions  
Section................................................................................................ 6  
Added Typical Performance Characteristics Section .................. 8  
Changes to Figure 11........................................................................ 8  
Changes to Figure 12 and Figure 13............................................... 9  
Changes to Ordering Guide .......................................................... 15  
Rev. D | Page 2 of 16  
 
AD532  
SPECIFICATIONS  
At 25°C, VS = ±15 V, R ≥ 2 kΩ VOS grounded, unless otherwise noted.  
Table 1.  
AD532J  
Typ  
AD532K  
Typ  
AD532S  
Typ  
Conditions  
Model  
Min  
Max Min  
Max Min  
Max  
Unit  
MULTIPLIER PERFORMANCE  
Transfer Function  
(X1 X2 )(Y Y2 )  
(X1 X2 )(Y Y2 )  
(X1 X2 )(Y Y2 )  
1
1
1
10V  
10V  
10V  
Total Error  
–10 V ≤ X, Y ≤ +10 V  
1.5  
2.0  
0.7  
1.0  
0.5  
1.0  
%
TA = Minimum to Maximum  
Total Error vs. Temperature  
Supply Rejection  
Nonlinearity, X  
Nonlinearity, Y  
Feedthrough, X  
2.5  
1.5  
4.0  
0.04  
%
0.04  
0.05  
0.8  
0.3  
50  
0.03  
0.05  
0.5  
0.2  
30  
0.01  
0.05  
0.5  
0.2  
30  
%/°C  
%/%  
%
%
mV  
15 V 10%  
X = 20 V p-p, Y = 10 V  
Y = 20 V p-p, X = 10 V  
Y nulled, X = 20 V p-p 50 Hz  
200  
150  
100  
80  
100  
80  
Feedthrough, Y (X Nulled,  
Y = 20 V p-p 50 Hz)  
Feedthrough vs. Temperature  
Feedthrough vs. Power Supply  
DYNAMICS  
30  
25  
25  
mV  
2.0  
0.25  
1.0  
0.25  
1.0  
0.25  
mV p-p/°C  
mV/%  
Small Signal BW  
1% Amplitude Error  
Slew Rate  
VOUT = 0.1 rms  
1
1
1
MHz  
kHz  
V/μs  
μs  
75  
45  
1
75  
45  
1
75  
45  
1
VOUT 20 p-p  
to 2%, ΔVOUT = 20 V  
Settling Time  
NOISE  
Wideband Noise  
f = 5 Hz to 10 kHz  
f = 5 Hz to 5 MHz  
0.6  
3.0  
0.6  
3.0  
0.6  
3.0  
mV (rms)  
mV (rms)  
OUTPUT  
Voltage Swing  
10  
13  
10  
13  
10  
13  
V
Impedance  
f ≤ 1 kHz  
1
1
1
Offset Voltage  
40  
0.7  
2.5  
30  
30  
2.0  
mV  
mV/°C  
mV/%  
Offset Voltage vs. Temperature  
Offset Voltage vs. Supply  
INPUT AMPLIFIERS (X, Y, and Z)  
Signal Voltage Range  
0.7  
2.5  
2.5  
10  
Differential or CM  
10  
10  
V
operating differential  
CMRR  
40  
50  
50  
dB  
Input Bias Current  
X, Y Inputs  
X, Y Inputs TMIN to TMAX  
Z Input  
Z Input TMIN to TMAX  
Offset Current  
Differential Resistance  
DIVIDER PERFORMANCE  
Transfer Function  
Total Error  
3
10  
10  
1.5  
8
5
25  
0.1  
4
1.5  
8
5
25  
0.1  
10  
4
μA  
μA  
μA  
μA  
μA  
MΩ  
15  
15  
30  
0.3  
10  
10  
Xl > X2  
10 V Z/(X1 − X2)  
10 V Z/(X1 − X2)  
10 V Z/(X1 − X2)  
VX = −10 V, −10 V ≤ VZ ≤  
+10 V  
VX = −1 V, −10 V ≤ VZ ≤  
+10 V  
2
4
1
3
1
3
%
%
Rev. D | Page 3 of 16  
 
AD532  
AD532J  
Typ  
AD532K  
Typ  
AD532S  
Typ  
Conditions  
Model  
Min  
Max Min  
Max Min  
Max  
Unit  
(X1 X2 )2  
10V  
(X1 X2 )2  
10V  
(X1 X2 )2  
10V  
SQUARE PERFORMANCE  
Transfer Function  
Total Error  
0.8  
0.4  
0.4  
%
%
SQUARE ROOTER PERFORMANCE  
Transfer Function  
10 V Z  
−√  
1.5  
10 V Z  
1.0  
10 V Z  
−√  
−√  
Total Error  
0 V ≤ VZ ≤ 10 V  
1.0  
POWER SUPPLY SPECIFICATIONS  
Supply Voltage  
Rated Performance  
Operating  
Supply Current  
Quiescent  
15  
15  
15  
V
V
10  
18  
10  
18  
10  
22  
6
4
6
4
6
4
mA  
Rev. D | Page 4 of 16  
AD532  
THERMAL RESISTANCE  
CHIP DIMENSIONS AND BONDING DIAGRAM  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Contact factory for latest dimensions.  
Dimensions are shown in inches and (mm).  
Table 2. Thermal Resistance  
Package Type  
0.107  
θJA  
150  
85  
θJC  
25  
22  
22  
Unit  
°C/W  
°C/W  
°C/W  
(2.718)  
–V  
S
OUTPUT  
H-10A  
E-20A  
D-14  
Z
85  
X
1
0.062  
(1.575)  
+V  
S
Y
1
GND  
X
V
Y
2
2
OS  
Figure 2.  
ESD CAUTION  
Rev. D | Page 5 of 16  
 
 
 
AD532  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
Y
2
V
OS  
Y
1
+V  
S
GND  
AD532  
TOP VIEW  
(Not to Scale)  
Z
X
2
X
OUT  
1
–V  
S
Figure 3. 10-Lead Header Pin Configuration (H-10)  
2
3
1
20 19  
18  
17  
16  
15  
–V  
4
5
6
7
8
Y
S
2
NC  
NC  
NC  
NC  
NC  
AD532  
V
TOP VIEW  
(Not to Scale)  
OS  
NC  
14  
GND  
9
10 11 12 13  
NC = NO CONNECT.  
DO NOT CONNECT TO THIS PIN.  
Figure 4. 20-Lead Leadless Chip Carrier Pin Configuration (E-20A)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Z
+V  
S
OUT  
Y
Y
V
1
2
–V  
S
AD532  
TOP VIEW  
NC  
NC  
NC  
OS  
(Not to Scale)  
GND  
X
2
8
X
NC  
1
NC = NO CONNECT.  
DO NOT CONNECT TO THIS PIN.  
Figure 5. 14-Lead Side Braize DIP (D-14)  
Table 3. 10 Lead Header Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
Y1  
+VS  
Z
OUT  
−VS  
X1  
Y Multiplicand Input 1  
Positive Supply Voltage  
Dual Purpose Input  
Product Output  
Negative Supply Voltage  
X Multiplicand Input 1  
X Multiplicand Input 2  
Common  
X2  
GND  
VOS  
Y2  
9
10  
Output Offset Adjust  
Y Multiplicand Input 2  
Rev. D | Page 6 of 16  
 
AD532  
Table 4. 20 Lead Leadless Chip Carrier Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
2
3
4
Z
Dual Purpose Input  
Product Output  
Negative Supply Voltage  
No Connection  
OUT  
−VS  
NC  
1, 5, 6, 7, 8, 9, 11, 12,  
15, 17  
10  
13  
14  
16  
18  
19  
20  
X1  
X2  
GND  
VOS  
Y2  
X Multiplicand Input 1  
X Multiplicand Input 2  
Common  
Output Offset Adjust  
Y Multiplicand Input 2  
Y Multiplicand Input 1  
Positive Supply Voltage  
Y1  
+VS  
Table 5. 14 Lead Side Braize DIP Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
Z
Dual Purpose Input  
Product Output  
Negative Supply Voltage  
No Connection  
X Multiplicand Input 1  
X Multiplicand Input 2  
Common  
Output Offset Adjust  
Y Multiplicand Input 2  
Y Multiplicand Input 1  
Positive Supply Voltage  
OUT  
−VS  
NC  
X1  
4, 5, 6  
7
9
10  
11  
12  
13  
14  
X2  
GND  
VOS  
Y2  
Y1  
+VS  
Rev. D | Page 7 of 16  
AD532  
TYPICAL PERFORMANCE CHARACTERISTICS  
70  
60  
50  
40  
30  
20  
10  
0
1
Y COMMON-MODE REJ  
(X – X ) = +10V  
1
2
X
IN  
X COMMON-MODE REJ  
(Y – Y ) = +10V  
Y
IN  
1
2
0.1  
100  
1k  
10k  
100k  
1M  
10M  
0.01  
FREQUENCY (Hz)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
Figure 9. CMRR vs. Frequency  
PEAK SIGNAL AMPLITUDE (V)  
Figure 6. Distortion vs. Peak Signal Amplitude  
1
100  
10  
1
20V p-p SIGNAL  
R
= 2k, C = 1000pF  
L
L
R
= 2k, C = 0pF  
L
L
0.1  
X
IN  
Y
IN  
0.01  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
0.1  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 10. Frequency Response, Multiplying  
Figure 7. Distortion vs. Frequency  
10  
V
= 0.1 × V sin ωT  
X
Z
1k  
Y FEEDTHROUGH  
100  
10  
1
1
V
= 10V  
X
X FEEDTHROUGH  
V
= 1V  
X
V
= 5V  
X
0.1  
10k  
100  
1k  
10k  
100k  
1M  
10M  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
Figure 11. Frequency Response, Dividing  
Figure 8. Feedthrough vs. Frequency  
Rev. D | Page 8 of 16  
 
 
 
 
 
 
 
AD532  
5
4
3
2
1
0
14  
12  
10  
8
SATURATED OUTPUT  
SWING  
MAX X OR Y INPUT  
FOR 1% LINEARITY  
6
4
10  
100  
1k  
10k  
100k  
10  
12  
14  
16  
18  
20  
22  
FREQUENCY (Hz)  
POWER SUPPLY VOLTAGE (V)  
Figure 13. Spot Noise vs. Frequency  
Figure 12. Signal Swing vs. Supply  
Rev. D | Page 9 of 16  
 
 
AD532  
FUNCTIONAL DESCRIPTION  
The functional block diagram for the AD532 is shown in  
Figure 1and the complete schematic in Figure 14. In the  
multiplying and squaring modes, Z is connected to the output  
to close the feedback around the output op amp. In the divide  
mode, it is used as an input terminal.  
zero during production. The product of the two inputs is resolved  
in the multiplier cell using Gilberts linearized transconductance  
technique. The cell is laser trimmed to obtain VOUT = (X1 −  
X2)(Y1 − Y2)/10 volts. The built-in op amp is used to obtain low  
output impedance and make possible self-contained operation.  
The residual output voltage offset can be zeroed at VOS in critical  
applications. Otherwise, the VOS pin should be grounded.  
The X and Y inputs are fed to high impedance differential  
amplifiers featuring low distortion and good common-mode  
rejection. The amplifier voltage offsets are actively laser trimmed to  
X
2
+V  
Z
S
R6  
R8  
R16  
R23  
R2  
R27  
C1  
Q21  
Q2  
Q1  
R33  
Q8  
Q7  
Q14Q15  
Q16 Q17  
Q25  
R20  
R34  
R22  
V
OS  
R9  
R1  
Q10  
Y
X
1
Q9  
R30  
R13  
R31  
R21  
Q3  
Q4  
1
Q26  
Q22  
Q23  
Q24  
R3  
R28  
R29  
COM  
OUTPUT  
Q18  
R10  
R32  
Q12  
Q5  
Q6  
Q11  
Q27  
R19  
Q20  
R11  
R14  
Q19  
R24 R25  
Q13  
Q28  
R12  
R5  
R4  
R15  
R26  
–V CAN  
S
R18  
Y
2
Figure 14. Schematic Diagram  
Rev. D | Page 10 of 16  
 
 
AD532  
AD532 PERFORMANCE CHARACTERISTICS  
Multiplication accuracy is defined in terms of total error at 25°C  
with the rated power supply. The value specified is in percent of  
full scale and includes XIN and YIN nonlinearities, feedback and  
scale factor error. To this must be added such application-  
dependent error terms as power supply rejection, common-  
mode rejection and temperature coefficients (although worst  
case error over temperature is specified for the AD532S). Total  
expected error is the rms sum of the individual components  
because they are uncorrelated.  
COMMON-MODE REJECTION  
The AD532 features differential X and Y inputs to enhance its  
flexibility as a computational multiplier/divider. Common-mode  
rejection for both inputs as a function of frequency is shown in  
Figure 9. It is measured with X1 = X2 = 20 V (p-p), (Y1 − Y2) =  
10 V dc and Y1 = Y2 = 20 V (p-p), (X1 − X2) = 10 V dc.  
DYNAMIC CHARACTERISTICS  
The closed loop frequency response of the AD532 in the multiplier  
mode typically exhibits a 3 dB bandwidth of 1 MHz and rolls  
off at 6 dB/octave, thereafter. Response through all inputs is  
essentially the same as shown in Figure 10. In the divide mode,  
the closed loop frequency response is a function of the absolute  
value of the denominator voltage as shown in Figure 11.  
Accuracy in the divide mode is only a little more complex. To  
achieve division, the multiplier cell must be connected in the  
feedback of the output op amp as shown in Figure 17. In this  
configuration, the multiplier cell varies the closed loop gain of  
the op amp in an inverse relationship to the denominator voltage.  
Therefore, as the denominator is reduced, output offset, band-  
width, and other multiplier cell errors are adversely affected.  
The divide error and drift are then εm × 10 V/X1 − X2) where εm  
represents multiplier full-scale error and drift, and (X1 − X2) is  
the absolute value of the denominator.  
Stable operation is maintained with capacitive loads to 1000 pF  
in all modes, except the square root for which 50 pF is a safe  
upper limit. Higher capacitive loads can be driven if a 100 Ω  
resistor is connected in series with the output for isolation.  
POWER SUPPLY CONSIDERATIONS  
NONLINEARITY  
Although the AD532 is tested and specified with ±15 V dc supplies,  
it may be operated at any supply voltage from ±10 V to ±18 V  
for the J and K versions, and ±10 V to ±22 V for the S version.  
The input and output signals must be reduced proportionately  
to prevent saturation; however, with supply voltages below ±15 V,  
as shown in Figure 12. Because power supply sensitivity is not  
dependent on external null networks as in other conventionally  
nulled multipliers, the power supply rejection ratios are improved  
from 3 to 40 times in the AD532.  
Nonlinearity is easily measured in percent harmonic distortion.  
The curves of Figure 6 and Figure 7 characterize output distortion  
as a function of input signal level and frequency respectively,  
with one input held at plus or minus 10 V dc. In Figure 7, the  
sine wave amplitude is 20 V (p-p).  
AC FEEDTHROUGH  
AC feedthrough is a measure of the multiplier’s zero suppression.  
With one input at zero, the multiplier output should be zero  
regardless of the signal applied to the other input. Feedthrough  
as a function of frequency for the AD532 is shown in Figure 8.  
It is measured for the condition VX = 0, VY = 20 V (p-p) and  
VY = 0, VX = 20 V (p-p) over the given frequency range. It  
consists primarily of the second harmonic and is measured in  
millivolts peak-to-peak.  
NOISE CHARACTERISTICS  
All AD532s are screened on a sampling basis to assure that output  
noise will have no appreciable effect on accuracy. Typical spot  
noise vs. frequency is shown in Figure 13.  
Rev. D | Page 11 of 16  
 
 
 
 
 
 
 
AD532  
APPLICATIONS  
The performance and ease of use of the AD532 is achieved  
through the laser trimming of thin-film resistors deposited  
directly on the monolithic chip. This trimming-on-the-chip  
technique provides a number of significant advantages in terms  
of cost, reliability and flexibility over conventional in-package  
trimming of off-the-chip resistors mounted or deposited on a  
hybrid substrate.  
Squaring  
Z
S
X
X
1
2
V
AD532  
OUT  
OUT  
Y
Y
1
2
V
IN  
10V  
+V  
+V  
V
–V  
OS  
V
=
S
2
OUT  
V
IN  
(OPTIONAL)  
20kΩ  
–V  
S
S
First and foremost, trimming on the chip eliminates the need  
for a hybrid substrate and the additional bonding wires that are  
required between the resistors and the multiplier chip. By trimming  
more appropriate resistors on the AD532 chip itself, the second  
input terminals that were once committed to external trimming  
networks have been freed to allow fully differential operation at  
both the X and Y inputs. Further, the requirement for an input  
attenuator to adjust the gain at the Y input has been eliminated,  
letting the user take full advantage of the high input impedance  
properties of the input differential amplifiers. Therefore, the  
AD532 offers greater flexibility for both algebraic computation  
and transducer instrumentation applications.  
Figure 16. Squarer Connection  
The squaring circuit in Figure 16 is a simple variation of the  
multiplier. The differential input capability of the AD532,  
however, can be used to obtain a positive or negative output  
response to the input, a useful feature for control applications,  
as it might eliminate the need for an additional inverter  
somewhere else.  
Division  
Z
10VZ  
V
=
OUT  
X
X
Z
X
X
1
2
AD532  
OUT  
V
OUT  
Finally, provision for fine trimming the output voltage offset has  
been included. This connection is optional, however, as the AD532  
has been factory-trimmed for total performance as described in  
the listed specifications.  
Y
Y
1
+V  
+V  
–V  
S
2
S
1kΩ  
(SF)  
47kΩ  
2.2kΩ  
10kΩ  
20kΩ  
(X )  
REPLACING OTHER IC MULTIPLIERS  
0
–V  
S
S
Existing designs using IC multipliers that require external  
trimming networks can be simplified using the pin-for-pin  
replaceability of the AD532 by merely grounding the X2, Y2 and  
Figure 17. Divider Connection  
The AD532 can be configured as a two-quadrant divider by  
connecting the multiplier cell in the feedback loop of the op  
amp and using the Z terminal as a signal input, as shown in  
Figure 17. It should be noted, however, that the output error is  
given approximately by 10 V εm/(X1 − X2), where εm is the total  
error specification for the multiply mode; and bandwidth by  
fm × (X1 − X2)/10 V, where fm is the bandwidth of the multiplier.  
Further, to avoid positive feedback, the X input is restricted to  
negative values. Thus, for single-ended negative inputs (0 V to  
−10 V), connect the input to X and the offset null to X2; for  
single-ended positive inputs (0 V to +10 V), connect the input  
to X2 and the offset null to X1. For optimum performance, gain  
(S.F.) and offset (X0) adjustments are recommended as shown  
and explained in Table 6.  
V
OS terminals. The VOS terminal should always be grounded  
when unused.  
Multiplication  
X
X
Z
1
2
AD532 OUT  
V
OUT  
Y
Y
1
2
V
OS  
(X – X ) (Y – Y )  
1
2
1
2
V
=
OUT  
10V  
(OPTIONAL)  
+V  
20kΩ  
–V  
S
S
Figure 15. Multiplier Connection  
For operation as a multiplier, the AD532 should be connected  
as shown in Figure 15. The inputs can be fed differentially to the  
X and Y inputs, or single-ended by simply grounding the  
unused input. Connect the inputs according to the desired  
polarity in the output. The Z terminal is tied to the output to  
close the feedback loop around the op amp (see Figure 1). The  
offset adjust VOS is optional and is adjusted when both inputs  
are zero volts to obtain zero out, or to buck out other system  
offsets.  
For practical reasons, the useful range in denominator input is  
approximately 500 mV ≤ |(X1 − X2)| ≤ 10 V. The voltage offset  
adjust (VOS), if used, is trimmed with Z at zero and (X1 − X2) at  
full scale.  
Rev. D | Page 12 of 16  
 
 
 
 
 
AD532  
10 V Z  
obtain −1.0 V dc in the output, VOUT = −±  
performance, gain (S.F.) and offset (X0) adjustments are recom-  
mended as shown and explained in Table 6.  
. For optimum  
Table 6. Adjustment Procedure (Divider or Square Rooter)  
Divider Square Rooter  
Adjust for: With: Adjust: for:  
VOUT VOUT  
With:  
Adjust  
X
Z
Z
DIFFERENCE OF SQUARES  
Scale Factor −10 V +10 V −10 V  
X0 (Offset) −1 V +0.1 V −1 V  
+10 V −10 V  
+0.1 V −1 V  
Z
X
X
X
Y
1
2
V
OUT  
AD532  
Repeat if required.  
OUT  
Y
Y
1
20kΩ  
20kΩ  
2
2
X
– Y  
+V  
V
–V  
OS S  
V
=
2
S
SQUARE ROOT  
OUT  
–Y  
10V  
Z
10kΩ  
(OPTIONAL)  
20kΩ  
V
= 10VZ  
OUT  
AD741KH  
X
Z
1
2
X
+V  
–V  
S
S
AD532  
OUT  
V
OUT  
Y
Y
Figure 19. Differential of Squares Connection  
1
2
+V  
+V  
–V  
S
S
The differential input capability of the AD532 allows for the  
algebraic solution of several interesting functions, such as the  
difference of squares, X2 − Y2/10 V. As shown in Figure 19, the  
AD532 is configured in the square mode, with a simple unity  
gain inverter connected between one of the signal inputs (Y)  
and one of the inverting input terminals (−YIN) of the multiplier.  
The inverter should use precision (0.1%) resistors or be otherwise  
trimmed for unity gain for best accuracy.  
1kΩ  
(SF)  
47kΩ  
2.2kΩ  
10kΩ  
20kΩ  
(X )  
0
–V  
S
S
Figure 18. Square Rooter Connection  
The connections for square root mode are shown in Figure 18.  
Similar to the divide mode, the multiplier cell is connected in  
the feedback of the op amp by connecting the output back to  
both the X and Y inputs. The diode D1 is connected as shown to  
prevent latch-up as ZIN approaches 0 volts. In this case, the VOS  
adjustment is made with ZIN = +0.1 V dc, adjusting VOS to  
Rev. D | Page 13 of 16  
 
 
 
 
 
AD532  
OUTLINE DIMENSIONS  
0.005 (0.13) MIN  
0.080 (2.03) MAX  
8
14  
0.310 (7.87)  
1
0.220 (5.59)  
7
PIN 1  
0.100 (2.54)  
BSC  
0.320 (8.13)  
0.290 (7.37)  
0.765 (19.43) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 20. 14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]  
(D-14)  
Dimensions shown in inches and (millimeters)  
0.200 (5.08)  
0.075 (1.91)  
REF  
REF  
0.100 (2.54)  
0.064 (1.63)  
0.100 (2.54) REF  
0.095 (2.41)  
0.015 (0.38)  
MIN  
0.075 (1.90)  
3
19  
18  
20  
4
8
0.028 (0.71)  
0.022 (0.56)  
1
0.358 (9.09)  
0.342 (8.69)  
SQ  
0.358  
0.011 (0.28)  
0.007 (0.18)  
R TYP  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
0.050 (1.27)  
BSC  
14  
0.075 (1.91)  
13  
9
REF  
45° TYP  
0.088 (2.24)  
0.054 (1.37)  
0.055 (1.40)  
0.045 (1.14)  
0.150 (3.81)  
BSC  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 21. 20-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-20-1)  
Dimensions shown in inches and (millimeters)  
REFERENCE PLANE  
0.500 (12.70)  
0.160 (4.06)  
MIN  
0.185 (4.70)  
0.165 (4.19)  
0.110 (2.79)  
6
7
5
8
0.021 (0.53)  
0.016 (0.40)  
0.115  
(2.92)  
BSC  
4
0.045 (1.14)  
0.025 (0.65)  
9
3
10  
0.034 (0.86)  
0.025 (0.64)  
2
1
0.230 (5.84)  
BSC  
BASE & SEATING PLANE  
0.040 (1.02) MAX  
0.050 (1.27) MAX  
36° BSC  
DIMENSIONS PER JEDEC STANDARDS MO-006-AF  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 22. 10-Pin Metal Header Package [TO-100]  
(H-10)  
Dimensions shown in inches and (millimeters)  
Rev. D | Page 14 of 16  
 
AD532  
ORDERING GUIDE  
Model1  
Temperature Range  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
Package Description  
Chip  
14-Lead SBDIP  
Package Option  
AD532JCHIPS  
AD532JD  
AD532JDZ  
AD532JH  
AD532JHZ  
AD532KD  
AD532KDZ  
AD532KH  
AD532KHZ  
AD532SCHIPS  
AD532SD  
AD532SD/883B  
AD532SE/883B  
AD532SH  
D-14  
D-14  
H-10  
H-10  
D-14  
D-14  
H-10  
H-10  
14-Lead SBDIP  
10-Pin Metal Header Package [TO-100]  
10-Pin Metal Header Package [TO-100]  
14-Lead SBDIP  
14-Lead SBDIP  
10-Pin Metal Header Package [TO-100]  
10-Pin Metal Header Package [TO-100]  
Chip  
14-Lead SBDIP  
14-Lead SBDIP  
20-Terminal LCC  
10-Pin Metal Header Package [TO-100]  
10-Pin Metal Header Package [TO-100]  
0°C to 70°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
D-14  
D-14  
E-20-1  
H-10  
H-10  
AD532SH/883B  
1 Z = RoHS Compliant Part.  
Rev. D | Page 15 of 16  
 
AD532  
NOTES  
©2001–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00502-0-2/11(D)  
Rev. D | Page 16 of 16  

相关型号:

AD532SD883C

IC ANALOG MULTIPLIER OR DIVIDER, CDIP14, SIDE BRAZED, CERAMIC,DIP-14, Analog Computational Function
ADI

AD532SE

Internally Trimmed Integrated Circuit Multiplier
ADI

AD532SE/883

IC ANALOG MULTIPLIER OR DIVIDER, CQCC20, CERAMIC, LCC-20, Analog Computational Function
ADI

AD532SE/883B

Analog Multiplier/Divider
ETC

AD532SE883B

Internally Trimmed Integrated Circuit Multiplier
ADI

AD532SH

Internally Trimmed Integrated Circuit Multiplier
ADI

AD532SH/883

IC ANALOG MULTIPLIER OR DIVIDER, MBCY10, METAL CAN, TO-100, 10 PIN, Analog Computational Function
ADI

AD532SH/883B

Analog Multiplier/Divider
ETC

AD532SH883B

Internally Trimmed Integrated Circuit Multiplier
ADI

AD5330

2.5 V to 5.5 V, 115 uA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5330BRU

2.5 V to 5.5 V, 115 uA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5330BRU-REEL

2.5 V to 5.5 V, 115 μA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs
ADI