AD817ANZ [ADI]

High Speed, Low Power Wide Supply Range Amplifier; 高速,低功耗,宽电源电压范围放大器
AD817ANZ
型号: AD817ANZ
厂家: ADI    ADI
描述:

High Speed, Low Power Wide Supply Range Amplifier
高速,低功耗,宽电源电压范围放大器

放大器
文件: 总12页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed, Low Power  
Wide Supply Range Amplifier  
a
AD817  
CO NNECTIO N D IAGRAM  
FEATURES  
Low Cost  
High Speed  
50 MHz Unity Gain Bandw idth  
350 V/ s Slew Rate  
8-P in P lastic Mini-D IP (N) and  
SO IC (R) P ackages  
45 ns Settling Tim e to 0.1% (10 V Step)  
Flexible Pow er Supply  
NULL  
8
7
6
5
1
2
3
4
NULL  
–IN  
AD817  
+VS  
Specified for Single (+5 V) and  
Dual (؎5 V to ؎15 V) Pow er Supplies  
Low Pow er: 7.5 m A m ax Supply Current  
High Output Drive Capability  
Drives Unlim ited Capacitive Load  
50 m A Minim um Output Current  
Excellent Video Perform ance  
70 MHz 0.1 dB Bandw idth (Gain = +1)  
0.04% & 0.08؇ Differential Gain & Phase Errors  
@ 3.58 MHz  
+IN  
OUTPUT  
NC  
–VS  
TOP VIEW  
NC = NO CONNECT  
T he AD817 is fully specified for operation with a single +5 V  
power supply and with dual supplies from ±5 V to ±15 V. T his  
power supply flexibility, coupled with a very low supply current  
of 7.5 mA and excellent ac characteristics under all power sup-  
ply conditions, make the AD817 the ideal choice for many de-  
manding yet power sensitive applications.  
Available in 8-Pin SOIC and 8-Pin Plastic Mini-DIP  
P RO D UCT D ESCRIP TIO N  
In applications such as ADC buffers and line drivers the AD817  
simplifies the design task with its unique combination of a  
50 mA minimum output current and the ability to drive  
unlimited capacitive loads.  
T he AD817 is a low cost, low power, single/dual supply, high  
speed op amp which is ideally suited for a broad spectrum of  
signal conditioning and data acquisition applications. T his  
breakthrough product also features high output current drive  
capability and the ability to drive an unlimited capacitive load  
while still maintaining excellent signal integrity.  
T he AD817 is available in 8-pin plastic mini-DIP and SOIC  
packages.  
T he 50 MHz unity gain bandwidth, 350 V/µs slew rate and set-  
tling time of 45 ns (0.1%) make possible the processing of high  
speed signals common to video and imaging systems. Further-  
more, professional video performance is attained by offering dif-  
ferential gain & phase errors of 0.04% & 0.08° @ 3.58 MHz  
and 0.1 dB flatness to 70 MHz (gain = +1).  
O RD ERING GUID E  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model  
AD817AN  
AD817AR  
–40°C to +85°C 8-Pin Plastic DIP  
–40°C to +85°C 8-Pin Plastic SOIC R-8  
N-8  
1kΩ  
3.3µF  
5V  
500ns  
+V  
S
100  
90  
0.01µF  
100pF  
LOAD  
HP  
PULSE  
GENERATOR  
1kΩ  
V
IN  
7
2
3
TEKTRONIX  
P6201 FET  
PROBE  
V
OUT  
6
AD817  
50Ω  
C
L
4
0.01µF  
3.3µF  
10  
1000pF  
0%  
1000pF  
LOAD  
–V  
S
AD817 Driving a Large Capacitive Load  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1995  
One Technology Way, P.O. Box 9106, Norw ood. MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
(@ T = +25؇C, unless otherwise noted)  
AD817–SPECIFICATIONS  
A
AD 817A  
Typ  
P aram eter  
Conditions  
VS  
Min  
Max  
Units  
DYNAMIC PERFORMANCE  
Unity Gain Bandwidth  
±5 V  
30  
45  
25  
18  
40  
10  
35  
50  
29  
30  
70  
20  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
±15 V  
0, +5 V  
±5 V  
±15 V  
0, +5 V  
Bandwidth for 0.1 dB Flatness  
Full Power Bandwidth1  
Gain = +1  
VOUT = 5 V p-p  
RLOAD = 500 Ω  
VOUT = 20 V p-p  
RLOAD = 1 kΩ  
RLOAD = 1 kΩ  
Gain = 1  
±5 V  
15.9  
MHz  
±15 V  
±5 V  
±15 V  
0, +5 V  
±5 V  
±15 V  
±5 V  
±15 V  
±15 V  
±15 V  
±5 V  
5.6  
MHz  
V/µs  
V/µs  
V/µs  
ns  
ns  
ns  
ns  
dB  
Slew Rate  
200  
300  
150  
250  
350  
200  
45  
45  
70  
Settling T ime to 0.1%  
Settling T ime to 0.01%  
–2.5 V to +2.5 V  
0 V–10 V Step, AV = –1  
–2.5 V to +2.5 V  
0 V–10 V Step, AV = –1  
FC = 1 MHz  
70  
63  
T otal Harmonic Distortion  
Differential Gain Error  
(RLOAD = 150 )  
NT SC  
Gain = +2  
0.04  
0.05  
0.11  
0.08  
0.06  
0.14  
0.08  
0.1  
%
%
%
0, +5 V  
±15 V  
±5 V  
Differential Phase Error  
(RLOAD = 150 )  
NT SC  
Gain = +2  
0.1  
0.1  
Degrees  
Degrees  
Degrees  
0, +5 V  
INPUT OFFSET VOLT AGE  
±5 V to ±15 V  
±5 V, ±15 V  
±5 V, ±15 V  
±5 V  
0.5  
2
3
mV  
mV  
µV/°C  
T MIN to TMAX  
Offset Drift  
10  
INPUT BIAS CURRENT  
3.3  
6.6  
10  
4.4  
µA  
µA  
µA  
T MIN  
T MAX  
INPUT OFFSET CURRENT  
25  
200  
500  
nA  
nA  
nA/°C  
T MIN to TMAX  
Offset Current Drift  
OPEN LOOP GAIN  
0.3  
VOUT = ±2.5 V  
RLOAD = 500 Ω  
T MIN to TMAX  
RLOAD = 150 Ω  
VOUT = ±10 V  
RLOAD = 1 kΩ  
T MIN to TMAX  
VOUT = ±7.5 V  
RLOAD = 150 Ω  
(50 mA Output)  
2
1.5  
1.5  
4
3
V/mV  
V/mV  
V/mV  
±15 V  
±15 V  
4
2.5  
6
5
V/mV  
V/mV  
2
4
V/mV  
COMMON-MODE REJECT ION  
POWER SUPPLY REJECT ION  
VCM = ±2.5 V  
VCM = ±12 V  
±5  
±15 V  
±15 V  
78  
86  
80  
100  
120  
100  
dB  
dB  
dB  
VS = ±5 V to ±15 V  
T MIN to TMAX  
75  
72  
86  
dB  
dB  
INPUT VOLT AGE NOISE  
INPUT CURRENT NOISE  
f = 10 kHz  
f = 10 kHz  
±5 V, ±15 V  
±5 V, ±15 V  
15  
nV/Hz  
pA/Hz  
1.5  
–2–  
REV. B  
AD817  
AD 817A  
Typ  
P aram eter  
Conditions  
VS  
Min  
Max  
Units  
INPUT COMMON-MODE  
VOLT AGE RANGE  
±5 V  
+3.8  
–2.7  
+13  
–12  
+3.8  
+1.2  
+4.3  
–3.4  
+14.3  
–13.4  
+4.3  
+0.9  
V
V
V
V
V
V
±15 V  
0, +5 V  
OUT PUT VOLT AGE SWING  
RLOAD = 500 Ω  
RLOAD = 150 Ω  
RLOAD = 1 kΩ  
RLOAD = 500 Ω  
RLOAD = 500 Ω  
±5 V  
±5 V  
±15 V  
±15 V  
0, +5 V  
3.3  
3.2  
3.8  
3.6  
13.7  
13.4  
±V  
±V  
±V  
±V  
13.3  
12.8  
+1.5,  
+3.5  
50  
V
Output Current  
±15 V  
±5 V  
0, +5 V  
±15 V  
mA  
mA  
mA  
mA  
50  
30  
Short-Circuit Current  
INPUT RESIST ANCE  
INPUT CAPACIT ANCE  
OUT PUT RESIST ANCE  
90  
300  
1.5  
8
kΩ  
pF  
Open Loop  
POWER SUPPLY  
Operating Range  
Dual Supply  
Single Supply  
±2.5  
+5  
±18  
+36  
7.5  
7.5  
7.5  
7.5  
V
V
mA  
mA  
mA  
mA  
Quiescent Current  
±5 V  
±5 V  
±15 V  
±15 V  
7.0  
7.0  
T MIN to TMAX  
T MIN to TMAX  
NOT ES  
1Full power bandwidth = slew rate/2 π VPEAK  
.
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS1  
2.0  
1.5  
1.0  
0.5  
0
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
8-PIN MINI-DIP PACKAGE  
T
= +150°C  
J
Internal Power Dissipation2  
Plastic (N) . . . . . . . . . . . . . . . . . . . . . . See Derating Curves  
Small Outline (R) . . . . . . . . . . . . . . . . . See Derating Curves  
Input Voltage (Common Mode) . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . ±6 V  
Output Short Circuit Duration . . . . . . . . See Derating Curves  
Storage T emperature Range N, R . . . . . . . . . –65°C to +125°C  
Operating T emperature Range . . . . . . . . . . . . –40°C to +85°C  
Lead T emperature Range (Soldering 10 sec) . . . . . . . . +300°C  
8-PIN SOIC PACKAGE  
NOT ES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the  
operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2Specification is for device in free air: 8-pin plastic package: θJA = 100°C/watt;  
8-pin SOIC package: θJA = 160°C/watt.  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE –  
°C  
Maxim um Power Dissipation vs. Tem perature  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD817 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–3–  
AD817–Typical Characteristics  
20  
8.0  
15  
7.5  
7.0  
+VCM  
+85°C  
+25°C  
10  
-40°C  
–VCM  
5
0
6.5  
6.0  
0
5
10  
15  
20  
0
5
10  
SUPPLY VOLTAGE – ±Volts  
15  
20  
SUPPLY VOLTAGE – ± Volts  
Figure 1. Com m on-Mode Voltage Range vs. Supply  
Figure 4. Quiescent Supply Current vs. Supply Voltage  
for Various Tem peratures  
20  
15  
400  
350  
300  
R
= 500Ω  
L
10  
5
R
= 150Ω  
L
250  
200  
0
0
5
10  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE – ±Volts  
SUPPLY VOLTAGE – ±Volts  
Figure 5. Slew Rate vs. Supply Voltage  
Figure 2. Output Voltage Swing vs. Supply  
100  
10  
1
30  
25  
VS = ±15V  
20  
15  
10  
0.1  
VS = ±5V  
5
0.01  
0
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
100M  
10  
100  
1k  
10k  
LOAD RESISTANCE – Ω  
Figure 3. Output Voltage Swing vs. Load Resistance  
Figure 6. Closed-Loop Output Im pedance vs. Frequency  
–4–  
REV. B  
AD817  
7
6
5
100  
+100  
PHASE ±5V OR  
±15V SUPPLIES  
80  
60  
40  
20  
0
+80  
+60  
+40  
+20  
0
GAIN ±15V SUPPLIES  
4
3
2
1
GAIN ±5V SUPPLIES  
R
= 1kΩ  
L
–20  
1k  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
10k  
100k  
1M  
10M  
100M  
1G  
TEMPERATURE –  
°C  
FREQUENCY – Hz  
Figure 7. Input Bias Current vs. Tem perature  
Figure 10. Open-Loop Gain and Phase Margin  
vs. Frequency  
130  
7
±15V  
6
110  
SOURCE CURRENT  
5
90  
±5V  
4
SINK CURRENT  
70  
3
2
1
50  
30  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
100  
1k  
10k  
LOAD RESISTANCE – Ohms  
TEMPERATURE – °C  
Figure 8. Short Circuit Current vs. Tem perature  
Figure 11. Open Loop Gain vs. Load Resistance  
100  
100  
90  
80  
80  
60  
40  
20  
80  
60  
POSITIVE  
SUPPLY  
PHASE MARGIN  
70  
60  
NEGATIVE  
SUPPLY  
50  
GAIN BANDWIDTH  
40  
30  
20  
10  
40  
20  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
100  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE – °C  
FREQUENCY – Hz  
Figure 9. Unity Gain Bandwidth and Phase Margin  
vs. Tem perature  
Figure 12. Power Supply Rejection vs. Frequency  
REV. B  
–5–  
AD817–Typical Characteristics  
120  
–40  
V
= 1V p-p  
IN  
GAIN = +2  
–50  
–60  
100  
80  
–70  
2nd HARMONIC  
–80  
3rd HARMONIC  
60  
40  
–90  
–100  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
Figure 13. Com m on-Mode Rejection vs. Frequency  
Figure 16. Harm onic Distortion vs. Frequency  
30  
50  
40  
30  
20  
10  
0
R
= 1kΩ  
L
20  
10  
0
R
= 150Ω  
L
100k  
1M  
10M  
FREQUENCY – Hz  
100M  
3
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
Figure 14. Large Signal Frequency Response  
Figure 17. Input Voltage Noise Spectral Density  
10  
380  
0.1%  
8
6
4
360  
340  
0.01%  
0.01%  
1%  
1%  
2
0
–2  
–4  
–6  
–8  
–10  
320  
300  
0.1%  
0
20  
40  
60  
80  
100  
120  
140  
160  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
SETTLING TIME – ns  
TEMPERATURE – °C  
Figure 15. Output Swing and Error vs. Settling Tim e  
Figure 18. Slew Rate vs. Tem perature  
–6–  
REV. B  
AD817  
0.05  
0.04  
1kΩ  
DIFF GAIN  
3.3µF  
+VS  
0.01µF  
0.03  
0.1  
0.08  
0.06  
0.04  
7
AD817  
4
TEKTRONIX  
7A24  
PREAMP  
TEKTRONIX  
P6201 FET  
PROBE  
2
3
VOUT  
HP  
6
PULSE (LS)  
OR FUNCTION  
(SS)  
100Ω  
50Ω  
VIN  
DIFF PHASE  
0.01µF  
GENERATOR  
RL  
3.3µF  
–VS  
±5  
±10  
SUPPLY VOLTAGE – Volts  
±15  
Figure 19. Differential Gain and Phase vs.  
Supply Voltage  
Figure 22. Noninverting Am plifier Connection  
5
50ns  
5V  
4
0.1dB  
1kΩ  
V
C
FLATNESS  
S
C
1kΩ  
CC  
100  
90  
3
2
±15V 3pF  
±5V 4pF  
+5V 6pF  
VOUT  
VIN  
16MHz  
14MHz  
12MHz  
1
0
V
= ±15V  
S
–1  
–2  
–3  
–4  
–5  
V
V
= ±5V  
S
10  
0%  
= +5V  
S
5V  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
Figure 20. Closed-Loop Gain vs. Frequency,  
Gain = –1  
Figure 23. Noninverting Large Signal Pulse  
Response, RL = 1 k  
5
200mV  
20ns  
0.1dB  
4
3
2
1
1kΩ  
V
FLATNESS  
S
100  
90  
±15V  
70MHz  
±5V 26MHz  
V
OUT  
V
IN  
150Ω  
+5V  
17MHz  
V
= ±15V  
S
0
–1  
–2  
–3  
–4  
–5  
V
= ±5V  
S
10  
0%  
V
= +5V  
S
200mV  
100k  
1M  
10M  
FREQUENCY – Hz  
100M  
Figure 21. Closed-Loop Gain vs. Frequency,  
Gain = +1  
Figure 24. Noninverting Sm all Signal Pulse  
Response, RL = 1 kΩ  
REV. B  
–7–  
AD817–Typical Characteristics  
5V  
5V  
50ns  
50ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
5V  
5V  
Figure 25. Noninverting Large Signal Pulse  
Figure 28. Inverting Large Signal Pulse  
Response, RL = 150 Ω  
Response, RL = 1 k  
200mV  
20ns  
200mV  
50ns  
100  
90  
100  
90  
10  
10  
0%  
0%  
200mV  
200mV  
Figure 26. Noninverting Sm all Signal Pulse  
Figure 29. Inverting Sm all Signal Pulse  
Response, RL = 150 Ω  
Response, RL = 1 kΩ  
1kΩ  
3.3µF  
+V  
S
0.01µF  
HP  
PULSE (L  
R
1kΩ  
IN  
)
SIG  
V
IN  
7
AD817  
4
OR FUNCTION  
(S  
TEKTRONIX  
7A24  
PREAMP  
TEKTRONIX  
P6201 FET  
PROBE  
2
3
V
OUT  
)
SIG  
6
GENERATOR  
50Ω  
0.01µF  
3.3µF  
R
L
–V  
S
Figure 27. Inverting Am plifier Connection  
–8–  
REV. B  
AD817  
+VS  
D RIVING CAP ACITIVE LO AD S  
T he internal compensation of the AD817, together with its high  
output current drive, permit excellent large signal performance  
while driving extremely high capacitive loads.  
1kΩ  
OUTPUT  
3.3µF  
CF  
+VS  
–IN  
+IN  
0.01µF  
RIN  
1kΩ  
HP  
PULSE  
GENERATOR  
VIN  
7
AD817  
4
TEKTRONIX  
7A24  
PREAMP  
TEKTRONIX  
P6201 FET  
PROBE  
2
3
VOUT  
6
50Ω  
0.01µF  
3.3µF  
CL  
1000pF  
–VS  
NULL 1  
NULL 8  
–VS  
Figure 31. Sim plified Schem atic  
INP UT CO NSID ERATIO NS  
Figure 30a. Inverting Am plifier Driving a 1000 pF  
Capacitive Load  
An input protection resistor (RIN in Figure 22) is required in cir-  
cuits where the input to the AD817 will be subjected to tran-  
sient or continuous overload voltages exceeding the +6 V  
maximum differential limit. T his resistor provides protection for  
the input transistors by limiting their maximum base current.  
5V  
500ns  
100  
90  
100pF  
For high performance circuits, it is recommended that a “bal-  
ancing” resistor be used to reduce the offset errors caused by  
bias current flowing through the input and feedback resistors.  
T he balancing resistor equals the parallel combination of RIN  
and RF and thus provides a matched impedance at each input  
terminal. T he offset voltage error will then be reduced by more  
than an order of magnitude.  
10  
1000pF  
0%  
5V  
GRO UND ING & BYP ASSING  
When designing high frequency circuits, some special precau-  
tions are in order. Circuits must be built with short interconnect  
leads. When wiring components, care should be taken to pro-  
vide a low resistance, low inductance path to ground. Sockets  
should be avoided, since their increased interlead capacitance  
can degrade circuit bandwidth.  
Figure 30b. Inverting Am plifier Pulse Response While  
Driving Capacitive Loads  
TH EO RY O F O P ERATIO N  
T he AD817 is a low cost, wide band, high performance opera-  
tional amplifier which effectively drives heavy capacitive or resis-  
tive loads. It also provides a constant slew rate, bandwidth and  
settling time over its entire specified temperature range.  
Feedback resistors should be of low enough value (<1 k) to  
assure that the time constant formed with the inherent stray  
capacitance at the amplifier’s summing junction will not limit  
performance. T his parasitic capacitance, along with the parallel  
resistance of RF/RIN, form a pole in the loop transmission which  
may result in peaking. A small capacitance (1 pF–5 pF) may be  
used in parallel with the feedback resistor to neutralize this effect.  
T he AD817 (Figure 31) consists of a degenerated NPN differ-  
ential pair driving matched PNPs in a folded-cascode gain stage.  
T he output buffer stage employs emitter followers in a class AB  
amplifier which delivers the necessary current to the load while  
maintaining low levels of distortion.  
Power supply leads should be bypassed to ground as close as  
possible to the amplifier pins. Ceramic disc capacitors of 0.1 µF  
are recommended.  
T he capacitor, CF, in the output stage mitigates the effect of  
capacitive loads. At low frequencies, and with low capacitive  
loads, the gain from the compensation node to the output is  
very close to unity. In this case, CF is bootstrapped and does not  
contribute to the overall compensation capacitance of the device.  
As the capacitive load is increased, a pole is formed with the  
output impedance of the output stage. T his reduces the gain,  
and therefore, CF is incompletely bootstrapped. Effectively,  
some fraction of CF contributes to the overall compensation  
capacitance, reducing the unity gain bandwidth. As the load  
capacitance is further increased, the bandwidth continues to fall,  
maintaining the stability of the amplifier.  
+VS  
2
3
7
6
AD817  
8
1
4
10kΩ  
VOS ADJUST  
–VS  
Figure 32. Offset Null Configuration  
REV. B  
–9–  
AD817  
O FFSET NULLING  
Measuring the rapid settling time of AD817 (45 ns to 0.1% and  
70 ns to 0.01%–10 V step) requires applying an input pulse with  
a very fast edge and an extremely flat top. With the AD817 con-  
figured in a gain of –1, a clamped false summing junction re-  
sponds when the output error is within the sum of two diode  
voltages (ª1 volt). T he signal is then amplified 20 times by a  
clamped amplifier whose output is connected directly to a sam-  
pling oscilloscope. Figures 33 and 34 show the settling time of  
the AD817, with a 10 volt step applied.  
T he input offset voltage of the AD817 is inherently very low.  
However, if additional nulling is required, the circuit shown in  
Figure 32 can be used. T he null range of the AD817 in this con-  
figuration is ±15 mV.  
AD 817 SETTLING TIME  
Settling time is comprised primarily of two regions. T he first is  
the slew time in which the amplifier is overdriven, where the  
output voltage rate of change is at its maximum. T he second is  
the linear time period required for the amplifier to settle to  
within a specified percent of the final value.  
0
–2  
–4  
–6  
–8  
–10  
10  
8
6
4
0.20  
0.15  
0.10  
0.05  
0
2
0
0.05  
0
0.05  
0.05  
0.10  
0.15  
0.20  
0
50  
100 150 200 250 300 350 400  
Figure 34. Settling Tim e in ns 0 V to –10 V  
0
50  
100 150 200 250 300 350 400  
Figure 33. Settling Tim e in ns 0 V to +10 V  
2×  
HP2835  
15pF  
1MΩ  
ERROR AMPLIFIER  
V
OUTPUT × 10  
ERROR  
5
3
2
100Ω  
2×  
HP2835  
SETTLING  
OUTPUT  
AD829  
6
0.47µF  
4
SHORT, DIRECT  
7
CONNECTION TO  
0.01µF  
0.47µF  
TEKTRONIX TYPE 11402  
OSCILLOSCOPE PREAMP  
INPUT SECTION  
0.01µF  
ERROR  
SIGNAL  
OUTPUT  
+V  
–V  
S
S
100Ω  
1.9kΩ  
0 TO ±10V  
POWER  
SUPPLY  
NOTE:  
USE CIRCUIT BOARD  
WITH GROUND PLANE  
EI&S  
DL1A05GM  
MERCURY RELAY  
FALSE  
SUMMING  
NODE  
NULL  
ADJUST  
7, 8  
1kΩ  
100Ω  
1kΩ  
500Ω  
2
50Ω  
COAX  
CABLE  
DEVICE  
UNDER  
TEST  
13  
TTL LEVEL  
5–18pF  
SIGNAL  
GENERATOR  
50Hz  
TEKTRONIX P6201  
FET PROBE TO  
TEKTRONIX TYPE  
11402  
1, 14  
500Ω  
2
3
OUTPUT  
6
AD817  
50Ω  
OSCILLOSCOPE  
PREAMP INPUT  
SECTION  
10pF  
SCOPE PROBE  
CAPACITANCE  
7
4
0.01µF  
2.2µF  
DIGITAL  
GROUND  
0.01µF  
2.2µF  
+V  
S
ANALOG  
GROUND  
–V  
S
Figure 35. Settling Tim e Test Circuit  
–10–  
REV. B  
AD817  
+V  
A H IGH P ERFO RMANCE AD C INP UT BUFFER  
High performance analog to digital converters (ADCs) require  
input buffers with correspondingly high bandwidths and very  
low levels of distortion. T ypical requirements include distortion  
levels of –60 dB to –70 dB for a 1 volt p-p signal and band-  
widths of 10 MHz or more. In addition, an ADC buffer may  
need to drive very large capacitive loads.  
S
R3  
1kΩ  
3.3µF  
SELECT C1, R1, R2 & R3  
FOR DESIRED LOW  
FREQUENCY CORNER.  
(R2 = R1 + R3)  
C2  
0.1µF  
0.01µF  
R1  
9kΩ  
T he circuit of Figure 36 is useful for driving high speed convert-  
ers such as the differential input of the AD733, 10-bit ADC.  
T his circuit may be used with other converters with only minor  
modifications. Using the AD817 provides the user with the op-  
tion of either operating the buffer in differential mode or from a  
single +5 volt supply. Operating from a +5 volt power supply  
helps to avoid overdriving the ADCa common problem with  
buffers operating at higher supply voltages.  
7
C
OUT  
2
3
C1  
0.1µF  
6
V
AD817  
OUT  
V
R
150Ω  
IN  
L
4
C
L
200pF  
R2  
10kΩ  
C3  
0.1µF  
Figure 37. Single Supply Am plifier Configuration  
SINGLE SUP P LY O P ERATIO N  
Combining R3 with C2 forms a low-pass filter with a corner  
frequency of 1.5 kHz. T his is needed to maintain amplifier  
PSRR, since the supply is connected to VIN through the input  
divider. T he values for RL and CL were chosen to demonstrate  
the AD817s exceptional output drive capability. In this con-  
figuration, the output is centered around 2.5 V. In order to  
eliminate the static dc current associated with this level, C3 was  
inserted in series with RL.  
Another exciting feature of the AD817 is its ability to perform  
well in a single supply configuration. T he AD817 is ideally  
suited for applications that require low power dissipation and  
high output current and those which need to drive large capaci-  
tive loads, such as high speed buffering and instrumentation.  
Referring to Figure 37, careful consideration should be given to  
the proper selection of component values. T he choices for this  
particular circuit are: R1+ R3//R2 combine with C1 to form a  
low frequency corner of approximately 300 Hz.  
1kΩ  
+V  
S
0.1µF  
1kΩ  
7
2
3
V
AD817  
6
26  
INA  
50Ω  
COAX  
CABLE  
0.1µF  
4
V
IN  
500mVp-p  
MAX  
AD773  
–V  
S
52.5Ω  
10-BIT  
18MHz  
ADC  
+V  
S
0.1µF  
7
3
2
AD817  
6
27 V  
INB  
1kΩ  
0.1µF  
4
+V  
+5V  
COMMON  
–5V  
S
–V  
S
100µF  
25V  
ADREF43  
VOLTAGE  
REFERENCE  
+2.5V  
1kΩ  
100µF  
25V  
–V  
S
Figure 36. A Differential Input Buffer for High Bandwidth ADCs  
REV. B  
–11–  
AD817  
H IGH SP EED D AC BUFFER  
(10.24 V for a 1 kresistor). Note that since the DAC gener-  
ates a positive current to ground, the voltage at the amplifier  
output will be negative. A 100 series resistor between the  
noninverting amplifier input and ground minimizes the offset  
effects of op amp input bias currents.  
T he wide bandwidth and fast settling time of the AD817 make  
it a very good output buffer for high speed current output D/A  
converters like the AD668. As shown in Figure 38, the op amp  
establishes a summing node at ground for the DAC output. T he  
output voltage is determined by the amplifier’s feedback resistor  
+15V  
10µF  
TO ANALOG  
GROUND PLANE  
0.1µF  
1
MSB  
VCC 24  
23  
22  
21  
REFCOM  
REFIN1  
REFIN2  
2
3
1V NOMINAL  
REFERENCE INPUT  
10kΩ  
4
5
1kΩ  
I OUT 20  
100Ω  
ANALOG  
OUTPUT  
AD668  
DIGITAL  
INPUTS  
6
RLOAD  
19  
18  
17  
16  
AD817  
ANALOG GROUND PLANE  
7
ACOM  
LCOM  
IBPO  
ANALOG  
SUPPLY  
GROUND  
8
10µF  
9
0.1µF  
–15V  
10  
11  
12  
15  
14  
V
EE  
THCOM  
VTH  
1kΩ  
100pF  
+5V  
LSB  
13  
Figure 38. High Speed DAC Buffer  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
8-P in P lastic Mini-D IP  
(N-8)  
8-P in SO IC  
(SO -8)  
8
5
0.25  
(6.35)  
8
1
5
4
0.31  
(7.87)  
PIN 1  
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
1
4
0.2440 (6.20)  
0.2284 (5.80)  
0.30 (7.62)  
REF  
0.39 (9.91) MAX  
0.1968 (5.00)  
0.1890 (4.80)  
0.035±0.01  
(0.89±0.25)  
0.0196 (0.50)  
0.0099 (0.25)  
x 45  
°
0.165±0.01  
(4.19±0.25)  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
0.011±0.003  
(0.28±0.08)  
0.18±0.03  
(4.57±0.76)  
8
0
°
°
0.125  
(3.18)  
MIN  
0.0500 (1.27)  
0.0160 (0.41)  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
15  
°
0°  
0.10  
(2.54)  
0.018±0.003  
(0.46±0.08)  
0.033  
(0.84)  
NOM  
SEATING  
PLANE  
BSC  
–12–  
REV. B  

相关型号:

AD817AR

High Speed, Low Power Wide Supply Range Amplifier
ADI

AD817AR

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, PLASTIC, SOIC-8
ROCHESTER

AD817AR-REEL

High Speed, Low Power Wide Supply Range Amplifier
ADI

AD817AR-REEL7

High Speed, Low Power Wide Supply Range Amplifier
ADI

AD817AR-REEL7

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, PLASTIC, SOIC-8
ROCHESTER

AD817AREEL

IC OP-AMP, 4000 uV OFFSET-MAX, 50 MHz BAND WIDTH, PDSO8, PLASTIC, SOIC-8, Operational Amplifier
ADI

AD817ARZ

High Speed, Low Power Wide Supply Range Amplifier
ADI

AD817ARZ

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, ROHS COMPLIANT, PLASTIC, SOIC-8
ROCHESTER

AD817ARZ-REEL

暂无描述
ADI

AD817ARZ-REEL

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, ROHS COMPLIANT, PLASTIC, SOIC-8
ROCHESTER

AD817ARZ-REEL7

High Speed, Low Power Wide Supply Range Amplifier
ADI

AD817ARZ-REEL7

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, ROHS COMPLIANT, PLASTIC, SOIC-8
ROCHESTER