AD8223ARMZ1 [ADI]

Single-Supply, Low Cost Instrumentation Amplifier;
AD8223ARMZ1
型号: AD8223ARMZ1
厂家: ADI    ADI
描述:

Single-Supply, Low Cost Instrumentation Amplifier

文件: 总21页 (文件大小:414K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single-Supply, Low Cost  
Instrumentation Amplifier  
AD8223  
CONNECTION DIAGRAM  
FEATURES  
Gain set with 1 resistor  
Gain = 5 to 1000  
Inputs  
Voltage range to 150 mV below negative rail  
25 nA maximum input bias current  
30 nV/√Hz, RTI noise @ 1 kHz  
Power supplies  
1
2
3
4
8
7
6
5
–R  
+R  
G
G
+
–IN  
+IN  
+V  
S
OUT  
REF  
–V  
S
AD8223  
Figure 1. 8-Lead SOIC (R) and 8-Lead MSOP (RM) Packages  
Table 1. Instrumentation Amplifiers by Category  
Dual supply: 2 V to 12 V  
Single supply: 3 V to 24 V  
500 μA maximum supply current  
General-  
Purpose  
Mil  
Low  
Power  
AD6271  
AD6231  
AD8223  
High Voltage  
PGA  
Zero Drift Grade  
AD82201  
AD8221  
AD8222  
AD82241  
AD8228  
AD82311  
AD85531  
AD85551  
AD85561  
AD85571  
AD620  
AD621  
AD524  
AD526  
AD624  
AD8250  
AD8251  
AD8253  
APPLICATIONS  
Low power medical instrumentation  
Transducer interface  
Thermocouple amplifiers  
Industrial process controls  
Difference amplifiers  
1 Rail-to-rail output.  
Low power data acquisition  
GENERAL DESCRIPTION  
to operate from a single supply, the AD8223 still provides  
excellent performance when operated from a dual voltage  
supply ( 2 V to 12 V).  
The AD8223 is an integrated single-supply instrumentation  
amplifier that delivers rail-to-rail output swing on a single  
supply (3 V to 24 V). The AD8223 conforms to the 8-lead  
industry standard pinout configuration.  
Low power consumption (1.5 mW at 3 V), wide supply voltage  
range, and rail-to-rail output swing make the AD8223 ideal for  
battery-powered applications. The rail-to-rail output stage  
maximizes the dynamic range when operating from low supply  
voltages. The AD8223 replaces discrete instrumentation  
amplifier designs and offers superior linearity, temperature  
stability, and reliability in a minimum of space.  
The AD8223 is simple to use: one resistor sets the gain. With no  
external resistor, the AD8223 is configured for G = 5. With an  
external resistor, the AD8223 can be programmed for gains up  
to 1000.  
The AD8223 has a wide input common-mode range and can  
amplify signals that have a 150 mV common-mode voltage  
below ground. Although the design of the AD8223 is optimized  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
AD8223* Product Page Quick Links  
Last Content Update: 11/01/2016  
Comparable Parts  
Reference Materials  
View a parametric search of comparable parts  
Technical Articles  
• High-performance Adder Uses Instrumentation Amplifiers  
Evaluation Kits  
Design Resources  
• AD8223 Material Declaration  
• PCN-PDN Information  
• Quality And Reliability  
• Symbols and Footprints  
• AD62x, AD822x, AD842x Series InAmp Evaluation Board  
Documentation  
Application Notes  
• AN-1401: Instrumentation Amplifier Common-Mode  
Range: The Diamond Plot  
Data Sheet  
Discussions  
View all AD8223 EngineerZone Discussions  
• AD8223: Single Supply, Rail-to-Rail, Low Cost  
Instrumentation Amplifier Data Sheet  
Technical Books  
Sample and Buy  
Visit the product page to see pricing options  
• A Designer's Guide to Instrumentation Amplifiers, 3rd  
Edition, 2006  
User Guides  
Technical Support  
Submit a technical question or find your regional support  
number  
• UG-261: Evaluation Boards for the AD62x, AD822x and  
AD842x Series  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to  
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be  
frequently modified.  
AD8223  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Gain Selection............................................................................. 14  
Input Voltage Range................................................................... 14  
Reference Terminal .................................................................... 15  
Input Protection ......................................................................... 15  
RF Interference (RFI)................................................................. 15  
Ground Returns for Input Bias Currents ................................ 16  
Applications Information.............................................................. 17  
Basic Connection ....................................................................... 17  
Differential Output .................................................................... 17  
Output Buffering ........................................................................ 17  
Cables........................................................................................... 17  
A Single-Supply Data Acquisition System .............................. 18  
Amplifying Signals with Low Common-Mode Voltage........ 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
Connection Diagram ....................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Single Supply ................................................................................. 3  
Dual Supply ................................................................................... 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 14  
Amplifier Architecture .............................................................. 14  
REVISION HISTORY  
10/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
AD8223  
SPECIFICATIONS  
SINGLE SUPPLY  
TA = 25°C, −VS = 0 V, +VS = +5 V, and RL = 10 kΩ to 2.5 V, unless otherwise noted.  
Table 2  
AD8223A  
Typ  
AD8223B  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION RATIO  
DC to 60 Hz with 1 kΩ Source  
Imbalance  
VCM = 0 V to 3 V  
G = 5  
G = 10  
G = 100  
G = 1000  
80  
86  
90  
90  
86  
90  
96  
96  
dB  
dB  
dB  
dB  
NOISE  
VIN+ = VIN− = VREF = 0 V  
Voltage Noise, 1 kHz  
G = 5  
G = 1000  
50  
30  
50  
30  
nV/√Hz  
nV/√Hz  
RTI, 0.1 Hz to 10 Hz  
G = 5  
G = 1000  
Current Noise, 1 kHz  
0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
1.0  
0.6  
70  
1.0  
0.6  
70  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
1.2  
1.2  
Total RTI error =  
VOSI + VOSO/G  
Input Offset, VOSI  
Over Temperature  
Average TC  
Output Offset, VOSO  
Over Temperature  
Average TC  
250  
400  
2
1500  
2000  
15  
100  
160  
1
1000  
1500  
10  
μV  
μV  
μV/°C  
μV  
μV  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
μV/°C  
Offset Referred to Input vs.  
Supply (PSR)  
+VS = 4 V to 24 V,  
−VS = 0 V  
G = 5  
G = 10  
G = 100  
G = 1000  
80  
86  
90  
90  
86  
90  
96  
96  
dB  
dB  
dB  
dB  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
5
5
12  
25  
28  
5
5
12  
25  
28  
nA  
nA  
pA/°C  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
Average Temperature  
Coefficient  
50  
50  
Input Offset Current  
Over Temperature  
Average Temperature  
Coefficient  
0.25  
2
2.5  
0.25  
2
2.5  
nA  
nA  
pA/°C  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
5
5
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 5  
G = 10  
G = 100  
G = 1000  
Slew Rate  
125  
125  
50  
5
0.2  
125  
125  
50  
5
0.2  
kHz  
kHz  
kHz  
kHz  
V/μs  
Rev. 0 | Page 3 of 20  
 
 
AD8223  
AD8223A  
Typ  
AD8223B  
Typ  
Parameter  
Settling Time to 0.01%  
G = 5  
Conditions  
Min  
Max  
Min  
Max  
Unit  
Step size = 3.5 V  
18  
18  
18  
85  
18  
18  
18  
85  
μs  
μs  
μs  
μs  
G = 10  
G = 100  
G = 1000  
GAIN  
G = 5 + (80 kΩ/RG)  
Gain Range  
Gain Error1  
G = 5  
5
1000  
5
1000  
V/V  
VOUT = 0.05 V to 4.5 V  
0.07  
0.3  
0.3  
0.02  
0.2  
0.3  
%
%
%
%
G = 10  
G = 100  
G = 1000  
0.10  
0.10  
0.10  
0.10  
0.10  
0.10  
0.3  
0.3  
Nonlinearity  
G = 5  
G = 1000  
Gain vs. Temperature  
G = 5  
G > 51  
VOUT = 0.05 V to 4.5 V  
TA = −40°C to +85°C  
12  
200  
12  
200  
ppm  
ppm  
10  
2
ppm/°C  
ppm/°C  
50  
50  
INPUT  
Input Impedance  
Differential  
Common-Mode  
Common-Mode Input Voltage  
Range2  
2||2  
2||2  
2||2  
2||2  
GΩ||pF  
GΩ||pF  
V
VIN+ = VIN−  
(−VS) −  
0.15  
(+VS) −  
1.5  
(−VS) −  
0.15  
(+VS) −  
1.5  
OUTPUT  
Output Swing  
RL = 10 kΩ to ground  
RL = 100 kΩ to ground  
+0.01  
+0.01  
(+VS) −  
0.5  
(+VS) −  
0.15  
+0.01  
+0.01  
(+VS) −  
0.5  
(+VS) −  
0.15  
V
V
REFERENCE INPUT  
RIN  
IIN  
60  
+10  
20%  
+20  
+VS  
60  
+10  
20%  
+20  
+VS  
kΩ  
μA  
V
VIN+ = VIN− = VREF = 0 V  
Voltage Range  
Gain to Output  
−VS  
+3  
−VS  
+3  
1
1
V
0.0002  
0.0002  
POWER SUPPLY  
Operating Range  
Quiescent Current  
Over Temperature  
TEMPERATURE RANGE  
For Specified Performance  
+24  
500  
600  
+24  
500  
600  
V
μA  
μA  
350  
350  
TA = −40°C to +85°C  
-40  
+85  
−40  
+85  
°C  
1 Does not include effects of external resistor, RG.  
2 Total input range depends on common-mode voltage, differential voltage, and gain. See Figure 18 through Figure 21, and the Input Voltage Range section in the  
Theory of Operation section for more information.  
Rev. 0 | Page 4 of 20  
AD8223  
DUAL SUPPLY  
TA = 25°C, −VS = −12 V, +VS = +12 V, and RL = 10 kꢀ to ground, unless otherwise noted.1  
Table 3.  
AD8223A  
Typ  
AD8223B  
Typ  
Parameter  
Conditions  
Min  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION RATIO  
DC to 60 Hz with 1 kΩ Source  
Imbalance  
VCM = −10 V to 10 V  
G = 5  
G = 10  
G = 100  
G = 1000  
80  
86  
90  
90  
86  
90  
96  
96  
dB  
dB  
dB  
dB  
NOISE  
VIN+ = VIN− = VREF = 0 V  
Voltage Noise, 1 kHz  
G = 5  
G = 1000  
50  
30  
50  
30  
nV/√Hz  
nV/√Hz  
RTI, 0.1 Hz to 10 Hz  
G = 5  
G = 1000  
Current Noise, 1 kHz  
0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
1.0  
0.6  
70  
1.0  
0.6  
70  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
1.2  
1.2  
Total RTI error =  
VOSI + VOSO/G  
Input Offset, VOSI  
Over Temperature  
Average TC  
Output Offset, VOSO  
Over Temperature  
Average TC  
250  
400  
2
1500  
2000  
15  
100  
160  
1
1000  
1500  
10  
μV  
μV  
μV/°C  
μV  
μV  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
μV/°C  
Offset Referred to Input vs.  
Supply (PSR)  
+VS = 5 V to 12 V,  
−VS = −5 V to −12 V  
G = 5  
G = 10  
G = 100  
G = 1000  
80  
86  
90  
90  
86  
90  
96  
96  
dB  
dB  
dB  
dB  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
5
5
12  
25  
28  
5
5
12  
25  
28  
nA  
nA  
pA/°C  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
Average Temperature  
Coefficient  
50  
50  
Input Offset Current  
Over Temperature  
Average Temperature  
Coefficient  
0.25  
2
2.5  
0.25  
2
2.5  
nA  
nA  
pA/°C  
TA = −40°C to +85°C  
TA = −40°C to +85°C  
5
5
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 5  
G = 10  
G = 100  
G = 1000  
Slew Rate  
Settling Time to 0.01%  
G = 5  
G = 10  
G = 100  
200  
200  
70  
7
0.3  
200  
200  
70  
7
0.3  
kHz  
kHz  
kHz  
kHz  
V/μs  
Step size = 10 V  
30  
30  
30  
150  
30  
30  
30  
150  
μs  
μs  
μs  
μs  
G = 1000  
Rev. 0 | Page 5 of 20  
 
AD8223  
AD8223A  
Typ  
AD8223B  
Typ  
Parameter  
GAIN  
Conditions  
Min  
Max  
Min  
Max  
Unit  
G = 5 + (80 k/RG)  
Gain Range  
Gain Error2  
G = 5  
G = 10  
G = 100  
G = 1000  
Nonlinearity  
G = 5  
5
1000  
5
1000  
V/V  
VOUT = −10 V to +10 V  
0.07  
0.3  
0.3  
0.02  
0.2  
0.3  
%
%
%
%
0.10  
0.10  
0.10  
0.10  
0.10  
0.10  
0.3  
0.3  
VOUT = −10 V to +10 V  
TA = −40°C to +85°C  
5
30  
5
30  
ppm  
ppm  
G = 1000  
Gain vs. Temperature  
G = 5  
10  
2
ppm/°C  
ppm/°C  
G > 51  
50  
50  
INPUT  
Input Impedance  
Differential  
Common-Mode  
Common-Mode Input Voltage  
Range3  
2||2  
2||2  
2||2  
2||2  
GΩ||pF  
GΩ||pF  
V
VIN+ = VIN−  
(−VS) −  
0.15  
(+VS) −  
1.5  
(−VS) −  
0.15  
(+VS) −  
1.5  
OUTPUT  
Output Swing  
RL = 10 kΩ to ground (−VS) +  
0.3  
RL = 100 kΩ to ground (−VS) +  
0.1  
(+VS) −  
0.8  
(+VS) −  
0.3  
(−VS) +  
0.3  
(−VS) +  
0.1  
(+VS) −  
0.8  
(+VS) −  
0.3  
V
V
REFERENCE INPUT  
RIN  
IIN  
60  
+10  
20%  
+20  
+VS  
60  
+10  
20%  
+20  
+VS  
kΩ  
μA  
V
VIN+ = VIN− = VREF = 0 V  
−VS  
Voltage Range  
Gain to Output  
−VS  
2
1
1
V
0.0002  
0.0002  
POWER SUPPLY  
Operating Range  
Quiescent Current  
Over Temperature  
TEMPERATURE RANGE  
For Specified Performance  
2
TA = −40°C to +85°C  
−40  
12  
650  
850  
12  
650  
850  
V
μA  
μA  
+85  
−40  
+85  
°C  
1 Because maximum supply voltage is 24 V between the negative and positive supply, these specifications at 12V are at the part’s limit. Operation at a nominal supply  
voltage slightly less than 12 V is recommended to allow for power supply tolerances.  
2 Does not include effects of external resistor, RG.  
3 Total input range depends on common-mode voltage, differential voltage, and gain. See Figure 18 through Figure 21 and the Input Voltage Range section in the  
Theory of Operation section for more information.  
Rev. 0 | Page 6 of 20  
 
AD8223  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltage  
12 V  
Specification is for the device in free air.  
Internal Power Dissipation  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range (R, RM)  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
ESD (Human Body Model)  
ESD (Charge Device Model)  
ESD (Machine Model)  
650 mW  
VS  
Indefinite  
−65°C to +125°C  
−40°C to +85°C  
300°C  
1.5 kV  
500 V  
100 V  
Table 5. Thermal Resistance  
Package Type  
θJA  
Unit  
°C/W  
°C/W  
8-Lead SOIC (R)  
8-Lead MSOP (RM)  
155  
200  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 7 of 20  
 
AD8223  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
8
7
6
5
–R  
+R  
G
G
AD8223  
–IN  
+IN  
+V  
S
TOP VIEW  
OUT  
REF  
(Not to Scale)  
–V  
S
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Descriptions  
1
2
3
4
5
6
7
8
−RG  
−IN  
+IN  
−VS  
REF  
OUT  
+VS  
Gain Resistor Terminal.  
Negative Input.  
Positive Input.  
Negative Supply.  
Reference. Connect to a low impedance source. Output is referenced to this node.  
Output.  
Positive Supply.  
Gain Resistor Terminal.  
+RG  
Rev. 0 | Page 8 of 20  
 
AD8223  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = 5 V, RL = 10 kꢀ, unless otherwise noted.  
1000  
100  
10  
N = 4720  
MEAN = –12.9448  
700  
SD = 0.317868  
600  
500  
400  
300  
200  
100  
0
G = 5  
G = 10  
G = 1000  
BW LIMIT  
G = 100  
BW LIMIT  
–13.8 –13.5  
–13.2 –12.9 –12.6 –12.3 –12.0  
0.1  
1
10  
100  
FREQUENCY (Hz)  
1k  
10k  
100k  
INPUT BIAS CURRENT (nA)  
Figure 3. Typical Distribution of Input Bias Current  
Figure 6. Voltage Noise Density vs. Frequency  
25  
20  
15  
10  
5
N = 4720  
MEAN = –0.00571517  
SD = 0.172282  
1000  
800  
600  
400  
200  
0
0
–0.9  
–0.6  
–0.3  
0
0.3  
0.6  
0.9  
1.2  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
INPUT OFFSET CURRENT (nA)  
TEMPERATURE (°C)  
Figure 4. Typical Distribution of Input Offset Current  
Figure 7. IBIAS vs. Temperature  
1000  
100  
10  
N = 5036  
1400  
1200  
1000  
800  
600  
400  
200  
0
MEAN = –0.00336179  
SD = 0.00155048  
–0.015  
–0.010  
–0.005  
0
0.005  
0.010  
0.015  
0.1  
1
10  
100  
0.01  
1k  
GAIN ERROR, G = 5 (%)  
FREQUENCY (Hz)  
Figure 5. Typical Distribution for Gain Error (G = 5)  
Figure 8. Current Noise Density vs. Frequency  
Rev. 0 | Page 9 of 20  
 
AD8223  
120  
110  
100  
90  
18  
16  
14  
12  
10  
8
G = 1000  
G = 5  
±V = ±5V  
S
±V = ±2.5V  
S
±V = ±12V  
S
G = 100  
G = 10  
80  
70  
60  
6
50  
4
40  
2
30  
0
1
10  
100  
1k  
10k  
100k  
–12 –10 –8  
–6  
–4  
–2  
0
2
4
6
8
10  
FREQUENCY (Hz)  
CMV (V)  
Figure 12. CMRR vs. Frequency, VS = 12  
Figure 9. IBIAS vs. CMV  
120  
110  
100  
90  
G = 1000  
G = 5  
G = 10  
G = 100  
80  
70  
60  
50  
40  
500fA/DIV  
1s/DIV  
30  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 13. CMRR vs. Frequency, +VS = +5 V  
Figure 10. 0.1 Hz to 10 Hz Current Noise  
70  
60  
G = 1000  
G = 1000  
50  
G = 100  
40  
30  
G = 10  
G = 5  
20  
10  
G = 5  
0
–10  
–20  
–30  
0.5µV/DIV  
1s/DIV  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 14. Gain vs. Frequency, VS = 12 V  
Figure 11. 0.1 Hz to 10 Hz RTI and RTO Voltage Noise  
Rev. 0 | Page 10 of 20  
AD8223  
70  
60  
4
3
G = 1000  
G = 100  
±V = ±5V  
S
50  
2
40  
1
±V = ±2.5V  
S
30  
0
G = 10  
G = 5  
+V = +5V  
S
20  
–1  
–2  
–3  
–4  
–5  
–6  
10  
0
–10  
–20  
–30  
100  
1k  
10k  
100k  
1M  
100  
14  
–6  
–4  
–2  
0
2
4
6
FREQUENCY (Hz)  
MAXIMUM OUTPUT VOLTAGE (V)  
Figure 15. Gain vs. Frequency, +VS = +5 V  
Figure 18. Common-Mode Input vs. Maximum Output Voltage,  
G = 5, Small Supplies  
25  
20  
15  
10  
5
15  
10  
5
±12V  
0
±5V  
–5  
–10  
–15  
±2.5V  
0
0.1  
1
10  
FREQUENCY (kHz)  
–15  
–10  
–5  
0
5
10  
15  
MAXIMUM OUTPUT VOLTAGE (V)  
Figure 16. Large Signal Frequency Response  
Figure 19. Common-Mode Input vs. Maximum Output Voltage,  
G = 5, VS = 12 V  
0.04  
0.38  
0.36  
0.34  
0.32  
0.30  
0.28  
0.26  
0.24  
0.22  
0.20  
4
±V = ±5V  
3
2
S
1
±V = ±2.5V  
S
0
+V = +5V  
S
–1  
–2  
–3  
–4  
–5  
–6  
2
4
6
8
10  
12  
–6  
–4  
–2  
0
2
4
6
SUPPLY VOLTAGE (±V )  
MAXIMUM OUTPUT VOLTAGE (V)  
S
Figure 17. Slew Rate vs. Supply Voltage  
Figure 20. Common-Mode Input vs. Maximum Output Voltage,  
G = 100, Small Supplies  
Rev. 0 | Page 11 of 20  
 
AD8223  
15  
10  
5
120  
100  
80  
60  
40  
20  
0
G = 1000  
G = 100  
0
G = 10  
–5  
–10  
G = 5  
–15  
–15  
–10  
–5  
0
5
10  
15  
1
10  
100  
1k  
10k  
100k  
MAXIMUM OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 21. Common-Mode Input vs. Maximum Output Voltage,  
G = 100, VS = 12 V  
Figure 24. Negative PSRR vs. Frequency, VS = 12 V  
140  
120  
5V/DIV  
G = 1000  
100  
G = 100  
80  
G = 10  
60  
G = 5  
0.1%/DIV  
40  
20  
0
100µs/DIV  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 22. Positive PSRR vs. Frequency, VS = 12 V  
Figure 25. Large Signal Response, G = 5  
140  
120  
100  
80  
5V/DIV  
G = 1000  
G = 100  
G = 10  
60  
G = 5  
0.1%/DIV  
40  
20  
100µs/DIV  
0
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 26. Large Signal Pulse Response, G = 100, CL = 100 pF  
Figure 23. Positive PSRR vs. Frequency, +VS = +5 V  
Rev. 0 | Page 12 of 20  
 
AD8223  
5V/DIV  
0.1%/DIV  
2
100µs/DIV  
20mV/DIV  
100µs/DIV  
Figure 27. Large Signal Pulse Response, G = 1000, CL = 100 pF  
Figure 29. Small Signal Pulse Response, G = 1000, RL = 25 kΩ, CL = 100 pF  
+V  
S
G = 5  
–1  
SOURCING  
G = 10  
G = 100  
–2  
+2  
SINKING  
+1  
2
–V  
S
0.01  
0.1  
1
10  
20mV/DIV  
10µs/DIV  
OUTPUT CURRENT (mA)  
Figure 30. Output Voltage Swing vs. Output Current  
Figure 28. Small Signal Pulse Response, G = 5, 10, 100; RL = 10 kΩ  
Rev. 0 | Page 13 of 20  
AD8223  
THEORY OF OPERATION  
AMPLIFIER ARCHITECTURE  
GAIN SELECTION  
The AD8223 is an instrumentation amplifier based on a  
classic 3-op amp approach, modified to ensure operation  
even at common-mode voltages at the negative supply rail.  
The architecture allows lower voltage offsets, better CMRR,  
and higher gain accuracy than competing instrumentation  
amplifiers in its class.  
Placing a resistor across the RG terminals sets the gain of the  
AD8223, which can be calculated by referring to Table 7 or by  
using the following gain equation:  
80 kꢀ  
RG  
G 5  
POSITIVE SUPPLY  
7
Table 7. Gains Achieved Using 1% Resistors  
1% Standard Table  
+
Value of RG (Ω)  
26.7 k  
15.8 k  
5.36 k  
2.26 k  
1.78 k  
845  
412  
162  
80.6  
Desired Gain  
Calculated Gain  
INVERTING  
2
8
10  
20  
40  
7.99  
10.1  
19.9  
40.4  
49.9  
99.7  
199  
499  
998  
4
8k  
8kΩ  
10kΩ  
10kΩ  
50kΩ  
1
OUT  
6
GAIN  
+
50kΩ  
REF  
5
8
50  
7
4
100  
200  
500  
1000  
+
NON-  
INVERTING  
3
NEGATIVE SUPPLY  
The AD8223 defaults to G = 5 when no gain resistor is used. Add  
the tolerance and gain drift of the RG resistor to the specifications  
of the AD8223 to determine the total gain accuracy of the system.  
When the gain resistor is not used, gain depends only on  
internal resistor matching, so gain error and gain drift are  
minimal.  
Figure 31. Simplified Schematic  
Figure 31 shows a simplified schematic of the AD8223. The  
AD8223 has three stages. In the first stage, the input signal is  
applied to PNP transistors. These PNP transistors act as voltage  
buffers and allow input voltages below ground. The second  
stage consists of a pair of 8 kꢀ resistors, the RG resistor, and a  
pair of amplifiers. This stage allows the amplification of the  
AD8223 to be set with a single external resistor. The third stage  
is a differential amplifier composed of an op amp, two 10 kꢀ  
resistors, and two 50 kꢀ resistors. This stage removes the  
common-mode signal and applies an additional gain of 5.  
INPUT VOLTAGE RANGE  
The 3-op amp architecture of the AD8223 applies gain and then  
removes the common-mode voltage. Therefore, internal nodes  
in the AD8223 experience a combination of both the gained  
signal and the common-mode signal. This combined signal can  
be limited by the voltage supplies even when the individual input  
and output signals are not. To determine whether the signal can be  
limited, refer to Figure 18 through Figure 21. Alternatively, use  
the parameters in the Specifications section to verify that the input  
and output are not limited and then use the following formula to  
make sure the internal nodes are not limited.  
The transfer function of the AD8223 is  
V
OUT = G(VIN+ VIN−) + VREF  
where:  
80 kꢀ  
G 5   
RG  
To check if it is limited by the internal nodes,  
VDIFF Gain  
VS 0.01 V 0.6 VCM  
VS 0.1V  
10  
If more common-mode range is required, a solution is to apply less  
gain in the instrumentation amplifier and more in a later stage.  
Rev. 0 | Page 14 of 20  
 
 
 
AD8223  
REFERENCE TERMINAL  
RF INTERFERENCE (RFI)  
The output voltage of the AD8223 is developed with respect to  
the potential on the reference terminal. This is useful when the  
output signal needs to be offset to a precise midsupply level. For  
example, a voltage source can be tied to the REF pin to level-  
shift the output so that the AD8223 can drive a single-supply  
ADC. The REF pin is protected with ESD diodes and should  
not exceed either +VS or −VS by more than 0.3 V.  
RF rectification is often a problem when amplifiers are used in  
applications where there are strong RF signals. The disturbance  
can appear as a small dc offset voltage. High frequency signals  
can be filtered with a low-pass, R-C network placed at the input  
of the instrumentation amplifier, as shown in Figure 34. The  
filter limits the input signal bandwidth according to the follow-  
ing relationship:  
1
For best performance, keep the source impedance to the REF  
terminal below 5 Ω. As shown in Figure 31, the reference  
terminal, REF, is at one end of a 50 kꢀ resistor. Additional  
impedance at the REF terminal adds to this resistor and results  
in poorer CMRR performance.  
FilterFreqDiff   
2R(2CD CC)  
1
FilterFreqCM   
2RCC  
INCORRECT  
CORRECT  
where CD ≥ 10CC.  
+15V  
+
10µF  
0.1µF  
+IN  
AD8223  
AD8223  
C
1nF  
C
V
REF  
V
R
REF  
+
4.02kΩ  
+
V
OUT  
C
D
47nF  
R1  
499Ω  
AD8223  
OP2177  
R
REF  
–IN  
4.02kΩ  
C
1nF  
C
Figure 32. Driving the Reference Pin  
10µF  
+
0.1µF  
INPUT PROTECTION  
–15V  
Internal supply referenced clamping diodes allow the input,  
reference, output, and gain terminals of the AD8223 to safely  
withstand overvoltages of 0.3 V above or below the supplies.  
This is true for all gains, and for power-on and power-off. This  
last case is particularly important because the signal source and  
amplifier can be powered separately.  
Figure 34. RFI Suppression  
Figure 34 shows an example in which the differential filter fre-  
quency is approximately 400 Hz, and the common-mode filter  
frequency is approximately 40 kHz. The typical dc offset shift  
over frequency is less than 1.5 μV, and the RF signal rejection  
of the circuit is better than 71 dB.  
If the overvoltage is expected to exceed this value, limit the  
current through these diodes to about 10 mA using external  
current limiting resistors. This is shown in Figure 33. The size  
of this resistor is defined by the supply voltage and the required  
overvoltage protection.  
The resistors were selected to be large enough to isolate the  
circuit input from the capacitors but not large enough to  
significantly increase the circuit noise. Choose values of R and  
CC to minimize RFI. Mismatch between the R × CC at positive  
input and the R × CC at negative input degrades the CMRR of  
the AD8223. Because of their higher accuracy and stability,  
COG/NPO type ceramic capacitors are recommended for the  
CC capacitors. The dielectric for the CD capacitor is not as  
critical.  
+V  
S
1 = 10mA MAX  
R
LIM  
+
V
OVER  
R
G
OUT  
AD8223  
R
LIM  
V
V
– V + 0.7V  
S
OVER  
OVER  
R
=
LIM  
10mA  
–V  
S
Figure 33. Input Protection  
Rev. 0 | Page 15 of 20  
 
 
 
AD8223  
INCORRECT  
+V  
CORRECT  
+V  
GROUND RETURNS FOR INPUT BIAS CURRENTS  
S
S
Input bias currents are those dc currents that must flow to bias  
the input transistors of an amplifier. These are usually transistor  
base currents. When amplifying floating input sources such as  
transformers or ac-coupled sources, there must be a direct dc  
path into each input so that the bias current can flow. Figure 35  
shows how a bias current path can be provided for the cases of  
transformer coupling, capacitive ac-coupling, and a thermo-  
couple application.  
AD8223  
AD8223  
REF  
REF  
REF  
REF  
–V  
–V  
S
S
TRANSFORMER  
TRANSFORMER  
In dc-coupled resistive bridge applications, providing this path  
is generally not necessary because the bias current simply flows  
from the bridge supply through the bridge and into the amplifier.  
However, if the impedances that the two inputs see are large and  
differ by a large amount (>10 kꢀ), the offset current of the input  
stage causes dc errors proportional to the input offset voltage of  
the amplifier.  
+V  
+V  
S
S
AD8223  
AD8223  
REF  
10M  
–V  
–V  
S
S
THERMOCOUPLE  
THERMOCOUPLE  
+V  
+V  
S
S
C
C
C
1
R
R
fHIGH-PASS  
=
2πRC  
AD8223  
AD8223  
C
REF  
–V  
–V  
S
S
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
Figure 35. Creating an IBIAS Path  
Rev. 0 | Page 16 of 20  
 
 
AD8223  
APPLICATIONS INFORMATION  
+V  
+V  
S
S
+2V TO +12V  
+3V TO +24V  
+
+
0.1µF  
10µF  
0.1µF  
10µF  
+
+
R
R
G
G
G
V
R
V
R
G
OUTPUT  
V
OUTPUT  
V
OUT  
IN  
G
IN  
OUT  
R
R
REF  
REF  
G
REF (INPUT)  
REF (INPUT)  
0.1µF  
10µF  
+
–2V TO –12V  
–V  
S
A. DUAL SUPPLY  
B. SINGLE SUPPLY  
Figure 36. Basic Connections  
BASIC CONNECTION  
OUTPUT BUFFERING  
Figure 36 shows the basic connection circuit for the AD8223.  
The +VS and −VS terminals are connected to the power supply.  
The supply can be either bipolar (VS = 2 V to 12 V) or single  
supply (−VS = 0 V, +VS = +3 V to +24 V). Power supplies should  
be capacitively decoupled close to the power pins of the device.  
For best results, use surface-mount 0.1 μF ceramic chip capacitors  
and 10 μF electrolytic tantalum capacitors.  
The AD8223 is designed to drive loads of 10 kꢀ or greater. If  
the load is less than this value, buffer the AD8223 output with a  
precision single-supply op amp such as the OP113. This op amp  
can swing from 0 V to 4 V on its output while driving a load as  
small as 600 ꢀ.  
5V  
0.1µF  
5V  
The input voltage, which can be either single-ended (tie either  
−IN or +IN to ground) or differential, is amplified by the  
programmed gain. The output signal appears as the voltage  
difference between the output pin and the externally applied  
voltage on the REF input.  
0.1µF  
+
AD8223  
V
R
G
IN  
+
OP113  
V
OUT  
REF  
DIFFERENTIAL OUTPUT  
Figure 38. Output Buffering  
Figure 37 shows how to create a differential output in-amp. An  
OP1177 op amp creates the inverted output. Because the op  
amp drives the AD8223 reference pin, the AD8223 can still  
ensure that the differential voltage is correct. Errors from the  
op amp or mismatched resistors are common to both outputs  
and are thus common mode. These common-mode errors  
should be rejected by the next device in the signal chain.  
CABLES  
Receiving from a Cable  
In many applications, shielded cables are used to minimize  
noise; for best CMR over frequency, the shield should be  
properly driven. Figure 39 shows an active guard drive that  
is configured to improve ac common-mode rejection by  
bootstrapping the capacitances of input cable shields, thus  
minimizing the capacitance mismatch between the inputs.  
+IN  
+OUT  
AD8223  
+V  
S
–INPUT  
2
1
–IN  
7
20k  
20kΩ  
REF  
R
V
G
G
REF  
100Ω  
2
6
V
AD8223  
AD8031  
OUT  
R
+
5
2
8
3
OP1177  
4
REFERENCE  
+INPUT  
–V  
S
Figure 39. Common-Mode Shield Driver  
–OUT  
Figure 37. Differential Output Using Op Amp  
Rev. 0 | Page 17 of 20  
 
 
 
 
AD8223  
Driving a Cable  
The bridge circuit is excited by a +5 V supply. The full-scale output  
voltage from the bridge ( 10 mV), therefore, has a common-  
mode level of 2.5 V. The AD8223 removes the common-mode  
component and amplifies the input signal by a factor of 100  
(RG = 1.02 kꢀ). This results in an output signal of 1 V. To  
prevent this signal from running into the AD8223 ground rail, the  
voltage on the REF pin must be raised to at least 1 V. In this  
example, the 2 V reference voltage from the AD7776 ADC is  
used to bias the AD8223 output voltage to 2 V 1 V, which  
corresponds to the input range of the ADC.  
All cables have a certain capacitance per unit length, which  
varies widely with cable type. The capacitive load from the  
cable may cause peaking in the output response of the AD8223.  
To reduce the peaking, use a resistor between the AD8223 and  
the cable. Because cable capacitance and desired output response  
vary widely, this resistor is best determined empirically. A good  
starting point is 75 Ω.  
The AD8232 operates at a low enough frequency that transmission  
line effects are rarely an issue; therefore, the resistor need not  
match the characteristic impedance of the cable.  
AMPLIFYING SIGNALS WITH LOW COMMON-  
MODE VOLTAGE  
Because the common-mode input range of the AD8223 extends  
0.15 V below ground, it is possible to measure small differential  
AD8223  
(DIFF OUT)  
signals that have low, or no, common-mode components. Figure 42  
shows a thermocouple application in which one side of the J-type  
thermocouple is grounded.  
5V  
0.1µF  
AD8223  
(SINGLE OUT)  
+
R
J-TYPE  
THERMOCOUPLE  
G
V
AD8223  
OUT  
1.02k  
REF  
2V  
Figure 40. Driving a Cable  
Figure 42. Amplifying Bipolar Signals with Low Common-Mode Voltage  
A SINGLE-SUPPLY DATA ACQUISITION SYSTEM  
Over a temperature range of −200°C to +200°C, the J-type  
thermocouple delivers a voltage ranging from −7.890 mV  
to +10.777 mV. A programmed gain on the AD8223 of 100  
(RG = 845) and a voltage on the AD8223 REF pin of 2 V results  
in the AD8223 output voltage ranging from 1.110 V to 3.077 V  
relative to ground.  
Interfacing bipolar signals to single-supply analog-to-digital  
converters (ADCs) presents a challenge. The bipolar signal  
must be mapped into the input range of the ADC. Figure 41  
shows how this translation can be achieved.  
5V  
5V  
5V  
0.1µF  
0.1µF  
AD7776  
+
R
G
±10mV  
AD8223  
A
IN  
1.02k  
REF  
REFOUT  
REFIN  
Figure 41. A Single-Supply Data Acquisition System  
Rev. 0 | Page 18 of 20  
 
 
 
AD8223  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 43. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 44. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. 0 | Page 19 of 20  
 
AD8223  
ORDERING GUIDE  
Model  
AD8223AR  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
R-8  
R-8  
Branding  
8-Lead SOIC_N  
AD8223AR-RL  
AD8223AR-R7  
AD8223ARM  
AD8223ARM-RL  
AD8223ARM-R7  
AD8223ARMZ1  
AD8223ARMZ-RL1  
AD8223ARMZ-R71  
AD8223ARZ1  
AD8223ARZ-RL1  
AD8223ARZ-R71  
AD8223BR  
AD8223BR-RL  
AD8223BR-R7  
AD8223BRM  
8-Lead SOIC_N,13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
Y0U  
Y0U  
Y0U  
Y0Q  
Y0Q  
Y0Q  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
Y0V  
Y0V  
Y0V  
Y0R  
Y0R  
Y0R  
AD8223BRM-RL  
AD8223BRM-R7  
AD8223BRMZ1  
AD8223BRMZ-RL1  
AD8223BRMZ-R71  
AD8223BRZ1  
AD8223BRZ-RL1  
AD8223BRZ-R71  
R-8  
R-8  
1 Z = RoHS Compliant Part.  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06925-0-10/08(0)  
Rev. 0 | Page 20 of 20  
 
 

相关型号:

AD8223ARZ

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223ARZ-R7

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223ARZ-R71

Single-Supply, Low Cost Instrumentation Amplifier
ADI

AD8223ARZ-RL

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223ARZ-RL1

Single-Supply, Low Cost Instrumentation Amplifier
ADI

AD8223ARZ1

Single-Supply, Low Cost Instrumentation Amplifier
ADI

AD8223BR

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223BR-R7

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223BR-RL

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223BRM

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223BRM-R7

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI

AD8223BRM-RL

Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
ADI