AD8363ACPZ-R2 [ADI]

50 Hz to 6 GHz 50 dB TruPwr Detector; 50 Hz至6 GHz的50分贝TruPwr检测器
AD8363ACPZ-R2
型号: AD8363ACPZ-R2
厂家: ADI    ADI
描述:

50 Hz to 6 GHz 50 dB TruPwr Detector
50 Hz至6 GHz的50分贝TruPwr检测器

文件: 总14页 (文件大小:3728K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
50 Hz to 6 GHz  
50 dB TruPwrDetector  
AD8363  
Preliminary Technical Data  
FEATURES  
Accurate RMS-to-DC conversion from 50 Hz to 6 GHz  
Single ended input dynamic range of >50 dB  
Waveform and modulation independent, such as  
WiMAX/GSM/CDMA/WCDMA/TDMA  
Linear-in-decibels output, scaled 50 mV/dB  
Log conformance error of <0.3 dB  
Temperature stability of < 0.5 dB  
Voltage supply range of 4.5 V to 5.5 V  
Operating temperature range of −40°C to +125°C  
Power-down capability  
APPLICATIONS  
Power amplifier linearization/control loops  
Transmitter power controls  
Transmitter signal strength indication (TSSI)  
RF instrumentation  
FUNCTIONAL BLOCK DIAGRAM  
Figure 1.  
GENERAL DESCRIPTION  
The AD8363 is a true RMS responding power detector that has  
more than 50 dB measurement range when driven with a  
single-ended 50 Ω source. The device provides a solution in a  
variety of high frequency communication systems, and in  
instrumentation, requiring an accurate response to signal  
power. The AD8363 is easy to use with its single-ended 50 Ω  
input, only requiring a single 5 V supply, and a few capacitors.  
The AD8363 can operate from arbitrarily low frequencies to 6  
GHz and can accept inputs that have RMS values from less than  
-50 dBm to at least 0 dBm, with large crest factors, exceeding  
the requirements for accurate measurement of WiMAX,  
WCDMA, and CDMA signals.  
Used as a power measurement device, VOUT is connected to  
VSET. The output is then proportional to the logarithm of the  
RMS value of the input. In other words, the reading is  
presented directly in decibels and is conveniently scaled 1 V per  
decade, or 50 mV/dB; other slopes are easily arranged. In  
controller mode, the voltage applied to VSET determines the  
power level required at the input to null the deviation from the  
set point. The output buffer can provide high load currents.  
The AD8363 has 1.5 mW power consumption when powered  
down by a logic high applied to pin 1, TCM2. It powers up  
within about 30 μs to its nominal operating current of 60 mA at  
25°C. The AD8363 is supplied in a 4 mm x 4 mm, 16-lead  
LFCSP for operation over the temperature range of −40°C to  
+125°C. An evaluation board is available.  
The AD8363 can determine the true power of a high frequency  
signal having a complex low frequency modulation envelope, or  
can be used as a simple low frequency RMS voltmeter. The  
high-pass corner generated by its internal offset-nulling loop  
can be lowered by a capacitor added on the CHPF pin.  
Rev. PrB  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
AD8363  
Preliminary Technical Data  
SPECIFICATIONS  
Pins 3, 10 - VPOS = VS = 5 V, T = 25°C, ZO = 50 Ω, Single ended input drive, VOUT tied to VSET, VTGT = 1.4, CLPF= 3.9 nF, CHPF=2.7 nF,  
Error referred to best-fit line (linear regression), unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
OVERALL FUNCTION  
Maximum Input Frequency  
RF INPUT INTERFACE  
Input Impedance  
Common Mode Voltage  
100 MHz  
Output Voltage: High Power in  
Output Voltage: Low Power in  
1.0 dB Dynamic Range  
Maximum Input Level, 1.0 dB  
Minimum Input Level, 1.0 dB  
Deviation vs. Temperature  
6
GHz  
Pins INHI, INLO, ac-coupled  
Single-ended drive  
50/TBD  
2.7  
Ω/pF  
V
Pin 16 - TCM1=0.47V, Pin 1 - TCM2= 1.0V  
PIN = -10 dBm  
PIN = -40 dBm  
2.48  
0.93  
62  
8
-54  
V
V
dB  
CW input, TA = +25°C  
Deviation from output at 25°C  
-40°C < TA < +85°C; PIN = -10 dBm  
-40°C < TA < +85°C; PIN = -40 dBm  
dB  
dB  
0.5  
0.6  
Logarithmic Slope  
Logarithmic Intercept  
Deviation from CW Response  
51.8  
-58  
0.1  
mV/dB  
dBm  
dB  
13 dB peak-to-rms ratio (WCDMA), over 40 dB dynamic range  
12 dB peak-to-rms ratio (WiMAX), over 40 dB dynamic range  
0.1  
dB  
14.0 dB peak-to-rms ratio (16C CDMA2K), over 40 dB dynamic range  
0.1  
dB  
256 QAM CF=8  
0.1  
dB  
Input Impedance  
Single-ended drive  
TCM1= 0.48V, TCM2= 1.2V  
PIN = -10 dBm  
PIN = -40 dBm  
CW input, TA = +25°C  
50/TBD  
Ω/pF  
900 MHz  
Output Voltage: High Power in  
Output Voltage: Low Power in  
1.0 dB Dynamic Range  
2.5  
0.91  
52  
V
V
dB  
Maximum Input Level, 1.0 dB  
Minimum Input Level, 1.0 dB  
Deviation vs. Temperature  
-2  
-54  
Deviation from output at 25°C  
-40°C < TA < +85°C; PIN = -10 dBm  
-40°C < TA < +85°C; PIN = -40 dBm  
dB  
0.5  
0.7  
dB  
Logarithmic Slope  
Logarithmic Intercept  
Deviation from CW Response  
51.9  
-57.5  
0.1  
mV/dB  
dBm  
dB  
13 dB peak-to-rms ratio (WCDMA), over 40 dB dynamic range  
12 dB peak-to-rms ratio (WiMAX), over 40 dB dynamic range  
0.1  
dB  
14.0 dB peak-to-rms ratio (16C CDMA2K), over 40 dB dynamic range  
0.1  
dB  
256 QAM CF=8  
0.1  
dB  
Input Impedance  
Single-ended drive  
TCM1=0.51V, TCM2= 0.51V  
PIN = -10 dBm  
PIN = -40 dBm  
CW input, TA = +25°C  
50/TBD  
Ω/pF  
1900 MHz  
Output Voltage: High Power in  
Output Voltage: Low Power in  
1.0 dB Dynamic Range  
2.38  
0.8  
42  
V
V
dB  
Maximum Input Level, 1.0 dB  
Minimum Input Level, 1.0 dB  
Deviation vs. Temperature  
-10  
-52  
Deviation from output at 25°C  
-40°C < TA < +85°C; PIN = -10 dBm  
-40°C < TA < +85°C; PIN = -40 dBm  
dB  
0.5  
0.6  
dB  
Logarithmic Slope  
Logarithmic Intercept  
Deviation from CW Response  
52  
-55  
0.1  
mV/dB  
dBm  
dB  
13 dB peak-to-rms ratio (WCDMA), over 40 dB dynamic range  
Rev. PrB| Page 2 of 14  
Preliminary Technical Data  
AD8363  
Parameter  
Conditions  
Min  
Typ  
0.1  
Max Unit  
12 dB peak-to-rms ratio (WiMAX), over 40 dB dynamic range  
dB  
14.0 dB peak-to-rms ratio (16C CDMA2K), over 40 dB dynamic range  
0.1  
dB  
256 QAM CF=8  
0.1  
dB  
Input Impedance  
Single-ended drive  
TCM1=0.49V, TCM2=1.2V  
PIN = -10 dBm  
PIN = -40 dBm  
CW input, TA = +25°C  
50/TBD  
Ω/pF  
2140 MHz  
Output Voltage: High Power in  
Output Voltage: Low Power in  
1.0 dB Dynamic Range  
2.31  
0.72  
40  
V
V
dB  
Maximum Input Level, 1.0 dB  
Minimum Input Level, 1.0 dB  
Deviation vs. Temperature  
-10  
-50  
Deviation from output at 25°C  
-40°C < TA < +85°C; PIN = -10 dBm  
-40°C < TA < +85°C; PIN = -40 dBm  
dB  
0.6  
0.5  
dB  
Logarithmic Slope  
Logarithmic Intercept  
Deviation from CW Response  
52.5  
-53.5  
0.1  
mV/dB  
dBm  
dB  
13 dB peak-to-rms ratio (WCDMA), over 40 dB dynamic range  
12 dB peak-to-rms ratio (WiMAX), over 40 dB dynamic range  
0.1  
dB  
14.0 dB peak-to-rms ratio (16C CDMA2K), over 40 dB dynamic range  
0.1  
dB  
256 QAM CF=8  
Single-ended drive  
TCM1=, TCM2=  
PIN = -10 dBm  
PIN = -40 dBm  
CW input, TA = +25°C,  
0.1  
50/TBD  
dB  
Ω/pF  
Input Impedance  
2600 MHz  
Output Voltage: High Power in  
Output Voltage: Low Power in  
1.0 dB Dynamic Range  
2.15  
0.52  
35  
V
V
dB  
Maximum Input Level, 1.0 dB  
Minimum Input Level, 1.0 dB  
Deviation vs. Temperature  
-12  
-40  
Deviation from output at 25°C  
-40°C < TA < +85°C; PIN = -10 dBm  
-40°C < TA < +85°C; PIN = -40 dBm  
TBD  
TBD  
53.2  
-49.9  
0.1  
dB  
dB  
mV/dB  
dBm  
dB  
Logarithmic Slope  
Logarithmic Intercept  
Deviation from CW Response  
13 dB peak-to-rms ratio (WCDMA), over 40 dB dynamic range  
12 dB peak-to-rms ratio (WiMAX), over 40 dB dynamic range  
0.1  
dB  
14.0 dB peak-to-rms ratio (16C CDMA2K), over 40 dB dynamic range  
0.1  
dB  
256 QAM CF=8  
0.1  
dB  
Input Impedance  
Single-ended drive  
TCM1=0.56V, TCM2=1.0V  
PIN = -15 dBm  
PIN = -40 dBm  
CW input, TA = +25°C,  
50/TBD  
Ω/pF  
3.8 GHz  
Output Voltage: High Power in  
Output Voltage: Low Power in  
1.0 dB Dynamic Range  
2.0  
0.5  
33  
V
V
dB  
Maximum Input Level, 1.0 dB  
Minimum Input Level, 1.0 dB  
Deviation vs. Temperature  
-16  
-49  
Deviation from output at 25°C  
-40°C < TA < +85°C; PIN = -10 dBm  
-40°C < TA < +85°C; PIN = -40 dBm  
+/- 1.0  
+/- 0.8  
54.7  
-50  
0.1  
0.1  
dB  
dB  
mV/dB  
dBm  
dB  
dB  
dB  
dB  
Logarithmic Slope  
Logarithmic Intercept  
Deviation from CW Response  
13 dB peak-to-rms ratio (WCDMA), over 40 dB dynamic range  
12 dB peak-to-rms ratio (WiMAX), over 40 dB dynamic range  
14.0 dB peak-to-rms ratio (16C CDMA2K), over 40 dB dynamic range  
256 QAM CF=8  
0.1  
0.1  
5.8 GHz  
TCM1=0.88V, TCM2= 1.0V  
Output Voltage: High Power in  
Output Voltage: Low Power in  
1.0 dB Dynamic Range  
PIN = -20 dBm  
PIN = -40 dBm  
CW input, TA = +25°C  
1.5  
0.35  
30  
V
V
dB  
Rev. PrB | Page 3 of 14  
AD8363  
Preliminary Technical Data  
Parameter  
Conditions  
Min  
Typ  
-17  
-47  
Max Unit  
Maximum Input Level, 1.0 dB  
Minimum Input Level, 1.0 dB  
Deviation vs. Temperature  
Deviation from output at 25°C  
-40°C < TA < +85°C; PIN = -10 dBm  
-40°C < TA < +85°C; PIN = -40 dBm  
dB  
dB  
0.6  
0.7  
54.5  
Logarithmic Slope  
mV/dB  
Logarithmic Intercept  
Deviation from CW Response  
-47  
0.1  
0.1  
0.1  
0.1  
dBm  
dB  
dB  
dB  
dB  
13 dB peak-to-rms ratio (WCDMA), over 40 dB dynamic range  
12 dB peak-to-rms ratio (WiMAX), over 40 dB dynamic range  
14.0 dB peak-to-rms ratio (16C CDMA2K), over 40 dB dynamic range  
256 QAM CF=8  
OUTPUT INTERFACE  
Output Swing  
Pin 6 - VOUT  
Voltage Range Min RL≥200 to ground  
Voltage Range Max RL≥200 to ground  
Source/Sink Current Out held at Vs/2K, to 1%change  
Pin VSET  
Log conformance error ≤1 dB, Min 2140 MHz  
Log conformance error ≤1 dB, Max 2140 MHz  
.09  
Vs-.15  
10  
v
V
mA  
SETPOINT INPUT  
Voltage Range  
TBD  
TBD  
72  
V
Input Resistance  
kΩ  
Logarithmic Scale Factor  
Logarithmic Intercept  
TEMPERATURE COMPENSATION  
Input Voltage Range  
Input Resistance  
f = 2140MHz, −40°C ≤ TA ≤ +85°C  
f = 2140 MHz, −40°C ≤ TA ≤ +85°C, referred to 50 Ω  
Pin 16 - TCM1, Pin 1 - TCM2  
19  
−TBD  
dB/V  
dBm  
0
2.5  
V
MΩ  
3kΩ  
TCM2  
TCM1  
>1  
3
VOLTAGE REFERENCE  
Output Voltage  
Current Limit Source/Sink  
TEMPERATURE REFERENCE  
Output Voltage  
Temperature Coefficient  
POWER-DOWN INTERFACE  
Logic Level to Enable  
Logic Level to Disable  
Input Current  
Pin 11 - VREF  
RF in = −55 dBm  
1% change  
2.3  
5/0.08  
V
mA  
Pin 8 TEMP  
TA = 25°C, RL ≥ 10 kΩ  
−40°C ≤ TA ≤ +85°C, RL ≥ 10 kΩ  
Pin TCM2 (Pin1)  
Logic LO enables Max  
Logic HI disables Min  
Logic HI TCM2 = 5 V  
Logic LO TCM2 = 0 V  
1.35  
4.8  
V
mV/°C  
< Vs -.9  
Vs -.8  
<1  
<1  
30  
V
V
μA  
μA  
μs  
Enable Time  
Disable Time  
TCM2 LO to OUT at .5 dB of final value,  
CLPF = 470 pF, CHPF = 220 pF, RF in = 0 dBm  
TCM2 HI to OUT at 10% final value,  
20  
μs  
CLPF = 470 pF, CHPF = 220 pF, RF in = 0 dBm  
POWER SUPPLY INTERFACE  
Supply Voltage  
Pin VPOS  
4.5  
5
5.5  
V
Quiescent Current  
25C RF in =-55 dBm  
+85 C  
When disabled  
60  
72  
310  
mA  
mA  
ꢀA  
Supply Current  
Rev. PrB| Page 4 of 14  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
AD8363  
Table 2.  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Supply Voltage VPOS  
Input Power (Into Input of Device)  
Equivalent Voltage  
Internal Power Dissipation  
θJA  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering 60 sec)  
5.5 V  
23 dBm Evaluate  
2 V rms  
500 mW  
125°C/W  
150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. PrB | Page 5 of 14  
AD8363  
Preliminary Technical Data  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
12  
11  
10  
9
VTGT VREF VPOS COMM  
13 NCON  
TEMP  
VSET  
VOUT  
CLPF  
8
14 INHI  
7
6
5
AD8363  
15 INLO  
16 TCM1  
TCM2 CHPF VPOS COMM  
1
2
3
4
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin  
No.  
Mnemonic  
Description  
1
2
TCM2/PWDN  
A dual function pin used for controlling the amount of nonlinear intercept temperature  
compensation and/or shutting down the device. This pin can be connected to the  
VREF pin through a voltage divider if the shut down function is not used  
CHPF  
Connect to VPOS via a capacitor to determine -3 dB point of the input signal high-pass  
filter.  
3, 10  
4, 9  
5
VPOS  
COMM  
CLPF  
Supply for the device. Connect to +5 V power supply.  
System Common Connection. Connect via low impedance to system common.  
Connection for Loop Filter Integration (Averaging) Capacitor. Connect a ground-  
referenced capacitor to this pin. A resistor may be connected in series with this  
capacitor to improve loop stability and response time.  
6
7
VOUT  
VSET  
Output pin in Measurement Mode (error Amplifier output). In measurement mode,  
normally connected directly to VSET. This pin can be used to drive a gain control when  
the device is used in controller mode.  
The voltage applied to this pin sets the decibel value of the required RF input voltage  
that results in zero current flow in the loop integrating capacitor pin, CLPF.  
The controls the VGA gain such that a 50mV change in VSET reduces the gain by  
approximately 1dB.  
8
TEMP  
VREF  
VTGT  
Temperature Sensor Output.  
11  
12  
General-Purpose Reference Voltage Output of 1.16 V.  
Voltage applied to this pin determines the target power at the input of the RF squaring  
circuit. The intercept voltage is proportional to the voltage applied to this pin. The use  
of a lower target voltage increases the crest factor capacity; however, this may affect  
the system loop response.  
13  
14  
NCON  
INHI  
Not connected.  
Single-ended RF input pin. RF input signal is normally AC coupled to this pin through a  
coupling capacitor.  
15  
16  
INLO  
Grounded for single ended input  
TCM1  
Connect to VREF through a voltage divider or an external DC source. Is used to adjust  
Intercept temperature compensation (3K impedance)  
Paddle  
Connect via low impedance to system common  
Rev. PrB| Page 6 of 14  
Preliminary Technical Data  
AD8363  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V, ZO = 50 Ω, Single ended input drive, VOUT tied to VSET, VTGT = 1.4V, CLPF= 3.9 nF, CHPF=2.7 nF, TA = +25°C (Black), –40°C  
(Blue), +85°C (red)  
4
3.6  
3.2  
2.8  
2.4  
2
2.5  
3.0  
2.0  
1.5  
1.0  
0.5  
0.0  
1.6  
1.2  
0.8  
0.4  
0
-0.5  
-1.5  
-2.5  
-1.0  
-2.0  
-3.0  
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
Input Amplitude, INHI (dBm)  
Input Amplitude, INHI (dBm)  
Figure 3. VOUT Voltage and Log Conformance vs. Input Amplitude at 100 MHz,  
Typical Device, TCM1 = 0.47 V, TCM2 = 1.0 V, Sine Wave, -40C, 25C, 85C  
Figure 6. Distribution of VOUT Voltage and Error over Temperature After  
Ambient Normalization vs. Input Amplitude for at Least 30Devices from  
Multiple Lots, Frequency = 100 MHz, TCM1 = 0.47 V, TCM2 = 1.0 V, Sine Wave-  
40C, 25C, 85C  
3.0  
4
3.6  
3.2  
2.8  
2.4  
2
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.6  
1.2  
0.8  
0.4  
0
-0.5  
-1.5  
-2.5  
-1.0  
-2.0  
-3.0  
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
Input Amplitude, INHI (dBm)  
Input Amplitude, INHI (dBm)  
Figure 7. Distribution of Error over Temperature After Ambient Normalization vs.  
Input Amplitude, with reference to 25C, for at Least 30Devices from Multiple  
Lots, Frequency = 100 MHz, TCM1 = 0.47 V, TCM2 = 1.0 V, Sine Wave-40C, 25C,  
85C  
Figure 4. VOUT Voltage and Log Conformance vs. Input Amplitude at 900 MHz,  
Typical Device, TCM1 = 0.48 V, TCM2 = 1.2 V, Sine Wave -40C, 25C, 85C  
3.0  
2.0  
3.0  
2.0  
1.0  
1.0  
0.0  
0.0  
-1.0  
-2.0  
-3.0  
-1.0  
-2.0  
-3.0  
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
Input Amplitude, INHI (dBm)  
Input Amplitude, INHI (dBm)  
Figure 5. Distribution of VOUT Voltage and Error over Temperature After  
Ambient Normalization vs. Input Amplitude for at Least 30 Devices from  
Multiple Lots, Frequency =900 MHz, TCM1 = 0.48 V, TCM2 = 1.2 V, Sine Wave-  
40C, 25C, 85C  
Figure 8. Distribution of Error over Temperature After Ambient Normalization vs.  
Input Amplitude, with reference to 25C, for at Least 30Devices from Multiple  
Lots,, Frequency =900 MHz, TCM1 = 0.48 V, TCM2 = 1.2 V, Sine Wave-40C, 25C,  
85C  
Rev. PrB | Page 7 of 14  
AD8363  
Preliminary Technical Data  
3.0  
3.0  
2.0  
2.0  
1.0  
1.0  
0.0  
0.0  
-1.0  
-2.0  
-3.0  
-1.0  
-2.0  
-3.0  
-60  
-50  
-40  
-30  
-20  
-10  
0
-60  
-50  
-40  
-30  
-20  
-10  
0
Input Amplitude, INHI (dBm)  
Input Amplitude, INHI (dBm)  
Figure 12. Distribution of VOUT Voltage and Error over Temperature After  
Ambient Normalization vs. Input Amplitude for at Least 18Devices from  
Multiple Lots, Frequency = 1.9 GHz, TCM1 = 0.51 V, TCM2 = 0.51 V, Sine Wave-  
40C, 25C, 85C  
Figure 9. VOUT Voltage and Log Conformance vs. Input Amplitude at 1.90 GHz,  
Typical Device, TCM1 = 0.51 V, TCM2 = 0.51 V, Sine Wave, -40C, 25C, 85C  
3.0  
2.0  
3.0  
2.0  
1.0  
1.0  
0.0  
0.0  
-1.0  
-2.0  
-3.0  
-1.0  
-2.0  
-3.0  
-60  
-50  
-40  
-30  
-20  
-10  
0
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
Input Amplitude, INHI (dBm)  
Input Amplitude, INHI (dBm)  
Figure 13. Distribution of Error over Temperature After Ambient Normalization  
vs. Input Amplitude, with reference to 25C, for at Least 18 Devices from Multiple  
Lots, Frequency = 1.9 GHz, TCM1 = 0.51 V, TCM2 = 0.51 V, Sine Wave-40C, 25C,  
85C  
Figure 10. VOUT Voltage and Log Conformance vs. Input Amplitude at 2.14 GHz,  
Typical Device, TCM1 = 0.49 V, TCM2 = 1.2 V, Sine Wave, -40C, 25C, 85C  
3.0  
2.0  
3.0  
2.0  
1.0  
1.0  
0.0  
0.0  
-1.0  
-2.0  
-3.0  
-1.0  
-2.0  
-3.0  
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
Input Amplitude, INHI (dBm)  
Input Amplitude, INHI (dBm)  
Figure 14. Distribution of Error over Temperature After Ambient Normalization  
vs. Input Amplitude, with reference to 25C, for at Least 18 Devices from Multiple  
Lots, Frequency = 2.14 GHz, TCM1 = 0.49 V, TCM2 = 1.2 V, Sine Wave-40C, 25C,  
85C  
Figure 11. Distribution of VOUT Voltage and Error over Temperature After  
Ambient Normalization vs. Input Amplitude for at Least 18Devices from  
Multiple Lots, Frequency = 2.14 GHz, TCM1 = 0.49 V, TCM2 = 1.2 V, Sine Wave-  
40C, 25C, 85C  
Rev. PrB| Page 8 of 14  
Preliminary Technical Data  
AD8363  
4
3.6  
3.2  
2.8  
2.4  
2
2.5  
3.0  
2.0  
1.5  
1.0  
0.5  
0.0  
1.6  
1.2  
0.8  
0.4  
0
-0.5  
-1.5  
-2.5  
-1.0  
-2.0  
-3.0  
-55  
-50  
-45  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
0
5
-55  
-50  
-45  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
0
5
Input Amplitude, INHI (dBm)  
Input Amplitude, INHI (dBm)  
Figure 18. Distribution of VOUT Voltage and Error over Temperature After  
Ambient Normalization vs. Input Amplitude for at Least 17 Devices from  
Multiple Lots, Frequency = 2.6 GHz, TCM1 = 0.52 V, TCM2 = 1.1 V, Sine Wave-  
40C, 25C, 85C  
Figure 15. VOUT Voltage and Log Conformance vs. Input Amplitude at 2.6 GHz,  
Typical Device, TADJ = TBD V, Sine Wave-40C, 25C, 85C  
3.0  
2.5  
4
3.6  
3.2  
2.8  
2.4  
2
2.5  
2.0  
1.5  
1.5  
1.0  
0.5  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
1.6  
1.2  
0.8  
0.4  
0
-0.5  
-1.5  
-2.5  
-55  
-50  
-45  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
0
5
-55  
-50  
-45  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
Input Amplitude, INHI (dBm)  
Input Amplitude, INHI (dBm)  
Figure 19. Distribution of Error over Temperature After Ambient Normalization  
vs. Input Amplitude, with reference to 25C, for at Least 17 Devices from Multiple  
Lots, Frequency = 2.6 GHz, TCM1 = 0.52 V, TCM2 = 1.1 V, Sine Wave-40C, 25C,  
85C  
Figure 16. VOUT Voltage and Log Conformance vs. Input Amplitude at 3.8 GHz,  
Typical Device, TCM1 = 0.56 V, TCM2 = 1.0 V, Sine Wave-40C, 25C, 85C  
3.0  
2.0  
3.0  
2.0  
1.0  
1.0  
0.0  
0.0  
-1.0  
-2.0  
-3.0  
-1.0  
-2.0  
-3.0  
-55  
-50  
-45  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
-55  
-50  
-45  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
Input Amplitude, INHI (dBm)  
Input Amplitude, INHI (dBm)  
Figure 20. Distribution of Error over Temperature After Ambient Normalization  
vs. Input Amplitude, with reference to 25C, for at Least 37 Devices from Multiple  
Lots, Frequency = 3.8 GHz, TCM1 = 0.56 V, TCM2 = 1.0 V, Sine Wave-40C, 25C,  
85C  
Figure 17. Distribution of VOUT Voltage and Error over Temperature After  
Ambient Normalization vs. Input Amplitude for at Least 37 Devices from  
Multiple Lots, Frequency = 3.8 GHz, TCM1 = 0.56 V, TCM2 = 1.0 V, Sine Wave-  
40C, 25C, 85C  
Rev. PrB | Page 9 of 14  
AD8363  
Preliminary Technical Data  
4
3.6  
3.2  
2.8  
2.4  
2
2.5  
3.0  
2.0  
1.5  
1.0  
0.5  
0.0  
1.6  
1.2  
0.8  
0.4  
-0.5  
-1.5  
-2.5  
-1.0  
-2.0  
-3.0  
0
-55  
-50  
-45  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
-55  
-50  
-45  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
Input Amplitude, INHI (dBm)  
Input Amplitude, INHI (dBm)  
Figure 24. Distribution of VOUT Voltage and Error over Temperature After  
Ambient Normalization vs. Input Amplitude for at Least 37 Devices from  
Multiple Lots, Frequency = 5.8 GHz, TCM1 = 0.88 V, TCM2 = 1.0 V, Sine Wave-  
40C, 25C, 85C  
Figure 21. VOUT Voltage and Log Conformance vs. Input Amplitude at 5.8 GHz,  
Typical Device, TCM1 = 0.88 V, TCM2 = 1.0 V, Sine Wave-40C, 25C, 85C  
3
2.5  
2
3.0  
2.0  
1.5  
1
1.0  
0.5  
CW Error  
0.0  
0
-0.5  
-1  
Error 256 QAM  
Error QPSK  
-1.0  
-2.0  
-3.0  
-1.5  
-2  
-2.5  
-3  
-55  
-50  
-45  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
-60  
-50  
-40  
-30  
-20  
-10  
0
10  
Input Amplitude, INHI (dBm)  
Pin (dBm)  
Figure 25. Distribution of Error over Temperature After Ambient Normalization  
vs. Input Amplitude, with reference to 25C, for at Least 37 Devices from Multiple  
Lots, Frequency = 5.8 GHz, TCM1 = 0.88 V, TCM2 = 1.0 V, Sine Wave-40C, 25C,  
85C  
Figure 22. Error from CW Linear Reference vs. Input Amplitude with Different  
Waveforms, 256 QAM, QPSK, Frequency 2140 MHz  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
-0.50  
7.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
-1.00  
8.00  
5.00  
TCM2 Low  
TCM2 High  
2.00  
-1.00  
-4.00  
-7.00  
-10.00  
-13.00  
-16.00  
Time (in Seconds)  
Time (in seconds)  
P_INHI = 0dbm  
P_INHI = -10dbm  
P_INHI = -50dbm  
P_INHI = -20dbm  
Pulse on TCM2 (pin1)  
P_INHI = -30dbm  
P_INHI = -40dbm  
P_INHI = 0dbm  
P_INHI = -10dbm  
P_INHI = -20dbm  
P_INHI = -30dbm  
P_INHI = -40dbm  
Figure 23. Output Response to RF Burst Input for Various RF Input Levels, Carrier  
Frequency 2.14 GHz, CLPF = 470 pF, CHPF=220pF  
Figure 26. Output Response Using Power-Down Mode for Various RF Input  
Levels, Carrier Frequency 2.14 GHz, CLPF= 470pF, CHPF = 220pF  
Rev. PrB| Page 10 of 14  
Preliminary Technical Data  
AD8363  
Table 4. Pin Function Descriptions  
Component  
Function/Notes  
Default Value  
C6, C10, C11,  
C12  
Input:  
C10=0.1uF, C12=0.1uF,  
C6=Open, C11=Open  
The AD8363 was designed to be driven single ended. At frequencies below 2.6 GHz, more  
dynamic range can be achieved by driving Pin 14 (INHI). In order to do this, C10 and C12  
should be populated with an appropriate valued capacitor for the frequency of operation. C6  
and C11 should be left open. For frequencies above 2.6 GHz, greater dynamic range can be  
achieved by Driving Pin 15 (INLO). This can be done by using an appropriate valued capacitor  
for C6 and C11, while leaving C10 and C12 open.  
R7, R10, R11  
VTGT:  
R10=845Ω, R11= 1.4KΩ  
R10 and R11 are set up to provide 1.4V to VTGT from VREF. An external voltage can be used if  
R10 and R11 are removed.  
C4, C5, C7, C13,  
R14, R16  
Power Supply Decoupling:  
C4=100 pF, C5=100 pF,  
C7= 0.1uF, C13= 0.1uF,  
R14= 0 Ω, R16= 0 Ω  
The nominal supply decoupling consists of a 100 pF filter capacitor placed physically close to  
the AD8363, a 0 Ω series resistor, and a 0.1 uF capacitor placed closer to the power supply  
input pin. The 0 Ω resistor can be replaced with a larger value resistor to add more filtering, at  
the expense of a voltage drop.  
R1, R2, R6, R13,  
R15  
Output Interface--Measurement Mode:  
R1=0 Ω, R2=Open,  
R6=0 Ω, R13 = Open ,  
R15 = 0 Ω  
In measurement mode, a portion of the output voltage is fed back to the VSET pin via R6. The  
magnitude of the slope at VOUT can be increased by reducing the portion of VOUT that is fed  
back to VSET, using a voltage divider created by R6 and R2 . If a fast responding output is  
expected, the 0 Ω resistor on R15 can be removed to reduce parasitics on the output.  
Output Interface--Controller Mode:  
In this mode, R6 must be open and R13 must have a 0 Ω resistor. In controller mode, the  
AD8363 can control the gain of an external component. A setpoint voltage is applied to the  
VSET pin, the value of which corresponds to the desired RF input signal level applied to the  
AD8363 RF input. If a fast responding output is expected, the 0 Ω resistor on R15 can be  
removed to reduce parasitics on the output.  
C9, C8, R5  
C3  
Low-pass filter capacitors:  
C8=Open, C9=0.1uF,  
R5=0 Ω  
The low-pass filter capacitors reduce the noise on the output and affect the pulse response  
time of the AD8363. The smallest CLPF capacitance should be 400 pF  
CHPF capacitor  
C3= 2700 pF  
The CHPF capacitor introduces a high-pass filter effect into the AD8363 transfer function and  
can affect the response time. It should be tied to VPOS.  
R9, R12  
R17, R18  
Paddle  
TCM2/PWDN:  
R9= Open, R12= Open  
The TCM2/PWDN pin controls the amount of nonlinear intercept temperature compensation  
and/or shuts down the device. The evaluation board is configured to control this from a test  
loop but VREF can be used through a voltage divider created from R9 and R12.  
TCM1:  
R17=Open, R18=Open  
TCM1 controls the intercept temperature compensation (3K impedance). The evaluation board  
is configured to control this from a test loop but VREF can be used through a voltage divider  
created from R17 and R18  
The paddle should be tied to both a thermal and electrical ground  
Rev. PrB | Page 11 of 14  
AD8363  
Preliminary Technical Data  
EVALUATION BOARD  
VREF  
VPOS2  
TESTLOO  
TESTLOO  
P
P
ORANGE  
RED  
C7  
0. 1UF  
VTGT  
C040  
2
TESTLOO  
P
AGND  
C
ORANGE  
VPOSC  
R040  
2
R7  
0
R14  
R8  
0
0
R040  
2
C5  
R11  
R10  
R040  
2
R040  
2
R040 2  
C040  
2
1. 4K  
845  
VREFC  
100PF  
AGND  
C
AGND C  
AGND  
C
R2  
AGND  
C
TESTLOO  
P
OPEN  
TEMP  
VI OLET  
R040  
2
TESTLOO  
P
12  
11  
10  
9
VSET  
WHI TE  
VOUT  
AGND  
C
TESTLOO  
P
R13  
YELLOW  
R040  
2
C10  
OPEN  
0. 1UF  
NC1  
TEMP  
VSET  
VOUT  
CLPF  
R6  
0
R15  
0
I N  
C040  
2
R040  
2
R040 2  
16CSP4X4  
I NHI  
I NLO  
TCM1  
VOUTP  
R1  
AD83 63  
C040  
2
R040 2  
TESTLOO  
P
C6  
OPEN  
DUT1  
0
ORANGE TC1  
R17  
C9  
R040  
2
0. 1uF  
OPEN  
C040  
2
AGND  
C
AGND C  
1
2
3
4
R18  
OPEN  
Paddl e  
AGND  
AGND C  
TC2_PWDN  
R040  
2
AGND  
C
R5  
0
C8  
OPEN  
TESTLOO  
P
ORANGE  
R040  
2
VREFC  
C3  
C4  
C040  
2
C040  
2
C040 2  
AGND  
C
AGND C  
2700PF  
100PF  
R12  
R9  
AGND  
C
OPEN  
OPEN  
R040  
2
R040 2  
GND  
GND1  
R16  
0
TESTLOO  
P
TESTLOO P  
BLACK  
BLACK  
AGND  
C
R040  
2
VPOSC  
C13  
VREFC  
C040  
2
0. 1UF  
AGND C  
AGND  
C
AGND C  
RED  
TESTLOO  
P
VPOS1  
Fig 27 Evaluation Board Schematic  
Rev. PrB | Page 12 of 14  
Preliminary Technical Data  
AD8363  
ASSEMBLY DRAWINGS  
Fig 28 Evaluation Board Layout, Top  
Fig 30 Evaluation Board Layout, Bottom  
Fig 29 Evaluation Board Assembly, Top  
Fig 31 Evaluation Board Assembly, Bottom  
Rev. PrB | Page 13 of 14  
AD8363  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
4.00  
0.60 MAX  
16  
BSC SQ  
PIN 1  
INDICATOR  
0.60 MAX  
0.65 BSC  
13  
12  
1
PIN 1  
INDICATOR  
2.25  
2.10 SQ  
1.95  
TOP  
VIEW  
EXPOSED  
3.75  
BSC SQ  
PAD  
(BOTTOM VIEW)  
0.75  
0.60  
0.50  
4
9
8
5
0.25 MIN  
1.95 BSC  
0.80 MAX  
0.65 TYP  
12° MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
0.20 REF  
COPLANARITY  
0.08  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGC  
ORDERING GUIDE  
Model  
Temperature Range Package Description  
Package Option Ordering Quantity  
40°C to +125°C  
1500  
AD8363ACPZ-R7  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-16-4  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-16-4  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-16-4  
Evaluation Board  
AD8363ACPZ-R2  
40°C to +125°C  
250  
64  
AD8363ACPZ-WP 40°C to +125°C  
AD8363-EVALZ  
Rev. A | Page 14 of 14  
PR07368-0-8/08(PrB)  

相关型号:

AD8363ACPZ-R7

50 Hz to 6 GHz 50 dB TruPwr Detector
ADI

AD8363ACPZ-WP

50 Hz to 6 GHz 50 dB TruPwr Detector
ADI

AD8363_09

50 Hz to 6 GHz, 50 dB TruPwr™ Detector
ADI

AD8364

LF to 2.7 GHz Dual 60 dB TruPwr Detector
ADI

AD8364-EVAL-2140

LF to 2.7 GHz Dual 60 dB TruPwr Detector
ADI

AD8364-EVAL-500

LF to 2.7 GHz Dual 60 dB TruPwr Detector
ADI

AD8364-EVALZ

LF to 2.7 GHz Dual 60 dB TruPwr Detector
ADI

AD8364ACP-REEL7

LF to 2.7 GHz Dual 60 dB TruPwr Detector
ADI

AD8364ACPZ-R2

LF to 2.7 GHz, DUAL 60 dB TruPwr&trade; Detector
ADI

AD8364ACPZ-REEL7

LF to 2.7 GHz Dual 60 dB TruPwr Detector
ADI

AD8364ACPZ-RL2

IC SPECIALTY ANALOG CIRCUIT, QCC32, 5 X 5 MM, LEAD FREE, MO-220VHHD-2, LFCSP-32, Analog IC:Other
ADI

AD8364ACPZ-RL21

LF to 2.7 GHz Dual 60 dB TruPwr Detector
ADI