AD7988-1 [ADI]

16-Bit Lower Power; 16位低功耗
AD7988-1
型号: AD7988-1
厂家: ADI    ADI
描述:

16-Bit Lower Power
16位低功耗

文件: 总24页 (文件大小:463K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit Lower Power  
PulSAR ADCs in MSOP/LFCSP (QFN)  
Data Sheet  
AD7988-1/AD7988-5  
FEATURES  
GENERAL DESCRIPTION  
Low power dissipation  
AD7988-5: 3.5 mW @ 500 kSPS  
AD7988-1: 700 µW @ 100 kSPS  
16-bit resolution with no missing codes  
Throughput: 100 kSPS/500 kSPS options  
INL: 0.6 LSB typical, 1.25 LSB maximum  
SINAD: 91.5 dB @ 10 kHz  
The AD7988-1/AD7988-5 are 16-bit, successive approximation,  
analog-to-digital converters (ADC) that operate from a single  
power supply, VDD. The AD7988-1 offers a 100 kSPS throughput,  
and the AD7988-5 offers a 500 kSPS throughput. They are low  
power, 16-bit sampling ADCs with a versatile serial interface  
port. On the CNV rising edge, they sample an analog input,  
IN+, between 0 V to VREF with respect to a ground sense, IN−.  
The reference voltage, REF, is applied externally and can be set  
independent of the supply voltage, VDD.  
THD: −114 dB @ 10 kHz  
Pseudo differential analog input range  
0 V to VREF with VREF from 2.5 V to 5.5 V  
Any input range and easy to drive with the ADA4841-1  
No pipeline delay  
Single-supply 2.5 V operation with 1.8 V/2.5 V/3 V/5 V  
logic interface  
The SPI-compatible serial interface also features the ability to  
daisy-chain several ADCs on a single 3-wire bus using the SDI  
input. It is compatible with 1.8 V, 2.5 V, 3 V, or 5 V logic using  
the separate supply, VIO.  
The AD7988-1/AD7988-5 generics are housed in a 10-lead  
MSOP or a 10-lead LFCSP (QFN) with operation specified  
from −40°C to +125°C.  
SPI-/QSPI-/MICROWIRE™-/DSP-compatible serial interface  
Daisy-chain multiple ADCs  
10-lead MSOP and 10-lead, 3 mm × 3 mm LFCSP (QFN),  
same space as SOT-23  
Table 1. MSOP, LFCSP (QFN) 14-/16-/18-Bit PulSAR® ADCs  
Wide operating temperature range: −40°C to +125°C  
400 kSPS to  
500 kSPS  
AD76902  
≥1000  
kSPS  
AD79822 ADA4941-1  
AD79842 ADA4841-1  
ADA4941-1  
Bits  
100 kSPS  
250 kSPS  
ADC Driver  
APPLICATIONS  
181  
AD76912  
Battery-powered equipment  
Low power data acquisition systems  
Portable medical instruments  
ATE equipment  
Data acquisitions  
Communications  
161  
163  
AD7684  
AD76872  
AD76882  
AD76932  
AD76862  
AD7988-52  
ADA4841-1  
AD7680  
AD7683  
AD7988-12  
AD7940  
AD76852  
AD7694  
AD79802 ADA4841-1  
ADA4841-1  
ADA4841-1  
143  
AD79422  
AD79462  
ADA4841-1  
1 True differential.  
2 Pin-for-pin compatible.  
3 Pseudo differential.  
TYPICAL APPLICATION DIAGRAM  
2.5V TO 5V 2.5V  
VIO  
SDI  
1.8V TO 5.5V  
REF VDD  
0V TO V  
REF  
IN+ AD7988-1/ SCK  
3- OR 4-WIRE INTERFACE  
(SPI, DAISY CHAIN, CS)  
IN– AD7988-5  
SDO  
GND  
CNV  
Figure 1.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
 
AD7988-1/AD7988-5  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Analog Inputs ............................................................................. 16  
Driver Amplifier Choice ........................................................... 16  
Voltage Reference Input ............................................................ 17  
Power Supply............................................................................... 17  
Digital Interface.......................................................................... 17  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Application Diagram.......................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Terminology ...................................................................................... 9  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 14  
Circuit Information.................................................................... 14  
Converter Operation.................................................................. 14  
Typical Connection Diagram ................................................... 15  
CS  
CS  
Mode, 3-Wire........................................................................ 18  
Mode 4-Wire......................................................................... 19  
Chain Mode ................................................................................ 20  
Applications Information.............................................................. 21  
Interfacing to Blackfin® DSP..................................................... 21  
Layout .......................................................................................... 21  
Evaluating the Performance of the AD7988-x........................ 21  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 23  
REVISION HISTORY  
5/12—Rev. A to Rev. B  
Changes to Table 3.............................................................................4  
Updated Outline Dimensions ........................................................22  
2/12—Rev. 0 to Rev. A  
Added LFCSP Thermal Impedance Values................................... 7  
Updated Outline Dimensions ....................................................... 23  
Changes to Ordering Guide .......................................................... 23  
2/12—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
 
Data Sheet  
AD7988-1/AD7988-5  
SPECIFICATIONS  
VDD = 2.5 V, VIO = 2.3 V to 5.5 V, V REF = 5 V, T A = –40°C to +125°C, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RESOLUTION  
16  
Bits  
ANALOG INPUT  
Voltage Range  
Absolute Input Voltage  
IN+ − IN−  
IN+  
IN−  
0
−0.1  
−0.1  
VREF  
VREF + 0.1  
+0.1  
V
V
V
Analog Input CMRR  
Leakage Current at 25°C  
Input Impedance  
fIN = 1 kHz  
Acquisition phase  
60  
1
dB  
nA  
See the Analog Inputs section  
ACCURACY  
No Missing Codes  
Differential Linearity Error  
16  
−0.9  
Bits  
VREF = 5 V  
VREF = 2.5 V  
VREF = 5 V  
VREF = 2.5 V  
VREF = 5 V  
VREF = 2.5 V  
0.4  
0.55  
0.6  
0.65  
0.6  
1.0  
2
0.35  
0.08  
0.54  
0.1  
+0.9  
LSB1  
LSB1  
LSB1  
LSB1  
LSB1  
LSB1  
LSB1  
ppm/°C  
mV  
Integral Linearity Error  
Transition Noise  
−1.25  
−0.5  
+1.25  
2
Gain Error, TMIN to TMAX  
Gain Error Temperature Drift  
Zero Error, TMIN to TMAX  
Zero Temperature Drift  
Power Supply Sensitivity  
2
+0.5  
ppm/°C  
LSB1  
VDD = 2.5 V ± 5%  
THROUGHPUT  
AD7988-1  
Conversion Rate  
VIO ≥ 2.3 V up to 85°C, VIO ≥ 3.3 V above 85°C up to  
125°C  
Full-scale step  
0
0
100  
500  
kSPS  
ns  
Transient Response  
AD7988-5  
Conversion Rate  
VIO ≥ 2.3 V up to 85°C, VIO ≥ 3.3 V above 85°C up to  
125°C  
Full-scale step  
500  
400  
kSPS  
ns  
Transient Response  
AC ACCURACY  
Dynamic Range  
VREF = 5 V  
VREF = 2.5 V  
fO = 10 kSPS  
fIN = 10 kHz, VREF = 5 V  
fIN = 10 kHz, VREF = 2.5 V  
fIN = 10 kHz  
fIN = 10 kHz  
fIN = 10 kHz, VREF = 5 V  
fIN = 10 kHz, VREF = 2.5 V  
92  
87  
111  
91  
86.5  
−110  
−114  
91.5  
87.0  
dB3  
dB3  
dB3  
dB3  
dB3  
dB3  
dB3  
dB3  
dB3  
Oversampled Dynamic Range  
Signal-to-Noise Ratio, SNR  
90  
Spurious-Free Dynamic Range, SFDR  
Total Harmonic Distortion, THD  
Signal-to-(Noise + Distortion), SINAD  
1 LSB means least significant bit. With the 5 V input range, 1 LSB is 76.3 µV.  
2 See the Terminology section. These specifications include full temperature range variation, but not the error contribution from the external reference.  
3 All specifications in dB are referred to a full-scale input FSR. Tested with an input signal at 0.5 dB below full scale, unless otherwise specified.  
Rev. B | Page 3 of 24  
 
 
 
 
 
AD7988-1/AD7988-5  
Data Sheet  
VDD = 2.5 V, VIO = 2.3 V to 5.5 V, V REF = 5 V, T A = –40°C to +125°C, unless otherwise noted.  
Table 3.  
Parameter  
REFERENCE  
Voltage Range  
Load Current  
SAMPLING DYNAMICS  
−3 dB Input Bandwidth  
Aperture Delay  
DIGITAL INPUTS  
Logic Levels  
VIL  
Test Conditions/Comments  
VREF = 5 V  
Min  
Typ  
Max  
Unit  
2.4  
5.1  
V
µA  
250  
10  
2.0  
MHz  
ns  
VDD = 2.5 V  
VIO > 3 V  
VIO > 3 V  
VIO ≤ 3 V  
VIO ≤ 3 V  
–0.3  
0.7 × VIO  
–0.3  
0.9 × VIO  
−1  
−1  
0.3 × VIO  
VIO + 0.3  
0.1 × VIO  
VIO + 0.3  
+1  
V
V
V
V
µA  
µA  
VIH  
VIL  
VIH  
IIL  
IIH  
+1  
DIGITAL OUTPUTS  
Data Format  
Pipeline Delay  
Serial 16 bits straight binary  
Conversion results available immediately  
after completed conversion  
VOL  
VOH  
ISINK = 500 µA  
ISOURCE = −500 µA  
0.4  
V
V
VIO − 0.3  
POWER SUPPLIES  
VDD  
VIO  
2.375  
2.3  
2.5  
2.625  
5.5  
V
V
Specified performance  
VIO Range  
1.8  
5.5  
V
nA  
µW  
Standby Current1, 2  
VDD and VIO = 2.5 V, 25°C  
10 kSPS throughput  
0.35  
70  
AD7988-1 Power Dissipation  
100 kSPS throughput  
700  
µW  
1
5
mW  
mW  
nJ/sample  
AD7988-5 Power Dissipation  
Energy per Conversion  
TEMPERATURE RANGE  
500 kSPS throughput  
3.5  
7.0  
Specified Performance  
TMIN to TMAX  
−40  
+125  
°C  
1 With all digital inputs forced to VIO or GND as required.  
2 During the acquisition phase.  
Rev. B | Page 4 of 24  
Data Sheet  
AD7988-1/AD7988-5  
TIMING SPECIFICATIONS  
VDD = 2.37 V to 2.63 V, VIO = 3.3 V to 5.5 V, 40°C to +125°C unless otherwise stated. See Figure 2 and Figure 3 for load conditions.  
Table 4.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
AD7988-1  
Throughput Rate  
Conversion Time: CNV Rising Edge to Data Available  
Acquisition Time  
100  
9.5  
kHz  
μs  
ns  
tCONV  
tACQ  
tCYC  
500  
10  
Time Between Conversions  
μs  
AD7988-5  
Throughput Rate  
Conversion Time: CNV Rising Edge to Data Available  
Acquisition Time  
500  
1.6  
kHz  
μs  
ns  
μs  
ns  
tCONV  
tACQ  
tCYC  
tCNVH  
tSCK  
400  
2
500  
Time Between Conversions  
CNV Pulse Width (CS Mode)  
SCK Period (CS Mode)  
VIO Above 4.5 V  
VIO Above 3 V  
VIO Above 2.7 V  
VIO Above 2.3 V  
10.5  
12  
13  
ns  
ns  
ns  
ns  
15  
SCK Period (Chain Mode)  
tSCK  
VIO Above 4.5 V  
VIO Above 3 V  
VIO Above 2.7 V  
VIO Above 2.3 V  
SCK Low Time  
SCK High Time  
SCK Falling Edge to Data Remains Valid  
SCK Falling Edge to Data Valid Delay  
VIO Above 4.5 V  
11.5  
13  
14  
16  
4.5  
4.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCKL  
tSCKH  
tHSDO  
tDSDO  
9.5  
11  
12  
14  
ns  
ns  
ns  
ns  
VIO Above 3 V  
VIO Above 2.7 V  
VIO Above 2.3 V  
CNV or SDI Low to SDO D15 MSB Valid (CS Mode)  
VIO Above 3 V  
tEN  
10  
15  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
VIO Above 2.3V  
CNV or SDI High or Last SCK Falling Edge to SDO High Impedance (CS Mode)  
SDI Valid Setup Time from CNV Rising Edge  
SDI Valid Hold Time from CNV Rising Edge (CS Mode)  
SDI Valid Hold Time from CNV Rising Edge (Chain Mode)  
SCK Valid Setup Time from CNV Rising Edge (Chain Mode)  
SCK Valid Hold Time from CNV Rising Edge (Chain Mode)  
SDI Valid Setup Time from SCK Falling Edge (Chain Mode)  
SDI Valid Hold Time from SCK Falling Edge (Chain Mode)  
tDIS  
tSSDICNV  
tHSDICNV  
tHSDICNV  
tSSCKCNV  
tHSCKCNV  
tSSDISCK  
tHSDISCK  
5
2
0
5
5
2
3
Rev. B | Page 5 of 24  
 
AD7988-1/AD7988-5  
Data Sheet  
500µA  
I
OL  
1.4V  
TO SDO  
C
L
20pF  
500µA  
I
OH  
Figure 2. Load Circuit for Digital Interface Timing  
1
Y% VIO  
1
X% VIO  
tDELAY  
tDELAY  
2
2
V
V
V
IH  
IH  
2
2
V
IL  
IL  
1
2
FOR VIO ≤ 3.0V, X = 90 AND Y = 10; FOR VIO > 3.0V X = 70, AND Y = 30.  
MINIMUM V AND MAXIMUM V USED. SEE DIGITAL INPUTS  
IH  
IL  
SPECIFICATIONS IN TABLE 3.  
Figure 3. Voltage Levels for Timing  
Rev. B | Page 6 of 24  
 
 
Data Sheet  
AD7988-1/AD7988-5  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Analog Inputs  
IN+,1 IN1 to GND  
Supply Voltage  
REF, VIO to GND  
VDD to GND  
VDD to VIO  
−0.3 V to VREF + 0.3 V or 130 mA  
−0.3 V to +6 V  
−0.3 V to +3 V  
+3 V to −6 V  
Digital Inputs to GND  
Digital Outputs to GND  
Storage Temperature Range  
Junction Temperature  
θJA Thermal Impedance  
10-Lead MSOP  
−0.3 V to VIO + 0.3 V  
−0.3 V to VIO + 0.3 V  
−65°C to +125°C  
150°C  
ESD CAUTION  
200°C/W  
80°C/W  
10-Lead LFCSP  
θJC Thermal Impedance  
10-Lead MSOP  
44°C/W  
10-Lead LFCSP  
15°C/W  
Reflow Soldering  
JEDEC Standard (J-STD-020)  
1 See the Analog Inputs section.  
Rev. B | Page 7 of 24  
 
 
 
AD7988-1/AD7988-5  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
REF  
VDD  
IN+  
1
2
3
4
5
10 VIO  
AD7988-1/  
AD7988-5  
TOP VIEW  
(Not to Scale)  
9
8
7
6
SDI  
SCK  
SDO  
CNV  
REF  
VDD  
IN+  
1
2
3
4
5
10 VIO  
IN–  
AD7988-1/  
AD7988-5  
TOP VIEW  
(Not to Scale)  
9
8
7
6
SDI  
GND  
SCK  
SDO  
CNV  
IN–  
NOTES  
GND  
1. THE EXPOSED PAD CAN BE CONNECTED TO GND.  
Figure 4. 10-Lead MSOP Pin Configuration  
Figure 5. 10-Lead LFCSP (QFN) Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Type1 Description  
1
REF  
AI  
Reference Input Voltage. The VREF range is from 2.4 V to 5.1 V. It is referred to the GND pin. The GND pin  
should be decoupled closely to the REF pin with a 10 µF capacitor.  
2
3
VDD  
IN+  
P
AI  
Power Supply.  
Analog Input. It is referred to IN−. The voltage range, for example, the difference between IN+ and IN−, is  
0 V to VREF  
.
4
5
6
IN−  
GND  
CNV  
AI  
P
DI  
Analog Input Ground Sense. Connect to the analog ground plane or to a remote sense ground.  
Power Supply Ground.  
Convert Input. This input has multiple functions. On its leading edge, it initiates the conversions and  
selects the interface mode of the part: chain mode or CS mode. In CS mode, the SDO pin is enabled when  
CNV is low. In chain mode, the data should be read when CNV is high.  
7
8
9
SDO  
SCK  
SDI  
DO  
DI  
DI  
Serial Data Output. The conversion result is output on this pin. It is synchronized to SCK.  
Serial Data Clock Input. When the part is selected, the conversion result is shifted out by this clock.  
Serial Data Input. This input provides multiple features. It selects the interface mode of the ADC as  
follows:  
Chain mode is selected if this pin is low during the CNV rising edge. In this mode, SDI is used as a data  
input to daisy-chain the conversion results of two or more ADCs onto a single SDO line. The digital data  
level on SDI is output on SDO with a delay of 16 SCK cycles.  
CS mode is selected if SDI is high during the CNV rising edge. In this mode, either SDI or CNV can enable  
the serial output signals when low.  
10  
VIO  
EP  
P
Input/Output Interface Digital Power. Nominally at the same supply as the host interface (1.8 V, 2.5 V, 3 V,  
or 5 V).  
Exposed Pad. The exposed pad can be connected to GND.  
1AI = analog input, DI = digital input, DO = digital output, and P = power.  
Rev. B | Page 8 of 24  
 
 
Data Sheet  
AD7988-1/AD7988-5  
TERMINOLOGY  
Effective Resolution  
Integral Nonlinearity Error (INL)  
Effective resolution is calculated as  
Effective Resolution = log2(2N/RMS Input Noise)  
and is expressed in bits.  
INL refers to the deviation of each individual code from a line  
drawn from negative full scale through positive full scale. The  
point used as negative full scale occurs ½ LSB before the first  
code transition. Positive full scale is defined as a level 1½ LSB  
beyond the last code transition. The deviation is measured from  
the middle of each code to the true straight line (see Figure 30).  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first five harmonic  
components to the rms value of a full-scale input signal and is  
expressed in dB.  
Differential Nonlinearity Error (DNL)  
In an ideal ADC, code transitions are 1 LSB apart. DNL is the  
maximum deviation from this ideal value. It is often specified in  
terms of resolution for which no missing codes are guaranteed.  
Dynamic Range  
Dynamic range is the ratio of the rms value of the full scale to  
the total rms noise measured with the inputs shorted together.  
The value for dynamic range is expressed in dB. It is measured  
with a signal at −60 dBFS to include all noise sources and DNL  
artifacts.  
Offset Error  
The first transition should occur at a level ½ LSB above analog  
ground (38.1 µV for the 0 V to 5 V range). The offset error is  
the deviation of the actual transition from that point.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the actual input signal to the  
rms sum of all other spectral components below the Nyquist  
frequency, excluding harmonics and dc. The value for SNR is  
expressed in dB.  
Gain Error  
The last transition (from 111 … 10 to 111 … 11) should  
occur for an analog voltage 1½ LSB below the nominal full  
scale (4.999886 V for the 0 V to 5 V range). The gain error is  
the deviation of the actual level of the last transition from the  
ideal level after the offset is adjusted out.  
Signal-to-(Noise + Distortion) Ratio (SINAD)  
SINAD is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, including harmonics but excluding dc. The value for  
SINAD is expressed in dB.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the difference, in decibels (dB), between the rms  
amplitude of the input signal and the peak spurious signal.  
Aperture Delay  
Effective Number of Bits (ENOB)  
Aperture delay is the measure of the acquisition performance. It  
is the time between the rising edge of the CNV input and when  
the input signal is held for a conversion.  
ENOB is a measurement of the resolution with a sine wave  
input. It is related to SINAD by the following formula:  
ENOB = (SINADdB − 1.76)/6.02  
Transient Response  
and is expressed in bits.  
Transient response is the time required for the ADC to  
accurately acquire its input after a full-scale step function is  
applied.  
Noise-Free Code Resolution  
Noise-free code resolution is the number of bits beyond which  
it is impossible to distinctly resolve individual codes. It is  
calculated as  
Noise-Free Code Resolution = log2(2N/Peak-to-Peak Noise)  
and is expressed in bits.  
Rev. B | Page 9 of 24  
 
AD7988-1/AD7988-5  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 2.5 V, VREF = 5.0 V, VIO = 3.3 V, unless otherwise noted.  
0
0
–20  
fS = 500kSPS  
fS = 100kSPS  
fIN = 10kHz  
SNR = 86.7dB  
THD = –110.4dB  
SFDR = 103.9dB  
SINAD = 86.6dB  
fIN = 10kHz  
–20  
–40  
SNR = 91.17dB  
THD = –113.63dB  
SFDR = 110.30dB  
SINAD = 91.15dB  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
50  
100  
150  
200  
250  
0
10  
20  
30  
40  
50  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 6. AD7988-5 FFT Plot, VREF = 5 V  
Figure 9. AD7988-1 FFT Plot, VREF = 2.5 V  
0
–20  
1.25  
1.00  
0.75  
0.50  
0.25  
0
POSITIVE INL: +0.40 LSB  
NEGATIVE INL: –0.35 LSB  
fS = 500kSPS  
fIN = 10kHz  
SNR = 86.8dB  
THD = –111.4dB  
SFDR = 105.9dB  
SINAD = 86.8dB  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
0
16384  
32768  
CODE  
49152  
65536  
0
50  
100  
150  
200  
250  
FREQUENCY (kHz)  
Figure 10. Integral Nonlinearity vs. Code, VREF = 5 V  
Figure 7. AD7988-5 FFT Plot, VREF = 2.5 V  
1.25  
1.00  
0
POSITIVE INL: +0.45 LSB  
NEGATIVE INL: –0.29 LSB  
fS = 100kSPS  
fIN = 10kHz  
–20  
–40  
SNR = 91.09dB  
0.75  
THD = –113.12dB  
SFDR = 110.30dB  
SINAD = 91.05dB  
0.50  
0.25  
–60  
–80  
0
–100  
–120  
–140  
–160  
–180  
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
0
16384  
32768  
CODE  
49152  
65536  
0
10  
20  
30  
40  
50  
FREQUENCY (kHz)  
Figure 11. Integral Nonlinearity vs. Code, VREF = 2.5 V  
Figure 8. AD7988-1 FFT Plot, VREF = 5 V  
Rev. B | Page 10 of 24  
 
Data Sheet  
AD7988-1/AD7988-5  
1.00  
0.75  
0.50  
0.25  
0
60k  
50k  
40k  
30k  
20k  
10k  
0
POSITIVE INL: +0.18 LSB  
NEGATIVE INL: –0.21 LSB  
50970  
45198  
–0.25  
–0.50  
–0.75  
18848  
12424  
1217  
2290  
94  
30  
0
0
1
0
0
–1.00  
0
7FFA 7FFB 7FFC 7FFD 7FFE 7FFF 8000 8001 8002 8003 8004 8005 8006  
CODE IN HEX  
16384  
32768  
CODE  
49152  
65536  
Figure 15. Histogram of a DC Input at the Code Transition, VREF = 2.5 V  
Figure 12. Differential Nonlinearity vs. Code, VREF = 5 V  
1.00  
0.75  
0.50  
0.25  
0
100  
16  
15  
14  
POSITIVE INL: +0.25 LSB  
NEGATIVE INL: –0.22 LSB  
SNR  
SINAD  
ENOB  
95  
90  
–0.25  
–0.50  
–0.75  
–1.00  
85  
80  
13  
12  
0
16384  
32768  
CODE  
49152  
65536  
2.25  
2.75  
3.25  
3.75  
4.25  
4.75  
5.25  
REFERENCE VOLTAGE (V)  
Figure 13. Differential Nonlinearity vs. Code, VREF = 2.5 V  
Figure 16. SNR, SINAD, and ENOB vs. Reference Voltage  
180k  
160k  
140k  
120k  
100k  
80k  
60k  
40k  
20k  
0
60k  
162595  
53412  
50k  
40k  
30k  
20k  
10k  
0
37417  
31540  
52720  
42731  
7285  
5807  
1291  
852  
590  
512  
19  
29  
11  
0
0
22  
2
0
0
0
0
0
0
0
8003 8004 8005 8006 8007 8008 8009 800A 800B 800C 800D 800E 800F  
CODE IN HEX  
7FFA 7FFB 7FFC 7FFD 7FFE 7FFF 8000 8001 8002 8003 8004 8005 8006  
CODE IN HEX  
Figure 14. Histogram of a DC Input at the Code Center, VREF = 5 V  
Figure 17. Histogram of a DC Input at the Code Center, VREF = 2.5 V  
Rev. B | Page 11 of 24  
AD7988-1/AD7988-5  
Data Sheet  
95  
93  
91  
89  
87  
85  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
2.625  
2.625  
–10  
–9  
–8  
–7  
–6  
–5  
–4  
–3  
–2  
–1  
0
TEMPERATURE (°C)  
INPUT LEVEL (dB OF FULL SCALE)  
Figure 21. SNR vs. Temperature  
Figure 18. SNR vs. Input Level  
–95  
–100  
–105  
–110  
–115  
115  
110  
105  
100  
95  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
I
VDD  
SFDR  
I
REF  
THD  
I
VIO  
–120  
–125  
90  
85  
0.1  
0
2.375  
2.425  
2.475  
2.525  
2.575  
2.25  
2.75  
3.25  
3.75  
4.25  
4.75  
5.25  
VDD VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
Figure 22. Operating Currents vs. Supply (AD7988-5)  
Figure 19. THD, SFDR vs. Reference Voltage  
100  
95  
90  
85  
80  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
I
VDD  
I
REF  
I
VIO  
2.375  
2.425  
2.475  
2.525  
2.575  
10  
100  
1k  
VDD VOLTAGE (V)  
FREQUENCY (kHz)  
Figure 20. SINAD vs. Frequency  
Figure 23. Operating Currents vs. Supply (AD7988-1)  
Rev. B | Page 12 of 24  
Data Sheet  
AD7988-1/AD7988-5  
–85  
0.14  
0.12  
0.10  
008  
I
VDD  
–90  
–95  
–100  
–105  
–110  
–115  
–120  
0.06  
I
REF  
0.04  
0.02  
0
I
VIO  
–125  
10  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
100  
1k  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
Figure 24. THD vs. Frequency  
Figure 27. Operating Currents vs. Temperature (AD7988-1)  
8
–110  
–112  
–114  
–116  
–118  
–120  
7
6
5
4
3
2
1
I
+ I  
VIO  
VDD  
0
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 25. THD vs. Temperature  
Figure 28. Power-Down Currents vs. Temperature  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
VDD  
I
REF  
I
VIO  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
Figure 26. Operating Currents vs. Temperature (AD7988-5)  
Rev. B | Page 13 of 24  
AD7988-1/AD7988-5  
Data Sheet  
THEORY OF OPERATION  
IN+  
SWITCHES CONTROL  
MSB  
LSB  
SW+  
32,768C 16,384C  
4C  
4C  
2C  
2C  
C
C
C
C
BUSY  
REF  
CONTROL  
COMP  
LOGIC  
GND  
OUTPUT CODE  
32,768C 16,384C  
MSB  
LSB  
SW–  
CNV  
IN–  
Figure 29. ADC Simplified Schematic  
During the acquisition phase, terminals of the array tied to the  
comparator’s input are connected to GND via SW+ and SW−.  
All independent switches are connected to the analog inputs.  
Therefore, the capacitor arrays are used as sampling capacitors  
and acquire the analog signal on the IN+ and IN− inputs. When  
the acquisition phase is completed and the CNV input goes high, a  
conversion phase is initiated. When the conversion phase begins,  
SW+ and SW− are opened first. The two capacitor arrays are then  
disconnected from the inputs and connected to the GND input.  
Therefore, the differential voltage between the IN+ and IN−  
inputs captured at the end of the acquisition phase are applied  
to the comparator inputs, causing the comparator to become  
unbalanced. By switching each element of the capacitor array  
between GND and REF, the comparator input varies by binary  
weighted voltage steps (VREF/2, VREF/4 … VREF/65,536). The  
control logic toggles these switches, starting with the MSB, to  
bring the comparator back into a balanced condition. After the  
completion of this process, the part returns to the acquisition phase  
and the control logic generates the ADC output code.  
CIRCUIT INFORMATION  
The AD7988-1/AD7988-5 devices are fast, low power, single-  
supply, precise 16-bit ADCs that use a successive approximation  
architecture.  
The AD7988-1 is capable of converting 100,000 samples per  
second (100 kSPS), whereas the AD7988-5 is capable of a  
throughput of 500 kSPS, and they power down between  
conversions. When operating at 10 kSPS, for example, the  
ADC consumes 70 µW typically, ideal for battery-powered  
applications.  
The AD7988-x provides the user with on-chip track-and-hold  
and does not exhibit any pipeline delay or latency, making it  
ideal for multiple multiplexed channel applications.  
The AD7988-x can be interfaced to any 1.8 V to 5 V digital logic  
family. It is housed in a 10-lead MSOP or a tiny 10-lead LFCSP  
(QFN) that combines space savings and allows flexible  
configurations.  
CONVERTER OPERATION  
Because the AD7988-x has an on-board conversion clock, the  
serial clock, SCK, is not required for the conversion process.  
The AD7988-x is a successive approximation ADC based on a  
charge redistribution DAC. Figure 29 shows the simplified  
schematic of the ADC. The capacitive DAC consists of two  
identical arrays of 16 binary weighted capacitors, which are  
connected to the two comparator inputs.  
Rev. B | Page 14 of 24  
 
 
 
 
Data Sheet  
AD7988-1/AD7988-5  
Transfer Functions  
Table 7. Output Codes and Ideal Input Voltages  
Analog Input  
The ideal transfer characteristic for the AD7988-x is shown in  
Figure 30 and Table 7.  
Description  
VREF = 5 V  
Digital Output Code (Hex)  
FSR – 1 LSB  
4.999924 V  
FFFF1  
8001  
8000  
7FFF  
0001  
00002  
Midscale + 1 LSB 2.500076 V  
Midscale 2.5 V  
Midscale – 1 LSB 2.499924 V  
–FSR + 1 LSB  
–FSR  
111 ... 111  
111 ... 110  
111 ... 101  
76.3 µV  
0 V  
1 This is also the code for an overranged analog input (VIN+ − VIN− above VREF − VGND).  
2 This is also the code for an underranged analog input (VIN+ − VIN− below VGND).  
TYPICAL CONNECTION DIAGRAM  
Figure 31 shows an example of the recommended connection  
diagram for the AD7988-x when multiple supplies are available.  
000 ... 010  
000 ... 001  
000 ... 000  
–FSR  
–FSR + 1LSB  
+FSR – 1 LSB  
–FSR + 0.5LSB  
+FSR – 1.5 LSB  
ANALOG INPUT  
Figure 30. ADC Ideal Transfer Function  
1
V+  
REF  
2.5V  
2
10µF  
100nF  
V+  
1.8V TO 5.5V  
100nF  
20Ω  
REF  
VDD  
VIO  
0V TO V  
REF  
3
IN+  
IN–  
SDI  
SCK  
SDO  
CNV  
2.7nF  
AD7988-1/  
AD7988-5  
V–  
5
3- OR 4-WIRE INTERFACE  
4
GND  
1
2
3
4
5
SEE THE VOLTAGE REFERENCE INPUT SECTION FOR REFERENCE SELECTION.  
IS USUALLY A 10µF CERAMIC CAPACITOR (X5R).  
SEE THE DRIVER AMPLIFIER CHOICE SECTION.  
OPTIONAL FILTER. SEE THE ANALOG INPUTS SECTION.  
SEE THE DIGITAL INTERFACE SECTION FOR THE MOST CONVENIENT INTERFACE MODE.  
C
REF  
Figure 31. Typical Application Diagram with Multiple Supplies  
Rev. B | Page 15 of 24  
 
 
 
 
 
AD7988-1/AD7988-5  
Data Sheet  
ANALOG INPUTS  
DRIVER AMPLIFIER CHOICE  
Figure 32 shows an equivalent circuit of the input structure of  
the AD7988-x.  
Although the AD7988-x is easy to drive, the driver amplifier  
needs to meet the following requirements:  
The two diodes, D1 and D2, provide ESD protection for the  
analog inputs, IN+ and IN−. Care must be taken to ensure that  
the analog input signal never exceeds the supply rails by more  
than 0.3 V, because this causes these diodes to become forward-  
biased and start conducting current. These diodes can handle a  
forward-biased current of 130 mA maximum. For instance,  
these conditions may eventually occur when the input buffers  
supplies are different from VDD. In such a case (for example, an  
input buffer with a short circuit), the current limitation can be  
used to protect the part.  
The noise generated by the driver amplifier must be kept as  
low as possible to preserve the SNR and transition noise  
performance of the AD7988-x. The noise coming from the  
driver is filtered by the AD7988-x analog input circuit’s  
one-pole, low-pass filter made by RIN and CIN or by the  
external filter, if one is used. Because the typical noise of  
the AD7988-x is 47.3 µV rms, the SNR degradation due to  
the amplifier is  
47.3  
REF  
SNRLOSS = 20 log  
π
47.32 + f3dB (NeN )2  
D1  
2
C
IN  
R
IN  
IN+  
OR IN–  
where:  
–3dB is the input bandwidth in MHz of the AD7988-x  
C
D2  
PIN  
f
GND  
(10 MHz) or the cutoff frequency of the input filter, if  
one is used.  
Figure 32. Equivalent Analog Input Circuit  
N is the noise gain of the amplifier (for example, 1 in buffer  
configuration).  
eN is the equivalent input noise voltage of the op amp,  
The analog input structure allows the sampling of the true  
differential signal between IN+ and IN−. By using these  
differential inputs, signals common to both inputs are rejected.  
in nV/√Hz.  
During the acquisition phase, the impedance of the analog  
inputs (IN+ and IN−) can be modeled as a parallel combination of  
Capacitor CPIN and the network formed by the series connection of  
For ac applications, the driver should have a THD  
performance commensurate with the AD7988-x.  
For multichannel multiplexed applications, the driver ampli-  
fier and the AD7988-x analog input circuit must settle for  
a full-scale step onto the capacitor array at a 16-bit level  
(0.0015%, 15 ppm). In the amplifier data sheet, settling at  
0.1% to 0.01% is more commonly specified. This may  
differ significantly from the settling time at a 16-bit level  
and should be verified prior to driver selection.  
RIN and CIN. CPIN is primarily the pin capacitance. RIN is typically  
400 Ω and is a lumped component made up of serial resistors  
and the on resistance of the switches. CIN is typically 30 pF and  
is mainly the ADC sampling capacitor. During the conversion  
phase, when the switches are opened, the input impedance is  
limited to CPIN. RIN and CIN make a one-pole, low-pass filter that  
reduces undesirable aliasing effects and limits the noise.  
Table 8. Recommended Driver Amplifiers  
When the source impedance of the driving circuit is low, the  
AD7988-x can be driven directly. Large source impedances  
significantly affect the ac performance, especially THD. The dc  
performances are less sensitive to the input impedance. The  
maximum source impedance depends on the amount of THD  
that can be tolerated. The THD degrades as a function of the  
source impedance and the maximum input frequency.  
Amplifier  
ADA4841-1  
AD8021  
AD8022  
OP184  
Typical Application  
Very low noise, small size, and low power  
Very low noise and high frequency  
Low noise and high frequency  
Low power, low noise, and low frequency  
5 V single-supply, low noise  
AD8655  
AD8605, AD8615  
5 V single-supply, low power  
Rev. B | Page 16 of 24  
 
 
 
Data Sheet  
AD7988-1/AD7988-5  
To ensure optimum performance, VDD should be roughly half  
of REF, the voltage reference input. For example, if REF is 5.0 V,  
VDD should be set to 2.5 V ( 5%). If REF = 2.5V, and VDD =  
2.5 V, performance is degraded as can be seen in Table 2.  
VOLTAGE REFERENCE INPUT  
The AD7988-x voltage reference input, REF, has a dynamic  
input impedance and should therefore be driven by a low  
impedance source with efficient decoupling between the REF  
and GND pins, as explained in the Layout section.  
The AD7988-x powers down automatically at the end of each  
conversion phase.  
When REF is driven by a very low impedance source, for example,  
a reference buffer using the AD8031 or the AD8605, a ceramic  
chip capacitor is appropriate for optimum performance.  
DIGITAL INTERFACE  
Although the AD7988-x has a reduced number of pins, it offers  
flexibility in its serial interface modes.  
If an unbuffered reference voltage is used, the decoupling value  
depends on the reference used. For example, a 22 µF (X5R,  
1206 size) ceramic chip capacitor is appropriate for optimum  
performance using a low temperature drift ADR43x reference.  
CS  
The AD7988-x, when in  
mode, is compatible with SPI, QSPI™,  
and digital hosts. This interface can use either a 3-wire or 4-wire  
interface. A 3-wire interface using the CNV, SCK, and SDO  
signals minimizes wiring connections and is useful, for  
instance, in isolated applications. A 4-wire interface using the  
SDI, CNV, SCK, and SDO signals allows CNV, which initiates  
the conversions, to be independent of the readback timing  
(SDI). This is useful in low jitter sampling or simultaneous  
sampling applications.  
If desired, a reference-decoupling capacitor value as small as  
2.2 µF can be used with a minimal impact on performance,  
especially DNL.  
Regardless, there is no need for an additional lower value ceramic  
decoupling capacitor (for example, 100 nF) between the REF  
and GND pins.  
The AD7988-x, when in chain mode, provides a daisy-chain  
feature using the SDI input for cascading multiple ADCs on a  
single data line, similar to a shift register.  
POWER SUPPLY  
The AD7988-x uses two power supply pins: a core supply, VDD,  
and a digital input/output interface supply, VIO. VIO allows  
direct interface with any logic between 1.8 V and 5.0 V. To  
reduce the number of supplies needed, VIO and VDD can be  
tied together. The AD7988-x is independent of power supply  
sequencing between VIO and VDD. Additionally, it is very  
insensitive to power supply variations over a wide frequency  
range, as shown in Figure 33.  
The mode in which the part operates depends on the SDI level  
CS  
when the CNV rising edge occurs.  
mode is selected if SDI is  
high, and chain mode is selected if SDI is low. The SDI hold  
time is such that when SDI and CNV are connected together,  
the chain mode is selected.  
The user must time out the maximum conversion time prior to  
readback.  
80  
75  
70  
65  
60  
55  
1
10  
100  
1k  
FREQUENCY (kHz)  
Figure 33. PSRR vs. Frequency  
Rev. B | Page 17 of 24  
 
 
 
 
AD7988-1/AD7988-5  
Data Sheet  
When CNV goes low, the MSB is output onto SDO. The remaining  
data bits are then clocked by subsequent SCK falling edges. The  
data is valid on both SCK edges. Although the rising edge can  
be used to capture the data, a digital host using the SCK falling  
edge allows a faster reading rate, provided that it has an acceptable  
hold time. After the 16th SCK falling edge or when CNV goes  
high, whichever is earlier, SDO returns to high impedance.  
CS MODE, 3-WIRE  
This mode is typically used when a single AD7988-x is  
connected to an SPI-compatible digital host. The connection  
diagram is shown in Figure 34, and the corresponding timing is  
given in Figure 35.  
With SDI tied to VIO, a rising edge on CNV initiates a conver-  
CS  
sion, selects the  
mode, and forces SDO to high impedance.  
When the conversion is complete, the AD7988-x enters the  
acquisition phase and powers down.  
CONVERT  
DIGITAL HOST  
DATA IN  
CNV  
VIO  
AD7988-1/  
AD7988-5  
SDI  
SDO  
SCK  
CLK  
CS  
Figure 34. 3-Wire Mode Connection Diagram  
SDI = 1  
tCYC  
tCNVH  
CNV  
tCONV  
tACQ  
ACQUISITION  
CONVERSION  
ACQUISITION  
tSCK  
tSCKL  
1
2
3
14  
15  
16  
SCK  
SDO  
tHSDO  
tSCKH  
tDIS  
tEN  
tDSDO  
D15  
D14  
D13  
D1  
D0  
CS  
Figure 35. 3-Wire Mode Serial Interface Timing (SDI High)  
Rev. B | Page 18 of 24  
 
 
 
Data Sheet  
AD7988-1/AD7988-5  
When the conversion is complete, the AD7988-x enters the  
acquisition phase and powers down. Each ADC result can  
be read by bringing its SDI input low, which consequently  
outputs the MSB onto SDO. The remaining data bits are then  
clocked by subsequent SCK falling edges. The data is valid on  
both SCK edges. Although the rising edge can be used to capture  
the data, a digital host using the SCK falling edge allows a faster  
reading rate, provided that it has an acceptable hold time. After  
the 16th SCK falling edge or when SDI goes high, whichever is  
earlier, SDO returns to high impedance and another AD7988-x  
can be read.  
CS MODE 4-WIRE  
This mode is typically used when multiple AD7988-x devices  
are connected to an SPI-compatible digital host.  
A connection diagram example using two AD7988-x devices is  
shown in Figure 36, and the corresponding timing is given in  
Figure 37.  
With SDI high, a rising edge on CNV initiates a conversion,  
CS  
selects the  
mode, and forces SDO to high impedance. In this  
mode, CNV must be held high during the conversion phase and  
the subsequent data readback (if SDI and CNV are low, SDO is  
driven low). Prior to the minimum conversion time, SDI can be  
used to select other SPI devices, such as analog multiplexers,  
but SDI must be returned high before the minimum conversion  
time elapses and then held high for the maximum conversion time.  
CS2  
CS1  
CONVERT  
CNV  
CNV  
DIGITAL HOST  
AD7988-1/  
AD7988-5  
AD7988-1/  
AD7988-5  
SDI  
SDO  
SDI  
SDO  
SCK  
SCK  
DATA IN  
CLK  
CS  
Figure 36. 4-Wire Mode Connection Diagram  
tCYC  
CNV  
tCONV  
tACQ  
ACQUISITION  
tSSDICNV  
CONVERSION  
ACQUISITION  
SDI (CS1)  
tHSDICNV  
SDI (CS2)  
SCK  
tSCK  
tSCKL  
1
2
3
14  
15  
16  
17  
18  
30  
31  
32  
tHSDO  
tSCKH  
tEN  
tDIS  
tDSDO  
SDO  
D15  
D14  
D13  
D1  
D0  
D15  
D14  
D1  
D0  
CS  
Figure 37. 4-Wire Mode Serial Interface Timing  
Rev. B | Page 19 of 24  
 
 
 
AD7988-1/AD7988-5  
Data Sheet  
phase and the subsequent data readback. When the conversion  
is complete, the MSB is output onto SDO and the AD7988-x  
enters the acquisition phase and powers down. The remaining  
data bits stored in the internal shift register are clocked by  
subsequent SCK falling edges. For each ADC, SDI feeds the  
input of the internal shift register and is clocked by the SCK  
falling edge. Each ADC in the chain outputs its data MSB first,  
and 16 × N clocks are required to read back the N ADCs. The  
data is valid on both SCK edges. Although the rising edge can  
be used to capture the data, a digital host using the SCK falling  
edge allows a faster reading rate and, consequently, more  
AD7988-x devices in the chain, provided that the digital host  
has an acceptable hold time. The maximum conversion rate  
may be reduced due to the total readback time.  
CHAIN MODE  
This mode can be used to daisy-chain multiple AD7988-x  
devices on a 3-wire serial interface. This feature is useful for  
reducing component count and wiring connections, for example,  
in isolated multiconverter applications or for systems with a  
limited interfacing capacity. Data readback is analogous to  
clocking a shift register.  
A connection diagram example using two AD7988-x devices is  
shown in Figure 38, and the corresponding timing is given in  
Figure 39.  
When SDI and CNV are low, SDO is driven low. With SCK low,  
a rising edge on CNV initiates a conversion and selects the chain  
mode. In this mode, CNV is held high during the conversion  
CONVERT  
CNV  
CNV  
DIGITAL HOST  
DATA IN  
AD7988-1/  
AD7988-5  
AD7988-1/  
AD7988-5  
SDI  
SDO  
SDI  
SDO  
A
SCK  
B
SCK  
CLK  
Figure 38. Chain Mode Connection Diagram  
SDI = 0  
A
tCYC  
CNV  
tCONV  
tACQ  
CONVERSION  
ACQUISITION  
ACQUISITION  
tSCK  
tSCKL  
tSSCKCNV  
SCK  
1
2
3
A
B
14  
15  
16  
17  
18  
30  
31  
32  
tSSDISCK  
tSCKH  
tHSCKCNV  
tHSDISCK  
tEN  
SDO = SDI  
A
D
15  
D
14  
D
D
13  
13  
D
A
1
D
A
0
B
A
A
tHSDO  
tDSDO  
D
B
15  
D
14  
D
1
D
0
D
15  
D
14  
D 1  
A
D 0  
A
SDO  
B
B
B
A
A
B
Figure 39. Chain Mode Serial Interface Timing  
Rev. B | Page 20 of 24  
 
 
 
Data Sheet  
AD7988-1/AD7988-5  
APPLICATIONS INFORMATION  
Using at least one ground plane is recommended. It can be  
common or split between the digital and analog section. In the  
latter case, join the planes underneath the AD7988-x devices.  
INTERFACING TO BLACKFIN® DSP  
The AD7988-x can easily connect to a DSP SPI or SPORT. The  
SPI configuration is straightforward, using the standard SPI  
interface as shown in Figure 40.  
The AD7988-x voltage reference input, REF, has a dynamic input  
impedance. Decouple REF with minimal parasitic inductances  
by placing the reference decoupling ceramic capacitor close to,  
but ideally right up against, the REF and GND pins and connect-  
ing them with wide, low impedance traces.  
SPI_CLK  
SPI_MISO  
SPI_MOSI  
SCK  
SDO  
CNV  
AD7988-1/  
AD7988-5  
BLACKFIN  
DSP  
Finally, decouple the power supplies of the AD7988-x, VDD and  
VIO, with ceramic capacitors, typically 100 nF, placed close to  
the AD7988-x and connected using short and wide traces to  
provide low impedance paths and to reduce the effect of glitches  
on the power supply lines.  
Figure 40. Typical Connection to Blackfin SPI Interface  
Similarly, the SPORT interface can be used to interface to this  
ADC. The SPORT interface has some benefits in that it can use  
direct memory access (DMA) and provides a lower jitter CNV  
signal generated from a hardware counter.  
An example of a layout following these rules is shown in Figure 42  
and Figure 43.  
Some glue logic may be required between SPORT and the  
AD7988-x interface. The evaluation board for the AD7988-x  
interfaces directly to the SPORT of the Blackfin-based (ADSP-  
BF-527) SDP board. The configuration used for the SPORT  
interface requires the addition of some glue logic as shown in  
Figure 41. The SCK input to the ADC was gated off when CNV  
was high to keep the SCK line static while converting the data,  
thereby ensuring the best integrity of the result. This approach  
uses an AND gate and a NOT gate for the SCK path. The other  
logic gates used on the RSCLK and RFS paths are for delay  
matching purposes and may not be necessary where path  
lengths are short.  
EVALUATING THE PERFORMANCE OF THE  
AD7988-x  
The evaluation board package for the AD7988-x (EVAL-AD7988-  
5SDZ) includes a fully assembled and tested evaluation board,  
documentation, and software for controlling the board from a  
PC via the EVAL-SDP-CB1Z.  
AD7988-1/  
AD7988-5  
This is one approach to using the SPORT interface for this ADC;  
there may be other solutions equal to this approach.  
VDRIVE  
DR  
SDO  
RSCLK  
TSCLK  
SCK AD7988-1/  
AD7988-5  
BLACKFIN  
DSP  
RFS  
TFS  
Figure 42. Example Layout of the AD7988-x (Top Layer)  
CNV  
Figure 41. Evaluation Board Connection to Blackfin Sport Interface  
LAYOUT  
Design the printed circuit board (PCB) that houses the AD7988-x  
so that the analog and digital sections are separated and confined  
to certain areas of the board. The pinout of the AD7988-x, with all  
the analog signals on the left side and all the digital signals on  
the right side, eases this task.  
Avoid running digital lines under the device because these couple  
noise onto the die, unless a ground plane under the AD7988-x is  
used as a shield. Fast switching signals, such as CNV or clocks,  
should never run near analog signal paths. Avoid crossover of  
digital and analog signals.  
Figure 43. Example Layout of the AD7988-x (Bottom Layer)  
Rev. B | Page 21 of 24  
 
 
 
 
 
 
 
 
AD7988-1/AD7988-5  
OUTLINE DIMENSIONS  
Data Sheet  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 44.10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
0.50 BSC  
2.90  
6
10  
PIN 1 INDEX  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
AREA  
0.50  
0.40  
0.30  
5
1
PIN 1  
INDICATOR  
TOP VIEW  
BOTTOM VIEW  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 45. 10-Lead Lead Frame Chip Scale Package [QFN (LFCSP_WD)]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
Rev. B | Page 22 of 24  
 
Data Sheet  
AD7988-1/AD7988-5  
ORDERING GUIDE  
Integral  
Nonlinearity  
Temperature  
Range  
Ordering  
Quantity  
Package  
Option  
Model1  
Notes  
Package Description  
10-Lead MSOP  
Branding  
C7E  
AD7988-1BRMZ  
1.25 LSB max  
1.25 LSB max  
1.25 LSB max  
1.25 LSB max  
1.25 LSB max  
1.25 LSB max  
1.25 LSB max  
1.25 LSB max  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Tube, 50  
RM-10  
AD7988-1BRMZ-RL7  
AD7988-1BCPZ-RL  
AD7988-1BCPZ-RL7  
AD7988-5BRMZ  
Reel, 1,000  
Reel, 5,000  
Reel, 1,500  
Tube, 50  
10-Lead MSOP  
RM-10  
C7E  
10-Lead QFN (LFCSP_WD)  
10-Lead QFN (LFCSP_WD)  
10-Lead MSOP  
CP-10-9  
CP-10-9  
RM-10  
C7X  
C7X  
C7Q  
C7Q  
C7Y  
AD7988-5BRMZ-RL7  
AD7988-5BCPZ-RL  
AD7988-5BCPZ-RL7  
EVAL-AD7988-5SDZ  
Reel, 1,000  
Reel, 5,000  
Reel, 1,500  
10-Lead MSOP  
RM-10  
10-Lead QFN (LFCSP_WD)  
10-Lead QFN (LFCSP_WD)  
CP-10-9  
CP-10-9  
C7Y  
2
3
Evaluation Board with AD7988-5  
Populated; Use for Evaluation of Both  
AD7988-1 and AD7988-5.  
EVAL-SDP-CB1Z  
System Demonstration Board, Used as a  
Controller Board for Data Transfer via  
USB Interface to PC.  
1 Z = RoHS Compliant Part.  
2 This board can be used as a standalone evaluation board or in conjunction with the EVAL-SDZ-CB1Z for evaluation/demonstration purposes.  
3 This board allows a PC to control and communicate with all Analog Devices evaluation boards ending in the SD designator.  
Rev. B | Page 23 of 24  
 
 
AD7988-1/AD7988-5  
NOTES  
Data Sheet  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10231-0-5/12(B)  
Rev. B | Page 24 of 24  

相关型号:

AD7988-1BCPZ-RL

16-Bit Lower Power
ADI

AD7988-1BCPZ-RL7

16-Bit Lower Power
ADI

AD7988-1BRMZ

16-Bit Lower Power
ADI

AD7988-1BRMZ-RL7

16-Bit Lower Power
ADI

AD7988-1_1208

16-Bit Lower Power PulSAR ADCs in MSOP/LFCSP (QFN)
ADI

AD7988-1_17

16-Bit Lower Power PulSAR ADCs in MSOP/LFCSP
ADI

AD7988-5

16-Bit Lower Power
ADI

AD7988-5BCPZ-RL

16-Bit Lower Power
ADI

AD7988-5BCPZ-RL7

16-Bit Lower Power
ADI

AD7988-5BRMZ

16-Bit Lower Power
ADI

AD7988-5BRMZ-RL7

16-Bit Lower Power
ADI

AD7988-5CCPZ-RL

16-Bit Lower Power PulSAR ADCs in MSOP/LFCSP
ADI