AD9215BRUZRL7-105 [ADI]

10-Bit, 65/80/105 MSPS, 3 V A/D Converter; 10位, 65/80/105 MSPS , 3 V A / D转换器
AD9215BRUZRL7-105
型号: AD9215BRUZRL7-105
厂家: ADI    ADI
描述:

10-Bit, 65/80/105 MSPS, 3 V A/D Converter
10位, 65/80/105 MSPS , 3 V A / D转换器

转换器
文件: 总36页 (文件大小:962K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 65/80/105 MSPS,  
3 V A/D Converter  
Data Sheet  
AD9215  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
DRVDD  
Single 3 V supply operation (2.7 V to 3.3 V)  
SNR = 58 dBc (to Nyquist)  
SFDR = 77 dBc (to Nyquist)  
VIN+  
VIN–  
PIPELINE  
ADC CORE  
SHA  
Low power ADC core: 96 mW at 65 MSPS, 104 mW  
@ 80 MSPS, 120 mW at 105 MSPS  
Differential input with 300 MHz bandwidth  
On-chip reference and sample-and-hold amplifier  
DNL = 0.25 LSB  
REFT  
REFB  
AD9215  
CORRECTION LOGIC  
10  
OR  
OUTPUT BUFFERS  
Flexible analog input: 1 V p-p to 2 V p-p range  
Offset binary or twos complement data format  
Clock duty cycle stabilizer  
D9 (MSB)  
D0  
VREF  
CLOCK  
MODE  
SELECT  
DUTY CYCLE  
STABLIZER  
APPLICATIONS  
SENSE  
REF  
SELECT  
Ultrasound equipment  
0.5V  
IF sampling in communications receivers  
Battery-powered instruments  
Hand-held scopemeters  
AGND  
CLK  
PDWN  
MODE DGND  
Figure 1.  
Low cost digital oscilloscopes  
PRODUCT DESCRIPTION  
The AD9215 is a family of monolithic, single 3 V supply, 10-bit,  
65/80/105 MSPS analog-to-digital converters (ADC). This family  
features a high performance sample-and-hold amplifier (SHA)  
and voltage reference. The AD9215 uses a multistage differential  
pipelined architecture with output error correction logic to pro-  
vide 10-bit accuracy at 105 MSPS data rates and to guarantee no  
missing codes over the full operating temperature range.  
Fabricated on an advanced CMOS process, the AD9215 is avail-  
able in both a 28-lead surface-mount plastic package and a  
32-lead chip scale package and is specified over the industrial  
temperature range of −40°C to +85°C.  
PRODUCT HIGHLIGHTS  
1. The AD9215 operates from a single 3 V power supply and  
features a separate digital output driver supply to accom-  
modate 2.5 V and 3.3 V logic families.  
2. Operating at 105 MSPS, the AD9215 core ADC consumes  
a low 120 mW; at 80 MSPS, the power dissipation is 104  
mW; and at 65 MSPS, the power dissipation is 96 mW.  
3. The patented SHA input maintains excellent performance  
for input frequencies up to 200 MHz and can be config-  
ured for single-ended or differential operation.  
4. The AD9215 is part of several pin compatible 10-, 12-, and  
14-bit low power ADCs. This allows a simplified upgrade  
from 10 bits to 12 bits for systems up to 80 MSPS.  
The wide bandwidth, truly differential sample-and-hold ampli-  
fier (SHA) allows for a variety of user-selectable input ranges  
and offsets including single-ended applications. It is suitable for  
multiplexed systems that switch full-scale voltage levels in  
successive channels and for sampling single-channel inputs at  
frequencies well beyond the Nyquist rate. Combined with pow-  
er and cost savings over previously available ADCs, the AD9215  
is suitable for applications in communications, imaging, and  
medical ultrasound.  
A single-ended clock input is used to control all internal conversion  
cycles. A duty cycle stabilizer compensates for wide variations in the  
clock duty cycle while maintaining excellent performance. The digital  
output data is presented in straight binary or twos complement for-  
mats. An out-of-range signal indicates an overflow condition, which  
can be used with the MSB to determine low or high overflow.  
5. The clock duty cycle stabilizer maintains converter per-  
formance over a wide range of clock pulse widths.  
6. The out of range (OR) output bit indicates when the signal  
is beyond the selected input range.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no re-  
sponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights ofthird parties that may result fromits use. Specifications subject to change without notice. No  
licenseis granted byimplication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2003–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
AD9215  
Data Sheet  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
REVISION HISTORY  
Absolute Maximum Ratings1 .......................................................... 6  
Explanation of Test Levels........................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Equivalent Circuits....................................................................... 8  
Definitions of Specifications ....................................................... 8  
Typical Performance Characteristics ........................................... 10  
Applying the AD9215 Theory of Operation............................... 14  
Clock Input and Considerations .............................................. 15  
Evaluation Board ........................................................................ 18  
Outline Dimensions ....................................................................... 33  
Ordering Guide........................................................................... 34  
2/13—Data Sheet Changed from a REV. A to a REV. B  
Changes to Figure 4 and Added EPAD Note to Pin Configura-  
tions and Function Descriptions Section..................................... 7  
Changes to Voltage Reference Section........................................ 17  
Changes to Evaluation Board Section......................................... 18  
Updated Outline Dimensions...................................................... 33  
Changes to Ordering Guide......................................................... 34  
2/04—Data Sheet Changed from a REV. 0 to a REV. A  
Renumbered Figures and Tables ..............................UNIVERSAL  
Changes to Product Title................................................................ 1  
Changes to Features ........................................................................ 1  
Changes to Product Description ................................................... 1  
Changes to Product Highlights ..................................................... 1  
Changes to Specifications............................................................... 2  
Changes to Figure 2......................................................................... 4  
Changes to Figures 9 to 11 ........................................................... 10  
Added Figure 14 ............................................................................ 10  
Added Figures 16 and 18.............................................................. 11  
Changes to Figures 21 to 24 and 25 to 26................................... 12  
Deleted Figure 25........................................................................... 12  
Changes to Figures 28 and 29 ...................................................... 13  
Changes to Figure 31..................................................................... 14  
Changes t0 Figure 35..................................................................... 16  
Changes to Figures 50 through 58............................................... 26  
Added Table 11 .............................................................................. 31  
Updated Outline Dimensions...................................................... 32  
Changes to Ordering Guide......................................................... 33  
5/03—Revision 0: Initial Version  
Rev. B | Page 2 of 36  
Data Sheet  
AD9215  
SPECIFICATIONS  
AVDD = 3 V, DRVDD = 2.5 V, specified maximum conversion rate, 2 V p-p differential input, 1.0 V internal reference, unless otherwise  
noted.  
Table 1. DC Specifications  
AD9215BRU-65/  
AD9215BCP-65  
AD9215BRU-80/  
AD9215BCP-80  
AD9215BRU-105/  
AD9215BCP-105  
Test  
Temp Level Min Typ  
Parameter  
Max Min Typ  
Max Min  
Typ  
Max  
Unit  
RESOLUTION  
Full  
VI  
10  
10  
10  
Bits  
ACCURACY  
No Missing Codes  
Offset Error1  
Full  
Full  
Full  
Full  
Full  
VI  
VI  
VI  
VI  
VI  
Guaranteed  
0.3  
Guaranteed  
0.3  
Guaranteed  
0.3  
+1.5  
2.0  
2.0  
2.0  
+4.0  
+1.2  
1.2  
% FSR  
% FSR  
LSB  
Gain Error1  
0
−1.0  
+1.5  
0.5  
0.5  
+4.0  
+1.0  
1.2  
+1.5  
+4.0  
Differential Nonlinearity (DNL)2  
Integral Nonlinearity (INL)2  
TEMPERATURE DRIFT  
Offset Error1  
−1.0  
0.5  
0.5  
+1.0  
−1.0  
0.6  
0.65  
1.2  
LSB  
Full  
Full  
Full  
V
V
V
+15  
+30  
230  
+15  
+30  
230  
+15  
+30  
230  
ppm/°C  
ppm/°C  
ppm/°C  
Gain Error1  
Reference Voltage (1 V Mode)  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error (1 V Mode)  
Load Regulation @ 1.0 mA  
Output Voltage Error (0.5 V Mode)  
Load Regulation @ 0.5 mA  
INPUT REFERRED NOISE  
VREF = 0.5 V  
Full  
Full  
Full  
Full  
VI  
V
V
2
0.2  
1
35  
2
0.2  
1
35  
2
0.2  
1
35  
mV  
mV  
mV  
mV  
V
0.2  
0.2  
0.2  
25°C  
25°C  
V
V
0.8  
0.4  
0.8  
0.4  
0.8  
0.4  
LSB rms  
LSB rms  
VREF = 1.0 V  
ANALOG INPUT  
Input Span, VREF = 0.5 V  
Input Span, VREF = 1.0 V  
Input Capacitance3  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Full  
Full  
Full  
Full  
IV  
IV  
V
1
2
2
7
1
2
2
7
1
2
2
7
V p-p  
V p-p  
pF  
V
kΩ  
Supply Voltage  
AVDD  
DRVDD  
Full  
Full  
IV  
IV  
2.7  
2.25 2.5  
3.0  
3.3  
3.6  
2.7  
2.25 2.5  
3.0  
3.3  
3.6  
2.7  
2.25  
3.0  
2.5  
3.3  
3.6  
V
V
Supply Current  
2
IAVDD  
Full  
25°C  
Full  
VI  
V
V
32  
7.0  
0.1  
35  
34.5  
8.6  
0.1  
39  
40  
11.3  
0.1  
44  
mA  
mA  
% FSR  
2
IDRVDD  
PSRR  
POWER CONSUMPTION  
Sine Wave Input2  
2
IAVDD  
Full  
25°C  
25°C  
VI  
V
V
96  
18  
1.0  
104  
20  
1.0  
120  
25  
1.0  
mW  
mW  
mW  
2
IDRVDD  
Standby Power4  
1 With a 1.0 V internal reference.  
2 Measured at fIN = 2.4 MHz, full-scale sine wave, with approximately 5 pF loading on each output bit.  
3 Input capacitance refers to the effective capacitance between one differential input pin and AGND. Refer to Figure 5 for the equivalent analog input structure.  
4 Standby power is measured with a dc input, the CLK pin inactive (i.e., set to AVDD or AGND).  
Rev. B | Page 3 of 36  
 
 
 
 
 
 
AD9215  
Data Sheet  
AVDD = 3 V, DRVDD = 2.5 V, specified maximum conversion rate, 2 V p-p differential input, 1.0 V internal reference,  
AIN = −0.5 dBFS, MODE = AVDD/3 (duty cycle stabilizer [DCS] enabled), unless otherwise noted.  
Table 2. AC Specifications  
AD9215BRU-65/  
AD9215BCP-65  
AD9215BRU-80/  
AD9215BCP-80  
AD9215BRU-105/  
AD9215BCP-105  
Test  
Temp Level  
Parameter  
Min Typ Max Min Typ Max Min Typ Max Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 2.4 MHz  
Full  
25°C  
Full  
25°C  
25°C  
25°C  
VI  
I
VI  
I
V
V
56.0 58.5  
57.0 59.0  
56.0 58.0  
56.5 58.5  
56.0 58.5  
57.0 59.0  
56.0 58.0  
56.5 58.5  
58.0  
57.5  
56.6 58.5  
57.5  
56.4 58.0  
57.8  
dB  
dB  
dB  
dB  
dB  
dB  
fIN = Nyquist1  
fIN = 70 MHz  
fIN = 100 MHz  
57.5  
57.7  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
fIN = 2.4 MHz  
Full  
25°C  
Full  
25°C  
25°C  
25°C  
VI  
I
VI  
I
V
V
55.8 58.5  
56.5 59.0  
55.8 58.0  
56.3 58.5  
55.7 58.5  
56.8 58.5  
55.5 58.0  
56.3 58.5  
56.0  
57.6  
56.5 58.2  
57.3  
56.1 57.8  
57.7  
dB  
dB  
dB  
dB  
dB  
dB  
fIN = Nyquist1  
fIN = 70 MHz  
fIN = 100 MHz  
55.5  
57.4  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 2.4 MHz  
Full  
25°C  
Full  
25°C  
25°C  
25°C  
VI  
I
VI  
I
V
V
9.1  
9.2  
9.1  
9.1  
9.5  
9.6  
9.4  
9.5  
9.0  
9.3  
9.0  
9.0  
9.5  
9.5  
9.4  
9.5  
9.1  
9.0  
9.3  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
9.2  
9.1  
9.5  
9.4  
9.4  
9.4  
9.3  
fIN = Nyquist1  
fIN = 70 MHz  
fIN = 100 MHz  
WORST HARMONIC (Second or Third)  
fIN = 2.4 MHz  
Full  
25°C  
Full  
25°C  
25°C  
25°C  
VI  
I
VI  
I
V
V
−78 −64  
−80 −65  
−77 −64  
−78 −65  
−78 −64  
−80 −65  
−76 −63  
−78 −65  
−70  
−78  
dBc  
−84 −70 dBc  
−74 dBc  
−75 −61 dBc  
−75  
−74  
fIN = Nyquist1  
fIN = 70 MHz  
fIN = 100 MHz  
dBc  
dBc  
−70  
WORST OTHER (Excluding Second or Third)  
fIN = 2.4 MHz  
Full  
25°C  
Full  
25°C  
25°C  
25°C  
VI  
I
VI  
I
V
V
−77 −67  
−78 −68  
−77 −67  
−78 −68  
−77 −66  
−77 −68  
−77 −66  
−77 −68  
−80  
−73  
dBc  
−75 −66 dBc  
−71 dBc  
−75 −63 dBc  
-75  
−75  
fIN = Nyquist1  
fIN = 70 MHz  
fIN = 100 MHz  
dBc  
dBc  
−80  
TWO-TONE SFDR (AIN = –7 dBFS)  
fIN1 = 70.3 MHz, fIN2 = 71.3 MHz  
fIN1 = 100.3 MHz, fIN2 = 101.3 MHz  
ANALOG BANDWIDTH  
25°C  
25°C  
25°C  
V
V
V
75  
74  
75  
74  
dBc  
dBc  
MHz  
300  
300  
300  
1 Tested at fIN = 35 MHz for AD9215-65; fIN = 39 MHz for AD9215-80; and fIN = 50 MHz for AD9215-105.  
Rev. B | Page 4 of 36  
 
Data Sheet  
AD9215  
Table 3. Digital Specifications  
AD9215BRU-65/  
AD9215BCP-65  
AD9215BRU-80/  
AD9215BCP-80  
AD9215BRU-105/  
AD9215BCP-105  
Test  
Temp Level Min  
Parameter  
Typ Max Min  
2.0  
Typ  
Max  
Min  
Typ Max  
Unit  
LOGIC INPUTS (CLK, PDWN)  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
Full  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
V
2.0  
2.0  
V
V
µA  
µA  
pF  
0.8  
0.8  
+10  
+10  
0.8  
+10  
+10  
2
−650  
−70  
+10 −650  
+10 −70  
−650  
−70  
2
2
LOGIC OUTPUTS1  
DRVDD = 2.5 V  
High Level Output Voltage  
Low Level Output Voltage  
Full  
Full  
IV  
IV  
2.45  
2.45  
0.05  
2.45  
V
V
0.05  
0.05  
1 Output voltage levels measured with a 5 pF load on each output.  
Table 4. Switching Specifications  
AD9215BRU-65/  
AD9215BCP-65  
AD9215BRU-80/  
AD9215BCP-80  
AD9215BRU-105/  
AD9215BCP-105  
Test  
Temp Level  
Unit  
Parameter  
Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max  
CLOCK INPUT PARAMETERS  
Maximum Conversion Rate  
Minimum Conversion Rate  
CLOCK Period  
Full  
Full  
Full  
VI  
V
V
65  
80  
105  
MSPS  
MSPS  
ns  
5
5
5
15.4  
2.5  
12.5  
2.5  
9.5  
DATA OUTPUT PARAMETERS  
Output Delay1 (tOD  
)
Full  
Full  
25°C  
25°C  
25°C  
25°C  
VI  
V
V
V
V
V
4.8  
5
2.4  
0.5  
7
6.5  
4.8  
5
2.4  
0.5  
7
6.5  
2.5  
4.8  
5
2.4  
0.5  
7
6.5  
ns  
Cycles  
ns  
ps rms  
ms  
Pipeline Delay (Latency)  
Aperture Delay  
Aperture Uncertainty (Jitter)  
Wake-Up Time2  
OUT-OF-RANGE RECOVERY TIME  
1
1
1
Cycles  
N+1  
N
N+2  
N+8  
N–1  
N+3  
tA  
ANALOG  
INPUT  
N+7  
N+4  
N+6  
N+5  
CLK  
DATA  
OUT  
N–7  
N–6  
N–5  
N–4  
N–3  
N–2  
N–1  
N
N+1  
N+2  
t
PD  
Figure 2. Timing Diagram  
1 Output delay is measured from CLK 50% transition to DATA 50% transition, with 5 pF load on each output.  
2 Wake-up time is dependent on the value of decoupling capacitors; typical values shown with 0.1 µF and 10 µF capacitors on REFT and REFB.  
Rev. B | Page 5 of 36  
 
 
 
AD9215  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS1  
Table 5.  
EXPLANATION OF TEST LEVELS  
With  
Test Level  
Mnemonic  
ELECTRICAL  
AVDD  
DRVDD  
AGND  
Respect to Min Max  
Unit  
I
100% production tested.  
AGND  
DRGND  
DRGND  
DRVDD  
DRGND  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
−0.3 +3.9  
−0.3 +3.9  
−0.3 +0.3  
−3.9 +3.9  
−0.3 DRVDD + 0.3  
−0.3 AVDD + 0.3  
−0.3 AVDD + 0.3  
−0.3 AVDD + 0.3  
−0.3 AVDD + 0.3  
−0.3 AVDD + 0.3  
−0.3 AVDD + 0.3  
V
V
V
V
V
V
V
V
V
V
V
II  
100% production tested at 25°C and sample tested at spec-  
ified temperatures.  
AVDD  
III Sample tested only.  
Digital Outputs  
CLK, MODE  
VIN+, VIN−  
VREF  
SENSE  
REFB, REFT  
PDWN  
IV Parameter is guaranteed by design and characterization  
testing.  
V
Parameter is a typical value only.  
VI 100% production tested at 25°C; guaranteed by design and  
characterization testing for industrial temperature range;  
100% production tested at temperature extremes for mili-  
tary devices.  
ENVIRONMENTAL2  
Operating Temperature  
Junction Temperature  
Lead Temperature (10 sec)  
Storage Temperature  
−40  
+85  
150  
°C  
°C  
°C  
°C  
300  
−65  
+150  
NOTES  
1Absolute maximum ratings are limiting values to be applied individually, and  
beyond which the serviceability of the circuit may be impaired. Functional  
operability is not necessarily implied. Exposure to absolute maximum rating  
conditions for an extended period of time may affect device reliability.  
2Typical thermal impedances 28-lead TSSOP: θJA = 67.7°C/W, 32-lead LFCSP:  
θJA = 32.7°C/W; heat sink soldered down to ground plane.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page 6 of 36  
 
 
 
 
Data Sheet  
AD9215  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
OR  
MODE  
SENSE  
VREF  
REFB  
REFT  
AVDD  
AGND  
VIN+  
D9 (MSB)  
D8  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
DNC  
CLK  
DNC  
PDWN  
DNC  
DNC  
1
2
3
4
5
6
7
8
24 VREF  
23 SENSE  
22 MODE  
21 OR  
20 D9 (MSB)  
19 D8  
D7  
D6  
AD9215  
TOP VIEW  
(Not to Scale)  
DRVDD  
23 DRGND  
22  
AD9215  
DNC  
DNC  
18 D7  
17 D6  
TOP VIEW  
D5  
(Not to Scale)  
21 D4  
20 D3  
VIN– 10  
AGND 11  
AVDD 12  
D2  
19  
18  
17  
16  
15  
D1  
NOTES  
1. DNC = DO NOT CONNECT.  
D0 (LSB)  
DNC  
DNC  
2. IT IS RECOMMENDED THAT THE EXPOSED PAD BE SOLDERED  
TO THE GROUND PLANE FOR THE LFCSP PACKAGE. THERE IS  
AN INCREASED RELIABILITY OF THE SOLDER JOINTS, AND  
THE MAXIMUM THERMAL CAPABILITY OF THE PACKAGE IS  
ACHIEVED WITH THE EXPOSED PAD SOLDERED TO THE  
CUSTOMER BOARD.  
13  
14  
CLK  
PDWN  
DNC = DO NOT CONNECT  
Figure 4. LFCSP (CP-32-7)  
Figure 3. TSSOP (RU-28)  
Table 6. Pin Function Descriptions  
TSSOP Pin No.  
LFCSP Pin No. Mnemonic Description  
1
21  
OR  
Out-of-Range Indicator.  
2
3
4
5
22  
23  
24  
25  
26  
27, 32  
28, 31  
29  
MODE  
SENSE  
VREF  
REFB  
REFT  
AVDD  
AGND  
VIN+  
VIN−  
CLK  
Data Format and Clock Duty Cycle Stabilizer (DCS) Mode Selection.  
Reference Mode Selection.  
Voltage Reference Input/Output.  
Differential Reference (Negative).  
Differential Reference (Positive).  
Analog Power Supply.  
Analog Ground.  
Analog Input Pin (+).  
Analog Input Pin (−).  
Clock Input Pin.  
6
7, 12  
8, 11  
9
10  
13  
30  
2
14  
15 to 16  
17 to 22,  
25 to 28  
4
PDWN  
DNC  
D0 (LSB) to  
D9 (MSB)  
Power-Down Function Selection (Active High).  
Do not connect, recommend floating this pin.  
Data Output Bits.  
1, 3, 5 to 8  
9 to 14,  
17 to 20  
23  
24  
15  
16  
DRGND  
DRVDD  
Digital Output Ground.  
Digital Output Driver Supply. Must be decoupled to DRGND with a  
minimum 0.1 μF capacitor. Recommended decoupling is 0.1 μF in parallel with 10 μF.  
N/A  
33  
EP  
Exposed Pad. It is recommended that the exposed pad be soldered to the ground plane  
for the LFCSP package. There is an increased reliability of the solder joints, and the  
maximum thermal capability of the package is achieved with the exposed pad soldered  
to the customer board.  
Rev. B | Page 7 of 36  
 
AD9215  
Data Sheet  
EQUIVALENT CIRCUITS  
AVDD  
no missing codes to 10-bit resolution indicate that all 1024  
codes, respectively, must be present over all operating ranges.  
Effective Number of Bits (ENOB)  
MODE  
For a sine wave, SINAD can be expressed in terms of the num-  
ber of bits. Using the following formula, it is possible to obtain a  
measure of performance expressed as N, the effective number of  
bits  
Figure 5. Equivalent Analog Input Circuit  
AVDD  
N = (SINAD – 1.76)/6.02  
Thus, the effective number of bits for a device for sine wave  
inputs at a given input frequency can be calculated directly  
from its measured SINAD.  
MODE  
20k  
Gain Error  
Figure 6. Equivalent MODE Input Circuit  
The first code transition should occur at an analog value 1/2  
LSB above negative full scale. The last transition should occur at  
an analog value 1 1/2 LSB below the positive full scale. Gain  
error is the deviation of the actual difference between the first  
and last code transitions and the ideal difference between the  
first and last code transitions.  
DRVDD  
D9–D0,  
OR  
Integral Nonlinearity (INL)  
Figure 7. Equivalent Digital Output Circuit  
INL refers to the deviation of each individual code from a line  
drawn from “negative full scale” through “positive full scale.”  
The point used as negative full scale occurs 1/2 LSB before the  
first code transition. Positive full scale is defined as a level 1 1/2  
LSB beyond the last code transition. The deviation is measured  
from the middle of each particular code to the true straight line.  
AVDD  
2.6k  
CLK  
2.6kΩ  
Maximum Conversion Rate  
The clock rate at which parametric testing is performed.  
Minimum Conversion Rate  
Figure 8. Equivalent Digital Input Circuit  
The clock rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed  
limit.  
DEFINITIONS OF SPECIFICATIONS  
Aperture Delay  
Aperture delay is a measure of the sample-and-hold amplifier  
(SHA) performance and is measured from the rising edge of the  
clock input to when the input signal is held for conversion.  
Offset Error  
The major carry transition should occur for an analog value 1/2  
LSB below VIN+ = VIN−. Zero error is defined as the deviation  
of the actual transition from that point.  
Aperture Jitter  
Aperture jitter is the variation in aperture delay for successive  
samples and can be manifested as frequency-dependent noise  
on the input to the ADC.  
Out-of-Range Recovery Time  
Out-of-range recovery time is the time it takes for the ADC to  
reacquire the analog input after a transient from 10% above  
positive full scale to 10% above negative full scale, or from 10%  
below negative full scale to 10% below positive full scale.  
Clock Pulse Width and Duty Cycle  
Pulse width high is the minimum amount of time that the clock  
pulse should be left in the Logic 1 state to achieve rated perfor-  
mance. Pulse width low is the minimum time the clock pulse  
should be left in the low state. At a given clock rate, these speci-  
fications define an acceptable clock duty cycle.  
Output Propagation Delay  
The delay between the clock logic threshold and the time when  
all bits are within valid logic levels.  
Power Supply Rejection  
Differential Nonlinearity (DNL, No Missing Codes)  
The specification shows the maximum change in full scale from  
the value with the supply at the minimum limit to the value  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Guaranteed  
Rev. B | Page 8 of 36  
 
 
 
Data Sheet  
AD9215  
with the supply at its maximum limit.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the difference in dB between the rms amplitude of the  
input signal and the peak spurious signal.  
Signal-to-Noise and Distortion (SINAD) Ratio  
SINAD is the ratio of the rms value of the measured input sig-  
nal to the rms sum of all other spectral components below the  
Nyquist frequency, including harmonics but excluding dc. The  
value for SINAD is expressed in decibels.  
Temperature Drift  
The temperature drift for zero error and gain error specifies the  
maximum change from the initial (25°C) value to the value at  
T
MIN or TMAX.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the measured input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, excluding the first six harmonics and dc. The value  
for SNR is expressed in decibels.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first six harmonic com-  
ponents to the rms value of the measured input signal and is  
expressed as a percentage or in decibels.  
Two-Tone SFDR  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product. It may be reported in dBc  
(i.e., degrades as signal levels are lowered) or in dBFS (always  
related back to converter full scale).  
Rev. B | Page 9 of 36  
AD9215  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 3.0 V, DRVDD = 2.5 V with DCS enabled, TA = 25°C, 2 V differential input, AIN = −0.5 dBFS, VREF = 1.0 V, unless  
otherwise noted.  
0
80  
75  
70  
65  
60  
55  
50  
2V p-p SFDR (dBc)  
AIN = –0.5dBFS  
A
= –0.5dBFS  
IN  
SNR = 58.0  
ENOB = 9.4 BITS  
SFDR = 75.5dB  
–20  
–40  
1V p-p SFDR (dBc)  
–60  
2V p-p SNR (dB)  
–80  
–100  
–120  
1V p-p SNR (dB)  
0
6.56  
13.13 19.69 26.25 32.81 39.38 45.94 52.50  
FREQUENCY (MHz)  
5
15  
25  
35  
45  
55  
65  
75  
85  
ENCODE (MSPS)  
Figure 12. AD9215-80 SNR/SFDR vs. fSAMPLE, fIN = 10.3 MHz  
Figure 9. Single-Tone 32k FFT with fIN = 10.3 MHZ, fSAMPLE = 105 MSPS  
80  
75  
70  
65  
0
AIN = –0.5dBFS  
2V p-p SFDR (dBc)  
A
= –0.5dBFS  
IN  
SNR = 57.8  
ENOB = 9.4 BITS  
SFDR = 75.0dB  
–20  
–40  
1V p-p SFDR (dBc)  
–60  
60  
55  
50  
2V p-p SNR (dB)  
1V p-p SNR (dB)  
–80  
–100  
–120  
5
15  
25  
35  
45  
55  
65  
0
6.56  
13.13 19.69 26.25 32.81 39.38 45.94 52.50  
FREQUENCY (MHz)  
ENCODE (MSPS)  
Figure 10. Single-Tone 32k FFT with fIN = 70.3 MHz, fSAMPLE = 105 MSPS  
Figure 13. AD9215-65 SNR/SFDR vs. fSAMPLE, fIN = 10.3 MHz  
85  
0
A
= –0.5dBFS  
2V p-p SFDR  
IN  
SNR = 57.7  
ENOB = 9.3 BITS  
SFDR = 75dB  
–20  
–40  
80  
75  
70  
65  
60  
55  
–60  
–80  
–100  
–120  
2V p-p SNR  
60  
0
6.56  
13.13 19.69 26.25 32.81 39.38 45.94 52.50  
FREQUENCY (MHz)  
0
20  
40  
80  
100  
fSAMPLE (MSPS)  
Figure 11. Single-Tone 32k FFT with fIN = 100.3 MHz, fSAMPLE = 105 MSPS  
Figure 14. AD9215-105 SNR/SFDR vs. fSAMPLE, fIN = 10.3 MHz  
Rev. B | Page 10 of 36  
 
Data Sheet  
AD9215  
80  
70  
60  
80  
75  
70  
65  
60  
55  
50  
SFDR  
80dB REFERENCE LINE  
1V p-p SFDR (dBc)  
50  
40  
2V p-p SNR (dB)  
1V p-p SNR (dB)  
2V p-p SFDR (dBc)  
30  
20  
SNR  
10  
0
0
50  
100  
150  
200  
250  
300  
–50 –45 –40 –35 –30 –25 –20 –15 –10  
–5  
0
FREQUENCY (MHz)  
ANALOG INPUT LEVEL  
Figure 15. AD9215-80 SNR/SFDR vs.  
Analog Input Drive Level, fSAMPLE = 80 MSPS, fIN = 39.1 MHz  
Figure 18. AD9215-105 SNR/SFDR vs.  
fIN, AIN = −0.5 dBFS, fSAMPLE = 105 MSPS  
85  
80  
80  
75  
70  
65  
60  
55  
70  
60  
50  
40  
30  
20  
10  
0
2 SFDR dBc  
2V p-p SFDR (dBc)  
2V p-p SNR (dB)  
–70dBFS  
REFERENCE LINE  
1V p-p SFDR (dBc)  
1V p-p SNR  
50  
2V p-p  
SNR  
0
50  
100  
150  
200  
250  
300  
fIN (MHz)  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
ANALOG INPUT LEVEL (–dBFS)  
Figure 19. AD9215-80 SNR/SFDR vs.  
fIN, AIN = −0.5 dBFS, fSAMPLE = 80 MSPS  
Figure 16. AD9215-105 SNR/SFDR vs.  
Analog Input Drive Level, fSAMPLE = 105 MSPS, fIN = 50.3 MHz  
80  
80  
1V p-p SFDR (dBc)  
70  
75  
70  
60  
50  
2V p-p SFDR (dBc)  
80dB REFERENCE LINE  
2V p-p SNR (dB)  
40  
65  
60  
55  
50  
30  
20  
1V p-p SNR (dB)  
2V p-p SFDR (dBc)  
2V p-p SNR (dB)  
10  
0
–50 –45 –40 –35 –30 –25 –20 –15 –10  
–5  
0
0
50  
100  
150  
200  
250  
300  
ANALOG INPUT LEVEL  
ANALOG INPUT (MHz)  
Figure 17. AD9215-65 SNR/SFDR vs.  
Analog Input Drive Level, fSAMPLE = 65 MSPS, fIN = 30.3 MHz  
Figure 20. AD9215-65 SNR/SFDR vs.  
fIN, AIN = −0.5 dBFS, fSAMPLE = 65 MSPS  
Rev. B | Page 11 of 36  
AD9215  
Data Sheet  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
A
, A  
= –7dBFS  
IN1  
IN2  
SFDR = 74dBc  
–20  
SFDR  
–40  
–60  
80dBFS REFERENCE LINE  
–80  
–100  
–120  
0
13.125  
26.250  
39.375  
52.500  
52.500  
–5  
–60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5  
(dBFS)  
FREQUENCY (MHz)  
A
IN  
Figure 21. Two-Tone 32k FFT with fIN1 = 70.1 MHz,  
and fIN2 = 71.1 MHz, fSAMPLE = 105 MSPS  
Figure 24. AD9215-80 Two-Tone SFDR vs. AIN, fIN1 = 100.3 MHz, and fIN2  
101.3 MHz, fSAMPLE = 105 MSPS  
=
0
–20  
80  
A
, A  
= –7dBFS  
IN1  
IN2  
SFDR = 74dBc  
SFDR DCS ON  
75  
70  
SFDR DCS OFF  
–40  
65  
SNR DCS ON  
60  
55  
50  
–60  
–80  
45  
SNR DCS OFF  
–100  
40  
35  
30  
–120  
0
13.125  
26.250  
FREQUENCY (MHz)  
39.375  
20  
30  
40  
50  
60  
70  
80  
CLOCK DUTY CYCLE HIGH (%)  
Figure 22. Two-Tone 32k FFT with fIN1 = 100.3 MHz,  
and fIN2 = 101.3 MHz, fSAMPLE = 105 MSPS  
Figure 25. SINAD, SFDR vs.  
Clock Duty Cycle, fSAMPLE = 105 MSPS, fIN = 50.3 MH  
80  
70  
60  
50  
40  
30  
20  
10  
80  
2V p-p SFDR (dBc)  
75  
70  
65  
60  
55  
50  
SFDR  
1V p-p SFDR (dBc)  
80dBFS REFERENCE LINE  
2V p-p SINAD  
1V p-p SINAD  
0
–65  
–55  
–45  
–35  
–25  
–15  
–40  
–20  
0
20  
40  
60  
80  
AIN1, AIN2 (dBFS)  
TEMPERATURE (C)  
Figure 23. AD9215-105 Two-Tone SFDR vs. AIN,  
IN1 = 70.1 MHz, and fIN2 = 71.1 MHz, fSAMPLE = 105 MSPS  
Figure 26. SINAD, SFDR vs. Temperature,  
fSAMPLE = 105 MSPS, fIN = 50 MHz  
f
Rev. B | Page 12 of 36  
 
Data Sheet  
AD9215  
0.6  
0.4  
40  
30  
20  
10  
0.2  
0
0
–10  
–20  
–30  
–40  
–0.2  
–0.4  
–0.6  
0
128  
256  
384  
512  
640  
768  
896  
1024  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
CODE  
Figure 27. Gain vs. Temperature External 1 V Reference  
Figure 29. AD9215-105 Typical INL, fSAMPLE = 105 MSPS, fIN = 2.3 MHz  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
128  
256  
384  
512  
640  
768  
896  
1024  
CODE  
Figure 28. AD9215-105 Typical DNL, fSAMPLE = 105 MSPS, fIN = 2.3 MHz  
Rev. B | Page 13 of 36  
AD9215  
Data Sheet  
APPLYING THE AD9215 THEORY OF OPERATION  
placed across the inputs to provide dynamic charging currents.  
This passive network creates a low-pass filter at the ADCs in-  
put; therefore, the precise values are dependent upon the appli-  
cation. In IF undersampling applications, any shunt capacitors  
should be removed. In combination with the driving source  
impedance, they would limit the input bandwidth.  
The AD9215 architecture consists of a front-end SHA followed  
by a pipelined switched capacitor ADC. Each stage provides  
sufficient overlap to correct for flash errors in the preceding  
stages. The quantized outputs from each stage are combined  
into a final 10-bit result in the digital correction logic. The pipe-  
lined architecture permits the first stage to operate on a new  
input sample, while the remaining stages operate on preceding  
samples. Sampling occurs on the rising edge of the clock.  
The analog inputs of the AD9215 are not internally dc biased.  
In ac-coupled applications, the user must provide this bias ex-  
ternally. VCM = AVDD /2 is recommended for optimum perfor-  
mance, but the device functions over a wider range with rea-  
sonable performance (see Figure 31).  
The input stage contains a differential SHA that can be config-  
ured as ac-coupled or dc-coupled in differential or single-ended  
modes. Each stage of the pipeline, excluding the last, consists of  
a low resolution flash ADC connected to a switched capacitor  
DAC and interstage residue amplifier (MDAC). The residue  
amplifier magnifies the difference between the reconstructed  
DAC output and the flash input for the next stage in the pipe-  
line. Redundancy is used in each one of the stages to facilitate  
digital correction of flash errors.  
85  
80  
2V p-p SFDR  
75  
70  
65  
60  
The output-staging block aligns the data, carries out the error  
correction, and passes the data to the output buffers. The output  
buffers are powered from a separate supply, allowing adjust-  
ment of the output voltage swing. During power-down, the  
output buffers go into a high impedance state.  
2V p-p SNR  
55  
50  
45  
40  
Analog Input and Reference Overview  
0.25  
0.75  
1.25  
1.75  
2.25  
2.75  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
The analog input to the AD9215 is a differential switched  
capacitor SHA that has been designed for optimum perfor-  
mance while processing a differential input signal. The SHA  
input can support a wide common-mode range and maintain  
excellent performance, as shown in Figure 31. An input com-  
mon-mode voltage of midsupply minimizes signal-dependent  
errors and provides optimum performance.  
Figure 31. AD9215-105 SNR, SFDR vs. Common-Mode Voltage  
For best dynamic performance, the source impedances driving  
VIN+ and VIN− should be matched such that common-mode  
settling errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC.  
An internal differential reference buffer creates positive and  
negative reference voltages, REFT and REFB, respectively, that  
define the span of the ADC core. The output common mode of  
the reference buffer is set to midsupply, and the REFT and  
REFB voltages and span are defined as  
H
T
T
0.5pF  
VIN+  
VIN–  
C
PAR  
REFT = 1/2 (AVDD + VREF)  
T
REFB = 1/2 (AVDD VREF)  
0.5pF  
C
Span = 2 × (REFT REFB) = 2 × VREF  
PAR  
T
It can be seen from the equations above that the REFT and  
REFB voltages are symmetrical about the midsupply voltage  
and, by definition, the input span is twice the value of the VREF  
voltage.  
H
Figure 30. Switched-Capacitor SHA Input  
The clock signal alternatively switches the SHA between sample  
mode and hold mode (see Figure 30). When the SHA is  
switched into sample mode, the signal source must be capable  
of charging the sample capacitors and settling within one-half  
of a clock cycle. A small resistor in series with each input can  
help reduce the peak transient current required from the output  
stage of the driving source. Also, a small shunt capacitor can be  
The internal voltage reference can be pin-strapped to fixed val-  
ues of 0.5 V or 1.0 V or adjusted within the same range as dis-  
cussed in the Internal Reference Connection section. Maximum  
SNR performance is achieved with the AD9215 set to the largest  
input span of 2 V p-p. The relative SNR degradation is 3 dB  
Rev. B | Page 14 of 36  
 
 
 
Data Sheet  
AD9215  
when changing from 2 V p-p mode to 1 V p-p mode.  
AVDD  
VIN+  
R
R
The SHA may be driven from a source that keeps the signal  
peaks within the allowable range for the selected reference volt-  
age. The minimum and maximum common-mode input levels  
are defined as  
C
C
2Vp-p  
49.9  
AD9215  
VIN–  
AGND  
AVDD  
1kΩ  
1kΩ  
VCMMIN = VREF/2  
0.1µF  
VCMMAX = (AVDD + VREF)/2  
Figure 33. Differential Transformer-Coupled Configuration  
The minimum common-mode input level allows the AD9215 to  
accommodate ground-referenced inputs.  
The signal characteristics must be considered when selecting a  
transformer. Most RF transformers saturate at frequencies  
below a few MHz, and excessive signal power can also cause  
core saturation, which leads to distortion.  
Although optimum performance is achieved with a differential  
input, a single-ended source may be driven into VIN+ or VIN−.  
In this configuration, one input accepts the signal, while the  
opposite input should be set to midscale by connecting it to an  
appropriate reference. For example, a 2 V p-p signal may be  
applied to VIN+ while a 1 V reference is applied to VIN−. The  
AD9215 then accepts a signal varying between 2 V and 0 V. In  
the single-ended configuration, distortion performance may  
degrade significantly as compared to the differential case. How-  
ever, the effect is less noticeable at lower input frequencies.  
Single-Ended Input Configuration  
A single-ended input may provide adequate performance in  
cost-sensitive applications. In this configuration, there is a deg-  
radation in SFDR and distortion performance due to the large  
input common-mode swing. However, if the source impedances  
on each input are kept matched, there should be little effect on  
SNR performance. Figure 34 details a typical single-ended input  
configuration.  
Differential Input Configurations  
10µF  
AVDD  
As previously detailed, optimum performance is achieved while  
driving the AD9215 in a differential input configuration. For  
baseband applications, the AD8138 differential driver provides  
excellent performance and a flexible interface to the ADC. The  
output common-mode voltage of the AD8138 is easily set to  
AVDD/2, and the driver can be configured in a Sallen Key filter  
topology to provide band limiting of the input signal.  
1kΩ  
R
VIN+  
0.1µF  
1kΩ  
2V p-p  
49.9Ω  
C
C
AD9215  
AVDD  
R
1kΩ  
1kΩ  
VIN–  
AGND  
10µF  
0.1µF  
Figure 34. Single-Ended Input Configuration  
1k  
CLOCK INPUT AND CONSIDERATIONS  
499Ω  
AVDD  
R
1kΩ  
0.1µF  
523Ω  
499Ω  
VIN+  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals, and as a result may be sensi-  
tive to clock duty cycle. Commonly, a 5% tolerance is required  
on the clock duty cycle to maintain dynamic performance char-  
acteristics. The AD9215 contains a clock duty cycle stabilizer  
that retimes the nonsampling edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows a wide range  
of clock input duty cycles without affecting the performance of  
the AD9215. As shown in Figure 25, noise and distortion per-  
formance are nearly flat over a 50% range of duty cycle. For best  
ac performance, enabling the duty cycle stabilizer is recom-  
mended for all applications.  
C
C
AD8138  
AD9215  
V
CM  
R
VIN–  
AGND  
1V p-p  
49.9Ω  
499Ω  
Figure 32. Differential Input Configuration Using the AD8138  
At input frequencies in the second Nyquist zone and above, the  
performance of most amplifiers is not adequate to achieve the  
true performance of the AD9215. This is especially true in IF  
undersampling applications where frequencies in the 70 MHz to  
200 MHz range are being sampled. For these applications, differ-  
ential transformer coupling is the recommended input configura-  
tion. The value of the shunt capacitor is dependant on the input  
frequency and source impedance and should be reduced or re-  
moved. An example of this is shown in Figure 33.  
The duty cycle stabilizer uses a delay-locked loop (DLL) to cre-  
ate the nonsampling edge. As a result, any changes to the sam-  
pling frequency require approximately 100 clock cycles to allow  
the DLL to acquire and lock to the new rate.  
Rev. B | Page 15 of 36  
 
 
 
AD9215  
Data Sheet  
Table 7. Reference Configuration Summary  
External SENSE  
Connection  
Internal Op Amp  
Configuration  
Resulting VREF Resulting Differential Span  
Selected Mode  
(V)  
N/A  
0.5  
(V p-p)  
Externally Supplied Reference AVDD  
N/A  
2 × External Reference  
1.0  
Internal 0.5 V Reference  
Programmed Variable  
Reference  
VREF  
External Divider  
Voltage Follower (G = 1)  
Noninverting (1 < G < 2)  
0.5 × (1 + R2/R1) 2 × VREF  
Internally Programmed 1 V  
Reference  
AGND to 0.2 V  
Internal Divider  
1.0  
2.0  
Table 8. Digital Output Coding  
Code VIN+ − VIN− Input Span = VIN+ − VIN− Input Span =  
Digital Output Offset Binary  
Digital Output Twos  
2 V p-p (V)  
1 V p-p (V)  
(D9••••••D0)  
Complement (D9••••••D0)  
1023 1.000  
0.500  
0
−0.000978  
−0.5000  
11 1111 1111  
10 0000 0000  
01 1111 1111  
00 0000 0000  
01 1111 1111  
00 0000 0000  
11 1111 1111  
10 0000 0000  
512  
511  
0
0
−0.00195  
−1.00  
number of output bits switching, which are determined by the  
encode rate and the characteristics of the analog input signal.  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. The degradation in SNR at a given full-scale  
input frequency (fINPUT) due only to aperture jitter (tA) can be  
calculated with the following equation  
Digital power consumption can be minimized by reducing the  
capacitive load presented to the output drivers. The data in Fig-  
ure 35 was taken with a 5 pF load on each output driver.  
SNR Degradation = 20 × log10 [2 × π × fINPUT × tA]  
15  
13  
11  
9
40  
35  
30  
25  
20  
15  
AD9215-105 I  
In the equation, the rms aperture jitter, tA, represents the root-  
sum square of all jitter sources, which include the clock input,  
analog input signal, and ADC aperture jitter specification.  
Undersampling applications are particularly sensitive to jitter.  
AVDD  
AD9215-65/80 I  
AVDD  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the  
AD9215. Power supplies for clock drivers should be separated  
from the ADC output driver supplies to avoid modulating the  
clock signal with digital noise. Low jitter, crystal-controlled  
oscillators make the best clock sources. If the clock is generated  
from another type of source (by gating, dividing, or other  
methods), it should be retimed by the original clock at the last  
step.  
7
5
3
I
1
DRVDD  
–1  
105  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
fSAMPLE (MSPS)  
Figure 35. Supply Current vs. fSAMPLE for fIN = 10.3 MHz  
Power Dissipation and Standby Mode  
The analog circuitry is optimally biased so that each speed  
grade provides excellent performance while affording reduced  
power consumption. Each speed grade dissipates a baseline  
power at low sample rates that increases linearly with the clock  
frequency.  
As shown in Figure 35, the power dissipated by the AD9215 is  
proportional to its sample rate. The digital power dissipation  
does not vary substantially between the three speed grades  
because it is determined primarily by the strength of the digital  
drivers and the load on each output bit. The maximum DRVDD  
current can be calculated as  
By asserting the PDWN pin high, the AD9215 is placed in  
standby mode. In this state, the ADC typically dissipates 1 mW  
if the CLK and analog inputs are static. During standby, the  
output drivers are placed in a high impedance state. Reasserting  
the PDWN pin low returns the AD9215 into its normal opera-  
tional mode.  
IDRVDD = VDRVDD × CLOAD × fCLOCK × N  
where N is the number of output bits, 10 in the case of the  
AD9215. This maximum current is for the condition of every  
output bit switching on every clock cycle, which can only occur  
for a full-scale square wave at the Nyquist frequency, fCLOCK/2. In  
practice, the DRVDD current is established by the average  
In standby mode, low power dissipation is achieved by shutting  
down the reference, reference buffer, and biasing networks. The  
Rev. B | Page 16 of 36  
 
Data Sheet  
AD9215  
decoupling capacitors on REFT and REFB are discharged when  
entering standby mode and then must be recharged when  
returning to normal operation. As a result, the wake-up time is  
related to the time spent in standby mode, and shorter standby  
cycles result in proportionally shorter wake-up times. With the  
recommended 0.1 μF and 10 μF decoupling capacitors on REFT  
and REFB, it takes approximately one second to fully discharge  
the reference buffer decoupling capacitors and 7 ms to restore  
full operation.  
R2  
R1  
VREF 0.51  
VIN+  
VIN–  
REFT  
0.1F  
0.1F  
REFB  
ADC  
CORE  
10F  
0.1F  
VREF  
Digital Outputs  
+
7k  
The AD9215 output drivers can be configured to interface with  
2.5 V or 3.3 V logic families by matching DRVDD to the digital  
supply of the interfaced logic. The output drivers are sized to  
provide sufficient output current to drive a wide variety of logic  
families. However, large drive currents tend to cause current  
glitches on the supplies that may affect converter performance.  
Applications requiring the ADC to drive large capacitive loads  
or large fanouts may require external buffers or latches.  
10F  
0.1F  
0.5V  
SELECT  
LOGIC  
SENSE  
7k  
AD9215  
Figure 36. Internal Reference Configuration  
Timing  
In all reference configurations, REFT and REFB drive the ADC  
conversion core and establish its input span. The input range of  
the ADC always equals twice the voltage at the reference pin for  
either an internal or an external reference.  
The AD9215 provides latched data outputs with a pipeline delay  
of five clock cycles. Data outputs are available one propagation  
delay (tOD) after the rising edge of the clock signal. Refer to Fig-  
ure 2 for a detailed timing diagram.  
VIN+  
The length of the output data lines and loads placed on them  
should be minimized to reduce transients within the AD9215;  
these transients can detract from the converter’s dynamic per-  
formance.  
VIN–  
REFT  
0.1F  
ADC  
CORE  
0.1F  
10F  
REFB  
The lowest typical conversion rate of the AD9215 is 5 MSPS. At  
clock rates below 5 MSPS, dynamic performance may degrade.  
0.1F  
VREF  
+
10F  
0.1F  
0.5V  
R2  
Voltage Reference  
SELECT  
LOGIC  
A stable and accurate 0.5 V voltage reference is built into the  
AD9215. The input range can be adjusted by varying the refer-  
ence voltage applied to the AD9215, using either the internal  
reference or an externally applied reference voltage. The input  
span of the ADC tracks reference voltage changes linearly. Max-  
imum SNR and DNL performance is achieved with the AD9215  
set to the largest input span of 2 V p-p.  
SENSE  
R1  
AD9215  
Figure 37. Programmable Reference Configuration  
If the internal reference of the AD9215 is used to drive multiple  
converters to improve gain matching, the loading of the refer-  
ence by the other converters must be considered. Figure 38 de-  
picts how the internal reference voltage is affected by loading.  
Internal Reference Connection  
A comparator within the AD9215 detects the potential at the  
SENSE pin and configures the reference into four possible  
states, which are summarized in Table 1. If SENSE is grounded,  
the reference amplifier switch is connected to the internal resis-  
tor divider (see Figure 36), setting VREF to 1 V. Connecting the  
SENSE pin to the VREF pin switches the amplifier output to the  
SENSE pin, configuring the internal op amp circuit as a voltage  
follower and providing a 0.5 V reference output. If an external  
resistor divider is connected as shown in Figure 37, the switch is  
again set to the SENSE pin. This puts the reference amplifier in a  
noninverting mode with the VREF output defined as  
Rev. B | Page 17 of 36  
 
 
 
AD9215  
Data Sheet  
0.05  
Operational Mode Selection  
As discussed earlier, the AD9215 can output data in either offset  
binary or twos complement format. There is also a provision for  
enabling or disabling the clock duty cycle stabilizer (DCS). The  
MODE pin is a multilevel input that controls the data format  
and DCS state. For best ac performance, enabling the duty cycle  
stabilizer is recommended for all applications. The input  
threshold values and corresponding mode selections are out-  
lined in Table 9.  
0
VREF = 0.5V  
–0.05  
–0.10  
–0.15  
–0.20  
VREF = 1.0V  
As detailed in Table 9, the data format can be selected for either  
offset binary or twos complement.  
–0.25  
0
0.5  
1.0  
1.5  
(mA)  
2.0  
2.5  
3.0  
Table 9. Mode Selection  
I
LOAD  
MODE Voltage  
Data Format  
Duty Cycle Stabilizer  
Disabled  
Enabled  
Enabled  
Disabled  
Figure 38. VREF Accuracy vs. Load  
External Reference Operation  
AVDD  
2/3 AVDD  
1/3 AVDD  
AGND (Default)  
Twos Complement  
Twos Complement  
Offset Binary  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. When multiple ADCs track one another, a single refer-  
ence (internal or external) may be necessary to reduce gain  
matching errors to an acceptable level. A high precision external  
reference may also be selected to provide lower gain and offset  
temperature drift. Figure 39 shows the typical drift characteris-  
tics of the internal reference in both 1 V and 0.5 V modes.  
0.6  
Offset Binary  
The MODE pin is internally pulled down to AGND by a 20 kΩ  
resistor.  
EVALUATION BOARD  
The AD9215 evaluation board is no longer in production. The  
following evaluation board documentation is provided for in-  
formational purposes only.  
The AD9215 evaluation board provides all of the support cir-  
cuitry required to operate the ADC in its various modes and  
configurations. The converter can be driven differentially  
through an AD8351 driver, a transformer, or single-ended. Sep-  
arate power pins are provided to isolate the DUT from the sup-  
port circuitry. Each input configuration can be selected by  
proper connection of various jumpers (refer to the schematics).  
Figure 40 shows the typical bench characterization setup used  
to evaluate the ac performance of the AD9215. It is critical that  
signal sources with very low phase noise (<1 ps rms jitter) be  
used to realize the ultimate performance of the converter. Prop-  
er filtering of the input signal, to remove harmonics and lower  
the integrated noise at the input, is also necessary to achieve the  
specified noise performance.  
0.5  
VREF = 0.5V  
0.4  
0.3  
VREF = 1.0V  
0.2  
0.1  
0
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 39. Typical VREF Drift  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7 kΩ load. The internal buffer still generates the positive and  
negative full-scale references, REFT and REFB, for the ADC  
core. The input span is always twice the value of the reference  
voltage; therefore, the external reference must be limited to a  
maximum of 1 V.  
Complete schematics and layout plots follow that demonstrate  
the proper routing and grounding techniques that should be  
applied at the system level.  
3.0V  
2.5V  
2.5V  
5.0V  
+
+
+
+
AVDD GND DRVDD GND  
V
VAMP  
P12  
DL  
R AND S SMG, 2V p-p  
SIGNAL SYNTHESIZER  
BAND-PASS  
FILTER  
XFMR  
INPUT  
REFIN  
DATA  
CAPTURE  
AND  
AD9215  
EVALUATION BOARD  
10MHz  
REFOUT  
PROCESSING  
R AND S SMG, 2V p-p  
SIGNAL SYNTHESIZER  
CLK  
Figure 40. Evaluation Board Connections  
Rev. B | Page 18 of 36  
 
 
 
 
 
Data Sheet  
AD9215  
P 2  
5 . 0 V  
2 . 5 V  
V A M P  
V D L  
G N D  
2 . 5 V  
3 . 0 V  
D R V D D  
G N D  
A V D D  
D 6  
D 7  
D 8  
D 9  
O R  
1 7  
1 8  
8
D N C  
D N C  
7
D N C  
1 9  
2 0  
2 1  
2 2  
2 3  
6
D N C  
5
P D W N  
4
D N C  
M O D E  
3
C L K  
2
S E N S E  
V R E F  
D N C  
2 4  
1
Figure 41. LFCSP Evaluation Board Schematic, Analog Inputs and DUT  
Rev. B | Page 19 of 36  
AD9215  
Data Sheet  
Figure 42. LFCSP Evaluation Board, Digital Path  
Rev. B | Page 20 of 36  
Data Sheet  
AD9215  
Figure 43. LFCSP Evaluation Board Schematic, Clock Input  
Rev. B | Page 21 of 36  
AD9215  
Data Sheet  
Figure 44. LFCSP Evaluation Board Layout, Primary Side  
Figure 45. LFCSP Evaluation Board Layout, Secondary Side  
Rev. B | Page 22 of 36  
Data Sheet  
AD9215  
Figure 47. LFCSP Evaluation Board Layout, Power Plane  
Figure 46. LFCSP Evaluation Board Layout, Ground Plane  
Rev. B | Page 23 of 36  
AD9215  
Data Sheet  
Figure 48. LFCSP Evaluation Board Layout, Primary Silkscreen  
Figure 49. LFCSP Evaluation Board Layout, Secondary Silkscreen  
Rev. B | Page 24 of 36  
Data Sheet  
AD9215  
Table 10. LFCSP Evaluation Board Bill of Materials (BOM)  
Recommended Vendor/  
Part Number  
Item Qty Omit1 Reference Designator  
Device  
Package  
Value  
1
18  
C1, C5, C7, C8, C9, C11,  
Chip Capacitor  
0603  
0.1 μF  
C12, C13, C15, C16, C31, C33,  
C34, C36, C37, C41, C43, C47  
8
2
C6, C18, C27, C17,  
C28, C35, C45, C44  
2
8
8
C2, C3, C4, C10,  
C20, C22, C25, C29  
Tantalum Capacitor  
TAJD  
10 μF  
C46, C24,  
3
4
C14, C30, C32, C38,  
C39 C40, C48, C49  
Chip Capacitor  
Chip Capacitor  
0603  
0603  
0.001  
μF  
1
2
1
9
C19  
10 pF  
C21, C23  
C26  
5
6
Chip Capacitor  
Header  
0603  
10 pF  
E31, E35, E43, E44,  
E50, E51, E52, E53  
EHOLE  
Jumper Blocks  
2
E1, E45  
J1, J2  
L1  
7
8
2
1
SMA Connector/50 Ω  
Inductor  
SMA  
0603  
10 nH  
Coilcraft/0603CS-  
10NXGBU  
9
1
1
5
P2  
Terminal Block  
TB6  
Wieland/25.602.2653.0  
z5-530-0625-0  
10  
11  
P12  
Header Dual 20-Pin RT  
Angle  
HEADER40  
0603  
Digi-Key S2131-20-ND  
R3, R12, R23, R18, RX  
R37, R22, R42, R16, R17, R27  
R4, R15  
Chip Resistor  
0 Ω  
6
1
12  
13  
2
Chip Resistor  
Chip Resistor  
0603  
0603  
33 Ω  
1 Ω  
14  
R5, R6, R7, R8, R13, R20, R21, R24,  
R25, R26, R30, R31, R32, R36  
14  
15  
2
1
R10, R11  
R29  
Chip Resistor  
Chip Resistor  
0603  
0603  
36 Ω  
50 Ω  
R19  
16  
2
RP1, RR2  
Resistor Pack  
ADT1-1WT  
R_742  
220 Ω  
Digi-Key  
CTS/742C163220JTR  
17  
18  
1
1
T1  
AWT1-T1  
TSSOP-48  
Mini-Circuits  
U1  
74LVTH162374 CMOS  
Register  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
1
1
1
U4  
AD9215BCP ADC (DUT) CSP-32  
Analog Devices, Inc.  
Fairchild  
U5  
74VCX86M  
SOIC-14  
PCB  
PCB  
AD9XXBCP/PCB  
AD8351 Op Amp  
MACOM Transformer  
Chip Resistor  
Analog Devices, Inc.  
Analog Devices, Inc.  
MACOM/ETC1-1-13  
1
1
5
3
2
1
1
U3  
MSOP-8  
T2  
ETC1-1-13 1-1 TX  
R9, R1, R2, R38, R39  
R18, R14, R35  
R40, R41  
0603  
0603  
0603  
Select  
25 Ω  
Chip Resistor  
Chip Resistor  
10 kΩ  
1.2 kΩ  
110 Ω  
R34  
Chip Resistor  
R33  
Chip Resistor  
1 These items are included in the PCB design but are omitted at assembly.  
Rev. B | Page 25 of 36  
 
AD9215  
Data Sheet  
P 2  
0 - 4 A 8  
0 2 8 7 4 -  
V A M P  
5 . 0 V  
3 . 0 V  
V D L  
G N D  
3 . 0 V  
V C L K  
G N D  
D R V D D 2 . 5 V  
G N D  
A V D D  
3 . 0 V  
E 2 8  
E 2 6  
E 2 9  
E 2 5  
E 2 7  
E 2 4  
E 2 1  
E 2 0  
E 1 8  
E 2 2  
E 2 3  
E 1 9  
E 1 6  
E 1 7  
Figure 50. TSSOPP Evaluation Board Schematic, Analog Inputs and DUT  
Rev. B | Page 26 of 36  
Data Sheet  
AD9215  
0 2  
+
Figure 51. TSSOP Evaluation Board, Digital Path  
Rev. B | Page 27 of 36  
AD9215  
Data Sheet  
0 - 5 0  
0 2 8 7 4 - A  
Figure 52. TSSOP Evaluation Board Schematic, Clock Input  
Rev. B | Page 28 of 36  
Data Sheet  
AD9215  
Figure 53. TSSOP Evaluation Board Layout, Primary Side  
Figure 55. TSSOP Evaluation Board Layout, Ground Plane  
Figure 56. TSSOP Evaluation Board Layout, Power Plane  
Figure 54. TSSOP Evaluation Board Layout, Secondary Side  
Rev. B | Page 29 of 36  
AD9215  
Data Sheet  
Figure 57. TSSOP Evaluation Board Layout, Primary Silkscreen  
Figure 58. TSSOP Evaluation Board Layout, Secondary Silkscreen  
Rev. B | Page 30 of 36  
Data Sheet  
AD9215  
Table 11. TSSOP Evaluation Board Bill of Materials (BOM)  
Recommended  
Vendor/Part No.  
Item Qty. Omit Reference Designator  
Device  
Package  
Value  
1
11  
C2 to C4, C10, C20,  
C25, C27, C29,  
C47, C50, C52  
Tantalum Capacitor  
TAJD  
10 μF  
C47  
2
3
2
C5,C8  
C31  
Chip Capacitor  
Chip Capacitor  
0603  
0603  
10 pF  
0.1 μF  
1
15  
C6, C9, C13,  
C15 to C18, C21, C24,  
C26, C30, C32, C34, C36,  
C40, C46, C48, C51  
4
5
3
6
C12, C14, C23, C28  
Chip Capacitor  
Chip Capacitor  
0603  
0603  
Select  
8
C7, C19, C35, C19,  
C37 to C39, C49  
0.001 μF  
6
C1,C33, C41 to C42,  
C44 to C5  
BCAP0402  
0402  
0.1 μF  
7
8
9
1
1
C43  
C11  
BCAP0402  
BCAP0603  
BRES603  
0402  
0603  
0.001 μF  
Select  
1 kΩ  
11  
4
R2, R8 to R11, R24,  
R26, R29, R39, R41 to R45  
0603A  
2
8
R48, R49  
10  
11  
R6, R25, R34, R37  
BRES603  
BRES603  
0603A  
0603A  
0 Ω  
R5, R35, R17 to R18,  
R27 to R28, R38, R52  
2
R7, R40  
50 Ω  
1
R14  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
2
2
1
2
R19, R21  
BRES603  
RES0603  
0603A  
0603A  
0603  
33 Ω  
R32, R33  
36 Ω  
R16  
BRES603  
BRES603  
BRES603  
BRES603  
BRES603  
BRES603  
BRES603  
BRES603  
Potentiometer  
Resister Pack  
Select  
10 kΩ  
Select  
1 kΩ  
R4, R15,  
0603  
4
2
4
1
1
1
1
R20, R22 to R23, R47  
0603A  
0603  
R48, R49  
R36, R46, R50 to R51  
0603  
25 Ω  
R31  
0603  
100 Ω  
1.2 kΩ  
5 kΩ  
R30  
0603  
R3  
0603  
R1  
RJ24FW  
220Ω  
10 kΩ  
742C163221  
4
RP1 to RP4  
Rev. B | Page 31 of 36  
AD9215  
Data Sheet  
Recommended  
Vendor/Part No.  
Item Qty. Omit Reference Designator  
Device  
Package  
Value  
24  
25  
26  
27  
1
1
1
1
L1  
Chip Inductor  
0603  
10 nH  
Coilcraft/0603CS-  
10NXGBU  
T1  
U1  
U2  
1:1 RF Transformer  
ADC  
CD542  
Mini-Circuits  
AWT1-1T  
28TSSOP  
Analog Devices, Inc.  
AD9215  
Right Angle 40-Pin Header  
Samtec  
TSW-120-08-T-D-RA  
28  
29  
30  
2
1
U3, U4  
U5  
Octal D-Type Flip-Flop  
Quad XOR Gate  
Fairchild 74LVT57MSA  
Fairchild 74VCX86M  
SO14  
1
1
U6  
High Speed Amplifier  
SOMB10  
Analog Devices, Inc.  
AD8351ARM  
31  
32  
2
2
J1, J3  
J4  
SMB Connecter  
SMBP  
P1, P2  
Power Connector  
PTMICRO4  
Weiland  
Z5.531.3425.0 Posts  
25.602.5453.0 Top  
33  
34  
26  
E1/E5, E2/E3, E4/E8,  
E9/E11, E6/E7, E16/E17,  
E19/E22, E18/E23, E21/20,  
E35/E51, E36/E50, E43/E53,  
E44/E52  
Headers/Jumper Blocks  
TSW-120-07-G-S  
SMT-100-BK-G  
12  
E24/E27, E25/E26, E28/E29,  
E13/E14/E30, E12/E32/E45  
Wirehole  
Rev. B | Page 32 of 36  
Data Sheet  
AD9215  
OUTLINE DIMENSIONS  
9.80  
9.70  
9.60  
28  
15  
4.50  
4.40  
4.30  
6.40 BSC  
1
14  
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AE  
Figure 59. 28-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-28)  
Dimensions shown in millimeters  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
25  
24  
32  
1
INDICATOR  
0.50  
BSC  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
17  
16  
8
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.  
Figure 60. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad  
(CP-32-7)  
Dimensions shown in millimeters  
Rev. B | Page 33 of 36  
 
AD9215  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
CP-32-7  
CP-32-7  
CP-32-7  
AD9215BRUZ-65  
AD9215BRUZ-80  
AD9215BRUZ-105  
AD9215BRUZRL7-65  
AD9215BRUZRL7-80  
AD9215BRUZRL7-105  
AD9215BCPZ-65  
AD9215BCPZ-80  
AD9215BCPZ-105  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
1 Z = RoHS Compliant Part.  
Rev. B | Page 34 of 36  
 
 
Data Sheet  
NOTES  
AD9215  
Rev. B | Page 35 of 36  
AD9215  
NOTES  
Data Sheet  
©2003–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02874-0-2/13(B)  
Rev. B | Page 36 of 36  

相关型号:

AD9215BRUZRL7-65

10-Bit, 65/80/105 MSPS, 3 V A/D Converter
ADI

AD9215BRUZRL7-80

10-Bit, 65/80/105 MSPS, 3 V A/D Converter
ADI

AD9215_13

10-Bit, 65/80/105 MSPS, 3 V A/D Converter
ADI

AD9216

10-Bit, 65/80/105 MSPS Dual A/D Converter
ADI

AD9216-105

10-Bit, 65/80/105 MSPS Dual A/D Converter
ADI

AD9216-105PCB

10-Bit, 65/80/105 MSPS Dual A/D Converter
ADI

AD9216-40PCB

10-Bit, 65/80/105 MSPS Dual A/D Converter
ADI

AD9216-65

10-Bit, 65/80/105 MSPS Dual A/D Converter
ADI

AD9216-65PCB

10-Bit, 65/80/105 MSPS Dual A/D Converter
ADI

AD9216-80

10-Bit, 65/80/105 MSPS Dual A/D Converter
ADI

AD9216-80PCB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9216BCP-65

10-Bit, 65/80/105 MSPS Dual A/D Converter
ADI