AD8508ARUZ [ADI]

20 レA Maximum, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifiers; 20レA最大,轨至轨I / O,零输入交越失真放大器
AD8508ARUZ
型号: AD8508ARUZ
厂家: ADI    ADI
描述:

20 レA Maximum, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifiers
20レA最大,轨至轨I / O,零输入交越失真放大器

运算放大器 放大器电路 光电二极管 PC
文件: 总20页 (文件大小:529K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
20 μA Maximum, Rail-to-Rail I/O,  
Zero Input Crossover Distortion Amplifiers  
AD8506/AD8508  
PIN CONFIGURATIONS  
FEATURES  
PSRR: 100 dB minimum  
CMRR: 105 dB typical  
Very low supply current: 20 μA per amp maximum  
1.8 V to 5 V single-supply or 0.9 V to 2.5 V dual-supply  
operation  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8506  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Figure 1. 8-Lead MSOP (RM-8)  
Rail-to-rail input and output  
Low noise: 45 nV/√Hz @ 1 kHz  
2.5 mV offset voltage maximum  
Very low input bias current: 1 pA typical  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
AD8508  
TOP VIEW  
APPLICATIONS  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
Pressure and position sensors  
Remote security  
9
8
–IN C  
OUT C  
Bio sensors  
IR thermometers  
Figure 2. 14-Lead TSSOP (RU-14)  
Battery-powered consumer equipment  
Hazard detectors  
GENERAL DESCRIPTION  
The AD8506/AD8508 are dual and quad micropower amplifiers  
featuring rail-to-rail input and output swings while operating from  
a 1.8 V to 5 V single or from ±0.9 V to ±±.5 V dual power supply.  
Remote battery-powered sensors, handheld instrumentation  
and consumer equipment, hazard detection (for example, smoke,  
fire, and gas), and patient monitors can benefit from the features  
of the AD8506/AD8508 amplifiers.  
Using a novel circuit technology, these low cost amplifiers offer  
zero crossover distortion (excellent PSRR and CMRR perform-  
ance) and very low bias current, while operating with a supply  
current of less than ±0 μA per amplifier. This amplifier family  
offers the lowest noise in its power class.  
The AD8506/AD8508 are specified for both the industrial  
temperature range of −40°C to +85°C and the extended industrial  
temperature range of −40°C to +1±5°C. The AD8506 dual amplifi-  
ers are available in an 8-lead MSOP package. The AD8508 quad  
amplifiers are available in the 14-lead TSSOP package.  
This combination of features makes the AD8506/AD8508  
amplifiers ideal choices for battery-powered applications  
because they minimize errors due to power supply voltage  
variations over the lifetime of the battery and maintain high  
CMRR even for a rail-to-rail input op amp.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2007–2008 Analog Devices, Inc. All rights reserved.  
 
AD8506/AD8508  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................5  
Typical Performance Characteristics ..............................................6  
Theory of Operation ...................................................................... 13  
Applications Information.............................................................. 15  
Pulse Oximeter Current Source ............................................... 15  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... ±  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—1.8 V Operation ............................ 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Four-Pole Low-Pass Butterworth Filter for  
Glucose Monitor......................................................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
REVISION HISTORY  
7/08—Rev. 0 to Rev. A  
Changes to Figure 17 Through Figure ±0.......................................8  
Changes to Figure ±1 Through Figure ±6.......................................9  
Changes to Figure ±7, Figure ±8, Figure 30, and Figure 31....... 10  
Changes to Figure 34, Figure 37, and Figure 38......................... 11  
Added Figure 39 and Figure 40 .................................................... 1±  
Added Theory of Operation Section, Figure 41, and  
Figure 4± .......................................................................................... 13  
Added Figure 43 and Figure 44 .................................................... 14  
Added Applications Information Section and Figure 45 .......... 15  
Added Figure 46 ............................................................................. 16  
Updated Outline Dimensions....................................................... 17  
Added Figure 48 ............................................................................. 17  
Changes to Ordering Guide.......................................................... 17  
Added AD8508 ...................................................................Universal  
Added TSSOP Package ......................................................Universal  
Changes to Features Section and General Description Section. 1  
Added Figure ±; Renumbered Sequentially .................................. 1  
Changed Electrical Characteristics Heading to Electrical  
Characteristics—5 V Operation ..................................................... 3  
Changes to Table 1............................................................................ 3  
Added Electrical Characteristics—1.8 V Operation Heading.... 4  
Changes to Table ±............................................................................ 4  
Changes to Table 3, Thermal Resistance Section, and Table 4... 5  
Added TA = ±5°C Condition to Typical Performance  
Characteristics Section..................................................................... 6  
Changes to Figure 3, Figure 4, Figure 6, and Figure 7 ................. 6  
Added Figure 11 and Figure 14....................................................... 7  
11/07—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
AD8506/AD8508  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
VSY = 5 V, VCM = VSY/±, TA = ±5°C, RL = 100 kΩ to GND, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
0.5  
1
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
0 V ≤ VCM ≤ 5 V  
−40°C ≤ TA ≤ +125°C  
2.5  
3.5  
10  
100  
600  
5
50  
130  
5
mV  
mV  
pA  
pA  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
dB  
μV/°C  
pF  
Input Bias Current  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
0.5  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
0 V ≤ VCM ≤ 5 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
0.05 V ≤ VOUT ≤ 4.95 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
0
CMRR  
AVO  
90  
90  
85  
105  
100  
105  
120  
Large Signal Voltage Gain  
Offset Voltage Drift  
2
ΔVOS/ΔT  
CDIFF  
Input Capacitance Differential Mode  
Input Capacitance Common Mode  
3
4.2  
pF  
CCM  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to VSY  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VSY  
4.98  
4.98  
4.9  
4.99  
4.95  
2
V
V
V
V
mV  
mV  
mV  
mV  
mA  
4.9  
Output Voltage Low  
VOL  
5
5
25  
30  
10  
−40°C ≤ TA ≤ +125°C  
VOUT = VSY or GND  
Short-Circuit Limit  
POWER SUPPLY  
ISC  
45  
Power Supply Rejection Ratio  
PSRR  
VSY = 1.8 V to 5 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
VOUT = VSY/2  
100  
100  
95  
110  
dB  
dB  
dB  
μA  
μA  
Supply Current per Amplifier  
ISY  
15  
20  
25  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
ΦM  
RL = 100 kΩ, CL = 10 pF, G = 1  
RL = 1 MΩ, CL = 20 pF, G = 1  
RL = 1 MΩ, CL = 20 pF, G = 1  
13  
95  
60  
mV/μs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
2.8  
45  
15  
μV p-p  
nV/√Hz  
fA/√Hz  
Rev. A | Page 3 of 20  
 
AD8506/AD8508  
ELECTRICAL CHARACTERISTICS—1.8 V OPERATION  
VSY = 1.8 V, VCM = VSY/±, TA = ±5°C, RL = 100 kΩ to GND, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
0.5  
1
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
0 V ≤ VCM ≤ 1.8 V  
−40°C ≤ TA ≤ +125°C  
2.5  
3.5  
10  
100  
600  
5
50  
100  
1.8  
mV  
mV  
pA  
pA  
pA  
pA  
pA  
pA  
V
dB  
dB  
dB  
dB  
dB  
μV/°C  
pF  
Input Bias Current  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
0.5  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
0 V ≤ VCM ≤ 1.8 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
0.05 V ≤ VOUT ≤ 1.75 V  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
0
CMRR  
AVO  
85  
85  
80  
95  
95  
100  
115  
Large Signal Voltage Gain  
Offset Voltage Drift  
2.5  
3
ΔVOS/ΔT  
CDIFF  
Input Capacitance Differential Mode  
Input Capacitance Common Mode  
4.2  
pF  
CCM  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to VSY  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VSY  
1.78  
1.78  
1.65  
1.65  
1.79  
1.75  
2
V
V
V
V
mV  
mV  
mV  
mV  
mA  
Output Voltage Low  
VOL  
5
5
25  
25  
12  
−40°C ≤ TA ≤ +125°C  
VOUT = VSY or GND  
Short-Circuit Limit  
POWER SUPPLY  
Power Supply Rejection Ratio  
ISC  
4.5  
110  
PSRR  
VSY = 1.8 V to 5 V  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
VOUT = VSY/2  
100  
100  
95  
dB  
dB  
dB  
μA  
μA  
Supply Current per Amplifier  
ISY  
16.5  
20  
25  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
ΦM  
RL = 100 kΩ, CL = 10 pF, G = 1  
RL = 1 MΩ, CL = 20 pF, G = 1  
RL = 1 MΩ, CL = 20 pF, G = 1  
13  
95  
60  
mV/μs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
2.8  
45  
15  
μV p-p  
nV/√Hz  
fA/√Hz  
Rev. A | Page 4 of 20  
 
AD8506/AD8508  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. This  
was measured using a standard two-layer board.  
Parameter  
Rating  
5.5 V  
VSY 0.1 V  
10 mA  
VSY  
Supply Voltage  
Input Voltage  
Input Current1  
Differential Input Voltage2  
Output Short-Circuit Duration to GND Indefinite  
Table 4. Thermal Resistance  
Package Type  
θJA  
θJC  
44  
35  
Unit  
°C/W  
°C/W  
8-Lead MSOP (RM-8)  
14-Lead TSSOP (RU-14)  
190  
180  
Storage Temperature Range  
−65°C to +150°C  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
−40°C to +125°C  
−65°C to +150°C  
300°C  
ESD CAUTION  
1 Input pins have clamp diodes to the supply pins. Input current should be  
limited to 10 mA or less whenever the input signal exceeds the power  
supply rail by 0.5 V.  
2 Differential input voltage is limited to 5 V or the supply voltage, whichever  
is less.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 5 of 20  
 
AD8506/AD8508  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = ±5°C, unless otherwise noted.  
250  
200  
150  
100  
50  
250  
V
V
= 1.8V  
V
V
= 5V  
SY  
SY  
= V /2  
= V /2  
CM  
SY  
CM  
SY  
200  
150  
100  
50  
0
–4  
0
–4  
–3  
–2  
–1  
0
1
2
3
4
–3  
–2  
–1  
0
1
2
3
4
V
(mV)  
V
(mV)  
OS  
OS  
Figure 3. Input Offset Voltage Distribution  
Figure 6. Input Offset Voltage Distribution  
16  
14  
12  
10  
8
12  
10  
8
V
= 5V  
V
= 1.8V  
SY  
–40°C T +125°C  
SY  
–40°C T +125°C  
A
A
6
6
4
4
2
2
0
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
TCV (µV/°C)  
OS  
TCV (µV/°C)  
OS  
Figure 4. Input Offset Voltage Drift Distribution  
Figure 7. Input Offset Voltage Drift Distribution  
2000  
1500  
1000  
500  
2000  
1500  
1000  
500  
V
= 1.8V  
V
= 5V  
SY  
SY  
0
0
–500  
–1000  
–1500  
–2000  
–500  
–1000  
–1500  
–2000  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
0
1
2
3
4
5
V
V
(V)  
CM  
CM  
Figure 5. Input Offset Voltage vs. Input Common-Mode Voltage  
Figure 8. Input Offset Voltage vs. Input Common-Mode Voltage  
Rev. A | Page 6 of 20  
 
 
AD8506/AD8508  
TA = ±5°C, unless otherwise noted.  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
V
= 1.8V  
V
= 5V  
SY  
SY  
–120  
–125  
–130  
–135  
–140  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
0
1
2
3
4
5
V
V
(V)  
CM  
CM  
Figure 9. Input Offset Voltage vs. Input Common-Mode Voltage  
Figure 12. Input Offset Voltage vs. Input Common-Mode Voltage  
600  
600  
V
= 1.8V  
V
= 5V  
SY  
SY  
550  
500  
450  
400  
350  
300  
250  
200  
550  
500  
450  
400  
350  
300  
250  
200  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(V)  
1.2  
1.4  
1.6  
1.8  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
V
V
CM  
CM  
Figure 10. Input Bias Current vs. Common-Mode Voltage at 125°C  
Figure 13. Input Bias Current vs. Common-Mode Voltage at 125°C  
1000  
1000  
V
V
= 1.8V  
= V /2  
SY  
SY  
V
V
= 5V  
= V /2  
SY  
SY  
CM  
CM  
100  
10  
1
100  
10  
1
0.1  
0.1  
0.01  
0.01  
25  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
25  
35  
45  
55  
65  
75  
85  
95  
105 115 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Input Bias Current vs. Temperature  
Figure 14. Input Bias Current vs. Temperature  
Rev. A | Page 7 of 20  
AD8506/AD8508  
TA = ±5°C, unless otherwise noted.  
10k  
10k  
1k  
V
= 1.8V  
V
= 5V  
SY  
SY  
1k  
100  
10  
V
– V  
OH  
DD  
100  
10  
V
OL  
V
OL  
V
– V  
OH  
DD  
1
1
0.1  
0.01  
0.1  
0.001  
0.01  
0.1  
LOAD CURRENT (mA)  
1
10  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
Figure 15. Output Voltage to Supply Rail vs. Load Current  
Figure 18. Output Voltage to Supply Rail vs. Load Current  
14  
12  
10  
8
14  
12  
10  
8
V
= 1.8V  
V
= 5V  
SY  
SY  
V
– V @ R = 10k  
OH L  
V
– V @ R = 10kΩ  
OH L  
DD  
DD  
V
@ R = 10kΩ  
V
@ R = 10kΩ  
L
OL  
L
OL  
6
6
4
4
V
– V @ R = 100kΩ  
OH L  
DD  
V
– V @ R = 100kΩ  
OH L  
DD  
2
2
V
@ R = 100kΩ  
L
V
@ R = 100kΩ  
L
OL  
20  
OL  
0
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Output Voltage to Supply Rail vs. Temperature  
Figure 19. Output Voltage to Supply Rail vs. Temperature  
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
AD8506  
AD8508  
V
V
= 1.8V AND 5V  
= V /2  
SY  
V
= V /2  
SY  
SY  
CM  
80  
70  
60  
50  
40  
30  
20  
10  
0
CM  
AD8508, 1.8V  
AD8508, 5V  
AD8506, 1.8V  
AD8506, 5V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 20. Total Supply Current vs. Temperature  
Figure 17. Total Supply Current vs. Supply Voltage  
Rev. A | Page 8 of 20  
AD8506/AD8508  
TA = ±5°C, unless otherwise noted.  
120  
120  
100  
80  
120  
100  
80  
120  
V
= 1.8V  
V
= 5V  
SY  
SY  
100  
80  
PHASE  
100  
80  
PHASE  
GAIN  
60  
60  
60  
40  
60  
40  
40  
40  
GAIN  
20  
20  
20  
20  
0
0
0
0
–20  
–40  
–60  
–80  
–100  
–120  
–20  
–40  
–60  
–80  
–100  
–120  
–20  
–20  
GAIN, C = 0pF  
GAIN, C = 0pF  
L
PHASE, C = 0pF  
L
GAIN, C = 50pF  
L
PHASE, C = 50pF  
L
GAIN, C = 100pF  
L
PHASE, C = 100pF  
L
L
PHASE, C = 0pF  
L
–40  
–60  
–40  
–60  
–80  
–100  
GAIN, C = 50pF  
L
PHASE, C = 50pF  
L
GAIN, C = 100pF  
L
–80  
PHASE, C = 100pF  
L
–100  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. Open-Loop Gain and Phase vs. Frequency  
Figure 24. Open-Loop Gain and Phase vs. Frequency  
50  
40  
50  
V
= 5V  
V
= 1.8V  
SY  
SY  
G = –100  
G = –10  
G = –100  
G = –10  
40  
30  
30  
20  
20  
10  
10  
G = –1  
G = –1  
0
0
–10  
–20  
–30  
–40  
–50  
–10  
–20  
–30  
–40  
–50  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. Closed-Loop Gain vs. Frequency  
Figure 22. Closed-Loop Gain vs. Frequency  
10k  
1k  
10k  
V
= 5V  
SY  
V
= 1.8V  
SY  
1k  
100  
10  
G = 100  
G = 10  
G = 1  
G = 100  
100  
10  
G = 10  
G = 1  
1
1
0.1  
0.1  
10  
0.01  
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26. ZOUT vs. Frequency  
Figure 23. ZOUT vs. Frequency  
Rev. A | Page 9 of 20  
AD8506/AD8508  
TA = ±5°C, unless otherwise noted.  
100  
100  
90  
V
= 1.8V  
V
= 5V  
SY  
SY  
90  
80  
70  
60  
80  
70  
60  
50  
40  
50  
40  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27. CMRR vs. Frequency  
Figure 30. CMRR vs. Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
V
SY  
= 5V  
V
= 1.8V  
SY  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PSRR+  
100k  
PSRR+  
100k  
PSRR–  
PSRR–  
10  
100  
1k  
10k  
1M  
10  
100  
1k  
10k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 31. PSRR vs. Frequency  
Figure 28. PSRR vs. Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
R
= 1.8V  
= 100k  
V
R
= 5V  
= 100k  
SY  
SY  
L
L
–OVERSHOOT  
–OVERSHOOT  
+OVERSHOOT  
+OVERSHOOT  
10  
100  
LOAD CAPACITANCE (pF)  
600  
10  
100  
LOAD CAPACITANCE (pF)  
600  
Figure 32. Small Signal Overshoot vs. Load Capacitance  
Figure 29. Small Signal Overshoot vs. Load Capacitance  
Rev. A | Page 10 of 20  
AD8506/AD8508  
TA = ±5°C, unless otherwise noted.  
V
R
C
= 1.8V  
= 100kΩ  
= 200pF  
V
R
C
= 5V  
= 100kΩ  
= 200pF  
SY  
SY  
L
L
L
L
G = 1  
G = 1  
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 33. Large Signal Transient Response  
Figure 36. Large Signal Transient Response  
V
R
C
= 1.8V  
= 100kΩ  
= 200pF  
V
R
C
= 5V  
= 100kΩ  
= 200pF  
SY  
SY  
L
L
L
L
G = 1  
G = 1  
TIME (100µs/DIV)  
TIME (100µs/DIV)  
Figure 34. Small Signal Transient Response  
Figure 37. Small Signal Transient Response  
1k  
V
= 1.8V AND 5V  
SY  
2.78µV p-p  
V
= 1.8V AND 5V  
SY  
100  
10  
1
TIME (4s/DIV)  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 35. Voltage Noise 0.1 Hz to 10 Hz  
Figure 38. Voltage Noise Density vs. Frequency  
Rev. A | Page 11 of 20  
AD8506/AD8508  
TA = ±5°C, unless otherwise noted.  
–40  
–40  
V
V
= 1.8V  
= 1.5V p-p  
V
V
= 5V  
= 4V p-p  
SY  
IN  
100k  
SY  
IN  
100kΩ  
–50  
–60  
–70  
–80  
–50  
–60  
–70  
–80  
10kΩ  
10kΩ  
–90  
–100  
–110  
–120  
–90  
–100  
–110  
–120  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 39. Channel Separation vs. Frequency  
Figure 40. Channel Separation vs. Frequency  
Rev. A | Page 12 of 20  
AD8506/AD8508  
THEORY OF OPERATION  
V
DD  
The AD8506/AD8508 are unity-gain stable CMOS rail-to-rail  
input/output operational amplifiers designed to optimize  
performance in current consumption, PSRR, CMRR, and zero  
crossover distortion, all embedded in a small package. The  
typical offset voltage is 500 μV, with a low peak-to-peak voltage  
noise of ±.8 μV p-p from 0.1 Hz to 10 Hz and a voltage noise  
density of 45 nV/√Hz at 1 kHz.  
V
BIAS  
V
V
IN+  
IN–  
I
Q2  
Q4  
Q3  
Q1  
The AD8506/AD8508 are designed to solve two key problems  
in low voltage battery-powered applications: battery voltage  
decrease over time and rail-to-rail input stage distortion.  
I
B
B
In battery-powered applications, the supply voltage available to  
the IC is the voltage of the battery. Unfortunately, the voltage of  
a battery decreases as it discharges itself through the load. This  
voltage drop over the lifetime of the battery causes an error in  
the output of the op amps. Some applications requiring precision  
measurements during the entire lifetime of the battery use voltage  
regulators to power up the op amps as a solution. If a design  
uses standard battery cells, the op amps experience a supply  
voltage change from roughly 3.± V to 1.8 V during the lifetime  
of the battery. This means that for a PSRR of 70 dB minimum in  
a typical op amp, the input-referred offset error is approximately  
440 μV. If the same application uses the AD8506/AD8508 with  
a 100 dB minimum PSRR, the error is only 14 μV. It is possible  
to calibrate out this error or to use an external voltage regulator  
to power the op amp, but these solutions can increase system  
cost and complexity. The AD8506/AD8508 solve the impasse  
with no additional cost or error-nullifying circuitry.  
V
SS  
Figure 41. A Typical Dual Differential Pair Input Stage Op Amp  
(Dual PMOS Q1 and Q2 Transistors Form the Lower End of the Input Voltage  
Range Whereas Dual NMOS Q3 and Q4 Compose the Upper End)  
300  
V
T
= 5V  
SY  
= 25°C  
250  
200  
150  
100  
50  
A
0
–50  
–100  
–150  
–200  
–250  
–300  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
The second problem with battery-powered applications is the  
distortion caused by the standard rail-to-rail input stage. Using  
a CMOS non-rail-to-rail input stage (that is, a single differential  
pair) limits the input voltage to approximately one VGS (gate-  
source voltage) away from one of the supply lines. Because VGS  
for normal operation is commonly over 1 V, a single differential  
pair input stage op amp greatly restricts the allowable input  
voltage range when using a low supply voltage. This limitation  
restricts the number of applications where the non-rail-to-rail  
input op amp was originally intended to be used. To solve this  
problem, a dual differential pair input stage is usually implemented  
(see Figure 41); however, this technique has its own drawbacks.  
V
CM  
Figure 42. Typical Input Offset Voltage vs. Common-Mode Voltage  
Response in a Dual Differential Pair Input Stage Op Amp (Powered by 5 V  
Supply; Results of Approximately 100 Units per Graph Are Displayed)  
This distortion forces the designer to come up with impractical  
ways to avoid the crossover distortion areas, therefore narrowing  
the common-mode dynamic range of the operational amplifier.  
The AD8506/AD8508 solve this crossover distortion problem  
by using an on-chip charge pump to power the input differential  
pair. The charge pump creates a supply voltage higher than the  
voltage of the battery, allowing the input stage to handle a wide  
range of input signal voltages without using a second differential  
pair. With this solution, the input voltage can vary from one  
supply extreme to the other with no distortion, thereby restoring  
the op amp full common-mode dynamic range.  
One differential pair amplifies the input signal when the common-  
mode voltage is on the high end, whereas the other pair amplifies  
the input signal when the common-mode voltage is on the low  
end. This method also requires a control circuitry to operate the  
two differential pairs appropriately. Unfortunately, this topology  
leads to a very noticeable and undesirable problem: if the signal  
level moves through the range where one input stage turns off  
and the other one turns on, noticeable distortion occurs (see  
Figure 4±).  
Rev. A | Page 13 of 20  
 
 
 
AD8506/AD8508  
The charge pump has been carefully designed so that switching  
noise components at any frequency, both within and beyond the  
amplifier bandwidth, are much lower than the thermal noise floor.  
Therefore, the spurious-free dynamic range (SFDR) is limited  
only by the input signal and the thermal or flicker noise. There  
is no intermodulation between input signal and switching noise.  
Figure 44, input offset voltage vs. input common-mode voltage  
response, shows the typical response of 1± devices from Figure 8.  
Figure 44 has been expanded so that it is easier to compare with  
Figure 4±, typical input offset voltage vs. common-mode voltage  
response in a dual differential pair input stage op amp.  
300  
250  
Figure 43 displays a typical front-end section of an operational  
amplifier with an on-chip charge pump.  
V
= 5V, T = 25°C  
A
SY  
200  
150  
100  
50  
V
= POSITIVE PUMPED VOLTAGE = V + 1.8V  
PP  
DD  
V
PP  
V
DD  
V
B
0
–50  
CASCODE  
STAGE  
AND  
–100  
–150  
Q2  
Q1  
–IN  
+IN  
RAIL-TO-RAIL  
OUTPUT  
OUT  
–200  
–250  
–300  
STAGE  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
V
CM  
V
SS  
Figure 44. Input Offset Voltage vs. Input Common-Mode Voltage Response  
(Powered by a 5 V Supply; Results of 12 Units Are Displayed)  
Figure 43. Typical Front-End Section of an Op Amp  
with Embedded Charge Pump  
This solution improves the CMRR performance tremendously.  
For instance, if the input varies from rail-to-rail on a ±.5 V  
supply rail, using a part with a CMRR of 70 dB minimum, an  
input-referred error of 790 μV is introduced. Another part with  
a CMRR of 5± dB minimum generates a 6.3 mV error. The  
AD8506/AD8508 CMRR of 90 dB minimum causes only a 79 μV  
error. As with the PSRR error, there are complex ways to minimize  
this error, but the AD8506/AD8508 solve this problem without  
incurring unnecessary circuitry complexity or increased cost.  
Rev. A | Page 14 of 20  
 
 
AD8506/AD8508  
APPLICATIONS INFORMATION  
design need to be improved, then a more accurate and low  
temperature coefficient drift voltage reference and current  
source resistor should be utilized. C3 and C4 are used to  
improve stabilization of U1; R3 and R7 are used to provide  
some current limit into the U1 inverting pin; and R± and R6 are  
used to slow down the rise time of the N-MOSFET when it  
turns on. These elements may not be needed, or some bench  
adjustments may be required.  
PULSE OXIMETER CURRENT SOURCE  
A pulse oximeter is a noninvasive medical device used for measur-  
ing continuously the percentage of hemoglobin (Hb) saturated  
with oxygen and the pulse rate of a patient. Hemoglobin that is  
carrying oxygen (oxyhemoglobin) absorbs light in the infrared  
(IR) region of the spectrum; hemoglobin that is not carrying  
oxygen (deoxyhemoglobin) absorbs visible red (R) light. In pulse  
oximetry, a clip containing two LEDs (sometimes more, depending  
on the complexity of the measurement algorithm) and the light  
sensor (photodiode) is placed on the finger or earlobe of the  
patient. One LED emits red light (600 nm to 700 nm) and the  
other emits light in the near IR (800 nm to 900 nm) region. The  
clip is connected by a cable to a processor unit. The LEDs are  
rapidly and sequentially excited by two current sources (one for  
each LED), whose dc levels depend on the LED being driven,  
based on manufacturer requirements, and the detector is synchro-  
nized to capture the light from each LED as it is transmitted  
through the tissue.  
+5V  
C2  
0.1µF  
CONNECT TO RED LED  
+5V  
U2  
ADG733  
C1  
0.1µF  
U1  
1/2  
16  
+5V  
62.5mA  
R2  
AD8506  
V
DD  
S1A 12  
R4  
53.6kΩ  
8
14 D1  
5
6
V
OUT1  
S1B 13  
22Ω  
V+  
7
V
= 1.25V  
REF  
V–  
4
S2A  
S2B  
S3A  
S3B  
2
1
5
3
U3  
Q1  
IRLMS2002  
D2  
D3  
15  
4
ADR1581  
C3  
22pF  
R3  
1kΩ  
An example design of a dc current source driving the red and  
infrared LEDs is shown in Figure 45. These dc current sources  
allow 6±.5 mA and 101 mA to flow through the red and infrared  
LEDs, respectively. First, to prolong battery life, the LEDs are  
driven only when needed. One-third of the ADG733 SPDT  
analog switch is used to disconnect/connect the 1.±5 V voltage  
reference from/to each current circuit. When driving the LEDs,  
the ADR1581 1.±5 V voltage reference is buffered by ½ of the  
AD8506; the presence of this voltage on the noninverting input  
forces the output of the op amp (due to the negative feedback)  
to maintain a level that makes its inverting input-to-track the  
noninverting pin. Therefore, the 1.±5 V appears in parallel with  
the ±0 ꢀ R1 or 1±.4 Ω R5 current source resistor, creating the  
flow of the 6±.5 mA or 101 mA current through the red or  
infrared LED as the output of the op amp turns on the Q1 or Q±  
N-MOSFET IRLMS±00±.  
R1  
20Ω  
0.1%  
1/8W MIN  
9
RED CURRENT  
SOURCE  
A2  
A1  
A0  
EN  
10  
11  
6
8
GND  
V
SS  
CONNECT TO INFRARED LED  
7
+5V  
U1  
101mA  
1/2  
AD8506  
8
R6  
22Ω  
I_BIT2  
I_BIT1  
I_BIT0  
I_ENA  
3
2
V
OUT2  
V+  
1
V–  
4
Q2  
IRLMS2002  
C4  
22pF  
R7  
1kΩ  
R5  
12.4Ω  
0.1%  
INFRARED CURRENT  
SOURCE  
1/4W MIN  
The maximum total quiescent currents for the ½ AD8506,  
ADR1581, and ADG733 are ±5 μA, 70 μA, and 1 μA, respectively,  
making a total of 96 μA current consumption (480 μW power  
consumption) per circuit, which is good for a system powered  
by a battery. If the accuracy and temperature drift of the total  
Figure 45. Pulse Oximeter Red and Infrared Current Sources Using the  
AD8506 as a Buffer to the Voltage Reference Device  
Rev. A | Page 15 of 20  
 
 
AD8506/AD8508  
converter requires low input bias current. The AD8506 is an  
excellent choice because it provides 1 pA typical and 10 pA  
maximum of input bias current at ambient temperature.  
FOUR-POLE LOW-PASS BUTTERWORTH FILTER  
FOR GLUCOSE MONITOR  
There are several methods of glucose monitoring: spectroscopic  
absorption of infrared light in the ± μm to ±.5 μm range, reflec-  
tance spectrophotometry, and the amperometric type using  
electrochemical strips with glucose oxidase enzymes. The  
amperometric type generally uses three electrodes: a reference  
electrode, a control electrode, and a working electrode. Although  
this is a very old technique and widely used, signal-to-noise  
ratio and repeatability can be improved using the AD8506 with  
its low peak-to-peak voltage noise of ±.8 μV p-p from 0.1 Hz to  
10 Hz and voltage noise density of 45 nV/√Hz at 1 kHz.  
A low-pass filter with a cutoff frequency of 80 Hz to 100 Hz is  
desirable in a glucose meter device to remove extraneous noise;  
this can be a simple two- or four-pole Butterworth. Low power  
op amps with bandwidths of 50 kHz to 500 kHz should be  
adequate. The AD8506 with its 95 kHz GBP and 15 μA typical  
of current consumption meets these requirements. A circuit  
design of a four-pole Butterworth filter (preceded by a one-pole  
low-pass filter) is shown in Figure 46. With a 3.3 V battery, the  
total power consumption of this design is ±97 μW typical at  
ambient temperature.  
Another consideration is operation from a 3.3 V battery. Glucose  
signal currents are usually less than 3 μA full scale, so the I-to-V  
C1  
1000pF  
R1  
5M  
+3.3V  
WORKING  
+3.3V  
U1  
1/2  
AD8506  
8
3
2
CONTROL  
R2  
R3  
U2  
1/2  
AD8506  
+3.3V  
V+  
22.6k22.6kΩ  
8
1
5
6
R4  
R5  
V–  
4
C3  
V+  
22.6k22.6kΩ  
REFERENCE  
8
U1  
0.047µF  
3
2
7
1/2  
AD8506  
V–  
4
C5  
V+  
0.047µF  
1
V
OUT  
V–  
4
C2  
0.1µF  
C4  
0.1µF  
DUPLICATE OF CIRCUIT ABOVE  
Figure 46. A Four-Pole Butterworth Filter That Can Be Used in a Glucose Meter  
Rev. A | Page 16 of 20  
 
 
AD8506/AD8508  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 47. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 48. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8506ARMZ-R21  
AD8506ARMZ-REEL1  
AD8508ARUZ1  
AD8508ARUZ-REEL1  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
Package Option  
Branding  
A1X  
A1X  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
RM-8  
RM-8  
RU-14  
RU-14  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
1 Z = RoHS Compliant Part.  
Rev. A | Page 17 of 20  
 
AD8506/AD8508  
NOTES  
Rev. A | Page 18 of 20  
AD8506/AD8508  
NOTES  
Rev. A | Page 19 of 20  
AD8506/AD8508  
NOTES  
©2007–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06900-0-7/08(A)  
Rev. A | Page 20 of 20  

相关型号:

AD8508ARUZ-REEL

20 レA Maximum, Rail-to-Rail I/O, Zero Input Crossover Distortion Amplifiers
ADI

AD8509

9- and 11-Channel, Muxed Input LCD Reference Drivers
ADI

AD8509ARU

9- and 11-Channel, Muxed Input LCD Reference Drivers
ADI

AD8509ARU-REEL

9- and 11-Channel, Muxed Input LCD Reference Drivers
ADI

AD8509ARU-REEL

0.35A 9 CHANNEL, BUF OR INV BASED PRPHL DRVR, PDSO48, MO-153ED, TSSOP-48
ROCHESTER

AD8509ARUZ-REEL

9- and 11-Channel, Muxed Input LCD Reference Drivers
ADI

AD8510

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI

AD8510A

Operational Amplifiers Selection Guide
ADI

AD8510AR

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI

AD8510AR

OP-AMP, 1800 uV OFFSET-MAX, 8 MHz BAND WIDTH, PDSO8, MS-012AA, SOIC-8
ROCHESTER

AD8510AR-REEL

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI

AD8510AR-REEL7

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI