AD8227 [ADI]

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier; 宽电源电压范围,轨到轨输出仪表放大器
AD8227
型号: AD8227
厂家: ADI    ADI
描述:

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
宽电源电压范围,轨到轨输出仪表放大器

仪表放大器
文件: 总24页 (文件大小:521K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wide Supply Range, Rail-to-Rail  
Output Instrumentation Amplifier  
AD8227  
FEATURES  
PIN CONFIGURATION  
Gain set with 1 external resistor  
Gain range: 5 to 1000  
Input voltage goes below ground  
Inputs protected beyond supplies  
Very wide power supply range  
Single supply: 2.2 V to 36 V  
AD8227  
1
2
3
4
8
7
6
5
–IN  
+V  
S
R
R
V
OUT  
G
G
REF  
–V  
+IN  
S
TOP VIEW  
(Not to Scale)  
Dual supply: 1.5 V to 18 V  
Bandwidth (G = 5): 250 kHz  
Figure 1.  
CMRR (G = 5): 100 dB minimum (B Grade)  
Input noise: 24 nV/√Hz  
Typical supply current: 350 μA  
Specified temperature: −40°C to +125°C  
8-lead SOIC and MSOP packages  
Table 1. Instrumentation Amplifiers by Category1  
General  
Purpose  
Zero  
Drift  
Military  
Grade  
Low  
Power  
High Speed  
PGA  
AD8220  
AD8221  
AD8222  
AD8224  
AD8228  
AD8295  
AD8231  
AD8290  
AD8293  
AD8553  
AD8556  
AD8557  
AD620  
AD621  
AD524  
AD526  
AD624  
AD627  
AD623  
AD8223  
AD8226  
AD8227  
AD8250  
AD8251  
AD8253  
APPLICATIONS  
Industrial process controls  
Bridge amplifiers  
Medical instrumentation  
Portable data acquisition  
Multichannel systems  
1 See www.analog.com for the latest selection of instrumentation amplifiers.  
GENERAL DESCRIPTION  
The AD8227 is ideal for multichannel, space-constrained  
applications. With its MSOP package and 125°C temperature  
rating, the AD8227 thrives in tightly packed, zero airflow designs.  
The AD8227 is a low cost, wide supply range instrumentation  
amplifier that requires only one external resistor to set any gain  
between 5 and 1000.  
The AD8227 is available in 8-pin MSOP and SOIC packages.  
It is fully specified for −40°C to +125°C operation.  
The AD8227 is designed to work with a variety of signal voltages.  
A wide input range and rail-to-rail output allow the signal to  
make full use of the supply rails. Because the input range can  
also go below the negative supply, small signals near ground can  
be amplified without requiring dual supplies. The AD8227  
operates on supplies ranging from 1.5 ꢀ to 18 ꢀ ꢁ2.2 ꢀ to  
36 ꢀ single supply).  
For a similar instrumentation amplifier with a gain range of 1 to  
1000, see the AD8226.  
The robust AD8227 inputs are designed to connect to real-  
world sensors. In addition to its wide operating range, the  
AD8227 can handle voltages beyond the rails. For example,  
with a 5 ꢀ supply, the part is guaranteed to withstand 35 ꢀ  
at the input with no damage. Minimum as well as maximum  
input bias currents are specified to facilitate open wire detection.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
AD8227  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Gain Selection............................................................................. 19  
Reference Terminal .................................................................... 20  
Input ꢀoltage Range................................................................... 20  
Layout .......................................................................................... 20  
Input Bias Current Return Path ............................................... 21  
Input Protection ......................................................................... 21  
Radio Frequency Interference ꢁRFI)........................................ 21  
Applications Information.............................................................. 22  
Differential Drive ....................................................................... 22  
Precision Strain Gage................................................................. 22  
Driving an ADC ......................................................................... 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 19  
Architecture................................................................................. 19  
REVISION HISTORY  
5/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
AD8227  
SPECIFICATIONS  
+ꢀS = +15 , S = −15 , REF = 0 , TA = 25°C, G = 5, RL = 10 kΩ, specifications referred to input, unless otherwise noted.  
Table 2.  
Test Conditions/  
Comments  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION RATIO VCM = −10 V to +10 V  
DC to 60 Hz  
G = 5  
G = 10  
G = 100  
G = 1000  
5 kHz  
90  
96  
105  
105  
100  
105  
110  
110  
dB  
dB  
dB  
dB  
G = 5  
G = 10  
G = 100  
G = 1000  
80  
86  
86  
86  
80  
86  
86  
86  
dB  
dB  
dB  
dB  
NOISE  
Total noise:  
eN = √(eNI2 + (eNO/G)2)  
Voltage Noise, 1 kHz  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
24  
310  
25  
315  
24  
310  
25  
315  
nV/√Hz  
nV/√Hz  
RTI  
f = 0.1 Hz to 10 Hz  
G = 5  
G = 10  
G = 100 to 1000  
Current Noise  
1.5  
0.9  
0.5  
100  
3
1.5  
0.9  
0.5  
100  
3
μV p-p  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
Total offset voltage:  
V
OS = VOSI + (VOSO/G)  
Input Offset, VOSI  
Average Temperature Drift  
Output Offset, VOSO  
Average Temperature Drift  
Offset RTI vs. Supply (PSR)  
G = 5  
G = 10  
G = 100  
G = 1000  
VS = 5 V to 15 V  
TA = −40°C to +125°C  
VS = 5 V to 15 V  
TA = −40°C to +125°C  
VS = 5 V to 15 V  
200  
2
1000  
10  
100  
1
500  
5
μV  
μV/°C  
μV  
0.2  
2
0.2  
2
μV/°C  
90  
96  
105  
105  
100  
105  
110  
110  
dB  
dB  
dB  
dB  
INPUT CURRENT  
Input Bias Current1  
TA = +25°C  
TA = +125°C  
TA = −40°C  
TA = −40°C to +125°C  
TA = +25°C  
5
5
5
20  
15  
30  
70  
27  
25  
35  
5
5
5
20  
15  
30  
70  
27  
25  
35  
nA  
nA  
nA  
pA/°C  
nA  
Average Temperature Drift  
Input Offset Current  
1.5  
1.5  
2
1.5  
1.5  
2
TA = +125°C  
TA = −40°C  
nA  
nA  
Average Temperature Drift  
REFERENCE INPUT  
RIN  
TA = −40°C to +125°C  
5
5
pA/°C  
60  
12  
60  
12  
kΩ  
μA  
V
IIN  
Voltage Range  
−VS  
+VS  
−VS  
+VS  
Reference Gain to Output  
Reference Gain Error  
1
0.01  
1
0.01  
V/V  
%
Rev. 0 | Page 3 of 24  
 
AD8227  
Test Conditions/  
Comments  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 5  
Min  
Max  
Min  
Max  
Unit  
250  
200  
50  
250  
200  
50  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
5
5
Settling Time 0.01%  
G = 5  
10 V step  
14  
14  
μs  
G = 10  
15  
15  
μs  
G = 100  
35  
35  
μs  
G = 1000  
275  
0.8  
275  
0.8  
μs  
V/μs  
Slew Rate2  
GAIN3  
G = 5 to 100  
G = 5 + (80 kΩ/RG)  
Gain Range  
Gain Error  
5
1000  
5
1000  
V/V  
VOUT = −10 V to +10 V  
G = 5  
0.04  
0.3  
0.02  
0.15  
%
%
G = 10 to 1000  
Gain Nonlinearity  
G = 5  
G = 10  
G = 100  
VOUT = −10 V to +10 V  
RL ≥ 2 kΩ  
RL ≥ 2 kΩ  
RL ≥ 2 kΩ  
RL ≥ 2 kΩ  
10  
15  
15  
750  
10  
15  
50  
150  
ppm  
ppm  
ppm  
ppm  
G = 1000  
Gain vs. Temperature  
G = 5  
G > 5  
TA = −40°C to +125°C  
5
5
ppm/°C  
ppm/°C  
−100  
−100  
INPUT  
VS = 1.5 V to +36 V  
Impedance  
Differential  
Common Mode  
Operating Voltage Range4  
0.8||2  
0.4||2  
0.8||2  
0.4||2  
GΩ||pF  
GΩ||pF  
V
V
V
V
TA = +25°C  
TA = +125°C  
TA = −40°C  
TA = −40°C to +125°C  
−VS − 0.1  
−VS − 0.05  
−VS − 0.15  
+VS − 40  
+VS − 0.8 −VS − 0.1  
+VS − 0.6 −VS − 0.05  
+VS − 0.9 −VS − 0.15  
+VS − 0.8  
+VS − 0.6  
+VS − 0.9  
−VS + 40  
Overvoltage Range  
OUTPUT  
−VS + 40  
+VS − 40  
Output Swing  
RL = 10 kΩ to ground  
TA = −40°C to +85°C  
TA = +85°C to +125°C  
TA = −40°C to +125°C  
−VS + 0.2  
−VS + 0.2  
−VS + 0.1  
+VS − 0.2 −VS + 0.2  
+VS − 0.3 −VS + 0.2  
+VS − 0.1 −VS + 0.1  
+VS − 0.2  
+VS − 0.3  
+VS − 0.1  
V
V
V
mA  
RL = 100 kΩ to ground  
Short-Circuit Current  
POWER SUPPLY  
13  
13  
Operating Range  
Quiescent Current  
Dual-supply operation  
TA = +25°C  
TA = −40°C  
TA = +85°C  
TA = +125°C  
1.5  
18  
425  
325  
525  
600  
+125  
1.5  
18  
425  
325  
525  
600  
+125  
V
350  
250  
450  
525  
350  
250  
450  
525  
μA  
μA  
μA  
μA  
°C  
TEMPERATURE RANGE  
−40  
−40  
1 The input stage uses pnp transistors, so input bias current always flows into the part.  
2 At high gains, the part is bandwidth limited rather than slew rate limited.  
3 For G > 5, gain error specifications do not include the effects of External Resistor RG.  
4 Input voltage range of the AD8227 input stage. The input range depends on the common-mode voltage, differential voltage, gain, and reference voltage. See the  
Input Voltage Range section for more information.  
Rev. 0 | Page 4 of 24  
 
 
 
 
AD8227  
+ꢀS = 2.7 ꢀ, −ꢀS = 0 ꢀ, ꢀREF = 0 , TA = 25°C, G = 5, RL = 10 kΩ, specifications referred to input, unless otherwise noted.  
Table 3.  
Test Conditions/  
Comments  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION RATIO VCM = 0 V to 1.7 V  
DC to 60 Hz  
G = 5  
G = 10  
G = 100  
G = 1000  
5 kHz  
90  
96  
105  
105  
100  
105  
110  
110  
dB  
dB  
dB  
dB  
G = 5  
G = 10  
G = 100  
G = 1000  
80  
86  
86  
86  
80  
86  
86  
86  
dB  
dB  
dB  
dB  
NOISE  
Total noise:  
eN = √(eNI2 + (eNO/G)2)  
Voltage Noise, 1 kHz  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
25  
310  
28  
330  
25  
310  
28  
330  
nV/√Hz  
nV/√Hz  
RTI  
f = 0.1 Hz to 10 Hz  
G = 5  
G = 10  
G = 100 to 1000  
Current Noise  
1.5  
0.8  
0.5  
100  
3
1.5  
0.8  
0.5  
100  
3
μV p-p  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
VOLTAGE OFFSET  
Total offset voltage:  
VOS = VOSI + (VOSO/G)  
Input Offset, VOSI  
Average Temperature Drift  
Output Offset, VOSO  
Average Temperature Drift  
Offset RTI vs. Supply (PSR)  
G = 5  
G = 10  
G = 100  
G = 1000  
VS = 0 V to 1.7 V  
TA = −40°C to +125°C  
VS = 0 V to 1.7 V  
TA = −40°C to +125°C  
VS = 0 V to 1.7 V  
200  
2
1000  
10  
100  
1
500  
5
μV  
μV/°C  
μV  
0.2  
2
0.2  
2
μV/°C  
90  
96  
105  
105  
100  
105  
110  
110  
dB  
dB  
dB  
dB  
INPUT CURRENT  
Input Bias Current1  
TA = +25°C  
TA = +125°C  
TA = −40°C  
TA = −40°C to +125°C  
TA = +25°C  
5
5
5
20  
15  
30  
70  
27  
25  
35  
5
5
5
20  
15  
30  
70  
27  
25  
35  
nA  
nA  
nA  
pA/°C  
nA  
Average Temperature Drift  
Input Offset Current  
1.5  
1.5  
2
1.5  
1.5  
2
TA = +125°C  
TA = −40°C  
nA  
nA  
Average Temperature Drift  
REFERENCE INPUT  
RIN  
TA = −40°C to +125°C  
5
5
pA/°C  
60  
12  
60  
12  
kΩ  
μA  
V
IIN  
Voltage Range  
−VS  
+VS  
−VS  
+VS  
Reference Gain to Output  
Reference Gain Error  
1
0.01  
1
0.01  
V/V  
%
Rev. 0 | Page 5 of 24  
AD8227  
Test Conditions/  
Comments  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 5  
Min  
Max  
Min  
Max  
Unit  
250  
200  
50  
250  
200  
50  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
5
5
Settling Time 0.01%  
G = 5  
2 V step  
6
6
μs  
G = 10  
6
6
μs  
G = 100  
G = 1000  
Slew Rate2  
GAIN3  
30  
275  
0.6  
30  
275  
0.6  
μs  
μs  
V/μs  
G = 5 to 10  
G = 5 + (80 kΩ/RG)  
Gain Range  
Gain Error  
G = 5  
G = 10 to 1000  
Gain vs. Temperature  
G = 5  
5
1000  
5
1000  
V/V  
VOUT = 0.8 V to 1.8 V  
VOUT = 0.2 V to 2.5 V  
TA = −40°C to +125°C  
0.04  
0.3  
0.04  
0.3  
%
%
5
5
ppm/°C  
ppm/°C  
G > 5  
−100  
−100  
INPUT  
−VS = 0 V; +VS = 2.7 V to  
36 V  
Impedance  
Differential  
Common Mode  
Operating Voltage Range4  
0.8||2  
0.4||2  
0.8||2  
0.4||2  
GΩ||pF  
GΩ||pF  
V
V
V
V
TA = +25°C  
TA = −40°C  
TA = +125°C  
TA = −40°C to +125°C  
−0.1  
+VS − 0.7  
+VS − 0.9  
+VS − 0.6  
−VS + 40  
−0.1  
+VS − 0.7  
+VS − 0.9  
+VS − 0.6  
−VS + 40  
−0.15  
−0.05  
+VS − 40  
−0.15  
−0.05  
+VS − 40  
Overvoltage Range  
OUTPUT  
Output Swing  
RL = 2 kΩ to 1.35 V  
RL = 10 kΩ to 1.35 V  
Short-Circuit Current  
POWER SUPPLY  
TA = −40°C to +125°C  
0.2  
0.1  
+VS − 0.2  
+VS − 0.1  
0.2  
0.1  
+VS − 0.2  
+VS − 0.1  
V
V
mA  
13  
13  
Operating Range  
Quiescent Current  
Single-supply operation  
+VS = 2.7 V  
2.2  
36  
2.2  
36  
V
TA = +25°C  
TA = −40°C  
TA = +85°C  
TA = +125°C  
325  
250  
425  
475  
400  
325  
500  
550  
+125  
325  
250  
425  
475  
400  
325  
500  
550  
+125  
μA  
μA  
μA  
μA  
°C  
TEMPERATURE RANGE  
−40  
−40  
1 Input stage uses pnp transistors, so input bias current always flows into the part.  
2 At high gains, the part is bandwidth limited rather than slew rate limited.  
3 For G > 5, gain error specifications do not include the effects of External Resistor RG.  
4 Input voltage range of the AD8227 input stage. The input range depends on the common-mode voltage, differential voltage, gain, and reference voltage. See the  
Input Voltage Range section for more information.  
Rev. 0 | Page 6 of 24  
 
 
 
AD8227  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 4.  
θJA is specified for a device in free air.  
Parameter  
Rating  
Supply Voltage  
18 V  
Table 5.  
Package  
Output Short-Circuit Current  
Maximum Voltage at −IN or +IN  
Minimum Voltage at −IN or +IN  
REF Voltage  
Indefinite  
−VS + 40 V  
+VS − 40 V  
VS  
θJA  
Unit  
°C/W  
°C/W  
8-Lead MSOP, 4-Layer JEDEC Board  
8-Lead SOIC, 4-Layer JEDEC Board  
135  
121  
Storage Temperature Range  
Operating Temperature Range  
Maximum Junction Temperature  
−65°C to +150°C  
−40°C to +125°C  
140°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 7 of 24  
 
AD8227  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD8227  
1
2
3
4
8
7
6
5
–IN  
+V  
S
R
R
V
OUT  
G
G
REF  
–V  
+IN  
S
TOP VIEW  
(Not to Scale)  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
Negative Input.  
1
−IN  
2, 3  
4
RG  
+IN  
Gain Setting Pins. Place a gain resistor between these two pins.  
Positive Input.  
5
−VS  
Negative Supply.  
6
REF  
Reference. This pin must be driven by low impedance.  
7
8
VOUT  
+VS  
Output.  
Positive Supply.  
Rev. 0 | Page 8 of 24  
 
AD8227  
TYPICAL PERFORMANCE CHARACTERISTICS  
T = 25°C, ꢀS = 15 , RL = 10 kꢂ, unless otherwise noted.  
500  
400  
300  
200  
100  
0
MEAN: 15.9  
SD: 196.50  
MEAN: 0.0668  
SD: 0.065827  
1000  
800  
600  
400  
200  
0
–900  
–600  
–300  
0
300  
600  
900  
–0.9  
–0.6  
–0.3  
0
0.3  
0.6  
0.9  
OUTPUT V (µV)  
INPUT V DRIFT (µV)  
OS  
OS  
Figure 3. Typical Distribution of Output Offset Voltage  
Figure 6. Typical Distribution of Input Offset Voltage Drift, G = 100  
MEAN: 20.4  
SD: 0.5893  
MEAN: –0.701  
SD: 0.676912  
1000  
700  
600  
500  
400  
300  
200  
800  
600  
400  
200  
0
100  
0
–6  
–4  
–2  
0
2
4
6
16  
18  
20  
22  
(nA)  
24  
26  
POSITIVE I  
OUTPUT V DRIFT (µV)  
BIAS  
OS  
Figure 7. Typical Distribution of Input Bias Current  
Figure 4. Typical Distribution of Output Offset Voltage Drift  
MEAN: –5.90  
SD: 15.8825  
MEAN: –0.027  
SD: 0.079173  
1000  
1000  
800  
800  
600  
600  
400  
200  
0
400  
200  
0
–200  
–150 –100  
–50  
0
50  
100  
150  
200  
–0.9  
–0.6  
–0.3  
0
0.3  
0.6  
0.9  
INPUT V (µV)  
I
(nA)  
OS  
OS  
Figure 5. Typical Distribution of Input Offset Voltage  
Figure 8. Typical Distribution of Input Offset Current  
Rev. 0 | Page 9 of 24  
 
AD8227  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
+0.02V, +1.5V  
+0.02V, +1.5V  
V
= 0V  
V
= 0V  
REF  
REF  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
+2.67V, +1.2V  
+2.67V, +1.2V  
+0.02V, +1.35V  
+0.02V, +1.35V  
V
+2.67V, +1.1V  
+2.7V, +1.1V  
V
= 1.35V  
= 1.35V  
REF  
REF  
+2.7V, 0V  
+0.02V, –0.15V  
+0.02V, –0.3V  
+2.67V, –0.25V  
+2.67V, –0.25V  
2.5 3.0  
+0.02V, –0.25V  
+0.02V, –0.3V  
–0.2  
–0.4  
–0.2  
–0.4  
+2.67V, –0.15V  
+1.35V, –0.3V  
1.5 2.0  
+1.35V, –0.3V  
1.5 2.0  
OUTPUT VOLTAGE (V)  
–0.5  
0
0.5  
1.0  
–0.5  
0
0.5  
1.0  
2.5  
3.0  
OUTPUT VOLTAGE (V)  
Figure 9. Input Common-Mode Voltage vs. Output Voltage,  
Single Supply, Vs = 2.7 V, G = 5  
Figure 12. Input Common-Mode Voltage vs. Output Voltage,  
Single Supply, Vs = 2.7 V, G = 100  
5
5
V
= 0V  
V
= 0V  
REF  
REF  
+0.02V, +4.25V  
+0.02V, +4V  
+0.02V, +4.25V  
+0.02V, +4V  
+4.96V, +3.75V  
4
3
2
+4.96V, +3.75V  
+4.96V, +3.5V  
4
3
2
1
+4.96V, +3.5V  
V
= 2.5V  
V
= 2.5V  
REF  
REF  
1
0
+4.96V, +0.2V  
+4.96V, –0.05V  
+0.01V, –0.05V  
+0.02V, –0.3V  
+4.96V, –0.2V  
+4.96V, –0.25V  
0
+0.02V, –0.25V  
+0.02V, –0.3V  
+2.5V, –0.3V  
+2.5V, –0.3V  
–1  
–1  
–0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
–0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
Figure 10. Input Common-Mode Voltage vs. Output Voltage,  
Single Supply, Vs = 5 V, G = 5  
Figure 13. Input Common-Mode Voltage vs. Output Voltage,  
Single Supply, Vs = 5 V, G = 100  
6
6
0V, +4.2V  
0V, +4.2V  
–4.98V, +3.7V  
+4.96V, +3.7V  
–4.96V, +3.75V  
4
2
0
4
2
0
+4.96V, +3.25V  
–2  
–4  
–6  
–2  
–4  
–6  
0V, –5.3V  
0
0V, –5.3V  
0
–4.97V, –4.8V  
–6 –4  
+4.96V, –4.8V  
4
–4.96V, –5.1V  
–4  
+4.96V, –5.1V  
4 6  
–2  
2
6
–6  
–2  
2
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 11. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supply, Vs = 5 V, G = 5  
Figure 14. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supply, Vs = 5 V, G = 100  
Rev. 0 | Page 10 of 24  
 
AD8227  
20  
16  
14  
12  
10  
8
0.5  
0.4  
0.3  
0.2  
0.1  
V
= ±15V, G = 5  
V
= ±15V  
S
S
0V, +14.2V  
0V, +11.2V  
15  
10  
5
+14.94V, +12.7V  
–14.96V, +12.7V  
V
OUT  
–11.96V,  
+10V  
+11.94V,  
+10V  
6
4
2
I
IN  
V
= ±12V  
0
0
–2  
0
S
–0.1  
–0.2  
–0.3  
–5  
–10  
–15  
–20  
–4  
–6  
–11.96V,  
–11.1V  
+11.94V,  
–11.1V  
–8  
–10  
–12  
0V, –12.3V  
0V, –15.3V  
–0.4  
–0.5  
–14.96V, –13.8V  
+14.94V, –13.8V  
–14  
–16  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
OUTPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 15. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supply, Vs = 15 V, G = 5  
Figure 18. Input Overvoltage Performance, G = 5, Vs = 15 V  
20  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 2.7V, G = 100  
V
= ±15V  
S
S
0V, +14.2V  
0V, +11.2V  
15  
10  
5
+14.94V, +12.7V  
–14.96V, +12.7V  
V
OUT  
–11.96V,  
+10V  
+11.94V,  
+10V  
V
= ±12V  
0
S
I
IN  
–0.1  
–5  
–10  
–15  
–20  
1.00  
0.75  
–0.2  
–0.3  
–11.96V,  
–11.3V  
+11.94V,  
–11.3V  
0.50  
0.25  
0
–0.4  
–0.5  
–0.6  
0V, –12.3V  
0V, –15.3V  
–14.96V, –14V  
–15 –10  
+14.94V, –14V  
10 15 20  
–20  
–5  
0
5
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
OUTPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 16. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supply, Vs = 15 V, G = 100  
Figure 19. Input Overvoltage Performance, G = 100, Vs = 2.7 V  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
16  
14  
12  
10  
8
0.5  
0.4  
0.3  
0.2  
0.1  
V
= 2.7V, G = 5  
V
= ±15V, G = 100  
S
S
V
OUT  
V
OUT  
6
4
2
0
–2  
0
I
IN  
I
IN  
–0.1  
–0.1  
–0.2  
–0.3  
–4  
1.00  
0.75  
–0.2  
–0.3  
–6  
–8  
–10  
–12  
0.50  
0.25  
0
–0.4  
–0.5  
–0.6  
–0.4  
–0.5  
–14  
–16  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
–40 –35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 17. Input Overvoltage Performance, G = 5, Vs = 2.7 V  
Figure 20. Input Overvoltage Performance, G = 100, Vs = 15 V  
Rev. 0 | Page 11 of 24  
 
 
AD8227  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
140  
120  
–0.14V  
G = 1000  
100  
80  
G = 100  
+4.23V  
60  
G = 10  
G = 5  
40  
20  
0
–0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0.1  
1
10  
100  
1k  
10k  
100k  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 21. Input Bias Current vs. Common-Mode Voltage, Vs = 5 V  
Figure 24. Negative PSRR vs. Frequency  
40  
70  
60  
–15.01V  
35  
G = 1000  
50  
30  
25  
G = 100  
40  
30  
+14.03V  
G = 10  
G = 5  
20  
20  
10  
15  
10  
5
0
–10  
–20  
–30  
0
–16  
–12  
–8  
–4  
0
4
8
12  
16  
100  
1k  
10k  
100k  
1M  
10M  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 22. Input Bias Current vs. Common-Mode Voltage, Vs = 15 V  
Figure 25. Gain vs. Frequency, VS = 15 V  
160  
70  
60  
G = 1000  
G = 1000  
G = 100  
140  
G = 10  
50  
120  
G = 100  
G = 5  
40  
100  
80  
60  
40  
20  
0
30  
G = 10  
G = 5  
20  
10  
0
–10  
–20  
–30  
0.1  
1
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Positive PSRR vs. Frequency, RTI  
Figure 26. Gain vs. Frequency, VS = 2.7 V  
Rev. 0 | Page 12 of 24  
 
 
AD8227  
160  
35  
30  
25  
20  
15  
10  
5
150  
V
V
= ±15V  
= 0V  
–IN BIAS CURRENT  
+IN BIAS CURRENT  
OFFSET CURRENT  
S
G = 1000  
G = 100  
REF  
140  
120  
100  
80  
125  
100  
75  
50  
25  
0
G = 10  
G = 5  
60  
40  
20  
0
0.1  
1
10  
100  
1k  
10k  
100k  
–45 –30 –15  
0
15 30 45 60 75 90 105 120 135  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 27. CMRR vs. Frequency, RTI  
Figure 30. Input Bias Current and Offset Current vs. Temperature  
300  
200  
160  
140  
120  
100  
80  
G = 1000  
G = 100  
G = 10  
G = 5  
100  
0
60  
40  
20  
0
–100  
–200  
–300  
–20  
–40  
0
20  
40  
60  
80  
100  
120  
0.1  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 28. CMRR vs. Frequency, RTI, 1 kΩ Source Imbalance  
Figure 31. Gain Error vs. Temperature, G = 5  
0.3  
10  
8
0.2  
0.1  
0
6
4
2
0
–2  
–4  
–0.1  
–0.2  
–0.3  
–6  
–8  
–10  
–40  
0
10 20 30 40 50 60 70  
80 90 100 110 120  
–20  
0
20  
40  
60  
80  
100  
120  
WARM-UP TIME (s)  
TEMPERATURE (°C)  
Figure 29. Change in Input Offset Voltage vs. Warm-Up Time  
Figure 32. CMRR vs. Temperature, G = 5  
Rev. 0 | Page 13 of 24  
AD8227  
+V  
15  
10  
5
S
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
–0.2  
–0.4  
–0.6  
–0.8  
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
0
–V  
S
–5  
–10  
–15  
–0.2  
–0.4  
–0.6  
–0.8  
100  
1k  
10k  
100k  
2
4
6
8
10  
12  
14  
16  
18  
LOAD ()  
SUPPLY VOLTAGE (±V )  
S
Figure 33. Input Voltage Limit vs. Supply Voltage  
Figure 36. Output Voltage Swing vs. Load Resistance  
+V  
+V  
S
S
–0.1  
–0.2  
–0.3  
–0.4  
–0.2  
–0.4  
–0.6  
–0.8  
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
+0.4  
+0.3  
+0.2  
+0.1  
+0.8  
+0.6  
+0.4  
+0.2  
–V  
–V  
S
S
2
4
6
8
10  
12  
14  
16  
18  
0.01  
0.1  
1
10  
SUPPLY VOLTAGE (±V )  
OUTPUT CURRENT (mA)  
S
Figure 34. Output Voltage Swing vs. Supply Voltage, RL = 10 kΩ  
Figure 37. Output Voltage Swing vs. Output Current  
40  
+V  
S
G = 5  
–0.2  
–0.4  
30  
20  
10  
0
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
–0.6  
–0.8  
–1.0  
–1.2  
+1.2  
+1.0  
+0.8  
+0.6  
+0.4  
+0.2  
–10  
–20  
–30  
–40  
–V  
S
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
2
4
6
8
10  
12  
14  
16  
18  
OUTPUT VOLTAGE (V)  
SUPPLY VOLTAGE (±V )  
S
Figure 35. Output Voltage Swing vs. Supply Voltage, RL = 2 kΩ  
Figure 38. Gain Nonlinearity, G = 5, RL ≥ 2 kΩ  
Rev. 0 | Page 14 of 24  
AD8227  
40  
1k  
G = 10  
30  
20  
10  
0
100  
G = 5 (67nV/ Hz)  
–10  
–20  
–30  
–40  
G = 10 (40nV/ Hz)  
G = 100 (26nV/ Hz)  
G = 1000 (25nV/ Hz)  
BANDWIDTH  
LIMITED  
10  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
1
10  
100  
1k  
10k  
100k  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 39. Gain Nonlinearity, G = 10, RL ≥ 2 kΩ  
Figure 42. Voltage Noise Spectral Density vs. Frequency  
160  
G = 1000, 200nV/DIV  
G = 100  
120  
80  
40  
0
G = 5, 1µV/DIV  
–40  
–80  
–120  
–160  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
OUTPUT VOLTAGE (V)  
Figure 43. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 5, G = 1000  
Figure 40. Gain Nonlinearity, G = 100, RL ≥ 2 kΩ  
1k  
400  
G = 1000  
300  
200  
100  
0
100  
–100  
–200  
–300  
–400  
10  
1
10  
100  
1k  
10k  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V)  
Figure 44. Current Noise Spectral Density vs. Frequency  
Figure 41. Gain Nonlinearity, G = 1000, RL ≥ 2 kΩ  
Rev. 0 | Page 15 of 24  
AD8227  
5V/DIV  
13.8µs TO 0.01%  
16.8µs TO 0.001%  
0.002%/DIV  
40µs/DIV  
1.5pA/DIV  
1s/DIV  
Figure 45. 0.1 Hz to 10 Hz Current Noise  
Figure 48. Large-Signal Pulse Response and Settling Time, G = 10,  
10 V Step, VS = 15 V  
30  
25  
20  
15  
10  
5
5V/DIV  
35µs TO 0.01%  
50µs TO 0.001%  
0.002%/DIV  
40µs/DIV  
0
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 46. Large-Signal Frequency Response  
Figure 49. Large-Signal Pulse Response and Settling Time, G = 100,  
10 V Step, VS = 15 V  
5V/DIV  
5V/DIV  
275µs TO 0.01%  
350µs TO 0.001%  
13.4µs TO 0.01%  
16.6µs TO 0.001%  
0.002%/DIV  
0.002%/DIV  
40µs/DIV  
200µs/DIV  
Figure 50. Large-Signal Pulse Response and Settling Time, G = 1000,  
10 V Step, VS = 15 V  
Figure 47. Large-Signal Pulse Response and Settling Time, G = 5,  
10 V Step, VS = 15 V  
Rev. 0 | Page 16 of 24  
AD8227  
20mV/DIV  
4µs/DIV  
20mV/DIV  
20µs/DIV  
Figure 51. Small-Signal Pulse Response, G = 5, RL = 10 kΩ, CL = 100 pF  
Figure 53. Small-Signal Pulse Response, G = 100, RL = 10 kΩ, CL = 100 pF  
20mV/DIV  
4µs/DIV  
20mV/DIV  
100µs/DIV  
Figure 52. Small-Signal Pulse Response, G = 10, RL = 10 kΩ, CL = 100 pF  
Figure 54. Small-Signal Pulse Response, G = 1000, RL = 10 kΩ, CL = 100 pF  
Rev. 0 | Page 17 of 24  
AD8227  
340  
330  
C
= 47pF  
L
NO LOAD  
320  
310  
300  
290  
C
= 100pF  
L
C
= 147pF  
L
20mV/DIV  
4µs/DIV  
0
2
4
6
8
10  
12  
14  
16  
18  
SUPPLY VOLTAGE (±V )  
S
Figure 55. Small-Signal Pulse Response with Various Capacitive Loads,  
G = 5, RL = Infinity  
Figure 57. Supply Current vs. Supply Voltage  
35  
30  
25  
SETTLED TO 0.001%  
20  
15  
SETTLED TO 0.01%  
10  
5
0
2
4
6
8
10  
12  
14  
16  
18  
20  
STEP SIZE (V)  
Figure 56. Settling Time vs. Step Size, VS = 15 V, Dual Supply  
Rev. 0 | Page 18 of 24  
AD8227  
THEORY OF OPERATION  
+V  
–V  
+V  
–V  
S
S
R
G
NODE 3  
NODE 4  
R3  
50k  
S
S
R1  
8kΩ  
R2  
8kΩ  
+V  
–V  
S
R4  
10kΩ  
NODE 2  
V
A3  
OUT  
+V  
–V  
NODE 1  
R5  
10kΩ  
S
R6  
50kΩ  
S
ESD AND  
OVERVOLTAGE  
PROTECTION  
ESD AND  
OVERVOLTAGE  
PROTECTION  
REF  
Q1  
Q2  
+IN  
–IN  
A1  
A2  
S
V
R
R
BIAS  
B
B
–V  
DIFFERENCE  
AMPLIFIER STAGE  
S
GAIN STAGE  
Figure 58. Simplified Schematic  
ARCHITECTURE  
GAIN SELECTION  
The AD8227 is based on the classic three op amp topology. This  
topology has two stages: a preamplifier to provide differential  
amplification followed by a difference amplifier that removes  
the common-mode voltage and provides additional amplifica-  
tion. Figure 58 shows a simplified schematic of the AD8227.  
Placing a resistor across the RG terminals sets the gain of the  
AD8227. The gain can be calculated by referring to Table 7 or  
by using the following gain equation:  
80 kΩ  
RG =  
G 5  
The first stage works as follows. To maintain a constant voltage  
across the bias resistor, RB, Amplifier A1 must keep Node 3 at a  
constant diode drop above the positive input voltage. Similarly,  
Amplifier A2 keeps Node 4 at a constant diode drop above the  
negative input voltage. Therefore, a replica of the differential  
input voltage is placed across the gain setting resistor, RG. The  
current that flows across this resistance must also flow through  
the R1 and R2 resistors, creating a gained differential signal  
between the A2 and A1 outputs. Note that, in addition to a  
gained differential signal, the original common-mode signal,  
shifted a diode drop up, is also still present.  
Table 7. Gains Achieved Using Common Resistor Values  
Standard Table Value of RG  
Calculated Gain  
No resistor  
100 kΩ  
49.9 kΩ  
26.7 kΩ  
20 kΩ  
5
5.8  
6.6  
8
9
16 kΩ  
10  
10 kΩ  
13  
5.36 kΩ  
2 kΩ  
19.9  
45  
The second stage is a difference amplifier, composed of  
Amplifier A3 and the R3 through R6 resistors. This stage  
removes the common-mode signal from the amplified  
differential signal and gains it by 5.  
1.78 kΩ  
1 kΩ  
49.9  
85  
845 Ω  
412 Ω  
162 Ω  
80.6 Ω  
99.7  
199  
499  
998  
The transfer function of the AD8227 is  
V
OUT = G × VIN+ VIN−) + VREF  
where:  
The AD8227 defaults to G = 5 when no gain resistor is used.  
The tolerance and gain drift of the RG resistor should be added  
to the specifications of the AD8227 to determine the total gain  
accuracy of the system. When the gain resistor is not used, gain  
error and gain drift are minimal.  
80 kΩ  
G = 5 +  
RG  
Rev. 0 | Page 19 of 24  
 
 
 
AD8227  
Common-Mode Rejection Ratio over Frequency  
REFERENCE TERMINAL  
Poor layout can cause some of the common-mode signals to be  
converted to differential signals before reaching the in-amp.  
Such conversions occur when one input path has a frequency  
response that is different from the other. To keep CMRR over  
frequency high, the input source impedance and capacitance of  
each path should be closely matched. Additional source resis-  
tance in the input path ꢁfor example, for input protection) should  
be placed close to the in-amp inputs, which minimizes the  
interaction of the source resistance with parasitic capacitance  
from the PCB traces.  
The output voltage of the AD8227 is developed with respect to  
the potential on the reference terminal. This is useful when the  
output signal needs to be offset to a precise midsupply level. For  
example, a voltage source can be tied to the REF pin to level-  
shift the output so that the AD8227 can drive a single-supply  
ADC. The REF pin is protected with ESD diodes and should  
not exceed either +ꢀS or −ꢀS by more than 0.3 .  
For best performance, source impedance to the REF terminal  
should be kept below 2 ꢂ. As shown in Figure 58, the reference  
terminal, REF, is at one end of a 50 kΩ resistor. Additional imped-  
ance at the REF terminal adds to this 50 kΩ resistor and results  
in amplification of the signal connected to the positive input.  
The amplification from the additional RREF can be calculated as  
follows:  
Parasitic capacitance at the gain setting pins can also affect CMRR  
over frequency. If the board design has a component at the gain  
setting pins ꢁfor example, a switch or jumper), the component  
should be chosen so that the parasitic capacitance is as small as  
possible.  
6ꢁ50 kΩ + RREF)/ꢁ60 kΩ + RREF  
)
Power Supplies  
Only the positive signal path is amplified; the negative path  
is unaffected. This uneven amplification degrades CMRR.  
A stable dc voltage should be used to power the instrumentation  
amplifier. Noise on the supply pins can adversely affect perfor-  
mance. See the PSRR performance curves in Figure 23 and  
Figure 24 for more information.  
INCORRECT  
CORRECT  
A 0.1 μF capacitor should be placed as close as possible to each  
supply pin. As shown in Figure 61, a 10 μF tantalum capacitor  
can be used farther away from the part. In most cases, it can be  
shared by other precision integrated circuits.  
AD8227  
AD8227  
REF  
REF  
V
V
+
+V  
OP1177  
S
0.1µF  
10µF  
Figure 59. Driving the Reference Pin  
+IN  
–IN  
INPUT VOLTAGE RANGE  
V
OUT  
R
G
Most instrumentation amplifiers have a very limited output  
voltage swing when the common-mode voltage is near the  
upper or lower limit of the parts input range. The AD8227 has  
very little of this limitation. See Figure 9 through Figure 16 for  
the input common-mode range vs. output voltage of the part.  
AD8227  
LOAD  
REF  
0.1µF  
10µF  
LAYOUT  
–V  
S
Figure 61. Supply Decoupling, REF, and Output Referred to Local Ground  
To ensure optimum performance of the AD8227 at the PCB  
level, care must be taken in the design of the board layout. The  
pins of the AD8227 are arranged in a logical manner to aid in  
this task.  
References  
The output voltage of the AD8227 is developed with respect to  
the potential on the reference terminal. Care should be taken to  
tie REF to the appropriate local ground.  
1
2
3
4
8
7
6
5
+V  
V
–IN  
S
R
G
OUT  
R
REF  
G
+IN  
–V  
S
AD8227  
TOP VIEW  
(Not to Scale)  
Figure 60. Pinout Diagram  
Rev. 0 | Page 20 of 24  
 
 
 
 
AD8227  
The other AD8227 terminals should be kept within the supplies.  
All terminals of the AD8227 are protected against ESD.  
INPUT BIAS CURRENT RETURN PATH  
The input bias current of the AD8227 must have a return path to  
ground. When the source, such as a thermocouple, cannot provide  
a return current path, one should be created, as shown in Figure 62.  
For applications where the AD8227 encounters voltages beyond  
the allowed limits, external current limiting resistors and low  
leakage diode clamps such as the BA199L, the FJH1100s, or  
the SP720 should be used.  
INCORRECT  
+V  
CORRECT  
+V  
S
S
RADIO FREQUENCY INTERFERENCE (RFI)  
RF rectification is often a problem when amplifiers are used in  
applications that have strong RF signals. The disturbance can  
appear as a small dc offset voltage. High frequency signals can  
be filtered with a low-pass RC network placed at the input of  
the instrumentation amplifier, as shown in Figure 63. The filter  
limits the input signal bandwidth, according to the following  
relationship:  
AD8227  
AD8227  
REF  
REF  
REF  
REF  
–V  
S
–V  
S
TRANSFORMER  
TRANSFORMER  
1
+V  
+V  
S
S
FilterFrequencyDIFF  
FilterFrequencyCM  
=
Rꢁ2CD +CC )  
1
=
RCC  
AD8227  
AD8227  
REF  
where CD 10 CC.  
10M  
+V  
S
–V  
–V  
S
S
0.1µF  
+IN  
10µF  
THERMOCOUPLE  
THERMOCOUPLE  
C
1nF  
C
+V  
+V  
S
S
R
4.02k  
C
C
C
V
C
D
10nF  
OUT  
R
G
AD8227  
R
R
1
R
REF  
fHIGH-PASS  
=
AD8227  
2πRC  
AD8227  
–IN  
4.02kΩ  
C
REF  
C
C
1nF  
0.1µF  
10µF  
–V  
–V  
S
S
–V  
S
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
Figure 63. RFI Suppression  
Figure 62. Creating an Input Bias Current Return Path  
CD affects the differential signal and CC affects the common-  
mode signal. alues of R and CC should be chosen to minimize  
RFI. A mismatch between R × CC at the positive input and  
R × CC at the negative input degrades the CMRR of the AD8227.  
By using a value of CD one magnitude larger than CC, the effect  
of the mismatch is reduced, and performance is improved.  
INPUT PROTECTION  
The AD8227 has very robust inputs and typically does not need  
additional input protection. Input voltages can be up to 40 ꢀ  
from the opposite supply rail. For example, with a +5 ꢀ positive  
supply and a −8 ꢀ negative supply, the part can safely withstand  
voltages from −35 ꢀ to +32 . Unlike some other instrumentation  
amplifiers, the part can handle large differential input voltages  
even when the part is in high gain. Figure 17 through Figure 20  
show the behavior of the part under overvoltage conditions.  
Rev. 0 | Page 21 of 24  
 
 
 
 
AD8227  
APPLICATIONS INFORMATION  
Tips for Best Differential Output Performance  
DIFFERENTIAL DRIVE  
For best ac performance, an op amp with at least 2 MHz gain  
bandwidth and 1 ꢀ/μs slew rate is recommended. Good choices  
for op amps are the AD8641, AD8515, or AD820.  
Figure 64 shows how to configure the AD8227 for differential  
output.  
+IN  
Keep trace lengths from resistors to the inverting terminal of  
the op amp as short as possible. Excessive capacitance at this  
node can cause the circuit to be unstable. If capacitance cannot  
be avoided, use lower value resistors.  
+OUT  
AD8227  
–IN  
REF  
R
R
V
BIAS  
+
PRECISION STRAIN GAGE  
OP AMP  
The low offset and high CMRR over frequency of the AD8227  
make it an excellent choice for bridge measurements. The  
bridge can be connected directly to the inputs of the amplifier  
ꢁsee Figure 65).  
–OUT  
RECOMMENDED OP AMPS: AD8515, AD8641, AD820.  
5V  
RECOMMENDED R VALUES: 5kto 20k.  
Figure 64. Differential Output Using an Op Amp  
10µF  
0.1µF  
The differential output is set by the following equation:  
350  
350Ω  
350Ω  
350Ω  
+IN  
–IN  
+
V
DIFF_OUT = VOUT+ VOUT− = Gain × ꢁVIN+ VIN−  
The common-mode output is set by the following equation:  
CM_OUT = ꢁVOUT+ VOUT−)/2 = VBIAS  
)
R
AD8227  
G
2.5V  
V
The advantage of this circuit is that the dc differential accuracy  
depends on the AD8227 and not on the op amp or the resistors.  
This circuit takes advantage of the AD8227s precise control of  
its output voltage relative to the reference voltage. Op amp dc  
performance and resistor matching affect the dc common-mode  
output accuracy. However, because common-mode errors are  
likely to be rejected by the next device in the signal chain, these  
errors typically have little effect on overall system accuracy.  
Figure 65. Precision Strain Gage  
Rev. 0 | Page 22 of 24  
 
 
 
AD8227  
Option 2 shows a circuit for driving higher frequency signals.  
It uses a precision op amp ꢁAD8616) with relatively high band-  
width and output drive. This amplifier can drive a resistor and  
capacitor with a much higher time constant and is, therefore,  
suited for higher frequency applications.  
DRIVING AN ADC  
Figure 66 shows several different methods for driving an ADC.  
The ADC in the ADuC7026 microcontroller was chosen for  
this example because it has an unbuffered charge sampling  
architecture that is typical of most modern ADCs. This type of  
architecture typically requires an RC buffer stage between the  
ADC and the amplifier to work correctly.  
Option 3 is useful for applications where the AD8227 needs to  
run off a large voltage supply but drives a single-supply ADC.  
In normal operation, the AD8227 output stays within the ADC  
range, and the AD8616 simply buffers it. However, in a fault  
condition, the output of the AD8227 may go outside the supply  
range of both the AD8616 and the ADC. This is not an issue in  
the circuit, because the 10 kΩ resistor between the two amplifiers  
limits the current into the AD8616 to a safe level.  
Option 1 shows the minimum configuration required to drive  
a charge sampling ADC. The capacitor provides charge to the  
ADC sampling capacitor, and the resistor shields the AD8227  
from the capacitance. To keep the AD8227 stable, the RC time  
constant of the resistor and capacitor needs to stay above 5 μs.  
This circuit is mainly useful for lower frequency signals.  
OPTION 1: DRIVING LOW FREQUENCY SIGNALS  
3.3V  
3.3V  
AV  
DD  
ADC0  
100Ω  
AD8227  
REF  
100nF  
ADuC7026  
OPTION 2: DRIVING HIGH FREQUENCY SIGNALS  
3.3V  
3.3V  
AD8227  
10Ω  
REF  
ADC1  
AD8616  
10nF  
OPTION 3: PROTECTING ADC FROM LARGE VOLTAGES  
+15V  
AD8227  
–15V  
3.3V  
10kΩ  
10Ω  
REF  
AD8616  
ADC2  
AGND  
10nF  
Figure 66. Driving an ADC  
Rev. 0 | Page 23 of 24  
 
 
AD8227  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
PIN 1  
0.25 (0.0098)  
0.10 (0.0040)  
0.65 BSC  
8°  
0°  
0.95  
0.85  
0.75  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.10 MAX  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
SEATING  
PLANE  
COPLANARITY  
0.10  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 67. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Figure 68. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
Branding  
Y1S  
Y1S  
AD8227ARMZ1  
AD8227ARMZ-RL1  
AD8227ARMZ-R71  
AD8227ARZ1  
AD8227ARZ-RL1  
AD8227ARZ-R71  
AD8227BRMZ1  
AD8227BRMZ-RL1  
AD8227BRMZ-R71  
AD8227BRZ1  
8-Lead MSOP  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
8-Lead MSOP  
8-Lead MSOP, 13" Tape and Reel  
8-Lead MSOP, 7" Tape and Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 13" Tape and Reel  
8-Lead SOIC_N, 7" Tape and Reel  
Y1S  
Y1U  
Y1U  
Y1U  
AD8227BRZ-RL1  
AD8227BRZ-R71  
1 Z = RoHS Compliant Part.  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07759-0-5/09(0)  
Rev. 0 | Page 24 of 24  
 
 

相关型号:

AD8227ARMZ

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227ARMZ-R7

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227ARMZ-R71

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227ARMZ-RL

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227ARMZ-RL1

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227ARMZ1

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227ARZ

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227ARZ-R7

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227ARZ-R71

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227ARZ-RL

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227ARZ-RL1

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8227ARZ1

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI