ADA4084-4ARUZ-RL

更新时间:2024-09-18 16:53:17
品牌:ADI
描述:30 V, Low Noise, Rail-to-Rail Input/Output, Low Power Operational Quad Amplifier

ADA4084-4ARUZ-RL 概述

30 V, Low Noise, Rail-to-Rail Input/Output, Low Power Operational Quad Amplifier 运算放大器

ADA4084-4ARUZ-RL 数据手册

通过下载ADA4084-4ARUZ-RL数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
30 V, Low Noise, Rail-to-Rail Input/Output,  
Low Power Operational Amplifiers  
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
FEATURES  
PIN CONNECTION DIAGRAM  
ADA4084-2  
Rail-to-rail input/output  
OUT A 1  
–IN A 2  
+IN A 3  
V– 4  
8 V+  
Low power: 0.625 mA typical per amplifier at 15 V  
Gain bandwidth product: 15.9 MHz at AV = 100 typical  
Unity-gain crossover: 9.9 MHz typical  
−3 dB closed-loop bandwidth: 13.9 MHz typical at 15 V  
Low offset voltage: 100 µV maximum (SOIC)  
Unity-gain stable  
7 OUT B  
6 –IN B  
5 +IN B  
NOTES  
1. FOR THE LFCSP PACKAGE,  
THE EXPOSED PAD MUST BE  
CONNECTED TO V–.  
High slew rate: 4.6 V/µs typical  
Figure 1. ADA4084-2, 8-Lead LFCSP (CP); for Additional Packages and  
Models, See the Pin Configurations and Function Descriptions Section  
Low noise: 3.9 nV/√Hz typical at 1 kHz  
Long-term offset voltage drift (10,000 hours): 3 µV typical  
Temperature hysteresis: 4 µV typical  
APPLICATIONS  
Battery-powered instrumentation  
High-side and low-side sensing  
Power supply control and protection  
Telecommunications  
Digital-to-analog converter (DAC) output amplifiers  
Analog-to-digital converter (ADC) input buffers  
GENERAL DESCRIPTION  
The ADA4084-1 (single), ADA4084-2 (dual), and ADA4084-4  
(quad) are single-supply, 10 MHz bandwidth amplifiers featuring  
rail-to-rail inputs and outputs. They are guaranteed to operate  
from +3 V to +30 V (or 1.5 V to 15 V).  
The single ADA4084-1 is available in the 5-lead SOT-23 and  
8-lead SOIC; the dual ADA4084-2 is available in the 8-lead  
SOIC, 8-lead MSOP, and 8-lead LFCSP surface-mount  
packages; and the ADA4084-4 is offered in the 14-lead TSSOP  
and 16-lead LFCSP.  
These amplifiers are well suited for single-supply applications  
requiring both ac and precision dc performance. The combination  
of wide bandwidth, low noise, and precision makes the  
ADA4084-1/ADA4084-2/ADA4084-4 useful in a wide variety of  
applications, including filters and instrumentation.  
The ADA4084-1/ADA4084-2/ADA4084-4 are members of a  
growing series of high voltage, low noise op amps offered by  
Analog Devices, Inc. (see Table 1).  
Table 1. Low Noise Op Amps  
Other applications for these amplifiers include portable telecom-  
munications equipment, power supply control and protection, and  
use as amplifiers or buffers for transducers with wide output  
ranges. Sensors requiring a rail-to-rail input amplifier include  
Hall effect, piezoelectric, and resistive transducers.  
Single  
Dual  
Quad  
Voltage Noise  
AD8597  
AD8599  
1.1 nV/Hz  
ADA4004-1 ADA4004-2 ADA4004-4 1.8 nV/Hz  
AD8675  
AD8671  
AD8676  
AD8672  
2.8 nV/Hz rail-to-rail output  
2.8 nV/Hz  
AD8674  
OP27, OP37  
3.2 nV/Hz  
The ability to swing rail to rail at both the input and output  
enables designers to build multistage filters in single-supply  
systems and to maintain high signal-to-noise ratios.  
ADA4084-1 ADA4084-2 ADA4084-4 3.9 nV/Hz rail-to-rail  
input/output  
The ADA4084-1/ADA4084-2/ADA4084-4 are specified over  
the industrial temperature range of −40°C to +125°C.  
Rev. I  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2011–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
5 V Characteristics................................................................... 17  
15 V Characteristics ................................................................ 23  
Applications Information .............................................................. 29  
Functional Description.............................................................. 29  
Start-Up Characteristics............................................................ 30  
Input Protection ......................................................................... 30  
Output Phase Reversal............................................................... 30  
Designing Low Noise Circuits in Single-Supply Applications .. 31  
Comparator Operation.............................................................. 31  
Long-Term Drift......................................................................... 32  
Temperature Hysteresis ............................................................. 32  
Outline Dimensions....................................................................... 33  
Ordering Guide .......................................................................... 36  
Applications....................................................................................... 1  
Pin Connection Diagram ................................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 4  
Electrical Characteristics............................................................. 4  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ........................................... 11  
1.5 V Characteristics................................................................ 11  
REVISION HISTORY  
5/2017—Rev. H to Rev. I  
6/2015—Rev. F to Rev. G  
Changed CP-8-12 to CP-8-11 ...................................... Throughout  
Changed CP-16-26 to CP-16-17.................................. Throughout  
Changes to Features Section............................................................ 1  
Added Long-Term Drift Section, Temperature Hysteresis  
Section, Figure 112, Figure 113, and Figure 114; Renumbered  
Sequentially ..................................................................................... 32  
Updated Outline Dimensions ....................................................... 34  
Changes to Ordering Guide .......................................................... 36  
Changes to Figure 96 and Figure 97............................................. 24  
1/2015—Rev. E to Rev. F  
Moved Revision History...................................................................3  
Changes to Table 5.............................................................................7  
Changes to Ordering Guide.......................................................... 29  
7/2014—Rev. D to Rev. E  
Added ADA4084-1.............................................................Universal  
Added Figure 1; Renumbered Sequentially ...................................1  
Changes to Output Voltage High Parameter, Table 2...................3  
Changes to Current Noise Density Parameter, Table 3 ................4  
Changes to Current Noise Density Parameter, Table 4 ................5  
Changes to Figure 8 Caption, and Figure 9 to Figure 11 .............7  
Changes to Figure 13.........................................................................8  
Changes to Figure 21.........................................................................9  
Added Figure 31; Renumbered Sequentially .............................. 11  
Changes to Figure 30 Caption, and Figure 32 to Figure 34 ...... 11  
Changes to Figure 36 Caption to Figure 39 Caption ................. 12  
Changes to Figure 50...................................................................... 14  
Added Figure 60 ............................................................................. 16  
Changes to Figure 59 Caption, Figure 62, and Figure 63.......... 16  
Changes to Figure 65 Caption to Figure 68 Caption ................. 17  
Changes to Figure 79...................................................................... 19  
Added Figure 89 ............................................................................. 21  
Changes to Figure 88 Caption, Figure 91 Caption, and  
8/2015—Rev. G to Rev. H  
Added 5-Lead SOT-23 .......................................................Universal  
Changes to Pin Connection Diagram Section, Figure 1, and  
General Description Section........................................................... 1  
Deleted Figure 3; Renumbered Sequentially................................. 1  
Changes to Large Signal Voltage Gain Parameter, Table 2.......... 4  
Changes to Large Signal Voltage Gain Parameter, Table 3.......... 5  
Changes to Large Signal Voltage Gain Parameter, Table 4.......... 6  
Changes to Table 6............................................................................ 7  
Moved Figure 3 ................................................................................. 8  
Added Pin Configurations and Function Descriptions Section,  
Figure 4, Figure 5, Table 7, Table 8, and Table 9; Renumbered  
Sequentially ....................................................................................... 8  
Added Figure 6, Figure 7, Figure 8, Table 10, and Table 11 ........ 9  
Moved Figure 9 ............................................................................... 10  
Added Table 12 ............................................................................... 10  
Added Figure 11 and Figure 15..................................................... 11  
Added Figure 42 and Figure 46..................................................... 17  
Added Figure 73 and Figure 77..................................................... 23  
Updated Outline Dimensions ....................................................... 32  
Changes to Ordering Guide .......................................................... 35  
Figure 92 Caption........................................................................... 21  
Changes to Ordering Guide.......................................................... 28  
Rev. I | Page 2 of 36  
 
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
11/2013—Rev. C to Rev. D  
Added Figure 55 and Figure 57.....................................................17  
Added Startup Characteristics Section ........................................23  
Moved Figure 78..............................................................................23  
Changes to Output Phase Reversal Section and Comparator  
Operation Section ...........................................................................24  
Updated Outline Dimensions........................................................25  
Changes to Ordering Guide...........................................................26  
Added 14-Lead TSSOP and 16-Lead LFCSP Packages.......Universal  
Added ADA4084-4.....................................................................Universal  
Change to Features Section and Applications Section.................1  
Added Figure 2 and Figure 3; Renumbered Sequentially ............1  
Changes to Table 2 ............................................................................3  
Changes to Table 3 ............................................................................4  
Changes to Table 4 ............................................................................5  
Changes to Table 5 and Table 6 .......................................................6  
Changes to Typical Performance Characteristics Section ...........7  
Updated Outline Dimensions........................................................27  
Changes to Ordering Guide...........................................................28  
2/2012—Rev. 0 to Rev. A  
Changes to Data Sheet Title.............................................................1  
Changes to Voltage Range in General Description ......................1  
Changes to Supply Current/Amplifier Parameter, Table 2..........3  
Changes to Common-Mode Rejection Ratio Parameter, Table 3..4  
Changes to Common-Mode Rejection Ratio Parameter, Table 4..5  
Changes to Figure 2 ..........................................................................6  
Changes to Figure 24 ......................................................................10  
Changes to Figure 32 ......................................................................12  
Changes to Figure 47 ......................................................................14  
Changes to Figure 55 ......................................................................16  
Changes to Figure 62 ......................................................................17  
Changes to Figure 73 ......................................................................20  
4/2013—Rev. B to Rev. C  
Changes to Figure 48 Caption .......................................................15  
Updated Outline Dimensions........................................................25  
6/2012—Rev. A to Rev. B  
Added LFCSP Package.......................................................Universal  
Changes to Figure 1...........................................................................1  
Changes to Output Voltage High Parameter, Table 4...................5  
Added Figure 5 and Figure 7, Renumbered Sequentially ............7  
Added Figure 30 and Figure 32 .....................................................12  
10/2011—Revision 0: Initial Version  
Rev. I | Page 3 of 36  
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VSY = 3 V, V CM = 1.5 V, T A = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
20  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
SOIC package  
100  
200  
130  
250  
200  
300  
1.75  
150  
200  
250  
400  
25  
µV  
µV  
µV  
µV  
µV  
µV  
µV/°C  
µV  
µV  
nA  
nA  
nA  
nA  
V
−40°C ≤ TA ≤ +125°C  
SOT-23, MSOP, TSSOP packages  
−40°C ≤ TA ≤ +125°C  
ADA4084-2 LFCSP package  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
TA = 25°C  
50  
80  
Offset Voltage Drift  
Offset Voltage Matching  
Δt/ΔT  
0.5  
ADA4084-4 LFCSP package  
Input Bias Current  
IB  
140  
5
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
50  
3
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 3 V  
64  
60  
100  
97  
88  
dB  
dB  
dB  
dB  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ, 0.5 V ≤ VOUT ≤ 2.5 V  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
104  
Input Impedance  
Differential  
Common Mode  
100||1.1  
80||2.9  
kΩ||pF  
MΩ||pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ to VCM  
2.90  
2.80  
2.85  
2.70  
2.95  
2.9  
10  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
Output Voltage Low  
VOL  
20  
40  
30  
50  
20  
−40°C ≤ TA ≤ +125°C  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
−17/+10  
0.1  
f = 1 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY  
=
1.25 V to 1.75 V  
100  
90  
110  
dB  
dB  
mA  
mA  
−40°C ≤ TA ≤ +125°C  
IOUT = 0 mA  
−40°C ≤ TA ≤ +125°C  
Supply Current per Amplifier  
0.565  
0.650  
0.950  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Unity-Gain Crossover  
Phase Margin  
−3 dB Closed-Loop Bandwidth  
Settling Time  
Total Harmonic Distortion Plus Noise  
NOISE PERFORMANCE  
Voltage Noise  
SR  
RL = 2 kΩ  
VIN = 5 mV p-p, RL = 10 kΩ, AV = 100  
VIN = 5 mV p-p, RL = 10 kΩ, AV = 1  
2.0  
2.6  
V/µs  
MHz  
MHz  
Degrees  
MHz  
µs  
GBP  
UGC  
ΦM  
−3 dB  
tS  
15.4  
8.08  
86  
12.3  
4
AV = 1, VIN = 5 mV p-p  
AV = 10, VIN = 2 V p-p, 0.1%  
VIN = 300 mV rms, RL = 2 kΩ, f = 1 kHz  
THD + N  
0.009  
%
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.14  
3.9  
0.55  
µV p-p  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
Current Noise Density  
Rev. I | Page 4 of 36  
 
 
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
VSY  
= 5.0 V, VCM = 0 V, T A = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
30  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
SOIC package  
100  
200  
130  
250  
200  
300  
1.75  
150  
200  
250  
400  
25  
µV  
µV  
µV  
µV  
µV  
µV  
µV/°C  
µV  
µV  
nA  
nA  
nA  
nA  
V
−40°C ≤ TA ≤ +125°C  
SOT-23, MSOP, TSSOP packages  
−40°C ≤ TA ≤ +125°C  
ADA4084-2 LFCSP package  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
TA = 25°C  
60  
90  
Offset Voltage Drift  
Offset Voltage Matching  
ΔVOS/ΔT  
0.5  
ADA4084-4 LFCSP package  
Input Bias Current  
IB  
140  
5
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
50  
+5  
Input Voltage Range  
−5  
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM  
VCM  
VCM  
=
=
=
4 V, −40°C ≤ TA ≤ +125°C  
5 V  
5 V, −40°C ≤ TA ≤ +125°C  
106  
76  
70  
108  
103  
124  
112  
dB  
dB  
dB  
dB  
dB  
Large Signal Voltage Gain  
RL = 2 kΩ, −4 V ≤ VOUT ≤ 4 V  
−40°C ≤ TA ≤ +125°C  
Input Impedance  
Differential  
Common Mode  
100||1.1  
200||2.5  
kΩ||pF  
MΩ||pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ to VCM  
4.9  
4.8  
4.8  
4.7  
4.95  
V
V
V
V
V
V
V
V
4.85  
Output Voltage Low  
VOL  
−4.95  
−4.95  
−4.9  
−4.8  
−4.8  
−4.7  
−40°C ≤ TA ≤ +125°C  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
−24/+17  
0.1  
mA  
f = 1 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY  
=
2 V to 18 V  
110  
105  
120  
dB  
dB  
mA  
mA  
−40°C ≤ TA ≤ +125°C  
IOUT = 0 mA  
−40°C ≤ TA ≤ +125°C  
Supply Current per Amplifier  
0.595  
0.700  
1.00  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Unity-Gain Crossover  
Phase Margin  
−3 dB Closed-Loop Bandwidth  
Settling Time  
Total Harmonic Distortion Plus Noise  
NOISE PERFORMANCE  
Voltage Noise  
SR  
RL = 2 kΩ to VCM  
VIN = 5 mV p-p, RL = 10 kΩ, AV = 100  
VIN = 5 mV p-p, RL = 10 kΩ, AV = 1  
2.4  
3.7  
15.9  
9.6  
85  
13.9  
4
V/µs  
MHz  
MHz  
Degrees  
MHz  
µs  
GBP  
UGC  
ΦM  
−3 dB  
tS  
AV = 1, VIN = 5 mV p-p  
AV = 10, VIN = 8 V p-p, 0.1%  
VIN = 2 V rms, RL = 2 kΩ, f = 1 kHz  
THD + N  
0.003  
%
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.14  
3.9  
0.55  
µV p-p  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
Current Noise Density  
Rev. I | Page 5 of 36  
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
VSY  
= 15.0 V, VCM = 0 V, T A = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
40  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
SOIC package  
100  
200  
130  
250  
200  
300  
1.75  
150  
200  
250  
400  
25  
µV  
µV  
µV  
µV  
µV  
µV  
µV/°C  
µV  
µV  
nA  
nA  
nA  
nA  
V
−40°C ≤ TA ≤ +125°C  
SOT-23, MSOP, TSSOP packages  
−40°C ≤ TA ≤ +125°C  
ADA4084-2 LFCSP package  
−40°C ≤ TA ≤ +125°C  
70  
100  
0.5  
Offset Voltage Drift  
Offset Voltage Matching  
ΔVOS/ΔT  
TA = 25°C  
ADA4084-4 LFCSP package  
Input Bias Current  
IB  
140  
5
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
50  
+15  
Input Voltage Range  
Common-Mode Rejection Ratio  
−15  
106  
85  
80  
110  
105  
CMRR  
AVO  
VCM  
VCM  
VCM  
=
=
=
14 V, −40°C ≤ TA ≤ +125°C  
15 V  
15 V, −40°C ≤ TA ≤ +125°C  
124  
117  
dB  
dB  
dB  
dB  
dB  
Large Signal Voltage Gain  
RL = 2 kΩ, −13.5 V ≤ VOUT ≤ +13.5 V  
−40°C ≤ TA ≤ +125°C  
Input Impedance  
Differential  
Common Mode  
100||1.1  
200||2.5  
kΩ||pF  
MΩ||pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ to VCM  
14.85 14.9  
14.8  
V
V
V
V
V
V
V
V
14.5  
14.0  
14.6  
Output Voltage Low  
VOL  
−14.95  
−14.9  
−14.9  
−14.8  
−14.8  
−14.7  
−40°C ≤ TA ≤ +125°C  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
30  
0.1  
mA  
f = 1 kHz, AV = +1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY  
=
2 V to 18 V  
110  
105  
120  
dB  
dB  
mA  
mA  
−40°C ≤ TA ≤ +125°C  
IOUT = 0 mA  
−40°C ≤ TA ≤ +125°C  
Supply Current per Amplifier  
0.625  
0.750  
1.050  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Unity-Gain Crossover  
Phase Margin  
−3 dB Closed-Loop Bandwidth  
Settling Time  
Total Harmonic Distortion Plus Noise  
NOISE PERFORMANCE  
Voltage Noise  
SR  
RL = 2 kΩ  
VIN = 5 mV p-p, RL = 10 kΩ, AV = 100  
VIN = 5 mV p-p, RL = 10 kΩ, AV = 1  
2.4  
4.6  
15.9  
9.9  
86  
13.9  
4
V/µs  
MHz  
MHz  
Degrees  
MHz  
µs  
GBP  
UGC  
ΦM  
−3 dB  
tS  
AV = 1, VIN = 5 mV p-p  
AV = 10, VIN = 10 V p-p, 0.1%  
VIN = 5 V rms, RL = 2 kΩ, f = 1 kHz  
THD + N  
0.003  
%
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.1  
3.9  
0.55  
µV p-p  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
Current Noise Density  
Rev. I | Page 6 of 36  
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 5.  
θJA is specified for the device soldered on a 4-layer JEDEC  
standard printed circuit board (PCB) with zero airflow.  
Parameter  
Rating  
Supply Voltage  
18 V  
Input Voltage  
V− ≤ VIN ≤ V+  
0.6 V  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
Table 6. Thermal Resistance  
Package Type  
Differential Input Voltage1  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering 60 sec)  
ESD  
θJA  
θJC  
155.6  
43  
45  
40  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
5-Lead SOT-23 (RJ-5)  
8-Lead SOIC_N (R-8)  
8-Lead MSOP (RM-8)  
8-Lead LFCSP (CP-8-11)1, 3  
14-Lead TSSOP (RU-14)  
16-Lead LFCSP (CP-16-17)2, 3  
219.4  
121  
142  
84  
112  
55  
43  
30  
Human Body Model2  
Machine Model3  
Field-Induced Charged-Device Model  
(FICDM)4  
4.5 kV  
200 V  
1.25 kV  
1 Values are based on 4-layer (2S2P) JEDEC standard PCB, with four thermal  
vias. Exposed pad soldered to PCB.  
2 Values are based on 4-layer (2S2P) JEDEC standard PCB, with nine thermal  
vias. Exposed pad soldered to PCB.  
3 θJC measured on top of package.  
1 For input differential voltages greater than 0.6 V, limit the input current to  
less than 5 mA to prevent degradation or destruction of the input devices.  
2 Applicable standard: MIL-STD-883, Method 3015.7.  
3 Applicable standard: JESD22-A115-A (ESD machine model standard of  
JEDEC).  
ESD CAUTION  
4 Applicable standard: JESD22-C101-C (ESD FICDM standard of JEDEC).  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
V
CC  
R4  
R3  
R6  
Q24  
Q23  
D1  
D2  
Q1  
Q2  
MIRROR  
D100  
D101  
FOLDED  
CASCADE  
V
Q4  
Q3  
OUT  
C2  
Q13  
R7  
V
BIAS  
D5  
D4  
Q18  
R5  
C1  
Q19  
R1  
R2  
Q21  
V
D20  
EE  
Figure 2. Simplified Schematic  
Rev. I | Page 7 of 36  
 
 
 
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
NIC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NIC  
ADA4084-1  
TOP VIEW  
(Not to Scale)  
V+  
OUT  
NIC  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
Figure 3. ADA4084-1, 8-Lead SOIC (R)  
Table 7. 8-Lead SOIC, ADA4084-1 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
5
6
7
8
NIC  
−IN  
+IN  
V−  
NIC  
OUT  
V+  
Not Internally Connected  
Negative Input  
Positive Input  
Negative Supply  
Not Internally Connected  
Output  
Positive Supply  
Not Internally Connected  
NIC  
ADA4084-1  
OUT  
V–  
1
2
3
5
4
V+  
+IN  
–IN  
Figure 4. ADA4084-1, 5-Lead SOT-23 (RJ)  
Table 8. 5-Lead SOT-23, ADA4084-1 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
5
OUT  
V−  
+IN  
−IN  
V+  
Output  
Negative Supply  
Positive Input  
Negative Input  
Positive Supply  
OUT A  
–IN A  
+IN A  
V–  
V+  
1
2
3
4
8
7
6
5
OUT B  
–IN B  
+IN B  
ADA4084-2  
TOP VIEW  
(Not to Scale)  
NOTES  
1. FOR THE LFCSP PACKAGE,  
THE EXPOSED PAD MUST BE  
CONNECTED TO V–.  
Figure 5. ADA4084-2, 8-Lead LFCSP (CP)  
Table 9. 8-Lead LFCSP, ADA4084-2 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
5
6
7
8
OUT A  
−IN A  
+IN A  
V−  
+IN B  
−IN B  
OUT B  
V+  
Output, Channel A  
Negative Input, Channel A  
Positive Input, Channel A  
Negative Supply  
Positive Input, Channel B  
Negative Input, Channel B  
Output, Channel B  
Positive Supply  
EPAD  
Exposed Pad. For the LFCSP package, the exposed pad must be connected to V−.  
Rev. I | Page 8 of 36  
 
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
ADA4084-2  
1
2
3
4
OUT A  
8
7
6
5
V+  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
–IN A  
+IN A  
V–  
OUT B  
–IN B  
+IN B  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
ADA4084-2  
TOP VIEW  
(Not to Scale)  
Figure 7. ADA4084-2, 8-Lead SOIC (R)  
Figure 6. ADA4084-2, 8-Lead MSOP (RM)  
Table 10. 8-Lead MSOP, 8-Lead SOIC, ADA4084-2 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
5
6
7
8
OUT A  
−IN A  
+IN A  
V−  
+IN B  
−IN B  
OUT B  
V+  
Output, Channel A  
Negative Input, Channel A  
Positive Input, Channel A  
Negative Supply  
Positive Input, Channel B  
Negative Input, Channel B  
Output, Channel B  
Positive Supply B  
1
2
3
4
5
6
7
OUT A  
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
+IN D  
V–  
–IN A  
+IN A  
V+  
ADA4084-4  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
8
Figure 8. ADA4084-4, 14-Lead TSSOP (RU)  
Table 11. 14-Lead TSSOP, ADA4804-4 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
OUT A  
−IN A  
+IN A  
V+  
Output, Channel A  
Negative Input, Channel A  
Positive Input, Channel A  
Positive Supply  
5
6
7
8
+IN B  
−IN B  
OUT B  
OUT C  
−IN C  
+IN C  
V−  
+IN D  
−IN D  
OUT D  
Positive Input, Channel B  
Negative Input, Channel B  
Output, Channel B  
Output, Channel C  
9
Negative Input, Channel C  
Positive Input, Channel C  
Negative Supply  
Positive Input, Channel D  
Negative Input, Channel D  
Output, Channel D  
10  
11  
12  
13  
14  
Rev. I | Page 9 of 36  
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
–IN A  
1
2
3
4
12 –IN D  
11 +IN D  
10 V–  
+IN A  
V+  
ADA4084-4  
TOP  
VIEW  
9
+IN C  
+IN B  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
2. FOR THE LFCSP PACKAGE, THE EXPOSED PAD  
MUST BE CONNECTED TO V–.  
Figure 9. ADA4084-4, 16-Lead LFCSP (CP)  
Table 12. 16-Lead LFCSP, ADA4084-4 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
−IN A  
+IN A  
V+  
Negative Input Channel A  
Positive Input, Channel A  
Positive Supply  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
+IN B  
−IN B  
OUT B  
OUT C  
−IN C  
+IN C  
V−  
+IN D  
−IN D  
NIC  
Positive Input, Channel B  
Negative Input, Channel B  
Output, Channel B  
Output, Channel C  
Negative Input, Channel C  
Positive Input, Channel C  
Negative Supply  
Positive Input, Channel D  
Negative Input, Channel D  
Not Internally Connected  
Output, Channel D  
OUT D  
OUT A  
NIC  
Output, Channel A  
Not Internally Connected  
Rev. I | Page 10 of 36  
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
1.5 V CHARACTERISTICS  
200  
150  
100  
50  
120  
V
T
= ±1.5V  
= 25°C  
V
T
R
= ±1.5V  
= 25°C  
= ∞  
SY  
SY  
A
A
R
= ∞  
L
L
100  
80  
60  
40  
20  
0
0
–200  
–150  
–100  
–50  
(µV)  
0
50  
100  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
V
(µV)  
V
OS  
OS  
Figure 10. Input Offset Voltage (VOS) Distribution, SOIC  
Figure 13. Input Offset Voltage (VOS) Distribution, LFCSP  
100  
60  
V
A
R
= ±1.5V  
SY  
T
= 25°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
= ∞  
L
50  
40  
30  
20  
10  
0
V
= ±1.5V  
SY  
R
= ∞  
L
–40°C ≤ T ≤ +125°C  
A
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
V
(µV)  
TCV (µV/°C)  
OS  
OS  
Figure 11. Input Offset Voltage (VOS) Distribution, SOT-23  
Figure 14. TCVOS Distribution, SOIC, MSOP, and TSSOP  
20  
50  
V
T
R
= ±1.5V  
= 25°C  
= ∞  
V
= ±1.5V  
SY  
SY  
= ∞  
R
L
45  
40  
35  
30  
25  
20  
15  
10  
5
A
18  
16  
14  
12  
10  
8
–40°C T +125°C  
A
L
6
4
2
0
0
–100  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
–75  
–50  
–25  
0
25  
50  
75  
100  
TCV (µV/°C)  
V
(µV)  
OS  
OS  
Figure 12. Input Offset Voltage (VOS) Distribution, MSOP and TSSOP  
Figure 15. TCVOS Distribution, SOT-23  
Rev. I | Page 11 of 36  
 
 
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
50  
–100  
–150  
–200  
–250  
30  
V
R
= ±1.5V  
= ∞  
V
V
R
= ±1.5V  
= 0V  
= ∞  
SY  
SY  
L
CM  
–40°C ≤ T ≤ +125°C  
L
A
25  
20  
15  
10  
5
I
+
B
I
B
0
–50  
–25  
0
25  
50  
75  
100  
125  
150  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
TEMPERATURE (°C)  
TCV (µV/°C)  
OS  
Figure 19. Input Bias Current vs. Temperature  
Figure 16. TCVOS Distribution, LFCSP  
600  
400  
500  
400  
V
= ±1.5V  
SY  
300  
200  
200  
0
100  
T
= +125°C  
0
A
T
= +85°C  
A
–100  
–200  
–300  
–400  
–200  
–400  
–600  
T
= +25°C  
A
T
= –40°C  
A
V
= ±1.5V  
= 25°C  
= ∞  
SY  
T
A
R
L
–500  
–1.50  
–1.00  
–0.50  
0
0.50  
1.00  
1.50  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
COMMON-MODE VOLTAGE (V)  
V
(V)  
CM  
Figure 17. Input Offset Voltage vs. Common-Mode Voltage  
Figure 20. Input Bias Current vs. VCM for Various Temperatures  
100  
75  
V
= ±1.5V  
SY  
V
= ±1.5V  
= 25°C  
SY  
T
A
1000  
100  
10  
50  
25  
0
–25  
–50  
–75  
–100  
(V+) – V  
OH  
1
–50  
–25  
0
25  
50  
75  
100  
125  
150  
0.001  
0.01  
0.1  
1
10  
TEMPERATURE (°C)  
SOURCE CURRENT (mA)  
Figure 18. Input Offset Voltage vs. Temperature  
Figure 21. Dropout Voltage (VDO) vs. Source Current  
Rev. I | Page 12 of 36  
 
 
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
1000  
100  
V = ±1.5V  
SY  
V
= ±1.5V  
= 25°C  
SY  
T
= 25°C  
A
T
A
1000  
100  
10  
A
= +10  
V
10  
1
A
= +100  
V
A
= +1  
V
V
– (V–)  
OL  
0.10  
0.01  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0.001  
0.01  
0.1  
1
10  
FREQUENCY (Hz)  
SINK CURRENT (mA)  
Figure 25. Output Impedance (ZOUT) vs. Frequency  
Figure 22. Dropout Voltage (VDO) vs. Sink Current  
140  
120  
100  
80  
120  
100  
80  
270  
225  
V
T
= ±1.5V  
= 25°C  
V
T
R
= ±1.5V  
= 25°C  
= 10kΩ  
SY  
SY  
A
A
L
180  
135  
90  
60  
60  
40  
PSRR–  
40  
45  
20  
20  
0
0
PSRR+  
0
–45  
–20  
–40  
–20  
–90  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 26. PSRR vs. Frequency  
Figure 23. Open-Loop Gain and Phase vs. Frequency  
140  
120  
100  
80  
60  
50  
V
T
= ±1.5V  
= 25°C  
V
T
= ±1.5V  
= 25°C  
SY  
SY  
A
A
A
A
A
= +100  
= +10  
= +1  
V
V
V
40  
30  
20  
60  
10  
40  
0
20  
–10  
0
10  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27. CMRR vs. Frequency  
Figure 24. Closed-Loop Gain vs. Frequency  
Rev. I | Page 13 of 36  
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
1.5  
10  
1.0  
0.5  
0
4
–0.5  
V
= ±1.5V  
= 25°C  
= 2kΩ  
= 100pF  
SY  
–1.0  
–1.5  
T
A
V
T
= ±1.5V  
= 25°C  
R
C
SY  
L
L
A
1
0
2
4
6
8
10  
12  
14  
16  
18  
1
10  
100  
1k  
10k  
100k  
TIME (µs)  
FREQUENCY (Hz)  
Figure 28. Large Signal Transient Response  
Figure 31. Voltage Noise Density vs. Frequency  
80  
60  
60  
V
V
R
= ±1.5V  
= 100mV p-p  
= 2kΩ  
SY  
IN  
L
50  
40  
30  
20  
10  
0
OS+  
T
= 25°C  
A
40  
20  
0
–20  
–40  
–60  
–80  
OS–  
V
= ±1.5V  
= 25°C  
= 2kΩ  
= 100pF  
SY  
T
A
R
C
L
L
0
2
4
6
8
10  
12  
14  
16  
18  
1
10  
100  
1000  
TIME (µs)  
LOAD CAPACITANCE (pF)  
Figure 29. Small Signal Transient Response  
Figure 32. Overshoot vs. Load Capacitance  
2
0.08  
0.06  
80  
60  
INPUT  
0
–2  
40  
0.04  
0.02  
0
20  
–4  
0
OUTPUT  
–20  
–40  
–60  
–80  
–6  
–8  
–0.02  
–0.04  
V
= ±1.5V  
SY  
V
= ±1.5V  
SY  
T
= 25°C  
A
T
= 25°C  
A
–10  
–1  
3
4
0
1
2
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9 10  
TIME (µs)  
TIME (Seconds)  
Figure 30. Settling Time  
Figure 33. Voltage Noise, 0.1 Hz to 10 Hz  
Rev. I | Page 14 of 36  
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
0
0.1  
0.01  
10kΩ  
V
T
V
= ±1.5V  
V
T
= ±1.5V  
SY  
= 25°C  
SY  
= 25°C  
A
V
V
V
V
CC  
CC  
A
1kΩ  
–20  
–40  
V
= 300mV rms  
+
IN  
= 1V p-p  
IN  
80kHz FILTER  
+
EE  
EE  
10V p-p  
2kΩ 2kΩ  
CH B,  
CH C,  
CH D  
CH A  
–60  
–80  
R
= 2kΩ  
L
–100  
–120  
–140  
–160  
0.001  
0.0001  
R
= 10kΩ  
L
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 34. Channel Separation vs. Frequency  
Figure 37. THD + N vs. Frequency, 80 kHz Filter  
2.0  
1.5  
1
0.1  
V
= ±1.5V  
SY  
V
T
= ±1.5V  
SY  
T = 25°C  
A
= 25°C  
A
R
= 10kΩ  
AT 1kHz  
L
V
IN  
1.0  
0.5  
OUTPUT  
0
0.01  
–0.5  
–1.0  
–1.5  
–2.0  
INPUT  
0.001  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (µs)  
0.0001  
0.001  
0.01  
AMPLITUDE (V  
0.1  
)
1
RMS  
Figure 35. THD + N vs. Amplitude  
Figure 38. No Phase Reversal  
0.5  
0
4
0.01  
V
A
V
= ±1.5V  
SY  
T
= 25°C  
= 300mV rms  
IN  
R = 2kΩ  
L
500kHz FILTER  
3
INPUT  
–0.5  
–1.0  
–1.5  
–2.0  
2
1
R
= 10kΩ  
L
OUTPUT  
0
V
= ±1.5V  
= 25°C  
SY  
T
A
–1  
0.001  
6
8
–2  
0
2
4
10  
12  
14  
16  
18  
0.01  
0.1  
1
10  
100  
TIME (µs)  
FREQUENCY (kHz)  
Figure 36. THD + N vs. Frequency, 500 kHz Filter  
Figure 39. Positive 50% Overload Recovery  
Rev. I | Page 15 of 36  
 
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
0.5  
3
0
2
INPUT  
–0.5  
1
OUTPUT  
–1.0  
0
–1.5  
–1  
–2  
V
= ±1.5V  
= 25°C  
SY  
T
A
–2.0  
–2  
6
8
0
2
4
10  
12  
14  
16  
18  
TIME (µs)  
Figure 40. Negative 50% Overload Recovery  
Rev. I | Page 16 of 36  
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
5 V CHARACTERISTICS  
250  
200  
150  
100  
50  
120  
V
T
= ±5V  
= 25°C  
V
T
R
= ±5V  
= 25°C  
= ∞  
SY  
SY  
A
A
R
= ∞  
L
L
100  
80  
60  
40  
20  
0
0
–200  
–150  
–100  
–50  
(µV)  
0
50  
100  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
V
(µV)  
V
OS  
OS  
Figure 41. Input Offset Voltage (VOS) Distribution, SOIC  
Figure 44. Input Offset Voltage (VOS) Distribution, LFCSP  
120  
50  
V
T
= ±5V  
V
R
= ±5V  
= ∞  
L
SY  
SY  
= 25°C  
A
45  
40  
35  
30  
25  
20  
15  
10  
5
R
= ∞  
L
–40°C ≤ T ≤ +125°C  
A
100  
80  
60  
40  
20  
0
0
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
TCV (µV/°C)  
V
(µV)  
OS  
OS  
Figure 42. Input Offset Voltage (VOS) Distribution, SOT-23  
Figure 45. TCVOS Distribution, SOIC, MSOP, and TSSOP  
60  
20  
V
T
R
= ±5V  
= 25°C  
= ∞  
SY  
V
= ±5V  
SY  
L
R
= ∞  
A
18  
16  
14  
12  
10  
8
–40°C T +125°C  
L
A
50  
40  
30  
20  
10  
0
6
4
2
0
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
2
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
V
(µV)  
TCV (µV/°C)  
OS  
OS  
Figure 43. Input Offset Voltage (VOS) Distribution, MSOP and TSSOP  
Figure 46. TCVOS Distribution for SOT-23  
Rev. I | Page 17 of 36  
 
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
35  
–50  
–100  
–150  
–200  
V
V
R
= ±5V  
= 0V  
= ∞  
V
R
= ±5V  
= ∞  
SY  
SY  
CM  
L
–40°C ≤ T ≤ +125°C  
L
30  
25  
20  
15  
10  
5
A
I
+
B
I
B
–250  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
TEMPERATURE (°C)  
TCV (µV/°C)  
OS  
Figure 47. TCVOS Distribution, LFCSP  
Figure 50. Input Bias Current vs. Temperature  
600  
500  
800  
600  
V
= ±5V  
= 25°C  
= ∞  
V
= ±5V  
SY  
SY  
T
A
R
L
400  
300  
400  
200  
200  
100  
T
= +125°C  
A
T
= +85°C  
A
0
0
–100  
–200  
–300  
–400  
–500  
–600  
–200  
–400  
–600  
–800  
T
= +25°C  
A
T
= –40°C  
A
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
COMMON-MODE VOLTAGE (V)  
V
(V)  
CM  
Figure 48. Input Offset Voltage vs. Common-Mode Voltage  
Figure 51. Input Bias Current vs. VCM for Various Temperatures  
100  
75  
V
= ±5V  
SY  
V
T
= ±5V  
= 25°C  
SY  
1000  
100  
10  
A
50  
25  
0
–25  
–50  
–75  
–100  
(V+) – V  
OH  
1
–50  
–25  
0
25  
50  
75  
100  
125  
150  
0.001  
0.01  
0.1  
1
10  
TEMPERATURE (°C)  
SOURCE CURRENT (mA)  
Figure 49. Input Offset Voltage vs. Temperature  
Figure 52. Dropout Voltage (VDO) vs. Source Current  
Rev. I | Page 18 of 36  
 
 
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
1000  
100  
V
= ±5V  
= 25°C  
SY  
V
T
= ±5V  
= 25°C  
SY  
T
A
1000  
100  
10  
A
A
= +10  
V
10  
1
A = +1  
V
A
= +100  
V
V
– (V–)  
OL  
0.10  
0.01  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0.001  
0.01  
0.1  
1
10  
FREQUENCY (Hz)  
SINK CURRENT (mA)  
Figure 56. Output Impedance (ZOUT) vs. Frequency  
Figure 53. Dropout Voltage (VDO) vs. Sink Current  
140  
120  
100  
80  
120  
100  
80  
270  
225  
V
T
= ±5V  
= 25°C  
V
T
R
= ±5V  
= 25°C  
= 10kΩ  
SY  
SY  
A
A
L
180  
135  
90  
60  
60  
40  
PSRR–  
40  
45  
20  
20  
0
0
PSRR+  
0
–45  
–20  
–40  
–20  
–90  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
Figure 57. PSRR vs. Frequency  
Figure 54. Open-Loop Gain and Phase vs. Frequency  
140  
120  
100  
80  
60  
50  
V
T
= ±5V  
= 25°C  
V
= ±5V  
= 25°C  
SY  
SY  
T
A
A
A
A
A
= +100  
= +10  
= +1  
V
V
V
40  
30  
20  
60  
10  
40  
0
20  
–10  
0
10  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 58. CMRR vs. Frequency  
Figure 55. Closed-Loop Gain vs. Frequency  
Rev. I | Page 19 of 36  
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
5
4
10  
3
2
4
1
0
–1  
–2  
–3  
–4  
–5  
V
= ±5V  
= 25°C  
= 2kΩ  
= 100pF  
SY  
T
A
R
C
V
T
= ±5V  
= 25°C  
L
L
SY  
A
1
0
2
4
6
8
10  
12  
14  
16  
18  
1
10  
100  
1k  
10k  
100k  
TIME (µs)  
FREQUENCY (Hz)  
Figure 59. Large Signal Transient Response  
Figure 62. Voltage Noise Density vs. Frequency  
80  
60  
60  
V
V
R
= ±5V  
= 100mV p-p  
= 2kΩ  
SY  
IN  
L
50  
40  
30  
20  
10  
0
OS+  
T
= 25°C  
A
40  
20  
0
–20  
–40  
–60  
–80  
OS–  
V
= ±5V  
= 25°C  
= 2kΩ  
= 100pF  
SY  
T
A
R
C
L
L
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1000  
TIME (µs)  
LOAD CAPACITANCE (pF)  
Figure 60. Small Signal Transient Response  
Figure 63. Overshoot vs. Load Capacitance  
10  
5
0.16  
0.12  
80  
60  
V
= ±5V  
SY  
= 25°C  
V
= ±5V  
= 25°C  
SY  
T
A
T
A
INPUT  
40  
0.08  
0.04  
0
0
20  
–5  
OUTPUT  
0
–10  
–15  
–20  
–20  
–40  
–60  
–80  
–0.04  
–0.08  
–0.12  
–25  
–2  
4
0
2
6
8
10  
12  
14  
16  
18  
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
TIME (Seconds)  
Figure 61. Settling Time  
Figure 64. Voltage Noise, 0.1 Hz to 10 Hz  
Rev. I | Page 20 of 36  
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
0
0.1  
0.01  
10kΩ  
V
T
V
= ±5V  
= 25°C  
= 5V p-p  
V
T
= ±5V  
SY  
SY  
= 25°C  
A
V
V
V
V
CC  
A
CC  
1kΩ  
–20  
–40  
V
= 300mV rms  
+
IN  
IN  
80kHz FILTER  
+
R
= 2kΩ  
EE  
EE  
L
10V p-p  
2kΩ 2kΩ  
CH B,  
CH C,  
CH D  
CH A  
–60  
–80  
0.001  
–100  
–120  
–140  
–160  
0.0001  
R
= 10kΩ  
L
0.00001  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 65. Channel Separation vs. Frequency  
Figure 68. THD + N vs. Frequency, 80 kHz Filter  
6
4
1
0.1  
V
= ±5V  
= 25°C  
V
= ±5V  
SY  
SY  
T
= 25°C  
T
A
R
V
A
= 10kΩ  
AT 1kHz  
L
IN  
2
0
0.01  
OUTPUT  
–2  
–4  
–6  
INPUT  
0.001  
0.0001  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (µs)  
0.001  
0.01  
0.1  
AMPLITUDE (V  
1
)
RMS  
Figure 69. No Phase Reversal  
Figure 66. THD + N vs. Amplitude  
1
0
10  
1
0.1  
V
= ±5V  
SY  
= 25°C  
T
A
V
= 2V rms  
IN  
500kHz FILTER  
8
INPUT  
–1  
–2  
–3  
–4  
–5  
6
4
2
R
= 2kΩ  
L
0.01  
R
= 10kΩ  
L
OUTPUT  
0.001  
0
V
= ±5V  
= 25°C  
SY  
T
A
–2  
6
8
–2  
0
2
4
10  
12  
14  
16  
18  
0.0001  
0.01  
0.1  
1
10  
100  
TIME (µs)  
FREQUENCY (kHz)  
Figure 70. Positive 50% Overload Recovery  
Figure 67. THD + N vs. Frequency, 500 kHz Filter  
Rev. I | Page 21 of 36  
 
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
1
6
0
4
INPUT  
–1  
2
OUTPUT  
–2  
0
–3  
–4  
–2  
–4  
–6  
V
= ±5V  
= 25°C  
SY  
T
A
–5  
–2  
6
8
0
2
4
10  
12  
14  
16  
18  
TIME (µs)  
Figure 71. Negative 50% Overload Recovery  
Rev. I | Page 22 of 36  
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
15 V CHARACTERISTICS  
100  
200  
150  
100  
50  
V
= ±15V  
V
= ±15V  
SY  
SY  
T
R
= 25°C  
= ∞  
T = 25°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
A
A
R
= ∞  
L
L
0
–200  
–150  
–100  
–50  
(µV)  
0
50  
100  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
V
(µV)  
V
OS  
OS  
Figure 72. Input Offset Voltage (VOS) Distribution, SOIC  
Figure 75. Input Offset Voltage (VOS) Distribution, LFCSP  
100  
60  
V
R
= ±15V  
= ∞  
V
T
= ±1.5V  
SY  
SY  
= 25°C  
A
L
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R
= ∞  
L
–40°C ≤ T ≤ +125°C  
A
50  
40  
30  
20  
10  
0
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
TCV (µV/°C)  
V
(µV)  
OS  
OS  
Figure 73. Input Offset Voltage (VOS) Distribution, SOT-23  
Figure 76. TCVOS Distribution, SOIC, MSOP, and TSSOP  
25  
60  
50  
40  
30  
20  
10  
0
V
= ±15V  
= 25°C  
= ∞  
V
= ±15V  
SY  
SY  
R = ∞  
L
T
A
–40°C T +125°C  
R
A
L
20  
15  
10  
5
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
–100  
–75  
–50  
–25  
0
25  
50  
75  
100  
V
(µV)  
TCV (µV)  
OS  
OS  
Figure 74. Input Offset Voltage (VOS) Distribution, MSOP and TSSOP  
Figure 77. TCVOS Distribution, SOT-23  
Rev. I | Page 23 of 36  
 
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
–50  
–100  
–150  
–200  
30  
V
R
= ±15V  
= ∞  
SY  
L
–40°C ≤ T ≤ +125°C  
A
25  
20  
15  
10  
5
I
+
B
I
B
V
V
= ±15V  
= 0V  
SY  
CM  
R
= ∞  
L
–250  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
TEMPERATURE (°C)  
TCV (µV/°C)  
OS  
Figure 81. Input Bias Current vs. Temperature  
Figure 78. TCVOS Distribution, LFCSP  
1200  
800  
400  
0
600  
500  
V
= ±15V  
V
= ±15V  
= 25°C  
= ∞  
SY  
SY  
T
A
R
L
400  
300  
200  
T
= +125°C  
A
100  
T
= +85°C  
A
0
–100  
–200  
–300  
–400  
–500  
–600  
T
= +25°C  
–400  
A
T
= –40°C  
A
–800  
–1200  
–15  
–10  
–5  
0
5
10  
15  
–15  
–10  
–5  
0
5
10  
15  
COMMON-MODE VOLTAGE (V)  
V
(V)  
CM  
Figure 79. Input Offset Voltage vs. Common-Mode Voltage  
Figure 82. Input Bias Current vs. VCM for Various Temperatures  
100  
75  
V
= ±15V  
SY  
10000  
50  
1000  
100  
10  
25  
0
–25  
–50  
–75  
–100  
(V+) – V  
OH  
V
= ±15V  
SY  
T
= 25°C  
A
1
–50  
–25  
0
25  
50  
75  
100  
125  
150  
0.001  
0.01  
0.1  
1
10  
SOURCE CURRENT (mA)  
TEMPERATURE (°C)  
Figure 80. Input Offset Voltage vs. Temperature  
Figure 83. Dropout Voltage (VDO) vs. Source Current  
Rev. I | Page 24 of 36  
 
 
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
1000  
100  
V
= ±15V  
= 25°C  
SY  
10000  
1000  
100  
10  
T
A
A
= +10  
V
10  
1
A
= +100  
V
A
= +1  
V
V
– (V–)  
OL  
0.1  
V
= ±15V  
SY  
T
= 25°C  
A
0.01  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0.001  
0.01  
0.1  
1
10  
FREQUENCY (Hz)  
SINK CURRENT (mA)  
Figure 84. Dropout Voltage (VDO) vs. Sink Current  
Figure 87. Output Impedance (ZOUT) vs. Frequency  
120  
100  
80  
270  
225  
140  
120  
100  
80  
V
= ±15V  
= 25°C  
= 10kΩ  
V
= ±15V  
SY  
SY  
T
T = 25°C  
A
A
R
L
180  
135  
90  
60  
40  
60  
PSRR–  
45  
20  
40  
0
0
20  
PSRR+  
–45  
–20  
–40  
0
–90  
–20  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 85. Open-Loop Gain and Phase vs. Frequency  
Figure 88. PSRR vs. Frequency  
60  
50  
140  
120  
100  
80  
V
= ±15V  
= 25°C  
SY  
V
= ±15V  
SY  
T
A
T = 25°C  
A
A
A
A
= +100  
= +10  
= +1  
V
V
V
40  
30  
20  
60  
10  
40  
0
20  
–10  
–20  
10  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 86. Closed-Loop Gain vs. Frequency  
Figure 89. CMRR vs. Frequency  
Rev. I | Page 25 of 36  
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
15  
10  
5
10  
4
0
–5  
V
= ±15V  
= 25°C  
= 2kΩ  
= 100pF  
SY  
–10  
–15  
T
A
V
T
= ±15V  
= 25°C  
R
C
SY  
L
L
A
1
0
4
8
12  
16  
20  
24  
28  
32  
36  
1
10  
100  
1k  
10k  
100k  
TIME (µs)  
FREQUENCY (Hz)  
Figure 90. Large Signal Transient Response  
Figure 93. Voltage Noise Density vs. Frequency  
80  
60  
70  
V
V
R
= ±15V  
= 100mV p-p  
= 2kΩ  
SY  
IN  
60  
50  
40  
30  
20  
10  
0
L
OS+  
T
= 25°C  
A
40  
20  
0
–20  
–40  
–60  
–80  
OS–  
V
T
R
= ±15V  
= 25°C  
= 2kΩ  
= 100pF  
SY  
A
L
L
C
3
4
0
1
2
5
6
7
8
9
10  
1
10  
100  
1000  
TIME (µs)  
LOAD CAPACITANCE (pF)  
Figure 91. Small Signal Transient Response  
Figure 94. Overshoot vs. Load Capacitance  
10  
0.20  
0.15  
60  
40  
5
0
INPUT  
0.10  
0.05  
0
20  
–5  
0
OUTPUT  
–10  
–15  
–20  
–25  
–20  
–40  
–60  
–0.05  
–0.10  
–0.15  
V
= ±15V  
V
T
= ±15V  
= 25°C  
SY  
SY  
T
= 25°C  
A
A
4
–2  
0
2
6
8
10  
12  
14  
16  
18  
0
2
4
6
8
10  
TIME (µs)  
TIME (Seconds)  
Figure 92. Settling Time  
Figure 95. Voltage Noise 0.1 Hz to 10 Hz  
Rev. I | Page 26 of 36  
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
0
0.1  
0.01  
10kΩ  
V
T
= ±15V  
= 25°C  
= 10V p-p  
V
T
= ±15V  
SY  
SY  
A
IN  
= 25°C  
V
V
V
V
A
CC  
CC  
–20  
–40  
1kΩ  
V
= 300mV rms  
V
+
IN  
80kHz FILTER  
+
R
= 2kΩ  
EE  
EE  
L
10V p-p  
2kΩ 2kΩ  
CH B,  
CH C,  
CH D  
CH A  
–60  
–80  
0.001  
–100  
–120  
–140  
–160  
–180  
0.0001  
0.00001  
R
= 10kΩ  
L
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 96. Channel Separation vs. Frequency  
Figure 99. THD + N vs. Frequency, 80 kHz Filter  
20  
15  
1
0.1  
V
= ±15V  
= 25°C  
SY  
V
= ±15V  
= 10kΩ  
SY  
L
IN  
T
A
R
V
AT 1kHz  
10  
5
0
OUTPUT  
0.01  
–5  
INPUT  
–10  
–15  
–20  
0.001  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (µs)  
0.0001  
0.001  
0.01  
0.1  
1
10  
AMPLITUDE (V  
)
RMS  
Figure 97. THD + N vs. Amplitude  
Figure 100. No Phase Reversal  
1
0.1  
V
A
V
= ±15V  
V
SY  
IN  
T
= 25°C  
1
= 5V rms  
IN  
500kHz FILTER  
CH1 AMPL  
202mV  
V
OUT  
R
= 2kΩ  
L
0.01  
R
= 10kΩ  
L
0.001  
2
V
= ±15V  
–84mV  
SY  
0.0001  
CH1 100mV  
CH2 5V  
M1µs  
10.2%  
A CH1  
0.01  
0.1  
1
10  
100  
T
FREQUENCY (kHz)  
Figure 101. Positive 50% Overload Recovery  
Figure 98. THD + N vs. Frequency, 500 kHz Filter  
Rev. I | Page 27 of 36  
 
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
140  
120  
100  
80  
V
= ±15V  
SY  
V
= ±14V  
CM  
CH1 AMPL  
200mV  
V
V
= ±4V  
CM  
IN  
1
2
V
= ±1.5V  
CM  
60  
40  
V
OUT  
20  
0
–50  
CH1 100mV  
CH2 5V  
M2µs  
10.4%  
A CH1  
44mV  
–25  
0
25  
50  
75  
100  
125  
150  
T
TEMPERATURE (°C)  
Figure 104. CMRR vs. Temperature  
Figure 102. Negative 50% Overload Recovery  
150  
140  
130  
120  
110  
100  
90  
1000  
900  
+125°C  
+85°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= ±2V TO ±18V, V  
= 0V  
SY  
CM  
+25°C  
–40°C  
V
= ±1.25V TO ±1.75V, V  
= 0V  
SY  
CM  
80  
70  
60  
T
R
= 25°C  
= ∞  
A
50  
–50  
L
–25  
0
25  
50  
75  
100  
125  
150  
0
4
8
12  
16  
20  
(V)  
24  
28  
32  
36  
TEMPERATURE (°C)  
V
SY  
Figure 103. Supply Current (ISY) per Amplifier vs. Supply Voltage (VSY) for  
Various Temperatures  
Figure 105. PSRR vs. Temperature  
Rev. I | Page 28 of 36  
 
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
APPLICATIONS INFORMATION  
A key issue in the input stage is the behavior of the input bias  
currents over the input common-mode voltage range. Input bias  
currents in the ADA4084-1/ADA4084-2/ADA4084-4 are the  
arithmetic sum of the base currents in Q1 and Q4 and in Q2 and  
Q3. As a result of this design approach, the input bias currents in  
the ADA4084-1/ADA4084-2/ADA4084-4 not only exhibit  
different amplitudes, but they also exhibit different polarities. This  
effect is best shown in Figure 19, Figure 20, Figure 50, Figure 51,  
Figure 81, and Figure 82. It is, therefore, important that the  
effective source impedances that are connected to the ADA4084-1/  
ADA4084-2/ADA4084-4 inputs be balanced for optimum dc  
and ac performance.  
FUNCTIONAL DESCRIPTION  
The ADA4084-1/ADA4084-2/ADA4084-4 devices are precision  
single-supply, rail-to-rail operational amplifiers. Intended for  
portable instrumentation, the ADA4084-1/ADA4084-2/  
ADA4084-4 devices combine the attributes of precision, wide  
bandwidth, and low noise, making them an ideal choice in  
single-supply applications that require both ac and precision dc  
performance. Other low supply voltage applications for which  
the ADA4084-1/ADA4084-2/ADA4084-4 devices are well suited  
include active filters, audio microphone preamplifiers, power  
supply control, and telecommunications. To combine all of  
these attributes with rail-to-rail input/output operation, novel  
circuit design techniques are used.  
To achieve rail-to-rail output, the ADA4084-1/ADA4084-2/  
ADA4084-4 output stage design employs a unique topology for  
both sourcing and sinking current. This circuit topology is shown  
in Figure 107. The output stage is voltage driven from the second  
gain stage. The signal path through the output stage is inverting;  
that is, for positive input signals, Q13 provides the base current  
drive to Q19 so that it conducts (sinks) current. For negative input  
signals, the signal path via Q18 to the mirror to Q24 provides  
the base current drive for Q23 to conduct (source) current. Both  
transistors provide output current until they are forced into  
saturation.  
R4  
R3  
D1  
D2  
Q1  
Q2  
D100  
D101  
Q4  
Q3  
V
CC  
D5  
D4  
R6  
Q24  
Q23  
R1  
R2  
MIRROR  
Figure 106. Equivalent Input Circuit  
V
OUT  
For example, Figure 106 illustrates a simplified equivalent  
circuit for the input stage of the ADA4084-1/ADA4084-2/  
ADA4084-4. It comprises a PNP differential pair, Q1 and Q2,  
and an NPN differential pair, Q3 and Q4, operating concurrently.  
Diode D100 and Diode D101 serve to clamp the applied  
differential input voltage to the ADA4084-1/ADA4084-2/  
ADA4084-4, thereby protecting the input transistors against Zener  
breakdown of the emitter-base junctions. Input stage voltage  
gains are kept low for input rail-to-rail operation. The two pairs of  
differential output voltages are connected to the second stage of  
the ADA4084-1/ADA4084-2/ADA4084-4, which is a modified  
compound folded cascade gain stage. It is also in the second  
gain stage that the two pairs of differential output voltages are  
combined into a single-ended output signal voltage used to  
drive the output stage.  
C2  
Q13  
R7  
V
BIAS  
Q18  
R5  
C1  
Q19  
Q21  
V
D20  
EE  
Figure 107. Equivalent Output Circuit  
Thus, the saturation voltage of the output transistors sets the  
limit on the ADA4084-1/ADA4084-2/ADA4084-4 maximum  
output voltage swing. Output short-circuit current limiting is  
determined by the maximum signal current into the base of  
Q13 from the second gain stage. The output stage also exhibits  
voltage gain. This is accomplished by the use of common-emitter  
amplifiers, and, as a result, the voltage gain of the output stage  
(thus, the open-loop gain of the device) exhibits a dependence  
on the total load resistance at the output of the ADA4084-1/  
ADA4084-2/ADA4084-4.  
Rev. I | Page 29 of 36  
 
 
 
 
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
R2  
START-UP CHARACTERISTICS  
The ADA4084-1/ADA4084-2/ADA4084-4 are specified to operate  
from 3 V to 30 V ( 1.5 V to 15 V) under nominal power  
supplies. During power-up as the supply voltage increases from  
0 V to the nominal power supply voltage, the supply current (ISY)  
increases as well, to the point at which it stabilizes and the amplifier  
is ready to operate. The stabilization varies with temperature, as  
shown in Figure 103. For example, at −40°C, it requires a higher  
voltage and stabilizes at a lower supply current than at hot  
temperatures. At hot temperatures, it requires a lower voltage but  
stabilizes at a higher current. In all cases, the ADA4084-1/  
ADA4084-2/ADA4084-4 are specified to start up and operate at  
a minimum of 3 V under all temperature conditions.  
1/2  
ADA4084-1/  
ADA4084-2/  
ADA4084-4  
V
OUT  
R1  
V
IN  
Figure 108. Resistance in Series with the Input  
Limits Overvoltage Currents to Safe Values  
To protect the Q1/Q2 and Q3/Q4 pairs from large differential  
voltages that may result in Zener breakdown of the emitter-base  
junction, D100 and D101 are connected between the two inputs.  
This precludes operation as a comparator. For a more complete  
description, see the MT-035 Tutorial, Op Amp Inputs, Outputs,  
Single-Supply, and Rail-to-Rail Issues; the MT-083 Tutorial,  
Comparators; the MT-084 Tutorial, Using Op Amps as  
Comparators; and the AN-849 Application Note, Using Op  
Amps as Comparators.  
INPUT PROTECTION  
As with any semiconductor device, if conditions exist where the  
applied input voltages to the device exceed either supply voltage,  
the input overvoltage I-to-V characteristic of the device must be  
considered. When an overvoltage occurs, the amplifier may be  
damaged, depending on the magnitude of the applied voltage  
and the magnitude of the fault current.  
OUTPUT PHASE REVERSAL  
Some operational amplifiers designed for single-supply operation  
exhibit an output voltage phase reversal when their inputs are  
driven beyond their useful common-mode range. Typically, for  
single-supply bipolar op amps, the negative supply determines  
the lower limit of their common-mode range. With these devices,  
external clamping diodes, with the anode connected to ground  
and the cathode to the inputs, prevent input signal excursions  
from exceeding the negative supply of the device (that is, GND),  
preventing a condition that causes the output voltage to change  
phase. JFET input amplifiers can also exhibit phase reversal, and, if  
so, a series input resistor is usually required to prevent it.  
The D1, D2, D4, and D5 diodes conduct when the input common-  
mode voltage exceeds either supply pin by a diode drop. This  
diode drop voltage varies with temperature and is in the range  
of 0.3 V to 0.8 V. As shown in the simplified equivalent input  
circuit of Figure 106, the ADA4084-1/ADA4084-2/ADA4084-4  
do not have any internal current limiting resistors; thus, fault  
currents can quickly rise to damaging levels.  
This input current is not inherently damaging to the device,  
provided that it is limited to 5 mA or less. If a fault condition  
causes more than 5 mA to flow, add an external series resistor at  
the expense of additional thermal noise. Figure 108 shows a  
typical noninverting configuration for an overvoltage protected  
amplifier, where the series resistance (R1) is chosen, such that  
The ADA4084-1/ADA4084-2/ADA4084-4 are free from  
reasonable input voltage range restrictions, provided that input  
voltages no greater than the supply voltages are applied (see  
Figure 38, Figure 69, and Figure 100).  
VIN  
) VSUPPLY  
MAX  
(
R1 =  
Although device output does not change phase, large currents can  
flow through the input protection diodes. Therefore, apply the  
technique recommended in the Input Protection section to  
those applications where the likelihood of input voltages  
exceeding the supply voltages is high.  
5 mA  
For example, a 1 kΩ resistor protects the ADA4084-1/ADA4084-2/  
ADA4084-4 against input signals up to 5 V above and below the  
supplies. Note that the thermal noise of a 1 kΩ resistor at room  
temperature is 4 nV/√Hz, which exceeds the voltage noise of the  
ADA4084-1/ADA4084-2/ADA4084-4. For other configurations  
in which both inputs are used, add a series resistor to limit the  
input current. To ensure optimum dc and ac performance,  
balance the source impedance levels.  
Rev. I | Page 30 of 36  
 
 
 
 
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
Because circuit SNR is the critical parameter in the final analysis,  
the noise behavior of a circuit is sometimes expressed in terms  
of its noise figure (NF). The noise figure is defined as the ratio  
of the signal-to-noise output of a circuit to its signal-to-noise input.  
DESIGNING LOW NOISE CIRCUITS IN SINGLE-  
SUPPLY APPLICATIONS  
In single-supply applications, devices like the ADA4084-1/  
ADA4084-2/ADA4084-4 extend the dynamic range of the  
application through the use of rail-to-rail operation. Referring to  
the op amp noise model circuit configuration illustrated in  
Figure 109, the expression for the total equivalent input noise  
voltage of an amplifier for a source resistance level, RS, is given by  
Noise figure is generally used for RF and microwave circuit analysis  
in a 50 Ω system. This is not very useful for op amp circuits where  
the input and output impedances can vary greatly. For a more  
complete description of noise figure, see the MT-052 Tutorial,  
Op Amp Noise Figure: Don’t be Misled.  
V
Hz  
2
2
enT = 2  
[
(enR )2 + (  
×
)
]
+ (enOA  
)
, units in  
inOA RS  
Signal levels in the application invariably increase to maximize  
circuit SNR, which is not an option in low voltage, single-supply  
applications.  
where:  
(enR)2 is the source resistance thermal noise voltage power (4kTR).  
k is the Boltzmann’s constant, 1.38 × 10–23 J/K.  
T is the ambient temperature in Kelvin of the circuit, 273.15 +  
TA (°C).  
Therefore, to achieve optimum circuit SNR in single-supply  
applications, choose an operational amplifier with the lowest  
equivalent input noise voltage, along with source resistance  
levels that are consistent with maintaining low total circuit noise.  
(inOA)2 is the op amp equivalent input noise current spectral  
power (1 Hz bandwidth).  
COMPARATOR OPERATION  
RS = 2R, the effective, or equivalent, circuit source resistance.  
(enOA)2 is the op amp equivalent input noise voltage spectral  
power (1 Hz bandwidth).  
Although op amps are quite different from comparators,  
occasionally an unused section of a dual or a quad op amp can  
be used as a comparator; however, this is not recommended for  
any rail-to-rail output op amps. For rail-to-rail output op amps,  
the output stage is generally a ratioed current mirror with bipolar  
or MOSFET transistors. With the device operating open-loop,  
the second stage increases the current drive to the ratioed mirror  
to close the loop. However, the loop cannot close, which results in  
an increase in supply current. With the op amp configured as a  
comparator, the supply current can be significantly higher (see  
Figure 111). Configure an unused section as a voltage follower  
with the noninverting input connected to a voltage within the  
input voltage range. The ADA4084-1/ADA4084-2/ADA4084-4  
have unique second stage and output stage designs that greatly  
reduce the excess supply current when the op amp is operating  
open-loop.  
enR  
enOA  
R
NOISELESS  
inOA  
IDEAL  
NOISELESS  
OP AMP  
enR  
R
NOISELESS  
R
= 2R  
S
inOA  
Figure 109. Op Amp Noise Circuit Model Used to Determine Total Circuit  
Equivalent Input Noise Voltage and Noise Figure  
As a design aid, Figure 110 shows the equivalent thermal noise  
of the ADA4084-1/ADA4084-2/ADA4084-4 vs. the total source  
resistance. Note that for source resistance less than 1 kΩ, the  
equivalent input noise voltage of the ADA4084-1/ADA4084-2/  
ADA4084-4 is dominant.  
800  
COMPARATOR  
OUTPUT LOW  
100  
700  
FREQUENCY = 1kHz  
T
= 25°C  
A
600  
BUFFER  
500  
400  
300  
200  
100  
0
COMPARATOR  
OUTPUT HIGH  
ADA4084-1/ADA4084-2/ADA4084-4  
TOTAL EQUIVALENT NOISE  
10  
RESISTOR THERMAL  
NOISE ONLY  
T
= 25°C  
A
R
= ∞  
L
0
4
8
12  
16  
20  
(V)  
24  
28  
32  
36  
V
1
100  
SY  
1k  
10k  
100k  
Figure 111. Supply Current vs. Supply Voltage (VSY  
)
TOTAL SOURCE RESISTANCE, R (Ω)  
S
Figure 110. Equivalent Thermal Noise vs. Total Source Resistance  
Rev. I | Page 31 of 36  
 
 
 
 
 
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
LONG-TERM DRIFT  
TEMPERATURE HYSTERESIS  
The stability of a precision signal path over its lifetime or  
between calibration procedures is dependent on the long-term  
stability of the analog components in the path, such as op amps,  
references, and data converters. To help system designers  
predict the long-term drift of circuits that use the ADA4084-1/  
ADA4084-2/ADA4084-4, Analog Devices measured the offset  
voltage of multiple units for 10,000 hours (more than 13 months)  
using a high precision measurement system, including an  
ultrastable oil bath. To replicate real-world system performance,  
the devices under test (DUTs) were soldered onto an FR4 PCB  
using a standard reflow profile (as defined in the JEDEC J-STD-  
020D standard), as opposed to testing them in sockets. This  
manner of testing is important because expansion and  
In addition to stability over time as described in the Long-Term  
Drift section, it is useful to know the temperature hysteresis,  
that is, the stability vs. cycling of temperature. Hysteresis is an  
important parameter because it tells the system designer how  
closely the signal returns to its starting amplitude after the  
ambient temperature changes and subsequent return to room  
temperature. Figure 113 shows the change in input offset  
voltage as the temperature cycles three times from room  
temperature to +125°C to −40°C and back to room temperature.  
The dotted line is an initial preconditioning cycle to eliminate  
the original temperature-induced offset shift from exposure to  
production solder reflow temperatures. In the three full cycles,  
the offset hysteresis is typically only 4 μV, or 2% of its 200 µV  
maximum offset voltage over the full operating temperature  
range. The histogram in Figure 114 shows that the hysteresis is  
larger when the device is cycled through only a half cycle, from  
room temperature to 125°C and back to room temperature.  
100  
contraction of the PCB can apply stress to the integrated circuit  
(IC) package and contribute to shifts in the offset voltage.  
The ADA4084-1/ADA4084-2/ADA4084-4 have extremely low  
long-term drift, as shown in Figure 112. The red, blue, and  
green traces show sample units. Note that the mean drift of the  
ADA4084-1/ADA4084-2/ADA4084-4 over 10,000 hours is less  
than 3 μV, or less than 3% of their maximum specified offset  
voltage of 100 µV at room temperature.  
PRECONDITION  
CYCLE 1  
V
= 10V  
SY  
80  
60  
CYCLE 2  
CYCLE 3  
40  
15  
20  
0
10  
–20  
–40  
–60  
–80  
–100  
5
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–5  
TEMPERATURE (°C)  
Figure 113. Change in Offset Voltage over Three Full Temperature Cycles  
–10  
40  
V
= 10V  
HALF CYCLE  
FULL CYCLE  
SY  
35  
30  
25  
20  
15  
10  
27 UNITS × 3 CYCLES  
HALF CYCLE = +26°C, +125°C, +26°C  
FULL CYCLE = +26°C, +125°C, +26°C, –40°C, +26°C  
–15  
TIME (Hours)  
Figure 112. Measured Long-Term Drift of the ADA4084-1/ADA4084-2/  
ADA4084-4 Offset Voltage over 10,000 Hours  
5
0
40  
35  
30  
25  
20  
15  
10  
5
0
–40 –32 –24 –18  
–8  
0
8
18  
24  
32  
40  
OFFSET VOLTAGE HYSTERESIS (µV)  
Figure 114. Histogram Showing the Temperature Hysteresis of the Offset  
Voltage over Three Full Cycles and over Three Half Cycles  
Rev. I | Page 32 of 36  
 
 
 
 
 
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
45°  
1.27 (0.0500)  
BSC  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0099)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 115. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.00  
2.90  
2.80  
5
1
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
2
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
5°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.50 MAX  
0.35 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AA  
Figure 116. 5-Lead Small Outline Transistor Package [SOT-23]  
(RJ-5)  
Dimensions shown in millimeters  
Rev. I | Page 33 of 36  
 
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
3.20  
3.00  
2.80  
8
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
1
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 117. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
DETAIL A  
(JEDEC 95)  
2.44  
2.34  
2.24  
3.10  
3.00 SQ  
0.50 BSC  
2.90  
8
5
PIN 1 INDEX  
AREA  
1.70  
1.60  
1.50  
EXPOSED  
PAD  
0.50  
0.40  
0.30  
4
1
0.20 MIN  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
PIN  
1
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET  
0.30  
0.25  
0.20  
SEATING  
PLANE  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-229-W3030D-4  
Figure 118. 8-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-8-11)  
Dimensions shown in millimeters  
Rev. I | Page 34 of 36  
Data Sheet  
ADA4084-1/ADA4084-2/ADA4084-4  
DETAIL A  
(JEDEC 95)  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
PIN 1  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
13  
16  
0.65  
BSC  
12  
1
2.70  
2.60 SQ  
EXPOSED  
PAD  
2.50  
4
9
8
5
0.45  
0.40  
0.35  
0.20 MIN  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.  
Figure 119. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 075 mm Package Height  
(CP-16-17)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 120. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
Rev. I | Page 35 of 36  
ADA4084-1/ADA4084-2/ADA4084-4  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
Branding  
ADA4084-1ARZ  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
5-Lead Small Outline Transistor Package [SOT-23]  
5-Lead Small Outline Transistor Package [SOT-23]  
5-Lead Small Outline Transistor Package [SOT-23]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Lead Frame Chip Scale Package [LFCSP]  
8-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
R-8  
R-8  
R-8  
RJ-5  
RJ-5  
RJ-5  
ADA4084-1ARZ-R7  
ADA4084-1ARZ-RL  
ADA4084-1ARJZ-R2  
ADA4084-1ARJZ-R7  
ADA4084-1ARJZ-RL  
ADA4084-2ARMZ  
ADA4084-2ARMZ-R7  
ADA4084-2ARMZ-RL  
ADA4084-2ARZ  
ADA4084-2ARZ-R7  
ADA4084-2ARZ-RL  
ADA4084-2ACPZ-R7  
ADA4084-2ACPZ-RL  
ADA4084-4ACPZ-R7  
ADA4084-4ACPZ-RL  
ADA4084-4ARUZ  
ADA4084-4ARUZ-RL  
A38  
A38  
A38  
A2Q  
A2Q  
A2Q  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
CP-8-11  
CP-8-11  
CP-16-17  
CP-16-17  
RU-14  
RU-14  
A2Q  
A2Q  
1 Z = RoHS Compliant Part.  
©2011–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08237-0-5/17(I)  
Rev. I | Page 36 of 36  
 

ADA4084-4ARUZ-RL CAD模型

  • 引脚图

  • 封装焊盘图

  • ADA4084-4ARUZ-RL 替代型号

    型号 制造商 描述 替代类型 文档
    ADA4084-4ACPZ-R7 ADI 30 V, Low Noise, Rail-to-Rail Input/Output, Low Power Operational Quad Amplifier 功能相似
    ADA4084-4ACPZ-RL ADI 30 V, Low Noise, Rail-to-Rail Input/Output, Low Power Operational Quad Amplifier 功能相似

    ADA4084-4ARUZ-RL 相关器件

    型号 制造商 描述 价格 文档
    ADA4091-2 ADI Precision Micropower, OVP, RRIO Operational Amplifier 获取价格
    ADA4091-2ACPZ-R2 ADI Precision Micropower, OVP, RRIO Operational Amplifier 获取价格
    ADA4091-2ACPZ-R7 ADI Precision Micropower, OVP, RRIO Operational Amplifier 获取价格
    ADA4091-2ACPZ-RL ADI Precision Micropower, OVP, RRIO Operational Amplifier 获取价格
    ADA4091-2ARZ ADI Precision Micropower, OVP, RRIO Operational Amplifier 获取价格
    ADA4091-2ARZ-R2 ADI IC OP-AMP, 600 uV OFFSET-MAX, 1.22 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8, Operational Amplifier 获取价格
    ADA4091-2ARZ-R7 ADI Precision Micropower, OVP, RRIO Operational Amplifier 获取价格
    ADA4091-2ARZ-RL ADI Precision Micropower, OVP, RRIO Operational Amplifier 获取价格
    ADA4091-4 ADI Precision Micropower, OVP, RRIO Operational Amplifier 获取价格
    ADA4091-4ACPZ-R2 ADI Precision Micropower, OVP, RRIO Operational Amplifier 获取价格

    ADA4084-4ARUZ-RL 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6