AD9057-PCB [ADI]

8-Bit 40 MSPS/50 MSPS/80 MSPS Converter; 8位40 MSPS / 50 MSPS / 80 MSPS转换器
AD9057-PCB
型号: AD9057-PCB
厂家: ADI    ADI
描述:

8-Bit 40 MSPS/50 MSPS/80 MSPS Converter
8位40 MSPS / 50 MSPS / 80 MSPS转换器

转换器
文件: 总12页 (文件大小:206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Bit  
a
40 MSPS/50 MSPS/80 MSPS Converter  
AD9057  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
8-Bit, Low Power ADC: 200 mW Typical  
120 MHz Analog Bandwidth  
V
PWRDN  
V
DD  
D
On-Chip 2.5 V Reference and T/H  
1 V p-p Analog Input Range  
Single 5 V Supply Operation  
5 V or 3 V Logic Interface  
Power-Down Mode: < 10 mW  
Three Performance Grades (40 MSPS, 60 MSPS, 80 MSPS)  
AD9057  
8
AIN  
D7–D0  
T/H  
ADC  
1k  
BIAS OUT  
VREF IN  
VREF OUT  
+2.5V  
APPLICATIONS  
Digital Communications (QAM Demodulators)  
RGB and YC/Composite Video Processing  
Digital Data Storage Read Channels  
Medical Imaging  
GND  
ENCODE  
Digital Instrumentation  
PRODUCT DESCRIPTION  
Customers desiring multichannel digitization may consider the  
AD9059, a dual 8-bit, 60 MSPS monolithic based on the  
AD9057 ADC core. The AD9059 is available in a 28-lead sur-  
face mount plastic package (28 SSOP) and is specified over the  
industrial temperature range.  
The AD9057 is an 8-bit monolithic analog-to-digital converter  
optimized for low cost, low power, small size, and ease of use.  
With a 40 MSPS, 60 MSPS, or 80 MSPS encode rates capabil-  
ity and full-power analog bandwidth of 120 MHz, the component  
is ideal for applications requiring excellent dynamic performance.  
PIN CONFIGURATION  
To minimize system cost and power dissipation, the AD9057  
includes an internal 2.5 V reference and a track-and-hold  
circuit. The user must provide only a 5 V power supply and an  
encode clock. No external reference or driver components are  
required for many applications.  
1
2
20  
PWRDN  
D0 (LSB)  
19 D1  
18 D2  
17 D3  
VREF OUT  
VREF IN  
GND  
3
The AD9057’s encode input is TTL/CMOS compatible and the  
8-bit digital outputs can be operated from 5 V or 3 V supplies. A  
power-down function may be exercised to bring total consump-  
tion to < 10 mW. In power-down mode the digital outputs are  
driven to a high impedance state.  
4
AD9057  
V
D
5
TOP VIEW 16 GND  
(Not to Scale)  
BIAS OUT  
AIN  
6
15  
V
DD  
14 D4  
13  
7
V
D
8
D5  
12 D6  
D7 (MSB)  
Fabricated on an advanced BiCMOS process, the AD9057 is  
available in a space saving 20-lead surface mount plastic pack-  
age (20 SSOP) and is specified over the industrial (–40°C to  
+85°C) temperature range.  
9
GND  
10  
11  
ENCODE  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2001  
(V = 5 V, V = 3 V; external reference, unless otherwise noted.)  
AD9057–SPECIFICATIONS  
D
DD  
Test  
Level  
AD9057BRS-40  
AD9057BRS-60  
AD9057BRS-80  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
8
8
8
Bits  
DC ACCURACY  
Differential Nonlinearity  
25°C  
Full  
25°C  
Full  
Full  
25°C  
Full  
I
VI  
I
VI  
VI  
I
0.75  
0.75  
1.9  
2.0  
1.9  
2.0  
0.75  
0.75  
1.9  
2.0  
1.9  
2.0  
0.75  
0.75  
1.9  
2.0  
1.9  
2.0  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
No Missing Codes  
Gain Error1  
GUARANTEED  
GUARANTEED  
GUARANTEED  
–6  
–8  
–2.5  
+6  
+8  
–6  
–8  
–2.5  
+6  
+8  
–6  
–8  
–2.5  
+6  
+8  
% FS  
% FS  
ppm/°C  
VI  
V
Gain Tempco1  
Full  
70  
70  
70  
ANALOG INPUT  
Input Voltage Range  
(Centered at 2.5 V)  
Input Offset Voltage  
25°C  
25°C  
Full  
25°C  
25°C  
25°C  
Full  
V
I
VI  
V
V
I
1.0  
0
1.0  
0
1.0  
0
V p-p  
mV  
mV  
kΩ  
–15  
–25  
+15  
+25  
–15  
–25  
+15  
+25  
–15  
–25  
+15  
+25  
Input Resistance  
Input Capacitance  
Input Bias Current  
150  
2
6
150  
2
6
150  
2
6
pF  
16  
25  
16  
25  
16  
25  
µA  
VI  
V
µA  
Analog Bandwidth  
25°C  
120  
120  
120  
MHz  
BANDGAP REFERENCE  
Output Voltage  
Temperature Coefficient  
Full  
Full  
VI  
V
2.4  
40  
2.5  
10  
2.6  
2.4  
60  
2.5  
10  
2.6  
2.4  
80  
2.5  
10  
2.6  
V
ppm/°C  
SWITCHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Aperture Delay (tA)  
Full  
Full  
25°C  
25°C  
Full  
Full  
VI  
IV  
V
V
IV  
IV  
MSPS  
MSPS  
ns  
ps, rms  
ns  
5
5
5
2.7  
5
6.6  
11.5  
2.7  
5
6.6  
9.5  
2.7  
5
6.6  
8.0  
Aperture Uncertainty (Jitter)  
Output Valid Time (tV)2  
4.0  
4.0  
4.0  
2
Output Propagation Delay (tPD  
)
18.0  
14.2  
11.3  
ns  
DYNAMIC PERFORMANCE3  
Transient Response  
Overvoltage Recovery Time  
Signal-to-Noise Ratio (SINAD)  
(With Harmonics)  
fIN = 10.3 MHz  
fIN = 76 MHz  
Effective Number of Bits  
fIN = 10.3 MHz  
fIN = 76 MHz  
25°C  
25°C  
V
V
9
9
9
9
9
9
ns  
ns  
25°C  
25°C  
I
V
42  
45.5  
44.0  
42  
45  
43.5  
41.5  
6.6  
45  
43.5  
dB  
dB  
25°C  
25°C  
I
V
6.7  
7.2  
7.0  
6.7  
7.2  
6.9  
7.2  
6.9  
Bits  
Bits  
Signal-to-Noise Ratio (SNR)  
(Without Harmonics)  
fIN = 10.3 MHz  
fIN = 76 MHz  
2nd Harmonic Distortion  
fIN = 10.3 MHz  
fIN = 76 MHz  
3rd Harmonic Distortion  
fIN = 10.3 MHz  
fIN = 76 MHz  
Two Tone Intermodulation  
Distortion (IMD)  
25°C  
25°C  
I
V
43  
46.5  
45.5  
43  
46  
45  
42.5  
–50  
–46  
46  
45  
dB  
dB  
25°C  
25°C  
I
V
–50  
–46  
–62  
–54  
–50  
–46  
–62  
–54  
–62  
–54  
dBc  
dBc  
25°C  
25°C  
I
V
–60  
–54  
–60  
–54  
–60  
–54  
dBc  
dBc  
25°C  
25°C  
25°C  
V
V
V
–52  
0.8  
1.0  
–52  
0.8  
1.0  
–52  
0.8  
1.0  
dBc  
Degrees  
%
Differential Phase  
Differential Gain  
DIGITAL INPUTS  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
Full  
Full  
Full  
Full  
25°C  
25°C  
25°C  
VI  
VI  
VI  
VI  
V
IV  
IV  
2.0  
2.0  
2.0  
V
V
0.8  
1
1
0.8  
1
1
0.8  
1
1
µA  
µA  
pF  
ns  
ns  
4.5  
4.5  
4.5  
Encode Pulsewidth High (tEH  
Encode Pulsewidth Low (tEL  
)
)
9.0  
9.0  
166  
166  
6.7  
6.7  
166  
166  
5.5  
5.5  
166  
166  
–2–  
REV. C  
AD9057  
Test  
Temp Level  
AD9057BRS-40  
Min Typ Max  
AD9057BRS-60  
Min Typ Max  
AD9057BRS-80  
Min Typ Max  
Parameter  
Unit  
DIGITAL OUTPUTS  
Logic “1” Voltage (VDD = 3 V)  
Logic “1” Voltage (VDD = 5 V)  
Logic “0” Voltage  
Full  
Full  
Full  
VI  
IV  
VI  
2.95  
4.95  
2.95  
4.95  
2.95  
4.95  
V
V
V
0.05  
Offset Binary Code  
0.05  
Offset Binary Code  
0.05  
Offset Binary Code  
Output Coding  
POWER SUPPLY  
V
D Supply Current (VD = 5 V)  
Full  
Full  
Full  
Full  
VI  
VI  
VI  
VI  
36  
4.0  
192  
6
48  
38  
5.5  
205  
6
48  
40  
7.4  
220  
6
51  
mA  
mA  
mW  
mW  
VDD Supply Current (VDD = 3 V)4  
Power Dissipation5, 6  
6.5  
260  
10  
6.5  
260  
10  
8.8  
281  
10  
Power-Down Dissipation  
Power Supply Rejection Ratio  
(PSRR)  
25°C  
I
15  
15  
15  
mV/V  
NOTES  
1Gain error and gain temperature coefficient are based on the ADC only (with a fixed 2.5 V external reference).  
2tV and tPD are measured from the 1.5 V level of the ENCODE to the 10%/90% levels of the digital output swing. The digital output load during test is not to exceed  
an ac load of 10 pF or a dc current of 40 µA.  
3SNR/harmonics based on an analog input voltage of –0.5 dBFS referenced to a 1.0 V full-scale input range.  
4Digital supply current based on VDD = 3 V output drive with <10 pF loading under dynamic test conditions.  
5Power dissipation is based on specified encode and 10.3 MHz analog input dynamic test conditions (VD = 5 V 5%, VDD = 3 V 5%).  
6Typical thermal impedance for the RS style (SSOP) 20-lead package: θJC = 46°C/W, θCA = 80°C/W, θJA = 126°C/W.  
Specifications subject to change without notice.  
EXPLANATION OF TEST LEVELS  
Test Level  
Description  
I
100% Production Tested  
II  
100% Production Tested at 25°C and Sample  
Tested at Specified Temperatures  
III  
IV  
Sample Tested Only  
Parameter is Guaranteed by Design and Char-  
acterization Testing  
V
Parameter is a Typical Value Only  
VI  
100% Production Tested at 25°C; Guaran-  
teed by Design and Characterization Testing  
for Industrial Temperature Range  
N
N + 5  
N + 3  
AIN  
N + 1  
N + 4  
N + 2  
tA  
tEH  
tEL  
ENCODE  
tV  
DIGITAL  
OUTPUTS  
N 3  
N 2  
N 1  
N
N + 1  
N + 2  
tPD  
MIN TYP MAX  
2.7 ns  
t
t
APERTURE DELAY  
A
PULSEWIDTH HIGH  
PULSEWIDTH LOW  
OUTPUT VALID TIME  
OUTPUT PROP DELAY  
EH  
166 ns  
t
EL  
166 ns  
t
V
4.0 ns  
6.6 ns  
9.5 ns  
t
PD  
Figure 1. Timing Diagram  
–3–  
REV. C  
AD9057  
ABSOLUTE MAXIMUM RATINGS  
PIN FUNCTION DESCRIPTIONS  
VD, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Pin No.  
Mnemonic  
Function  
1
PWRDN  
Power-Down Function Select;  
Logic HIGH for Power-Down  
Mode (Digital Outputs Go to  
High Impedance State).  
VREF Input . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . 150°C  
Maximum Case Temperature . . . . . . . . . . . . . . . . . . . 150°C  
2
3
VREF OUT  
VREF IN  
Internal Reference Output  
(2.5 V typ); Bypass with 0.1 µF  
to Ground.  
Reference Input for ADC (2.5 V  
typ, 10%)  
ORDERING GUIDE  
Temperature  
4, 9, 16  
5, 8  
GND  
Ground (Analog/Digital)  
Analog 5 V Power Supply  
Model  
AD9057BRS–40, –60, –80 –40°C to +85°C RS-20  
AD9057/PCB 25°C Evaluation Board  
Range  
Package Option*  
VD  
6
BIAS OUT  
Bias Pin for AC Coupling  
(1 kto REF IN)  
7
AIN  
Analog Input for ADC  
*RS = Shrink Small Outline (SSOP).  
10  
ENCODE  
Encode Clock for ADC (ADC  
Samples on Rising Edge of  
ENCODE)  
Table I. Digital Coding (VREF = 2.5 V)  
Analog Input  
Voltage Level  
Digital Output  
11–14, 17–20 D7–D4, D3–D0 Digital Outputs of ADC  
3.0 V  
Positive Full Scale  
Midscale +1/2 LSB  
Midscale –1/2 LSB  
Negative Full Scale  
1111 1111  
1000 0000  
0111 1111  
0000 0000  
15  
VDD  
Digital Output Power Supply;  
Nominally 3 V to 5 V.  
2.502 V  
2.498 V  
2.0 V  
PIN CONFIGURATION  
1
2
20  
PWRDN  
D0 (LSB)  
19 D1  
18 D2  
17 D3  
VREF OUT  
VREF IN  
GND  
3
4
AD9057  
V
D
5
TOP VIEW 16 GND  
(Not to Scale)  
BIAS OUT  
AIN  
6
15  
V
DD  
7
14 D4  
13  
V
D
8
D5  
12 D6  
9
GND  
10  
D7 (MSB)  
11  
ENCODE  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD9057 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
4–  
REV. C  
Typical Performance CharacteristicsAD9057  
0
10  
20  
30  
30  
ENCODE = 60MSPS  
ANALOG IN = 10.3MHz, 0.5dBFS  
SINAD = 46.1dB  
ENCODE = 60MSPS  
35  
AIN = 0.5dBFS  
ENOB = 7.36 BITS  
SNR = 46.5dB  
40  
45  
ND  
40  
50  
60  
70  
80  
90  
2
HARMONIC  
50  
55  
60  
65  
70  
RD  
3
HARMONIC  
0
30  
0
20  
40  
60  
80  
100  
120  
140  
160  
FREQUENCY MHz  
ANALOG INPUT FREQUENCY MHz  
TPC 1. Spectral Plot 60 MSPS, 10.3 MHz  
TPC 4. Harmonic Distortion vs. AIN Frequency  
0
0
ENCODE = 60MSPS  
ENCODE = 60MSPS  
ANALOG IN = 76MHz, 0.5dBFS  
10  
10  
F1 IN = 9.5MHz @ 7.0dBFS  
SINAD = 44.9dB  
ENOB = 7.16 BITS  
20 SNR = 45.2dB  
F2 IN = 9.9MHz @ 7.0dBFS  
2F1 - F2 = 52.0dBc  
2F2 - F1 = 53.0dBc  
20  
30  
40  
50  
60  
70  
30  
40  
50  
60  
70  
80  
80  
90  
90  
0
30  
0
10  
20  
30  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 2. Spectral Plot 60 MSPS, 76 MHz  
TPC 5. Two-Tone Intermodulation Distortion  
48  
46  
44  
42  
40  
54  
SNR  
SNR  
48  
42  
SINAD  
SINAD  
36  
30  
ENCODE = 60MSPS  
AIN = 0.5dBFS  
38  
36  
34  
32  
30  
AIN = 10.3MHz, 0.5dBFS  
24  
18  
12  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
5
10  
20  
30  
40  
50  
60  
70  
80  
90  
ENCODE RATE MSPS  
ANALOG INPUT FREQUENCY MHz  
TPC 3. SINAD/SNR vs. AIN Frequency  
TPC 6. SINAD/SNR vs. Encode Rate  
5–  
REV. C  
AD9057  
12.0  
350  
11.0  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
300  
250  
200  
150  
100  
50  
V
= 3V  
DD  
V
= 5V  
DD  
V
= 3V  
DD  
V
= 5V  
DD  
AIN = 10.3MHz, 0.5dBFS  
0
5
45  
0
25  
TEMPERATURE –  
70  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
C
ENCODE RATE MSPS  
TPC 7. Power Dissipation vs. Encode Rate  
TPC 10. tPD vs. Temperature/Supply (VDD = 3 V/5 V)  
46.5  
46.0  
46.5  
46.0  
SNR  
SNR  
45.5  
45.0  
45.5  
45.0  
44.5  
44.0  
SINAD  
44.5  
44.0  
ENCODE = 60MSPS  
43.5  
AIN = 10.3MHz, 0.5dBFS  
SINAD  
43.0  
42.5  
42.0  
41.5  
43.5  
ENCODE = 60MSPS  
AIN = 10.3MHz, 05dBFS  
43.0  
42.5  
5.8  
6.7  
7.5  
8.35  
9.2  
10.0  
10.9  
45  
0
25  
70  
90  
TEMPERATURE –  
C
ENCODE HIGH PULSEWIDTH ns  
TPC 8. SINAD/SNR vs. Temperature  
TPC 11. SINAD/SNR vs. Encode Pulsewidth  
0
1  
2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
3  
ENCODE = 60MSPS  
AIN = 0.5dBFS  
4  
5  
6  
7  
8  
9  
10  
45  
0
25  
70  
90  
1
2
5
10  
20  
50  
100  
200  
500  
TEMPERATURE –  
C
ANALOG FREQUENCY MHz  
TPC 9. ADC Gain vs. Temperature (with External  
2.5 V Reference)  
TPC 12. ADC Frequency Response  
6–  
REV. C  
AD9057  
5V  
THEORY OF OPERATION  
The AD9057 combines Analog Devices’ proprietary MagAmp  
gray code conversion circuitry with flash converter technology  
to provide a high performance, low cost ADC. The design  
architecture ensures low power, high speed, and 8-bit accuracy.  
A single-ended TTL/CMOS compatible ENCODE input controls  
ADC timing for sampling the analog input pin and strobing the  
digital outputs (D7–D0). An internal voltage reference (VREF  
OUT) may be used to control ADC gain and offset or an exter-  
nal reference may be applied.  
REF OUT  
10k  
AD9057  
0.1F  
10k⍀  
REF IN  
5V  
AD8041  
VIN  
(0.5V  
TO +0.5V)  
AIN  
1k⍀  
The analog input signal is buffered at the input of the ADC and  
applied to a high speed track-and-hold. The T/H circuit holds the  
analog input value during the conversion process (beginning with  
the rising edge of the ENCODE command). The T/H’s output  
signal passes through the gray code and flash conversion stages  
to generate coarse and fine digital representations of the held  
analog input level. Decode logic combines the multistage data  
and aligns the 8-bit word for strobed outputs on the rising edge  
of the ENCODE command. The MagAmp/Flash architecture of  
the AD9057 results in three pipeline delays for the output data.  
1k⍀  
Figure 3. DC-Coupled AD9057 (Inverted VIN)  
Voltage Reference  
A stable and accurate 2.5 V voltage reference is built into the  
AD9057 (VREF OUT). The reference output may be used to  
set the ADC gain/offset by connecting VREF OUT to VREF IN.  
The internal reference is capable of providing 300 µA of drive  
current (for dc biasing the analog input or other user circuitry).  
Some applications may require greater accuracy, improved  
temperature performance, or gain adjustments that cannot be  
obtained using the internal reference. An external voltage may  
be applied to the VREF IN with VREF OUT disconnected for  
gain adjustment of up to 10% (the VREF IN pin is internally  
tied directly to the ADC circuitry). ADC gain and offset will  
vary simultaneously with external reference adjustment with a  
1:1 ratio (a 2% or 50 mV adjustment to the 2.5 V reference  
varies ADC gain by 2% and ADC input range center offset by  
50 mV). Theoretical input voltage range versus reference input  
voltage may be calculated from the following equations:  
USING THE AD9057  
Analog Inputs  
The AD9057 provides a single-ended analog input impedance  
of 150 k. The input requires a dc bias current of 6 µA (typical)  
centered near 2.5 V ( 10%). The dc bias may be provided by  
the user or may be derived from the ADC’s internal voltage  
reference. Figure 2 shows a low cost dc bias implementation  
allowing the user to capacitively couple ac signals directly into  
the ADC without additional active circuitry. For best dynamic  
performance, the VREF OUT pin should be decoupled to  
ground with a 0.1 µF capacitor (to minimize modulation of  
the reference voltage) and the bias resistor should be approxi-  
mately 1 k. A 1 kbias resistor ( 20%) is included within  
the AD9057 and may be used to reduce application board size  
and complexity.  
V
RANGE (p-p)  
= VREF IN/2.5  
= VREF IN  
VMIDSCALE  
VTOP-OF-RANGE  
= VREF IN + VRANGE/2  
VBOTTOM-OF-RANGE = VREF IN – VRANGE/2  
Digital Logic (5 V/3 V Systems)  
5V  
The digital inputs and outputs of the AD9057 can easily be  
configured to interface directly with 3 V or 5 V logic systems.  
The ENCODE and power-down (PWRDN) inputs are CMOS  
stages with TTL thresholds of 1.5 V, making the inputs compat-  
ible with TTL, 5 V CMOS, and 3 V CMOS logic families. As  
with all high-speed data converters, the encode signal should be  
clean and jitter free to prevent degradation of ADC dynamic  
performance.  
REF OUT  
REF IN  
0.1F  
1k⍀  
BIAS OUT  
0.1F  
VIN  
(1V p-p)  
AIN  
AD9057  
The AD9057’s digital outputs will also interface directly with  
5 V or 3 V CMOS logic systems. The voltage supply pin (VDD  
for these CMOS stages is isolated from the analog VD voltage  
supply. By varying the voltage on this supply pin the digital  
output HIGH level will change for 5 V or 3 V systems. Optimum  
SNR is obtained running the outputs at 3 V. Care should be  
taken to isolate the VDD supply voltage from the 5 V analog  
supply to minimize digital noise coupling into the ADC.  
)
Figure 2. Capacitively Coupled AD9057  
Figure 3 shows typical connections for high-performance dc  
biasing using the ADC’s internal voltage reference. All compo-  
nents may be powered from a single 5 V supply (in the example,  
analog input signals are referenced to ground).  
REV. C  
7–  
AD9057  
The AD9057 provides high impedance digital output operation  
when the ADC is driven into power-down mode (PWRDN, logic  
HIGH). A 200 ns (minimum) power-down time should be  
provided before a high impedance characteristic is required at  
the outputs. A 200 ns power-up period should be provided to  
ensure accurate ADC output data after reactivation (valid out-  
put data is available three clock cycles after the 200 ns delay).  
full-power analog bandwidth of 2× the maximum sampling rate,  
the ADC provides sufficient pixel to pixel transient settling time  
to ensure accurate 60 MSPS video digitization. Figure 5 shows a  
typical RGB video digitizer implementation for the AD9057.  
8
AD9057  
AD9057  
AD9057  
RED  
Timing  
8
8
GREEN  
The AD9057 is guaranteed to operate with conversion rates from  
5 MSPS to 80 MSPS depending on grade. The ADC is designed  
to operate with an encode duty cycle of 50%, but performance  
is insensitive to moderate variations. Pulsewidth variations of  
up to 10% (allowing the encode signal to meet the minimum/  
maximum HIGH/LOW specifications) will cause no degrada-  
tion in ADC performance (see Figure 1 timing diagram).  
BLUE  
PIXEL CLOCK  
H-SYNC  
PLL  
Power Dissipation  
Figure 5. RGB Video Encoder  
Evaluation Board  
The power dissipation of the AD9057 is specified to reflect a  
typical application setup under the following conditions: analog  
input is –0.5 dBFS at 10.3 MHz, VD is 5 V, VDD is 3 V, and digital  
outputs are loaded with 7 pF typical (10 pF maximum). The  
actual dissipation will vary as these conditions are modified in  
user applications. TPC 7 shows typical power consumption for the  
AD9057 versus ADC encode frequency and VDD supply voltage.  
The AD9057/PCB evaluation board provides an easy-to-use  
analog/digital interface for the 8-bit, 60 MSPS ADC. The board  
includes typical hardware configurations for a variety of high-  
speed digitization evaluations. On-board components include  
the AD9057 (in the 20-lead SSOP package), an optional analog  
input buffer amplifier, a digital output latch, board timing driv-  
ers, an analog reconstruction digital-to-analog converter, and  
configurable jumpers for ac coupling, dc coupling, and power-  
down function testing. The board is configured at shipment for  
dc coupling using the AD9057’s internal voltage reference.  
A power-down function allows users to reduce power dissipation  
when ADC data is not required. A TTL/CMOS HIGH signal  
(PWRDN) shuts down portions of the ADC and brings total  
power dissipation to less than 10 mW. The internal bandgap  
voltage reference remains active during power-down mode to  
minimize ADC reactivation time. If the power-down function is  
not desired, Pin 1 should be tied to ground.  
For dc-coupled analog input applications, amplifier U2 is con-  
figured to operate as a unity gain inverter with adjustable offset  
for the analog input signal. For full-scale ADC drive, the analog  
input signal should be 1 V p-p into 50 (R1) referenced to  
ground (0 V). The amplifier offsets the analog signal by +VREF  
(2.5 V typical) to center the voltage for proper ADC input drive.  
For dc-coupled operation, connect E1 to E2 (analog input to  
R2) and E11 to E12 (amplifier output to analog input of AD9057)  
using the board jumper connectors. DC offset of the analog  
input signal can be modified by adjusting potentiometer R10.  
APPLICATIONS  
The wide analog bandwidth of the AD9057 makes it attractive for  
a variety of high-performance receiver and encoder applications.  
Figure 4 shows two ADCs in a typical low cost I and Q demodula-  
tor implementation for cable, satellite, or wireless LAN modem  
receivers. The excellent dynamic performance of the ADC at  
higher analog input frequencies and encode rates empowers  
users to employ direct IF sampling techniques (refer to TPC 2  
spectral plot). IF sampling eliminates or simplifies analog mixer  
and filter stages to reduce total system cost and power.  
For ac-coupled analog input applications, amplifier U2 is  
removed from the analog signal path. The analog signal is  
coupled into the input of the AD9057 through capacitor C2.  
The ADC pulls analog input bias current from the VREF IN  
voltage through the 1 kresistor internal to the AD9057 (BIAS  
OUT). The analog input signal to the board should be 1 V p-p  
into 50 (R1) for full-scale ADC drive. For ac-coupled operation,  
connect E1 to E3 (analog input A to C2 feedthrough capacitor)  
and E10 to E12 (C2 to the analog input and internal bias resis-  
tor) using the board jumper connectors.  
BPF  
BPF  
AD9057  
AD9057  
IF IN  
90  
The on-board reference voltage may be used to drive the ADC  
or an external reference may be applied. To use the internal  
voltage reference, connect E6 to E5 (VREF OUT to VREF IN).  
To apply an external voltage reference, connect E4 to E5  
(external reference from the REF banana jack to VREF IN).  
The external voltage reference should be 2.5 V 10%.  
VCO  
VCO  
Figure 4. I and Q Digital Receiver  
The high sampling rate and analog bandwidth of the AD9057  
are ideal for computer RGB video digitizer applications. With a  
8–  
REV. C  
AD9057  
The power-down function of the AD9057 can be exercised  
through a board jumper connection. Connect E7 to E9 (5 V to  
PWRDN) for power-down operation. For normal operation,  
connect E8 to E9 (ground to PWRDN).  
oscilloscope or spectrum analyzer. The DAC converts the  
ADC’s digital outputs to an analog signal for examination at  
the DAC OUT connector. The DAC is clocked at the ADC  
ENCODE frequency. The AD9760 is a 10-bit/100 MSPS single  
5 V supply DAC. The reconstruction signal facilitates quick  
system troubleshooting or confirmation of ADC functionality  
without requiring external digital memory, timing, or display  
interfaces. The DAC can be used for limited dynamic testing,  
but customers should note that test results will be based on the  
combined performance of the ADC and DAC (the best ADC  
performance will be recognized by evaluating the digital outputs  
of the ADC directly).  
The encode signal source should be TTL/CMOS compatible  
and capable of driving a 50 termination (R7). The digital  
outputs of the AD9057 are buffered through latches on the  
evaluation board (U3) and are available for the user at connec-  
tor Pins 30–37. Latch timing is derived from the ADC ENCODE  
clock and a digital clocking signal is provided for the board  
user at connector Pins 2 and 21.  
An on-board reconstruction digital-to-analog converter is  
available for quick evaluations of ADC performance using an  
V
D
V
D
ENCODE  
PWRDN  
500⍀  
V
AIN  
REFIN  
Digital Inputs  
Analog Input  
V
, 3V TO 5V  
DD  
V
D
1k⍀  
V
BIAS OUT  
REFIN  
D0D7  
Digital Outputs  
Bias Output  
V
D
V
D
3k⍀  
V
V
REFIN  
REFOUT  
2.5k⍀  
V
Output  
V
Input  
REF  
REF  
Figure 6. Equivalent Circuits  
REV. C  
9–  
AD9057  
E7  
5V  
PWRDN  
E9  
E8  
J6, REF  
GND  
C17  
0.1F  
ANALOG IN  
C37DRPF  
P2  
U2  
E4  
E5  
E6  
AD8041Q  
1
2
3
4
5
R2  
1k⍀  
1
2
3
4
5
20  
19  
18  
17  
16  
1
2
3
4
8
7
6
5
PWRDN  
REF OUT  
REF IN  
GND  
D0  
D1  
D2  
D3  
DIS  
+V  
NC  
(LSB) D0  
D1  
U3  
E2  
R5  
BNC  
J1  
74ACQ574  
S
2k⍀  
E1  
9
8
7
6
5
12  
13  
14  
15  
16  
D2  
D3  
GND  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DA7  
DA6  
DA5  
DA4  
DA3  
DA2  
DA1  
DA0  
8D 8Q  
7D 7Q  
6D 6Q  
5D 5Q  
4D 4Q  
3D 3Q  
2D 2Q  
C1  
0.1F  
R10  
500  
E3  
NC  
GND  
5V  
V  
S
GND  
V
D
6
7
6
7
15  
14  
13  
12  
11  
V
R3  
1k⍀  
DD  
BIAS OUT  
AIN  
R1  
50⍀  
R4  
2k⍀  
V
DD  
D4  
D5  
D6  
D7  
8
9
10  
11  
12  
D4  
D5  
D6  
8
9
R6  
10⍀  
5V  
GND  
4
3
2
17  
18  
19  
V
D
E11  
GND  
ENC  
10  
E12  
E10  
(MSB) D7  
1D 1Q  
CK  
OE  
13  
14  
15  
16  
17  
18  
19  
11  
1
C2  
0.1F  
20  
21  
22  
23  
24  
25  
26  
U4  
BNC  
J3  
74AC00  
DAC  
1
2
AD9760AR  
3
28  
ENCODE  
5V  
C18  
CLK  
(MSB)  
DB9  
27  
DVDD  
24  
R7  
50⍀  
U4  
74AC00  
5V  
5V  
1
2
3
0.1F  
DA7  
DA6  
DA5  
AVDD  
4
5
27  
28  
29  
6
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
23  
19  
COMP2  
COMP1  
4
DA4  
5
C19  
0.1F  
U4  
74AC00  
30  
31  
32  
33  
34  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
DA3  
DA2  
DA1  
DA0  
GND  
GND  
18  
12  
13  
6
7
FSADJ  
11  
8
17  
REFIO  
16  
R9  
2k⍀  
8
9
U4  
74AC00  
REFLO  
35  
36  
37  
10  
15  
9
SLEEP  
10  
C13  
0.1F  
(LSB)  
IOUT  
A
B
21  
BNC  
J2  
22  
ANALOG  
RECONSTRUCT  
DAC OUT  
PWRDN  
V
J7, V  
DD  
DD  
R8  
50⍀  
R11  
50⍀  
+
C11  
10F  
C10  
0.1F  
J4, GND  
J5, 5V  
C7  
0.1F  
C8  
0.1F  
C14  
0.1F  
+
C5  
0.1F  
C9  
0.1F  
C12  
10F  
C3  
0.1F  
C4  
0.1F  
DECOUPLING CAPS  
Figure 7. Evaluation Board Schematic  
10–  
REV. C  
AD9057  
Figure 8. Evaluation Board Layout  
REV. C  
11–  
AD9057  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
20-Lead SSOP  
(RS-20)  
0.295 (7.50)  
0.271 (6.90)  
20  
11  
1
10  
0.07 (1.78)  
0.066 (1.67)  
0.078 (1.98)  
0.068 (1.73)  
PIN 1  
0.037 (0.94)  
0.022 (0.559)  
8؇  
0؇  
0.0256  
(0.65)  
BSC  
0.008 (0.203)  
0.002 (0.050)  
SEATING  
PLANE  
0.009 (0.229)  
0.005 (0.127)  
Revision History  
Location  
Page  
Data Sheet changed from REV. B to REV. C.  
Edit to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
12–  
REV. C  

相关型号:

AD9057/PCB

8-Bit 40 MSPS/60 MSPS/80 MSPS A/D Converter
ADI

AD9057BRS

Analog-to-Digital Converter, 8-Bit
ETC

AD9057BRS-40

8-Bit 40 MSPS/50 MSPS/80 MSPS Converter
ADI

AD9057BRS-60

8-Bit 40 MSPS/60 MSPS/80 MSPS A/D Converter
ADI

AD9057BRS-80

8-Bit 40 MSPS/50 MSPS/80 MSPS Converter
ADI

AD9057BRS-RL40

IC 1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PDSO20, PLASTIC, SSOP-20, Analog to Digital Converter
ADI

AD9057BRS-RL40

1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PDSO20, PLASTIC, SSOP-20
ROCHESTER

AD9057BRSZ-40

8-Bit 40 MSPS/60 MSPS/80 MSPS A/D Converter
ADI

AD9057BRSZ-60

8-Bit 40 MSPS/60 MSPS/80 MSPS A/D Converter
ADI

AD9057BRSZ-60

1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PDSO20, MO-150AE, SSOP-20
ROCHESTER

AD9057BRSZ-80

8-Bit 40 MSPS/60 MSPS/80 MSPS A/D Converter
ADI

AD9057BRSZ-RL40

8-Bit, 40/60/80 MSPS A/D Converter
ADI