ADP1055 [ADI]

Digital Controller for Power Supply Applications with PMBus Interface;
ADP1055
型号: ADP1055
厂家: ADI    ADI
描述:

Digital Controller for Power Supply Applications with PMBus Interface

文件: 总140页 (文件大小:1533K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Digital Controller for Power Supply  
Applications with PMBus Interface  
ADP1055  
Data Sheet  
Extended black box data recorder for fault recording  
User trimming on input and output voltages and currents  
Digital current sharing  
FEATURES  
−40°C to +125°C operation  
PMBus Revision 1.2 compliant with PEC and extended  
manufacturer specific commands  
APPLICATIONS  
32-bit password protection with command masking  
64 address selections (16 base addresses, expandable to 64)  
6 PWM control signals, 625 ps resolution  
Frequency from 48 kHz to 1 MHz  
Isolated dc-to-dc power supplies and modules  
Redundant power supply systems  
GENERAL DESCRIPTION  
Duty cycle double update rate  
Digital control loop (PID + additional pole or zero  
configurability)  
Programmable loop filters (CCM, DCM, low/normal  
temperature)  
Fast line voltage feedforward  
Adaptive dead time compensation for improved efficiency  
Remote voltage sense  
Redundant programmable OVP  
The ADP1055 is a flexible, feature-rich digital secondary side  
controller that targets ac-to-dc and isolated dc-to-dc secondary  
side applications. The ADP1055 is optimized for minimal  
component count, maximum flexibility, and minimum design  
time. Features include differential remote voltage sense, primary  
and secondary side current sense, pulse-width modulation (PWM)  
generation, frequency synchronization, redundant OVP, and  
current sharing. The control loop digital filter and compensation  
terms are integrated and can be programmed over the PMBus™  
interface. Programmable protection features include  
Current sense  
Primary side cycle-by-cycle fast protection  
Secondary side cycle-by-cycle fast overcurrent protection  
Secondary side averaged reverse current protection using  
diode emulation mode with fixed debounce  
Synchronous rectifier control for improved efficiency  
in light load mode  
Nonlinear gain for faster transient response from DCM to CCM  
Frequency synchronization  
Soft start and soft stop functionality  
Average and peak constant current mode  
External PN junction temperature sensing  
4 GPIOs (2 GPIOs configurable as active clamp snubber PWMs)  
overcurrent (OCP), overvoltage (OVP) limiting, undervoltage  
lockout (UVLO), and external overtemperature (OTP).  
The built-in EEPROM provides extensive programming of the  
integrated loop filter, PWM signal timing, inrush current, and  
soft start timing and sequencing. Reliability is improved through  
a built-in checksum and programmable protection circuits.  
A comprehensive GUI is provided for easy design of loop filter  
characteristics and programming of the safety features. The  
industry-standard PMBus provides access to the many monitoring  
and system test functions. The ADP1055 is available in a 32-lead  
LFCSP and operates from a single 3.3 V supply.  
TYPICAL APPLICATION DIAGRAM  
V
OUT  
DC  
INPUT  
LOAD  
DRIVER  
SR1 SR2  
CS1  
VFF  
CS2– CS2+  
OVP  
VS+ VS–  
ISHARE  
OUTA  
OUTB  
OUTC  
OUTD  
SYNC  
NC  
iCoupler®  
DRIVER  
ADP1055  
VCORE  
RES ADD JTD JRTN GPIO1 TO GPIO4 CTRL SMBALRT SDA SCL VDD AGND DGND  
V
DD  
PMBus  
Figure 1.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADP1055  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Matched Cycle-by-Cycle Current Limit (OCP Equalization)... 25  
Low Temperature Filter............................................................. 25  
Voltage Loop Autocorrection ................................................... 25  
Nonlinear Gain/Response......................................................... 26  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Application Diagram.......................................................... 1  
Revision History ............................................................................... 3  
Functional Block Diagram .............................................................. 4  
Specifications..................................................................................... 5  
Absolute Maximum Ratings.......................................................... 10  
Thermal Resistance .................................................................... 10  
Soldering...................................................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 13  
Controller Architecture ................................................................. 16  
Start-Up and Power-Down Sequencing ...................................... 17  
VDD and VCORE Pins.............................................................. 17  
Power-Up and Power-Down Commands ............................... 17  
Power Sequencing ...................................................................... 17  
Power-Up and Soft Start Routine............................................. 17  
Soft Stop Routine........................................................................ 17  
VDD/VCORE OVLO ................................................................ 18  
Control Loop and PWM Operation............................................. 19  
Voltage Sense, Feedback, and Control Loop............................. 19  
Output Voltage Sense................................................................. 19  
Digital Filter ................................................................................ 19  
Digital Filter Programming Registers...................................... 20  
Digital Compensation Filters During Soft Start..................... 20  
Filter Transition .......................................................................... 20  
Integrator Windup and Output Voltage Regulation Loss  
(Overshoot Protection) ............................................................. 26  
Accurate Secondary Overcurrent Protection......................... 26  
Secondary Fast Overcurrent Protection.................................. 27  
Secondary Fast Reverse Current Protection............................... 27  
Feedforward and Input Voltage Sense..................................... 27  
Accurate Overvoltage and Undervoltage Protection............. 28  
Fast Overvoltage Protection...................................................... 28  
External Frequency Synchronization ...................................... 28  
Temperature Sensing ................................................................. 29  
GPIO and PGOOD Signals....................................................... 29  
GPIO3 and GPIO4 as Snubber PWM Outputs...................... 31  
Average Constant Current Mode ............................................. 32  
32-Bit Key Code ......................................................................... 32  
SR Phase-In, SR Transition, and SR Fast Phase-In ................ 33  
Output Voltage Slew Rate.......................................................... 33  
Adaptive Dead Time Compensation ....................................... 33  
SR Delay....................................................................................... 34  
Current Sharing (ISHARE Pin)................................................ 34  
Droop Sharing ............................................................................ 36  
Light Load Mode and Deep Light Load Mode....................... 37  
Pulse Skipping............................................................................. 37  
Soft Stop....................................................................................... 37  
Duty Cycle Double Update Rate .............................................. 37  
Duty Balance, Volt-Second Balance, and Flux Balancing..... 38  
Fault Responses and State Machine Mechanics ......................... 39  
Priority of Faults......................................................................... 39  
Flags ............................................................................................. 39  
First Fault ID (FFID) ................................................................. 39  
Fault Condition During Soft Start and Soft Stop................... 40  
Watchdog Timer......................................................................... 40  
Standard PMBus Flags............................................................... 42  
Black Box Feature........................................................................... 43  
Black Box Operation.................................................................. 43  
Black Box Contents.................................................................... 43  
Black Box Timing....................................................................... 44  
PWM and Synchronous Rectifier Outputs (OUTA, OUTB,  
OUTC, OUTD, SR1, SR2)......................................................... 21  
Synchronous Rectification ........................................................ 21  
Modulation Limit ....................................................................... 22  
Switching Frequency Programming ........................................ 22  
ADCs and Telemetry...................................................................... 23  
ADCs for Current Sensing ........................................................ 23  
ADCs for Voltage Sensing......................................................... 24  
ADCs for Temperature Sensing................................................ 24  
Theory of Operation ...................................................................... 25  
Accurate Primary Overcurrent Protection............................... 25  
Primary Fast Overcurrent Protection...................................... 25  
Rev. A | Page 2 of 140  
Data Sheet  
ADP1055  
Black Box Readback....................................................................45  
Black Box Power Sequencing.....................................................45  
Power Supply Calibration and Trim .............................................46  
Voltage Calibration and Trim....................................................46  
CS1 Trim ......................................................................................46  
VFF Calibration and Trim .........................................................46  
PMBus Digital Communication....................................................47  
Features.........................................................................................47  
Overview ......................................................................................47  
Transfer Protocol.........................................................................47  
Data Transfer Commands..........................................................48  
Group Command Protocol........................................................49  
Clock Generation and Stretching..............................................49  
Start and Stop Conditions..........................................................49  
Repeated Start Condition...........................................................49  
General Call Support..................................................................49  
Alert Response Address (ARA).................................................49  
PMBus Address Selection ..........................................................50  
Fast Mode.....................................................................................50  
10-Bit Addressing........................................................................50  
Packet Error Checking................................................................50  
Electrical Specifications..............................................................50  
Fault Conditions..........................................................................50  
Timeout Conditions ...................................................................51  
Data Transmission Faults...........................................................51  
Data Content Faults ....................................................................52  
Layout Guidelines............................................................................53  
CS2+ and CS2− Pins...................................................................53  
VS+ and VS− Pins.......................................................................53  
VDD Pin.......................................................................................53  
SDA and SCL Pins ......................................................................53  
CS1 Pin.........................................................................................53  
Exposed Pad.................................................................................53  
VCORE Pin..................................................................................53  
RES Pin.........................................................................................53  
JTD and JRTN Pins.....................................................................53  
OVP Pin .......................................................................................53  
SYNC Pin .....................................................................................53  
AGND and DGND.....................................................................53  
EEPROM..........................................................................................54  
Overview......................................................................................54  
Page Erase Operation .................................................................54  
Read Operation (Byte Read and Block Read).........................54  
Write Operation (Byte Write and Block Write) ......................55  
EEPROM Password ....................................................................55  
Downloading EEPROM Settings to Internal Registers .........56  
Saving Register Settings to the EEPROM................................56  
EEPROM CRC Checksum.........................................................56  
Software GUI ...................................................................................57  
Standard PMBus Commands Supported by the ADP1055.......58  
Manufacturer Specific Commands...............................................60  
Standard PMBus Command Descriptions ..................................62  
Standard PMBus Commands....................................................62  
Manufacturer Specific PMBus Command Descriptions ...........86  
Supported Switching Frequencies...............................................126  
Outline Dimensions......................................................................140  
Ordering Guide .........................................................................140  
REVISION HISTORY  
3/15—Rev. 0 to Rev. A  
Changes to Table 1 ............................................................................7  
Changes to Snubber Configuration Section................................31  
Change to Debounce Bit, Table 159..............................................93  
Changes to Supported Switching Frequencies Section ............126  
3/14—Revision 0: Initial Version  
Rev. A | Page 3 of 140  
 
ADP1055  
Data Sheet  
FUNCTIONAL BLOCK DIAGRAM  
CS1  
VFF  
+
ADP1055  
DAC  
VDD  
UVLO  
LDO  
ADC  
ADC  
VFF  
ADC  
ADC  
CS1 OCP1  
CS2 OCP2 IREV VFB OVP  
VCORE  
ISHARE  
METERING  
OUTA  
OUTB  
DIGITAL  
DIGITAL CORE  
COMPENSATOR  
OUTC  
OUTD  
SR1  
PWM  
ENGINE  
8kB  
EEPROM  
STATE  
MACHINE  
GPIO1  
TO  
GPIO4  
2
SR2  
I C  
INTERFACE  
SYNC  
ADC  
ADC  
REF  
RES  
DGND  
SDA  
SCL SMBALRT ADD  
JTD JRTN  
AGND  
CTRL  
Figure 2. Functional Block Diagram (Simplified Internal Structure)  
Rev. A | Page 4 of 140  
 
Data Sheet  
ADP1055  
SPECIFICATIONS  
VDD = 3.0 V to 3.6 V, TA = −40°C to +125°C, unless otherwise noted. FSR = full-scale range.  
Table 1.  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
SUPPLY  
Supply Voltage  
Supply Current  
VDD  
IDD  
4.7 μF capacitor connected to AGND  
Normal operation (CTRL pin is high)  
Normal operation (CTRL pin is low)  
During EEPROM programming (40 ms)  
During black box write  
3.0  
3.3  
63  
55  
IDD + 8  
IDD + 8  
100  
3.6  
V
mA  
mA  
mA  
mA  
μA  
Current with VDD < VCORE POR  
POWER-ON RESET  
Power-On Reset  
Undervoltage Lockout  
Overvoltage Lockout  
OVLO Debounce  
POR  
UVLO  
OVLO  
VDD rising  
VDD falling  
3.0  
2.97  
4.1  
V
V
V
μs  
μs  
2.75  
3.8  
2.85  
4.0  
2.0  
Set to 2 μs (Register 0xFE4D[5] = 0)  
Set to 500 μs (Register 0xFE4D[5] = 1)  
0.33 μF capacitor connected to DGND  
VDD falling  
TA = 25°C  
No black box recording  
500  
VCORE PIN  
Power-On Reset (POR)  
Output Voltage  
Maximum Time from POR to  
Outputs Switching  
2.1  
2.6  
10  
V
V
ms  
(Register 0xFE48[1:0] = 00)  
With black box recording  
45  
ms  
(Register 0xFE48[1:0] = 01, 10, or 11)  
OSCILLATOR AND PLL  
PLL Frequency  
RES = 10 kΩ ( 0.1%)  
190  
200  
210  
0.8  
MHz  
OUTA, OUTB, OUTC, OUTD, SR1,  
SR2 PINS  
Output Low Voltage  
Output High Voltage  
Rise Time  
VOL  
VOH  
Sink current = 10 mA  
Source current = 10 mA  
CLOAD = 50 pF  
V
V
ns  
ns  
VDD − 0.8  
3.5  
1.5  
Fall Time  
CLOAD = 50 pF  
VOLTAGE FEEDFORWARD (VFF PIN)  
ADC Clock Frequency  
Feedforward (Slow) Input  
Voltage Range  
1.56  
1
MHz  
V
VFF  
For reporting; equivalent resolution  
of 12 bits  
0
0
1.6  
ADC Usable Input Voltage Range  
1.57  
V
Measurement Accuracy (Slow  
and Fast Feedforward)  
Factory trimmed at 1.0 V  
0% to 100% of usable input voltage range  
10% to 90% of usable input voltage range  
900 mV to 1.1 V  
−2.5  
−2.0  
−1.5  
+2.5  
+2.0  
+1.5  
1.0  
% FSR  
% FSR  
% FSR  
μA  
Leakage Current  
FEEDFORWARD FUNCTION  
(VFF PIN)  
Feedforward (Fast) Input  
Voltage Range  
Sampling Period for  
0.6  
1
1
1.6  
V
Equivalent resolution of 12 bits  
μs  
Feedforward (Fast) ADC  
VS LOW SPEED ADC  
Input Voltage Range  
Usable Input Voltage Range  
ADC Clock Frequency  
Differential voltage from VS+ to VS−  
0
0
1
1.6  
1.55  
V
V
MHz  
1.56  
Rev. A | Page 5 of 140  
 
ADP1055  
Data Sheet  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ADC Update Rate  
Registers are updated at this rate,  
equivalent resolution of 12 bits  
10.5  
ms  
Measurement Accuracy  
Factory trimmed at 1.0 V  
0% to 100% of usable input voltage range  
10% to 90% of usable input voltage range  
900 mV to 1.1 V  
−2.75  
−2.0  
−1.75  
+2.75  
+2.0  
+1.75  
110  
% FSR  
% FSR  
% FSR  
ppm/°C  
ꢀA  
Temperature Coefficient  
Leakage Current  
VDD = 3.3 V, VS = 1.0 V  
1.0  
Common-Mode Voltage Offset  
Error  
Maximum voltage differential from VS−  
to AGND of 200 mV  
−0.25  
−2.0  
+0.25  
% FSR  
VS OVP DIGITAL COMPARATOR  
VS OVP Accuracy  
VS OVP Comparator Speed  
+2.0  
+2.0  
% FSR  
ꢀs  
Register 0xFE4D[3:2] = 00, equivalent  
resolution of 7 bits  
82  
80  
VS UVP DIGITAL COMPARATOR  
VS UVP Accuracy  
Propagation Delay  
−2.0  
% FSR  
μs  
Does not include debounce time  
(Register 0xFE30[13:11] = 00)  
VS HIGH SPEED ADC  
Sampling Frequency  
Equivalent Resolution  
Dynamic Range  
10  
6
50  
MHz  
Bits  
mV  
FAST OVP COMPARATOR (OVP PIN)  
Threshold Accuracy  
Factory trimmed at 1.206 V  
Other thresholds (0.8 V to 1.6 V)  
Register 0xFE2F[1:0] = 00  
−1.2  
−2.0  
0
+1.5  
+2.0  
80  
%
%
ns  
Propagation Delay (Latency)  
CURRENT SENSE 1 (CS1 PIN)  
Input Voltage Range  
Usable Input Voltage Range  
ADC Clock Frequency  
Update Rate  
40  
1
VIN  
0
0
1.6  
1.56  
V
V
MHz  
ms  
1.56  
10.5  
Registers are updated at this rate,  
equivalent resolution of 12 bits  
Current Sense Measurement  
Accuracy  
Factory trimmed at 1.0 V; tested under dc  
input conditions  
10% to 60% of usable input voltage range  
10% to 90% of usable input voltage range  
0% to 100% of usable input voltage range  
−1.5  
−2.0  
−2.5  
+1.5  
+2.0  
+2.5  
% FSR  
% FSR  
% FSR  
Bits  
V
Current Sense Measurement  
CS1 Fast OCP Threshold  
12  
Register 0xFE2C[2] = 0  
Register 0xFE2C[2] = 1  
1.17  
242  
1.2  
250  
40  
1.23  
258  
80  
mV  
ns  
CS1 Fast OCP Speed  
CS1 Accurate OCP Speed  
Leakage Current  
10.5  
ms  
ꢀA  
1.5  
CURRENT SENSE 2 (CS2+, CS2−  
PINS)  
Current Sense Measurement  
Resolution  
For updating registers (constant current  
mode enabled or disabled)  
12  
Bits  
ADC Clock Frequency  
30 mV Range1  
Usable Input Range  
60 mV Range1  
Usable Input Range  
480 mV Range1  
Usable Input Range  
1.56  
MHz  
mV  
mV  
mV  
mV  
mV  
mV  
Register 0xFE4F[1:0] = 00  
Register 0xFE4F[1:0] = 01  
Register 0xFE4F[1] = 10  
0
0
0
0
0
0
30  
21  
60  
45  
480  
414  
Rev. A | Page 6 of 140  
Data Sheet  
ADP1055  
Parameter  
Symbol Test Conditions/Comments  
VDD = 3.3 V  
Min  
Typ  
Max  
Unit  
Temperature Coefficient  
30 mV Range  
0 mV to 19 mV  
0 mV to 21 mV  
0 mV to 41 mV  
0 mV to 45 mV  
0 mV to 374 mV  
0 mV to 414 mV  
326  
354  
172  
194  
83  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
60 mV Range  
480 mV Range  
84  
CURRENT SENSE MEASUREMENT  
ACCURACY (CS2+, CS2− PINS)  
30 mV Setting  
60 mV Setting  
480 mV Setting  
0 mV to 19 mV  
0 mV to 21 mV  
0 mV to 41 mV  
0 mV to 45 mV  
0 mV to 374 mV  
0 mV to 414 mV  
All ranges  
−2.9  
−3.1  
−1.9  
−2.1  
−1.5  
−1.7  
+2.9  
+3.1  
+1.9  
+2.1  
+1.5  
+1.7  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
μA  
Internal Level Shifting Current  
CS2 Accurate OCP Speed  
25  
2.6  
ms  
COMMON-MODE VOLTAGE OFFSET  
ERROR (CS2+, CS2− PINS)  
Maximum voltage differential from CS2−  
to AGND of 50 mV  
30 mV Range  
60 mV Range  
480 mV Range  
−1.0  
−0.5  
−0.25  
+1.0  
+0.5  
+0.25  
% FSR  
% FSR  
% FSR  
CS2 OCP FAST COMPARATORS  
(CS2+, CS2− PINS)  
For CS2 fast OCP and peak constant  
current mode  
CS2 Forward Comparator  
Accuracy  
Range of 0 mV to 60 mV  
Threshold set at 0 mV  
−10.3  
−10.1  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
Threshold set at 15.24 mV  
Threshold set at 30.48 mV  
Threshold set at 45.71 mV  
Threshold set at 60 mV  
Threshold set at 0 mV  
Threshold set at 152.4 mV  
Threshold set at 304.8 mV  
Threshold set at 457.1 mV  
Threshold set at 600 mV  
−23.8  
−7.1  
+16.7  
+7.6  
−10.2  
−10.2  
−0.8  
0.1  
Range of 0 mV to 600 mV  
0.9  
1.3  
Reverse Comparator Accuracy  
Range of 0 mV to 30 mV  
Threshold set at 0 mV  
−11.8  
−11.8  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
ns  
Threshold set at 7.62 mV  
Threshold set at 15.24 mV  
Threshold set at 22.86 mV  
Threshold set at 30 mV  
Threshold set at 0 mV  
Threshold set at −7.62 mV  
Threshold set at −15.24 mV  
Threshold set at −22.86 mV  
Threshold set at −30 mV  
−13.8  
−9.5  
+16.9  
12.7  
12.5  
17.1  
16.9  
Range of −30 mV to 0 mV  
Propagation Delay  
+23.2  
80  
17.6  
17.4  
40  
Register 0xFE2D[1:0] = 00 (diode  
emulation mode)  
JTD TEMPERATURE SENSE  
ADC Clock Frequency  
Update Rate  
1.56  
MHz  
For updating registers (14-bit resolution)  
Reverse Sensing Enabled  
Reverse Sensing Disabled  
200  
130  
ms  
ms  
Rev. A | Page 7 of 140  
ADP1055  
Data Sheet  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Measurement Accuracy for  
External Temperature Sensor  
With BC847A transistor (nf = 1.00);  
Register 0xFE5A[2:0] = 0x04  
Forward Temperature Sensor  
Error from −40°C to +25°C  
Error from 25°C to 125°C  
Error from 25°C to 125°C  
Digital inputs/outputs  
−11.7  
−8.9  
−9.7  
+13.4  
+14.7  
+14.4  
°C  
°C  
°C  
Reverse Temperature Sensor  
CTRL, SMBALRT, SYNC, GPIO1 TO  
GPIO4, ISHARE PINS  
Input Low Voltage  
Input High Voltage  
Propagation Delay  
GPIOx Rise Time  
VIL  
VIH  
0.8  
1.0  
V
V
ns  
ns  
ns  
μA  
VDD − 0.8  
40  
3.5  
1.5  
GPIOx configured as an output  
GPIOx configured as an output  
SMBALRT, SYNC, GPIO1 TO GPIO4, and  
ISHARE pins  
GPIOx Fall Time  
Leakage Current  
CTRL pin  
10.0  
μA  
SYNC PIN  
Synchronization to external frequency  
50  
40  
−10.0  
1000  
kHz  
ns  
% fSW  
ꢀA  
Minimum On Pulse  
Synchronization Range2  
Leakage Current  
+10.0  
1.0  
BLACK BOX PROGRAMMING TIME  
SDA/SCL PINS  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Leakage Current  
1.2  
2.1  
36 × 1.2  
ms  
VIL  
VIH  
VOL  
0.8  
V
V
V
μA  
0.4  
1.0  
SERIAL BUS TIMING  
Clock Operating Frequency  
Bus Free Time  
See Figure 3  
10  
1.3  
0.6  
100  
400  
kHz  
μs  
μs  
tBUF  
tHD;STA  
Between stop and start conditions  
Hold time after (repeated) start condition;  
after this period, the first clock is generated  
Start Hold Time  
Start Setup Time  
Stop Setup Time  
SDA Setup Time  
SDA Hold Time  
SCL Low Timeout  
SCL Low Period  
SCL High Period  
Clock Low Extend Time  
SCL, SDA Fall Time  
SCL, SDA Rise Time  
EEPROM RELIABILITY  
Endurance3  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;DAT  
tTIMEOUT  
tLOW  
tHIGH  
tLO;SEXT  
tF  
Repeated start condition setup time  
0.6  
0.6  
100  
300  
25  
μs  
μs  
ns  
ns  
ms  
μs  
μs  
ms  
ns  
ns  
For write and for readback  
35  
1.3  
0.6  
25  
300  
300  
20  
20  
tR  
TJ = 85°C  
TJ = 125°C  
TJ = 85°C  
TJ = 125°C  
10,000  
1000  
20  
Cycles  
Cycles  
Years  
Years  
Data Retention4  
15  
1 Differential voltage from CS2+ to CS2−.  
2 fSW is the switching frequency set in Register 0x33.  
3 Endurance is qualified as per JEDEC Standard 22, Method A117, and is measured at −40°C, +25°C, +85°C, and +125°C.  
4 Retention lifetime equivalent at junction temperature (TJ) = 85°C as per JEDEC Standard 22, Method A117. Retention lifetime derates with junction temperature.  
Rev. A | Page 8 of 140  
 
Data Sheet  
ADP1055  
tR  
tF  
tHD;STA  
tLOW  
SCL  
tHIGH  
tSU;STA  
tSU;STO  
tHD;STA  
tHD;DAT  
tSU;DAT  
SDA  
tBUF  
P
S
S
P
Figure 3. Serial Bus Timing Diagram  
Rev. A | Page 9 of 140  
 
ADP1055  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltage (Continuous), VDD 4.2 V  
Digital Pins: OUTA, OUTB, OUTC,  
OUTD, SR1, SR2, GPIO1, GPIO2,  
GPIO3, GPIO4, SMBALRT, SYNC  
−0.3 V to VDD + 0.3 V  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
32-Lead LFCSP  
44.4  
6.4  
°C/W  
VS−, AGND, DGND  
VS+  
JTD, JRTN, ADD  
CS1, CS2+, CS2−  
SDA, SCL  
−0.3 V to +0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−40°C to +125°C  
−65°C to +150°C  
150°C  
SOLDERING  
It is important to follow the correct guidelines when laying out  
the PCB footprint for the ADP1055 and when soldering the  
device onto the PCB. For detailed information about these  
guidelines, see the AN-772 Application Note.  
ISHARE  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
Peak Solder Reflow Temperature  
ESD CAUTION  
SnPb Assemblies  
(10 sec to 30 sec)  
RoHS-Compliant Assemblies  
(20 sec to 40 sec)  
240°C  
260°C  
ESD  
Charged Device Model  
Human Body Model  
500 V  
2.5 kV  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 10 of 140  
 
 
 
 
Data Sheet  
ADP1055  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
OVP  
VS+  
VS–  
CS2+  
CS2–  
NC  
1
2
3
4
5
6
7
8
24 ISHARE  
23  
22 SDA  
21 SCL  
SMBALRT  
ADP1055  
TOP VIEW  
(Not to Scale)  
20  
19  
CTRL  
GPIO1  
VFF  
CS1  
18 GPIO2  
17 GPIO3  
NOTES  
1. NC = NO CONNECT. LEAVE THIS PIN UNCONNECTED.  
2. FOR INCREASED RELIABILITY OF THE SOLDER JOINTSAND  
MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED THAT  
THE EXPOSED PAD ON THE UNDERSIDE OF THE PACKAGE BE  
SOLDERED TO THE PCB AGND PLANE.  
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
OVP  
Overvoltage Protection. This signal is referenced to AGND and is used for redundant OVP protection. The nominal  
voltage at this pin should be 1 V. If this pin is not used, connect it to AGND.  
2
3
VS+  
Noninverting Voltage Sense Input. This signal is referenced to VS−. The nominal input voltage at this pin is 1 V. The  
resistor divider on this input must have a tolerance specification of 0.5% or better to allow for trimming. This pin is  
the input to the high frequency flash ADC.  
Inverting Voltage Sense Input. There should be a low ohmic connection to AGND. The resistor divider on this input  
must have a tolerance specification of 0.5% or better to allow for trimming. To reduce common-mode noise, connect  
a 0.1 μF capacitor from VS− to AGND.  
VS−  
4
5
CS2+  
CS2−  
Noninverting Differential Current Sense Input. This signal is referenced to CS2−. If this pin is not used, connect it to  
AGND.  
Inverting Differential Current Sense Input. If this pin is not used, connect it to AGND. This pin must have a low  
ohmic connection to AGND thought the sense resistor.  
6
7
NC  
VFF  
No Connect. Leave this pin unconnected.  
Voltage Feedforward. Two optional functions can be implemented using this pin: feedforward and input voltage  
loss detection. This pin is typically connected upstream of the output inductor through a resistor divider network  
in an isolated converter. The nominal voltage at this pin should be 1 V. This signal is referenced to AGND. If this pin  
is not used, connect it to AGND.  
8
CS1  
Primary Side Current Sense Input. This pin is connected to the primary side current sensing ADC and to the fast  
OCP comparator. This signal is referenced to PGND. The resistors on this input must have a tolerance specification  
of 0.5% or better to allow for trimming. If this pin is not used, connect it to AGND.  
9
SR1  
SR2  
Synchronous Rectifier Output. This PWM output connects to the input of a FET driver. This pin can be disabled  
when not in use. This signal is referenced to AGND.  
Synchronous Rectifier Output. This PWM output connects to the input of a FET driver. This pin can be disabled  
when not in use. This signal is referenced to AGND.  
10  
11  
12  
13  
14  
15  
OUTA  
OUTB  
OUTC  
OUTD  
SYNC  
PWM Output for Primary Side Switch. This pin can be disabled when not in use. This signal is referenced to AGND.  
PWM Output for Primary Side Switch. This pin can be disabled when not in use. This signal is referenced to AGND.  
PWM Output for Primary Side Switch. This pin can be disabled when not in use. This signal is referenced to AGND.  
PWM Output for Primary Side Switch. This pin can be disabled when not in use. This signal is referenced to AGND.  
Synchronization Input Signal. This pin is used as a reference for the internal PWM frequency. This signal is  
referenced to AGND and must have a nominal duty cycle of 50%. If this pin is not used, connect it to AGND and  
program Register 0xFE55[6] = 1.  
16  
17  
GPIO4  
GPIO3  
Programmable General-Purpose Input/Output. If this pin is not used, connect it to AGND. This pin can also be  
configured as an active snubber PWM output.  
Programmable General-Purpose Input/Output. If this pin is not used, connect it to AGND. This pin can also be  
configured as an active snubber PWM output.  
Rev. A | Page 11 of 140  
 
ADP1055  
Data Sheet  
Pin No.  
18  
19  
Mnemonic Description  
GPIO2  
GPIO1  
CTRL  
Programmable General-Purpose Input/Output. If this pin is not used, connect it to AGND.  
Programmable General-Purpose Input/Output. If this pin is not used, connect it to AGND.  
Power Supply On Input. This signal is referenced to AGND. This pin is the hardware PSON control signal. It is  
recommended that a 1 nF capacitor be connected from the CTRL pin to AGND for decoupling. If this pin is not  
used, connect it to AGND.  
20  
21  
22  
23  
SCL  
SDA  
SMBALRT  
I2C/PMBus Serial Clock Input and Output (Open Drain). This signal is referenced to AGND.  
I2C/PMBus Serial Data Input and Output (Open Drain). This signal is referenced to AGND.  
Power-Good Output (Open Drain). This signal is referenced to AGND. This pin is also used as the PMBus ALERT  
signal.  
24  
25  
ISHARE  
VCORE  
Digital Current Sharing Input and Output (Open Drain). This signal is referenced to AGND.  
VDD for the Digital Core. Connect a decoupling capacitor of at least 330 nF (1 μF maximum) from this pin to DGND  
as close to the IC as possible to minimize the PCB trace length. Do not use the VCORE pin as a reference or load it  
in any way.  
26  
VDD  
Positive Supply Input. This signal is referenced to AGND. Connect a 4.7 μF decoupling capacitor from this pin to  
AGND as close to the IC as possible to minimize the PCB trace length.  
27  
28  
29  
30  
DGND  
AGND  
JRTN  
RES  
Digital Ground. This pin is the ground reference for the digital circuitry. Star connect to AGND.  
IC Analog Ground.  
Temperature Sensor Return. If this pin is not used, connect it to AGND.  
Resistor Input. This pin sets the internal reference for the internal PLL frequency. Connect a 10 kΩ resistor ( 0.1%)  
from RES to AGND. Do not load this pin with any capacitance. This signal is referenced to AGND.  
I2C/PMBus Address Select Input. Connect a resistor from ADD to AGND. This signal is referenced to AGND.  
31  
32  
ADD  
JTD  
Thermal Sensor Input. A PN junction sensor is connected from this pin to the JRTN pin. If this pin is not used,  
connect it to JRTN.  
EP  
Exposed Pad. For increased reliability of the solder joints and maximum thermal capability, it is recommended  
that the exposed pad on the underside of the package be soldered to the PCB AGND plane.  
Rev. A | Page 12 of 140  
Data Sheet  
ADP1055  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5  
4
3
MAX SPEC  
2.0  
MAX SPEC  
1.5  
2
1.0  
MAX  
MAX  
1
0.5  
MEAN  
MEAN  
0
–0.5  
0
MIN  
–1  
–2  
–3  
–4  
MIN  
–1.0  
–1.5  
MIN SPEC  
–2.0  
MIN SPEC  
–2.5  
–50  
0
50  
100  
150  
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
TEMPERATURE (°C)  
Figure 5. VS ADC Accuracy vs. Temperature (from 10% to 90% of FSR)  
Figure 8. CS2 30 mV ADC Accuracy vs. Temperature  
(from 10% to 90% of FSR)  
2.5  
2.5  
2.0  
MAX SPEC  
MAX SPEC  
2.0  
1.5  
1.5  
1.0  
1.0  
MAX  
MAX  
MEAN  
0.5  
0
–0.5  
0.5  
MEAN  
0
MIN  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
MIN  
–1.0  
–1.5  
MIN SPEC  
–2.0  
MIN SPEC  
–2.5  
–50  
0
50  
100  
150  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 6. CS1 ADC Accuracy vs. Temperature (from 10% to 90% of FSR)  
Figure 9. CS2 60 mV ADC Accuracy vs. Temperature  
(from 10% to 90% of FSR)  
2.5  
2.0  
1.5  
MAX SPEC  
MAX SPEC  
2.0  
1.5  
1.0  
1.0  
MAX  
MEAN  
MIN  
MAX  
MEAN  
MIN  
0.5  
0.5  
0
–0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–1.0  
–1.5  
MIN SPEC  
–2.0  
MIN SPEC  
–2.5  
–50  
0
50  
100  
150  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. VFF ADC Accuracy vs. Temperature (from 10% to 90% of FSR)  
Figure 10. CS2 480 mV ADC Accuracy vs. Temperature  
(from 10% to 90% of FSR)  
Rev. A | Page 13 of 140  
 
ADP1055  
Data Sheet  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
70  
60  
MAX SPEC  
50  
40  
MAX  
MEAN  
MIN  
30  
20  
MAX SPEC  
MEAN  
MIN SPEC  
10  
0
–10  
–20  
–30  
MIN SPEC  
1.185  
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
0
10  
20  
30  
40  
50  
60  
PROGRAMMED THRESHOLD (mV)  
Figure 11. OVP Fast Comparator at 1.206 V vs. Temperature  
Figure 14. CS2 Forward Comparator Accuracy, 0 mV to 60 mV Range  
1.24  
700  
600  
500  
400  
MAX SPEC  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
MAX  
300  
MEAN  
MAX SPEC  
MEAN  
MIN SPEC  
MIN  
200  
100  
0
MIN SPEC  
–100  
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
0
100  
200  
300  
400  
500  
600  
PROGRAMMED THRESHOLD (mV)  
Figure 15. CS2 Forward Comparator Accuracy, 0 mV to 600 mV Range  
Figure 12. CS1 OCP Fast Comparator at 1.2 V vs. Temperature  
15  
260  
MAX SPEC  
258  
10  
MAX SPEC  
MEAN  
MIN SPEC  
5
0
256  
254  
–5  
252  
MAX  
–10  
–15  
–20  
–25  
–30  
–35  
250  
MEAN  
248  
MIN  
246  
244  
MIN SPEC  
242  
240  
0
–5  
–10  
–15  
–20  
–25  
–30  
–50  
0
50  
100  
150  
PROGRAMMED THRESHOLD (mV)  
TEMPERATURE (°C)  
Figure 13. CS1 OCP Fast Comparator at 250 mV vs. Temperature  
Figure 16. CS2 Reverse Comparator, 0 mV to −30 mV Range  
Rev. A | Page 14 of 140  
Data Sheet  
ADP1055  
35  
30  
25  
20  
15  
10  
5
20  
15  
10  
5
MAX SPEC  
MAX SPEC  
MEAN  
MIN SPEC  
MAX  
MEAN  
0
–5  
–10  
–15  
MIN  
0
MIN SPEC  
60  
–5  
–10  
0
20  
40  
80  
100  
120  
140  
0
5
10  
15  
20  
25  
30  
TEMPERATURE (°C)  
PROGRAMMED THRESHOLD (mV)  
Figure 17. CS2 Reverse Comparator, 0 mV to 30 mV Range  
Figure 19. Reverse Temperature Sensor Error vs. Temperature  
20  
MAX SPEC  
15  
10  
5
MAX  
MEAN  
0
MIN  
–5  
–10  
–15  
MIN SPEC  
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
Figure 18. Forward Temperature Sensor Error vs. Temperature  
Rev. A | Page 15 of 140  
ADP1055  
Data Sheet  
CONTROLLER ARCHITECTURE  
The ADP1055 is an application specific digital controller based  
on finite state machine (FSM) architecture. The ADP1055 supports  
a subset of the PMBus Revision 1.2 standard and also has extended  
manufacturer specific commands to provide a feature rich digital  
power product.  
Primary side information (current or voltage) is sensed and  
processed via the CS1 and VFF pins, whereas secondary side  
information is obtained via the CS2 , ISHARE, VS , and OVP  
pins. A dedicated temperature sensor uses the JTD and JRTN  
pins. The input voltage is measured using the VFF pin and is  
used for line voltage feedforward. Extensive fault protection  
schemes are provided, and the controller also has a black box to  
record the state of the device (all sensor information including  
voltages, currents, temperatures, and flags) upon shutdown.  
Dedicated ADCs and comparators constitute the analog front  
end of the controller, feeding information to the digital core. The  
information is processed and used to generate the programmable  
PWM signals and to take action for various features such as light  
load or overvoltage/overcurrent protection.  
I2C/PMBus communication is facilitated by the SDA, SCL, and  
SMBALRT  
pins. Four GPIO pins can be used as flag output  
The ADP1055 has six PWM outputs: OUTA to OUTD for the  
primary side switches and SR1 and SR2 for the secondary side  
synchronous rectifiers. The ADP1055 allows individual  
programming of the PWM outputs to form the timing of the  
power switches for any power topology, such as full bridge, full  
bridge phase shifted, current doubler, or active clamp.  
signals or as an interrupt service routine (ISR) to trigger a  
PMBus fault action. The CTRL pin is used as described in the  
PMBus specification.  
Detailed descriptions of all ADP1055 features are provided in  
the Theory of Operation section.  
Rev. A | Page 16 of 140  
 
Data Sheet  
ADP1055  
START-UP AND POWER-DOWN SEQUENCING  
The outputs start switching, depending on the configuration of  
the OPERATION command (Register 0x01) and the ON_OFF_  
CONFIG command (Register 0x02).  
VDD AND VCORE PINS  
The proper amount of decoupling capacitance must be placed  
between the VDD and AGND pins, as close as possible to the  
device to minimize the trace length. It is recommended that the  
VCORE pin not be loaded in any way.  
If the ADP1055 is programmed to be always on (Register  
0x02[4] = 0), the device begins the soft start ramp. Figure 21  
shows the entire soft start process.  
POWER-UP AND POWER-DOWN COMMANDS  
The PMBus commands OPERATION (Register 0x01) and  
ON_OFF_CONFIG (Register 0x02) control the power-up and  
power-down behavior of the ADP1055.  
Figure 21. Example of Soft Start and Soft Stop Settings in the GUI  
Figure 20. OPERATION (Register 0x01) and ON_OFF_CONFIG  
(Register 0x02)  
The soft start proceeds as follows.  
POWER SEQUENCING  
1. Upon power-up, the ADP1055 waits for the programmed  
TON_DELAY (Register 0x60) and ramps to the regulation  
voltage according to the time programmed in TON_RISE  
(Register 0x61).  
2. The soft start begins to ramp up the internal digital  
reference. The total duration of the soft start ramp is  
programmable using the TON_RISE command. The  
TON_MAX command specifies the maximum on time  
before which the output voltage must exceed the  
VOUT_UV_FAULT_LIMIT (Register 0x44). If the  
VOUT_UV_FAULT_LIMIT is set to 0, the TON_MAX  
value is ignored.  
Power sequencing is controlled using Register 0x60 through  
Register 0x66. The delays for the turn-on command (Register  
0x60, TON_DELAY) and the turn-off command (Register 0x64,  
TOFF_DELAY) can each be programmed from 0 ms to 1024 ms  
in steps of 1 ms.  
The soft start ramp-up time (Register 0x61, TON_RISE) and  
the ramp-down time (Register 0x65, TOFF_FALL) can be  
programmed from 0 ms to 100 ms in steps of 1 ms.  
All values are rounded to the nearest available value. If a value is  
programmed outside the allowed range, it is forced to the nearest  
legal value.  
If the soft start from precharge function is enabled  
POWER-UP AND SOFT START ROUTINE  
(Register 0xFE51[0] = 1), the soft start ramp starts from the  
current value of the output voltage sensed on VS and,  
therefore, the soft start ramp time is reduced proportionally.  
When VDD is applied to the device, a certain time elapses  
before the ADP1055 can regulate the power supply.  
1. When VDD is above UVLO and VCORE reaches above  
VCORE POR through an internal regulator, the ADP1055  
downloads the user settings from Page 1 of the EEPROM  
into the internal registers.  
2. After the EEPROM download, the ADP1055 determines its  
address, programmed by the ADD pin and the I2C slave  
base address (Register 0xD0, SLV_ADDR_SELECT).  
3. The ADP1055 waits for an idle time, after which the device  
is ready for normal operation. If the black box must erase a  
page to precondition the EEPROM for storing, the idle  
time is extended by ~35 ms (see the Black Box Timing  
section).  
SOFT STOP ROUTINE  
The soft stop process occurs in a manner similar to the soft start  
process, using the TOFF_DELAY, TOFF_MAX, and TOFF_FALL  
commands. These commands are the counterparts of the  
TON_DELAY, TON_MAX, and TON_RISE commands used  
for soft start. For more information about soft stop, see the Soft  
Stop section.  
4. If the ADP1055 is programmed to power up at this time  
(OPERATION is enabled), the soft start ramp begins.  
Otherwise, the ADP1055 waits for the OPERATION  
command.  
Rev. A | Page 17 of 140  
 
 
 
 
 
 
 
ADP1055  
Data Sheet  
VDD overvoltage is ignored when the device is downloading  
information from the EEPROM, even if the overvoltage occurs  
during the initial power-up or due to the setting of Register  
0xFE4D[6]. VDD overvoltage is recognized as a fault only after  
the EEPROM download is complete. The ADP1055 has a 4 ms  
idle time after an EEPROM download.  
VDD/VCORE OVLO  
The ADP1055 has built-in overvoltage protection (OVP) on its  
supply rails. When the VDD or VCORE voltage rises above the  
OVLO threshold, the response can be programmed using  
Register 0xFE4D. It is recommended that when a VDD/VCORE  
OVP fault occurs, the response be set to download the EEPROM  
before restarting the ADP1055. All features related to the OVLO  
function—such as debounce, fault ignore, and download EEPROM  
upon receiving a fault condition—are programmable using  
Register 0xFE4D[7:4].  
If the VDD overvoltage occurs during the ramp-up of VDD and  
the ADP1055 has not initiated the EEPROM download, the  
device responds according to the default setting of Bit 7 in  
Register 0xFE4D, which is to ignore VDD OV.  
Rev. A | Page 18 of 140  
 
Data Sheet  
ADP1055  
CONTROL LOOP AND PWM OPERATION  
format and can be used to calculate all stability criteria for the  
power supply.  
VOLTAGE SENSE, FEEDBACK, AND CONTROL LOOP  
The VS pins are used for the monitoring and protection of the  
remote load voltage. The differential VS input pins are the main  
feedback sense point for the power supply control loop. The VS  
sense point on the power rail requires an external resistor divider  
to bring the nominal common-mode signal to 1 V at the VS pins.  
This resistor divider is programmed into VOUT_SCALE_LOOP  
and VOUT_SCALE_MONITOR accordingly. The resistor divider  
is necessary because the input range is 0 V to 1.6 V. The  
divided-down signal is internally fed into a high frequency (HF)  
ADC. The HF ADC is also the high frequency feedback loop for  
the power supply.  
From the sensed voltage to the duty cycle, the transfer function  
of the filter in z-domain is as follows:  
B
256  
A
1   
1  
z
D
1
C
H(z)  
ADD_PZ  
1  
LFG (1z ) HFG   
1   
1  
z
256  
where:  
A = filter pole register value (in decimal).  
B = filter zero register value (in decimal).  
OUTPUT VOLTAGE SENSE  
C = high frequency gain register value (in decimal).  
D = low frequency gain register value (in decimal).  
The output voltage is fed back to the VS pins, where it is com-  
pared with a reference set by a 12-bit DAC (see Figure 22). The  
difference is then fed into the flash ADC; in this configuration,  
the flash ADC does not see the fraction of the output voltage set  
by the resistor divider, but instead sees only the error voltage. The  
error voltage is then fed into the digital filter, which decides the  
duty cycle command for the next switching period. The number  
of samples taken by the flash ADC can be configured in Register  
0xFE67[7:4] (see Table 215). The recommended configuration  
of this register is automatically configured using the GUI.  
LFG = 5.968 × m × 106/fSW  
.
HFG = 3.73× m × 105/fSW  
.
m = 1 when 48.8 kHz ≤ fSW < 97.7 kHz.  
m = 2 when 97.7 kHz ≤ fSW < 195.3 kHz.  
m = 4 when 195.3 kHz ≤ fSW < 390.6 kHz.  
m = 8 when 390.6 kHz ≤ fSW  
.
ADD_PZ is an additional pole or additional zero that can be  
added to the compensator.  
The additional zero takes this form:  
V
OUT  
E
256  
ADP1055  
1  
z 1  
+
HF  
ADC  
50mV  
DPWM  
VS+  
The additional pole takes this form:  
1
REF  
DAC  
TRIM  
DAC  
E
1   
1  
z  
256  
where E is the value (in decimal) of the additional pole zero  
frequency gain register (Register 0xFE60 and Register 0xFE61).  
LPF  
VS ADC (12 BITS)  
VOUT_OV_LIMIT  
VOUT_UV_LIMIT  
LF  
ADC  
To transfer the z-domain value to the s-domain, plug the follow-  
ing bilinear transformation equation into the H(z) equation:  
VS–  
2 fSW s  
z(s)   
Figure 22. Output Voltage Sense and Feedback  
2 fSW s  
The output voltage is also sampled using a low frequency ADC.  
The output voltage is fed to a low-pass filter that is used to set the  
output of a trim DAC; the trim DAC finely adjusts the output  
voltage as part of the autocorrection loop (see the Voltage Loop  
Autocorrection section).  
where fSW is the switching frequency.  
The digital filter introduces an extra phase delay element into  
the control loop. The digital filter circuit sends the duty cycle  
information to the PWM circuit at the beginning of each switch-  
ing cycle (unlike an analog controller, which makes decisions on  
the duty cycle information continuously). Therefore, the extra  
phase delay for phase margin, Φ, introduced by the filter block is  
DIGITAL FILTER  
The loop response of the power supply can be changed using the  
internal programmable digital filter. A Type 3 filter architecture  
has been implemented. To tailor the loop response to the specific  
application, the low frequency gain, zero location, pole location,  
and high frequency gain can all be set individually (see the Digital  
Filter Programming Registers section). It is recommended that  
the Analog Devices, Inc., software GUI be used to program the  
filter. The software GUI displays the filter response in Bode plot  
Φ = 360 × (fC/fSW  
where:  
fC is the crossover frequency.  
SW is the switching frequency.  
)
f
At one-tenth the switching frequency, the phase delay is 36°. For  
double update rate, the phase delay is reduced to 18°. The GUI  
Rev. A | Page 19 of 140  
 
 
 
 
 
ADP1055  
Data Sheet  
RAMP TIME  
0x5F  
incorporates this phase delay into its calculations. Note that the  
GUI does not account for other delays such as gate driver and  
propagation delays.  
PS ON  
DIGITAL FILTER PROGRAMMING REGISTERS  
Three sets of registers allow three different filters to be  
programmed.  
12.5% REF  
V
OUT  
LLM/NMF  
BASED ON  
LOAD  
Normal mode filter (used for CCM or heavy load and  
configured in Register 0xFE01 to Register 0xFE04)  
Light load mode filter (configured in Register 0xFE05 to  
Register 0xFE08)  
Soft start filter (configured in Register 0xFE09 to  
Register 0xFE0C)  
LLF  
NMF/SSF  
NMF/SSF  
ZONE 1  
LLM/NMF  
BASED ON  
LOAD  
NMF/SSF  
ZONE 2  
ZONE 3  
Figure 23. Digital Filters During Soft Start (Low Temperature Filter Not Shown)  
The software GUI allows the user to program the light load  
mode filter in the same manner as the normal mode filter. It is  
recommended that the GUI be used for this purpose.  
As shown in Figure 23, in Zone 1, the ADP1055 starts with the  
normal mode filter or the soft start filter. Zone 2 begins when the  
voltage reaches 12.5% of the nominal output voltage value. At this  
point, the ADP1055 checks whether the system is in light load  
mode, and the choice of filter is based on the following criteria:  
DIGITAL COMPENSATION FILTERS DURING SOFT  
START  
If the system is in light load mode, the ADP1055 switches  
to the light load mode filter (unless the option to disable  
the LLM filter was previously selected).  
The ADP1055 has a dedicated soft start filter (SSF) that can be  
used to fine-tune and optimize the dynamic response during  
the output voltage ramp-up.  
If the system is not in light load mode, the ADP1055  
continues to use the filter used in Zone 1: the normal mode  
filter or the soft start filter.  
During soft start, the ADP1055 determines the load condition  
and after the voltage reaches 12.5% of the nominal output  
voltage value, it determines the current load condition and  
switches filters accordingly to the light load mode threshold  
(Register 0xFE5F[3:1]). If the load current is below the light  
load mode threshold, the ADP1055 switches to the light load  
mode filter (LLF). If the load current is above the light load  
mode threshold, the normal mode filter is used until the end of  
the soft start ramp, even if the device subsequently enters light  
load mode based on a change to the load current.  
The ADP1055 changes to the LLM filter if the load changes  
during Zone 2 (voltage rises from 12.5% to 100% of the soft  
start ramp. The filter does not revert to LLM if the load drops  
until after the end of soft start.  
In Zone 3 the filter changes to the NMF or LLM filter, depending  
on the load.  
FILTER TRANSITION  
Other configurations can be programmed to use different filters  
during soft start, as follows:  
To avoid output voltage glitches and to provide a seamless  
transition from one filter to another, the ADP1055 supports  
programmable filter transitions. This feature allows a gradual  
transition from one filter to another. Filter transitions are  
programmed using Register 0xFE4A[2:0]. When the ADP1055  
switches filters, the switching action is changed in 32 steps. The  
Force soft start filter (Register 0xFE51[2]). This option forces  
the ADP1055 to use the soft start filter. In some cases, this  
option allows better fine-tuning of the ramp-up voltage.  
Disable light load mode during soft start (Register 0xFE51[1]).  
This option prevents the use of the light load mode filter  
during soft start, even if the light load condition is met.  
The light load mode filter is available for use after the end  
of the soft start ramp.  
step size can be programmed over several cycles (1tSW to 32tSW  
to avoid glitches in the output. The filter used depends on the  
)
state of the synchronous rectifiers and whether the system is in  
continuous conduction mode (CCM) or discontinuous conduction  
mode (DCM) (see Table 5).  
Figure 23 shows the use of filters during soft start.  
Table 5. State of Synchronous Rectifiers and Filter Used  
State of SRx Outputs  
Load  
Regular Mode  
Diode Emulation Mode  
SRs in CCM  
Filter Used  
Medium to heavy load SRs in CCM  
Normal mode filter (Register 0xFE01 to Register 0xFE04).  
Below LLM threshold  
Deep LLM  
SRs in LLM  
SRs are off  
Diode emulation SRs  
LLM filter (Register 0xFE05 to Register 0xFE08.) When diode  
emulation mode is in use, the LLM filter is activated after the LLM  
threshold is crossed.  
SRs are off  
LLM filter (Register 0xFE05 to Register 0xFE08).  
Rev. A | Page 20 of 140  
 
 
 
 
 
Data Sheet  
ADP1055  
Go and Auto Go Command  
PWM AND SYNCHRONOUS RECTIFIER OUTPUTS  
(OUTA, OUTB, OUTC, OUTD, SR1, SR2)  
The PWM outputs (OUTA to OUTD) and the SR outputs (SR1  
and SR2) are all synchronized with each other. Therefore, when  
reprogramming more than one of these outputs, it is important  
to first update all the registers and then latch the information  
into the ADP1055 at the same time. This simultaneous updating  
of the PWM outputs is facilitated by the GO command  
The PWM and SR outputs are used for control of the primary  
side drivers and the synchronous rectifier drivers. These outputs  
can be used for several control topologies, such as full-bridge,  
phase-shifted ZVS configurations and interleaved, two switch  
forward converter configurations. Delays between the rising and  
falling edges can be individually programmed (see Figure 24).  
(Register 0xFE00). The GO command acts as a gate to apply all  
functions related to the commands at the same time.  
t2  
The GO command gates the following functions:  
PWM1 (OUTA)  
t1  
Frequency synchronization  
Line voltage feedforward  
Double update rate, volt-second balance  
Digital filter settings  
Frequency and PWM settings  
Voltage reference change  
t4  
PWM2 (OUTB)  
t3  
t5  
PWM3 (OUTC)  
t6  
t8  
During reprogramming, the outputs are temporarily disabled.  
It is recommended that the PWM outputs be disabled when  
not in use.  
PWM4 (OUTD)  
t7  
t10  
SYNC RECT 1 (SR1)  
The PMBus allows the user to change the voltage setting and  
the switching frequency on-the-fly. The auto go command  
(Register 0xFE5B) is an added level of protection that restricts the  
user from making a change to certain commands (see Table 203).  
t9  
t12  
SYNC RECT 2 (SR2)  
t11  
For more information about the various programmable  
switching frequencies and PWM timings, see the Switching  
Frequency Programming section.  
tPERIOD  
tPERIOD  
Figure 24. PWM Timing Diagram  
SYNCHRONOUS RECTIFICATION  
Take special care to avoid shoot-through and cross-conduction.  
It is recommended that the software GUI be used to program  
these outputs. Figure 25 shows an example configuration to  
drive a full-bridge topology with synchronous rectification.  
SR1 and SR2 are recommended for use as the PWM control  
signals when using synchronous rectification. These PWM  
signals can be configured much like the other PWM outputs.  
V
IN  
OUTA  
OUTC  
SR1  
SR2  
OUTB  
OUTD  
DRIVER  
SR1 SR2  
OUTA  
OUTB  
OUTC  
OUTD  
DRIVER  
ISOLATOR  
Figure 25. PWM Pin Assignment for Full-Bridge, Phase-Shifted Topology  
with Synchronous Rectification  
Rev. A | Page 21 of 140  
 
 
 
 
ADP1055  
Data Sheet  
The GUI provided with the ADP1055 is recommended for  
programming this feature (see Figure 27).  
MODULATION LIMIT  
The modulation limit register (Register 0xFE53) can be  
programmed to apply a maximum duty cycle modulation limit  
to any PWM signal, thus acting as a clamp for the maximum  
modulation range of any PWM output. When modulation is  
enabled, the maximum modulation limit is applied to all PWM  
outputs collectively. As shown in Figure 26, this limit is the  
maximum time variation for the modulated edges from the  
default timing, following the configured modulation direction.  
Figure 27. Setting Modulation Limits (Modulation Range Shown by Arrows)  
SWITCHING FREQUENCY PROGRAMMING  
The FREQUENCY_SWITCH command (Register 0x33) sets  
the switching frequency of the ADP1055 in kilohertz. This  
command has two data bytes formatted in the linear data format;  
the programmable frequency ranges from 48 kHz to 1000 kHz.  
tMODULATION_LIMIT  
OUTx  
The ADP1055 does not support every possible frequency due to  
the infinite combinations of exponent and mantissa values that  
can be programmed. If a programmed frequency does not exactly  
match a supported value, it is rounded up to the nearest available  
frequency. It is recommended that the READ_FREQUENCY  
command (Register 0x95) be used to determine the exact value  
of the switching frequency. Table 244 lists the supported  
frequencies.  
tRX  
tFX  
Figure 26. Modulation Limit Settings  
There is no minimum duty cycle limit setting. Therefore, the  
user must set the rising edges and falling edges based on the  
case with the least modulation to enter pulse skipping mode  
under very light load conditions.  
Each LSB in Register 0xFE53[6:0] corresponds to a unit of a  
base time step size. The base time step size (20 ns, 40 ns, 80 ns,  
or 160 ns) depends on the switching frequency; therefore, the  
modulation limit is based on the value in Register 0xFE53[6:0]  
multiplied by the corresponding base time step size. The  
modulated edges are prevented from extending beyond one  
switching cycle, but the maximum duty cycle is 100% (the  
minimum pulse width is 5 ns).  
Rev. A | Page 22 of 140  
 
 
 
 
Data Sheet  
ADP1055  
ADCs AND TELEMETRY  
Two kinds of ADCs are used in the ADP1055:  
CS1 ADC for Primary Side Current  
The CS1 pin is typically used for the monitoring and protection  
of the primary side current. The primary side current is sensed  
using a current transformer (CT). The input signal at the CS1 pin  
is fed into the CS1 ADC for current monitoring. Figure 29 shows  
the typical configuration for the current sense. The READ_IIN  
command reports the average input current; this reading is  
updated every 10.5 ms.  
Low frequency (LF) Σ-Δ ADCs that runs at 1.56 MHz for  
accurate measurement and telemetry  
High frequency (HF) flash ADCs for the feedback and  
control loop  
Σ-Δ ADCs have a resolution of one bit and operate differently  
from traditional flash ADCs. The equivalent resolution obtain-  
able depends on how long the output bit stream of the Σ-Δ ADC  
is sampled.  
V
IN  
OUTA  
OUTC  
Σ-Δ ADCs also differ from Nyquist rate ADCs in that the quan-  
tization noise is not uniform across the frequency spectrum. At  
lower frequencies, the noise is lower, and at higher frequencies,  
the noise is higher (see Figure 28).  
OUTB  
OUTD  
NYQUIST ADC  
NOISE  
1V  
CS1  
I = 10A  
12 BITS  
ADC  
I = 100mA  
1k  
10Ω  
VREF  
FAST  
OCP  
Σ-ADC  
NOISE  
1:100  
FREQUENCY  
Figure 29. Current Sense 1 (CS1) Operation  
Figure 28. Noise Performance for Nyquist Rate and Σ-Δ ADCs  
CS2 ADC for Secondary Side Current  
The low frequency ADC runs at approximately 1.56 MHz. For a  
specified bandwidth, the equivalent resolution can be calculated  
as follows:  
The CS2+ and CS2− pins are differential inputs used for the  
monitoring and protection of the secondary side current. The  
ADP1055 supports differential sensing using low-side current  
sensing with two ranges for the ADC: 30 mV and 60 mV.  
ln(1.56 MHz/BW)/ln2 = N bits  
For example, at a bandwidth of 95 Hz, the equivalent  
resolution/noise is  
The low input range is used to operate in level shifting mode,  
when the CS2 terminals are connected directly to the shunt  
resistor (see Figure 30). In this mode, a pair of internal resistors  
and current sources are used to perform the necessary level  
shifting. In this mode, only low-side current sensing is possible,  
and the ADC range is programmable to 30 mV or 60 mV.  
ln(1.56 MHz/95)/ln2 = 14 bits  
At a bandwidth of 1.5 kHz, the equivalent resolution/noise is  
ln(1.56 MHz/1.5 kHz)/ln2 = 10 bits  
The ADC output information is available in the value registers  
(Register 0xFE96 to Register 0xFEA3) or through the PMBus  
READ_x commands, where x = VOUT, IOUT, and so on.  
I
LOAD  
AGND  
CS2 RANGES  
RANGE1 = 0mV TO 30mV  
RANGE2 = 0mV TO 60mV  
ADCs FOR CURRENT SENSING  
CS2–  
CS2+  
The ADP1055 has two current sense inputs: CS1 and CS2 .  
These inputs sense, protect, and control the primary input current  
and the secondary output current information. The CS1 and  
CS2 inputs can be calibrated to reduce errors due to external  
components for accurate telemetry.  
CS2 FAST OCP  
0mV TO 60mV/6 BITS  
(STEP SIZE 0.952mV)  
CS2 ADC  
IOUT_OC_LIMIT  
IOUT_UC_LIMIT  
CS2 IREV LIMIT  
0mV TO –30mV  
(STEP SIZE 0.4762mV)  
ADP1055  
Figure 30. Differential Low-Side Sensing  
Rev. A | Page 23 of 140  
 
 
 
 
 
ADP1055  
Data Sheet  
An additional range of 480 mV (single-ended input only) can  
be used for high-side sensing or simply as an input with a  
higher range (see Figure 31). The high input range is used for  
operation in single-ended mode, where external circuitry must  
be provided for level shifting of the current signal.  
The input voltage signal can be sensed at the secondary winding  
of the isolation transformer before the output inductor and must  
be filtered by an RCD network to eliminate the voltage spike at  
the switch node (see Figure 32).  
In nonisolated topologies, the VFF ADC is connected directly  
to the primary voltage via a resistive divider with some filtering  
to eliminate voltage spikes on the bulk capacitor when the power  
switch is turned on or off. The READ_VIN command reports  
the average input voltage; this reading is updated every 10.5 ms.  
I
V
LOAD  
OUT  
R
SNS  
CS2+ RANGE: 0mV TO 480mV  
CS2+  
VS ADC for Output Voltage  
CS2–  
AGND  
The VS pins of the ADP1055 are used for the monitoring,  
control, and protection of the power supply output. Typically,  
the output voltage is divided down using a resistive divider such  
that at the rated output, there is 1.0 V on the VS pins. The  
READ_VOUT command reports the average output voltage;  
this reading is updated every 10.5 ms.  
CS2 FAST OCP  
0mV TO 600mV/7 BITS  
(STEP SIZE 9.52mV)  
CS2 ADC  
IOUT_OC_LIMIT  
IOUT_UC_LIMIT  
CS2 IREV LIMIT  
0mV TO –30mV  
(STEP SIZE 0.4762mV)  
ADCs FOR TEMPERATURE SENSING  
ADP1055  
Figure 31. Single-Ended High-Side Sensing  
For information about the temperature sensing ADCs, see the  
Temperature Sensing section.  
The READ_IOUT command reports the average output current;  
this reading is updated every 2.6 ms.  
ADCs FOR VOLTAGE SENSING  
VFF ADC for Input Voltage  
The VFF pin is typically used for the monitoring and protection  
of the primary side voltage. Figure 32 shows a typical configuration  
for the feedforward circuit.  
VFF  
ADC  
FROM  
SECONDARY  
WINDING  
R
0V TO 1.6V  
R1  
VFF  
FEEDFORWARD  
ADC  
Vx  
R2  
1/x  
0.6V TO 1.6V  
DIGITAL  
FILTER  
DPWM  
ENGINE  
Figure 32. Feedforward Configuration  
Rev. A | Page 24 of 140  
 
 
 
 
Data Sheet  
ADP1055  
THEORY OF OPERATION  
However, if the CS1 cycle-by-cycle current limit always has the  
highest priority to terminate the PWM outputs meaning that if  
a cycle-by-cycle fault occurs during the period where the duty  
cycle is being equalized, the cycle-by-cycle current fault takes  
priority. The CS1 OCP duty cycle equalization feature (Register  
0xFE57[6]) can be enabled for all topology configurations. The  
edge selection is the same as for the volt-second balance feature.  
ACCURATE PRIMARY OVERCURRENT PROTECTION  
The CS1 ADC is used to measure the average value of the  
primary current. The 12 MSBs of the reading (CS1_VALUE,  
Register 0xFE98[13:4]) are converted into PMBus format and  
compared to the threshold set using the PMBus command  
IIN_OC_FAULT_LIMIT (Register 0x5B) to make a fault  
decision. The fault response is set by the IIN_OC_FAULT_  
RESPONSE command (Register 0x5C).  
LOW TEMPERATURE FILTER  
During the soft start process, the soft start filter can be used in  
combination with the normal mode filter and the light load mode  
filter. The soft start filter can be configured as a low temperature  
filter. Using Register 0xFE62[1:0], the low temperature filter is  
activated on one of three selectable inputs: the external forward  
temperature reading, the external reverse temperature reading,  
or the rising edge of GPIO2.  
PRIMARY FAST OVERCURRENT PROTECTION  
The input signal on the CS1 pin is also fed into a comparator  
for pulse-by-pulse OCP protection. The fast OCP comparator  
is used to limit the peak primary current within each switching  
cycle. Two thresholds—the 250 mV or 1.2 V threshold—are  
programmable using Register 0xFE2C[2].  
When the CS1 OCP threshold is crossed, the PWM outputs  
(OUTA to OUTD) are immediately terminated for the remainder  
of the switching cycle. For the full-bridge topology, where the  
switching period is divided into two halves, a CS1 OCP event  
during one half does not terminate the PWM outputs for the  
second half.  
The low temperature pole is activated at a temperature of 10°C;  
subsequent thresholds are at 6°C, 2°C, and so on, down to −14°C  
(Register 0xFE62[6:4]). The temperature hysteresis is programmed  
in steps of 5°C in Register 0xFE62[3:2]. The change of filters  
from one to another always takes place after a 2 sec time hysteresis  
plus any other filter transition speed. It is recommended that  
the ADP1055 GUI be used to program this feature. Table 6  
summarizes the use of the filters for low and high temperatures.  
The CS1 OCP comparator provides programmable blanking  
and debounce to prevent false triggering; these features are  
programmable using Register 0xFE4E and Register 0xFE2C.  
The comparator also features a programmable timeout condition  
(set in Register 0xFE4E[2:0]), which specifies that the CS1 fast  
OCP condition must be present for a specified number of  
consecutive switching cycles before the IIN_OC_FAST_FAULT  
flag is set.  
Table 6. Filter Options for Low and High Temperatures  
Low  
Temperature  
High  
Temperature  
Load Condition  
Light load  
Light load filter  
Light load filter  
Heavy load with low  
temperature, filter  
disabled  
SSF/NMF with  
ADD_PZ  
SSF/NMF with  
ADD_PZ  
The CS1 fast OCP fault can also be set using the GPIO1  
general-purpose input/output pin.  
Heavy load with low  
temperature, filter  
enabled  
SSF with  
ADD_PZ  
SSF/NMF with  
ADD_PZ  
MATCHED CYCLE-BY-CYCLE CURRENT LIMIT (OCP  
EQUALIZATION)  
VOLTAGE LOOP AUTOCORRECTION  
For a half-bridge converter, the cycle-by-cycle limit feature  
cannot guarantee an equal duty cycle between the two half  
cycles of the switching period. The imbalances of each half cycle  
can cause the center point voltage of the capacitive divider to  
drift from VIN/2 (half the input voltage) toward either ground or  
the input voltage. This drift, in turn, can lead to output voltage  
regulation failure, transformer saturation, and the doubling of  
voltage stress on the synchronous rectifiers.  
Output voltage sampling is performed using the high speed  
Nyquist ADC. The output voltage is sampled just before the end of  
the switching period (tSW) or just before half the switching period  
(tSW/2) if double update rate is enabled. The output voltage ripple  
ramp changes as the input voltage changes, causing the sampling  
voltage to also change. Assuming a steady state condition, any  
dc offsets can be eliminated by sampling the output voltage  
synchronously with the switching frequency.  
To avoid these problems, the ADP1055 implements a matched  
cycle-by-cycle limit. This feature produces a PWM pulse width  
in the second half cycle that is of equal duration as the preceding  
pulse when a CS1 fast OCP event occurs (IIN_OC_FAST_  
FAULT). In other words, when a cycle-by-cycle limit is triggered,  
the ADP1055 forces the duty cycle in the subsequent half cycle  
to be exactly the same as that of the previous half cycle.  
Due to the relationship between the output voltage ripple ramp  
and the input voltage, the average output voltage can drift to a  
higher value when the input voltage is at its maximum value. To  
correct for this drift, the ADP1055 uses a low frequency auto-  
correction loop based on the LF ADC on the VS pins. Under  
ideal conditions, the voltage on this input is 1.0 V.  
Rev. A | Page 25 of 140  
 
 
 
 
 
 
 
ADP1055  
Data Sheet  
4
3
The LF ADC is trimmed in production and has high accuracy  
over supply, voltage, and temperature; therefore, the autocorrection  
loop eliminates all errors due to offsets in the high frequency  
ADC. The ADP1055 assumes that the voltage on the LF ADC is  
accurate and precise and changes the setpoint (or reference)  
accordingly so that the VS pins measure 1.0 V. Any additional  
offset in the output voltage is due to the tolerances of the external  
resistor dividers alone.  
0xFE29[0] = 0  
0xFE29[0] = 1  
2
1
0
–1  
–2  
–3  
–4  
The speed of the autocorrection loop can be changed using  
Register 0xFE4A[5:3]. This feature can also be disabled.  
The autocorrection loop stores the correction value until the  
ADP1055 is power cycled. When the power is turned off and  
then on again, the autocorrection loop is repeated to maintain  
the most accurate output voltage.  
–4  
–3  
–2  
–1  
0
1
2
3
4
ERROR VOLTAGE (%HF ADC FSR)  
Figure 34. Ideal Settings for Nonlinear Gain (Highest Gain Setting  
for Highest Error)  
V
RIPPLE  
1
2
tSW  
tSW  
2
tSW  
3tSW  
INTEGRATOR WINDUP AND OUTPUT VOLTAGE  
REGULATION LOSS (OVERSHOOT PROTECTION)  
V
IN_MIN  
TIME  
0V  
The ADP1055 limits the amount of integrator gain when the  
output voltage is out of regulation for a long period of time due  
to any of the following:  
Large reduction in input voltage  
Large and sudden change in output voltage setpoint  
Excessive load  
V
IN_MAX  
TIME  
0V  
The ADP1055 limits the amount of integrator gain to prevent  
overshoot caused by integrator windup. When duty cycle saturation  
occurs due to any of these conditions, there is an inherent lag in  
the system because the integrator is the slowest element of the  
feedback control path. The ADP1055 inherently prevents the  
integrator gain from increasing beyond a large value, but offers  
an additional layer of protection. If the output voltage is out of  
regulation for more than a certain number of switching cycles,  
the reference/setpoint is set to the current output voltage, and a  
soft start from precharge is initiated at a rate programmed by the  
VOUT_TRANSITION_RATE command (Register 0x27). This  
behavior eliminates any overshoot in the output voltage. This  
setting and the number of switching cycles can be programmed  
in Register 0xFE4A[7:6].  
SAMPLE  
HERE  
SAMPLE  
HERE  
SAMPLE  
HERE  
Figure 33. Output Voltage Sampling Point at Minimum  
and Maximum Input Voltage  
NONLINEAR GAIN/RESPONSE  
To enhance the dynamic performance of the power supply  
during a load transient, the nonlinear gain can be used. The  
error voltage is the reference voltage minus the divided-down  
output voltage by use of a resistive divider. During steady state,  
this error voltage is 0 V. During a transient condition, the error  
voltage is not zero and the digital compensator acts on the error  
voltage and adjusts the control input to correct for the error.  
This may take several switching cycles, especially during a  
transition from DCM to CCM. In such cases, a boosted error  
signal aids in reducing the settling time and can even avoid an  
overshoot in some cases. The ADP1055 has a programmable  
increase in error voltage depending on how far the absolute  
error voltage is with respect to 0 V. There are four ranges: 1% to  
2%, 2% to 3.5%, 3.5% to 4%, and >4%.  
ACCURATE SECONDARY OVERCURRENT  
PROTECTION  
The CS2 ADC is used to measure the average value of the  
secondary current via the CS2 pins. The 12 MSBs of the  
reading (CS2_VALUE, Register 0xFE99[13:2]) are converted  
into PMBus format and compared to the configured threshold  
to make a fault decision. The LSB of the reading is equal to  
The nonlinear gain boost is programmable in Register 0xFE5E  
and Register 0xFE29[0].  
CS2 range/2x  
It is recommended that the loop gain of the power supply be  
measured with the highest programmed gain setting. It is also  
recommended that an additional gain margin of 4 dB be used  
when this feature is used due to the nonlinear effect.  
where:  
CS2 range is the value set in Register 0xFE4F[1:0].  
x is the number of bits in Register 0xFE4B[4:3].  
Rev. A | Page 26 of 140  
 
 
 
Data Sheet  
ADP1055  
Thresholds and limits can be set for CS2 using these PMBus  
commands: IOUT_OC_FAULT_LIMIT (Register 0x46) and  
IOUT_OC_WARN_LIMIT (Register 0x4A). The fault response  
is programmable in Register 0x47.  
FEEDFORWARD AND INPUT VOLTAGE SENSE  
The ADP1055 supports voltage line feedforward control to  
improve line transient performance.  
The feedforward scheme modifies the modulation value based  
on the VFF voltage. When the VFF input is 1 V, the line feed-  
forward has no effect. For example, if the digital filter output  
remains unchanged and the VFF voltage changes to 50% of its  
original value (but still higher than 0.5 V), the modulation of the  
falling edges of OUTA to OUTD doubles (see Figure 35). The  
voltage line feedforward function is optional and is program-  
mable using Register 0xFE29 and Register 0xFECD[2:0]. It is  
recommended that feedforward be enabled during soft start.  
SECONDARY FAST OVERCURRENT PROTECTION  
The input signal on the CS2 pins is also fed into two comparators  
for fast OCP protection. The fast OCP comparator is used to  
limit the instantaneous secondary current in either the positive  
or the negative direction. The CS2 OCP comparator also features a  
programmable timeout condition (set in Register 0xFE4F[6:4]),  
which specifies that the CS2 fast OCP condition must be present in  
consecutive switching cycles before the IOUT_OC_FAST_FAULT  
flag is set.  
The VFF voltage must be set to 1 V when the nominal input  
voltage is applied. The voltage at the VFF pin is sampled synchro-  
nously with the switching period and, therefore, the decision to  
modify the PWM outputs based on input voltage is performed at  
this rate. Typically, the feedforward block can detect and respond  
to a 3% change in input voltage and make a change to the PWM  
outputs approximately every 1 μs.  
When the CS2 fast OCP comparator is used to sense the output  
inductor current instead of the load current (see Figure 1), the  
comparator can be used for cycle-by-cycle peak current limiting  
of the inductor current. Cycle-by-cycle peak current limiting is  
executed by the termination of the PWM outputs (OUTA to  
OUTD) to disable power transfer to the secondary side. In an  
isolated buck derived topology, the inductor current during the  
on time of the primary switch is a fraction of the inductor current;  
this feature can be used when the CS1 pin is not used. The CS2  
fast OCP threshold can be set in steps of 9.52 mV for the 480 mV  
CS2 ADC range and in steps of 0.952 mV for the 30 mV and  
60 mV CS2 ADC ranges using Register 0xFE2D.  
To prevent false triggering of the feedforward block due to  
noise/voltage spikes on the VFF pin that are carried from the  
switch node, a small filter capacitor may be needed. The filter  
capacitor should not be too large, and the time constant should  
typically be much less than 1 μs. An additional ADC connected  
to the VFF pin is used to report the ADC value and therefore,  
the input value, using the resistive dividers. The primary input  
voltage can be calculated by multiplying Vx by the turns ratio  
(N1/N2), as follows:  
SECONDARY FAST REVERSE CURRENT PROTECTION  
A programmable comparator is used to detect reverse current.  
The comparator can also be used for diode emulation mode to  
improve light load efficiency. The IOUT_UC_FAST fault is set  
when the CS2 reverse comparator is asserted. After it is set, the  
IOUT_UC_FAST fault is cleared between 328 μs and 656 μs  
after the deassertion of the CS2 reverse comparator.  
V
PRIMARY = Vx × (R1 + R2)/R2 × (N1/N2)  
For fault comparison, the input voltage is monitored using the  
VFF ADC, and the 9 MSBs (VFF_VALUE, Register 0xFE96[13:2])  
are converted into PMBus format and compared to the threshold  
to make a fault decision. Fault limits and their responses can be  
set using PMBus commands such as VIN_UV_FAULT_LIMIT  
(Register 0x59), VIN_OV_FAULT_LIMIT (Register 0x55),  
VIN_UV_FAULT_RESPONSE (Register 0x5A), and  
VIN_OV_FAULT_RESPONSE (Register 0x56).  
For all three CS2 ADC ranges (30 mV, 60 mV, and 480 mV), the  
threshold is programmed in Register 0xFE2E[7:2], and the  
debounce is programmed in Register 0xFE2E[1:0].  
The operation of diode emulation mode depends on the accurate  
sensing of the zero crossing of the inductor current, which in  
turn is dependent on proper sensing of the inductor current  
through the sense resistor. The accuracy of the fast reverse current  
protection is heavily dependent on the sensing of the inductor  
current; proper layout techniques (Kelvin sensing) must be  
followed.  
VFF  
DIGITAL  
FILTER  
OUTPUT  
The fast reverse current comparator range is extended to a  
positive range (0 mV to 30 mV) in addition to the negative  
range (−30 mV to 0 mV). With this dual range, an accurate  
sensing of the zero crossing can be tweaked and trimmed to  
turn off the synchronous rectifiers at exactly the zero crossing  
of the inductor current by compensating for the gate driver  
delay and layout inadequacies and by ensuring that there is no  
excessive voltage stress or voltage spike across the devices.  
tMODULATION  
tMODULATION  
OUTx  
tS  
tS  
Figure 35. Feedforward Control on Modulation  
Rev. A | Page 27 of 140  
 
 
 
 
ADP1055  
Data Sheet  
ACCURATE OVERVOLTAGE AND UNDERVOLTAGE  
PROTECTION  
EXTERNAL FREQUENCY SYNCHRONIZATION  
The ADP1055 has a SYNC pin that is used for frequency  
synchronization. The internal digital phase-locked loop (DPLL)  
is capable of determining the master frequency on the SYNC pin  
(fSYNC) and locking the internal switching frequency to the external  
frequency. The lock or capture range is 10% of the switching  
frequency, which is programmed using the FREQUENCY_  
SWITCH command (Register 0x33).  
Accurate overvoltage protection is provided by the PMBus  
commands VOUT_OV_FAULT_LIMIT (Register 0x40),  
VOUT_OV_FAULT_RESPONSE (Register 0x41), and  
VOUT_OV_WARN_LIMIT (Register 0x42).  
Similarly, accurate undervoltage protection is provided by the  
PMBus commands VOUT_UV_WARN_LIMIT (Register 0x43),  
VOUT_UV_FAULT_LIMIT (Register 0x44), and VOUT_UV_  
FAULT_RESPONSE (Register 0x45).  
The PWM outputs are synchronized to the OUTA pin at the start  
of the switching period. For example, consider a duty cycle on  
OUTA where the rising (or falling) edge of OUTA is at a time of  
x μs after the t = 0 of the switching period. After synchronization,  
the time difference between the rising edge of the external master  
synchronization frequency (fSYNC) and the rising (or falling) edge  
of OUTA is x μs. The other PWM outputs are adjusted accordingly.  
In short, frequency synchronization also locks on to the phase.  
All readings are obtained from the low frequency Σ-Δ ADC on  
the VS+ and VS− pins.  
The accurate OVP fault decision is taken after a sampling  
interval of 82 μs (7-bit averaged value). For OVP, additional  
sampling time up to a maximum of 320 μs can be programmed  
in steps of 82 μs using Register 0xFE4D[3:2]. If additional  
sampling time is enabled, the OV fault condition must be  
present for the number of additional samples programmed  
before the VOUT_OV flag is set.  
The DPLL can recognize the external master frequency within  
one clock cycle and, after the DPLL has locked on to fSYNC, the  
time required to achieve synchronization depends on how far  
apart fSYNC and the internal switching frequency (fSW) are. A  
typical synchronization time when fSYNC jumps from 90 kHz to  
110 kHz with fSW = 100 kHz is approximately 200 μs. The  
synchronization time depends on the bandwidth of the DPLL,  
which is approximately fSW/25. Therefore, a higher fSW translates  
to a higher bandwidth.  
The nominal output voltage at the VS pins is 1 V, and the OVP  
and UVP thresholds are set above and below this level. For UVP,  
the output voltage is monitored using the low frequency Σ-Δ ADC;  
the nine MSBs of the reading (VS_VALUE, Register 0xFE97[13:5])  
are converted into PMBus format and compared with the output  
undervoltage fault limit threshold. OVP functions similarly, but  
uses the seven MSBs of the reading (Register 0xFE97[13:7]).  
Using the INTERLEAVE command (Register 0x37), a phase  
shift in steps of 22.5° can be added. Additional functions that  
are part of the standard PMBus INTERLEAVE command  
include the group ID number and the respective number in the  
group, both programmable using Register 0x37.  
FAST OVERVOLTAGE PROTECTION  
The ADP1055 has a dedicated OVP pin for redundant overvoltage  
protection. This pin performs fast overvoltage protection, where  
a comparator compares the fractional output voltage by means of  
resistive dividers to the voltage set by a DAC (see Figure 36). The  
nominal output voltage at the OVP pin is 1 V. The OVP threshold  
is programmable using Register 0xFE2F[7:2]. A debounce time  
(from 40 ns to 10 μs) can be added using Register 0xFE2F[1:0]  
before the fault response is taken. The fault response is set using  
the manufacturer specific command VOUT_OV_FAST_FAULT  
(Register 0xFE34).  
The ADP1055 supports only a specific number of switching  
frequencies. Due to the PWM programming resolution of 5 ns  
for programming the minimum and maximum PWM modulation  
limit, the switching frequency and the master clock frequency  
may not be an exact multiple of each other.  
Although the DPLL can detect fSYNC exactly, due to the quantization  
of the internal frequency settings, there is a possibility that fSYNC  
and fSW may not be the same and may differ by a small amount.  
To prevent the frequency from jumping from one value of fSW to  
another (which causes the switching period to change) due to  
the quantization of fSW, fSW is set to the closest quantized value  
to fSYNC rounded down. Due to this effect or due to a non-ideality  
(jitter) of the master clock, a dither can be added to the clock  
frequency (using Register 0xFE55[1]) of 5 ns or 10 ns. Using  
this dither, fSW is equal to fSYNC on average.  
V
OUT  
ADP1055  
OVP  
FAST OVP  
0.8V TO 1.6V  
STEP SIZE = 12.5mV  
For a full-bridge topology, it is recommended that Register  
0xFE55[0] = 0 so that half the switching period is an exact  
multiple of 5 ns.  
6-BIT  
THRESHOLD  
DAC  
AGND  
Figure 36. Fast Overvoltage Protection  
Rev. A | Page 28 of 140  
 
 
 
 
Data Sheet  
ADP1055  
After synchronization, if the master clock suddenly changes to  
0 Hz, the ADP1055 continues to operate at the last known master  
frequency. However, if the device is power cycled through a soft  
start, the master frequency is not retained, and the ADP1055  
defaults to the internal frequency set by FREQUENCY_SWITCH  
(Register 0x33). If the device is off and the master frequency is  
already present on the SYNC pin, the switching frequency is  
already set to the master frequency when the ADP1055 turns on.  
placed in the position of forward diode. The nonideality factor  
(nf) of the transistor in ΔVBE = nf × VT × ln(I/IS).  
Care must be taken to isolate the thermal sensor so that  
switching noise is not coupled into the base by the parasitic  
capacitances from base to ground and emitter to ground. It is  
recommended that a low-pass filter be added by placing a large  
capacitor of 220 pF to 470 pF across the base emitter junction to  
remove any noise. Adding a reverse diode introduces an  
additional error due to the reverse leakage current. The  
reference current (IREF), used for the sensing algorithm to 10 μA,  
can be programmed by setting Register 0xFE5A[2:0] = 0x04.  
It is recommended that the synchronization function be  
disabled when not in use (Register 0xFE55[6] = 1) because  
switching noise may be coupled into the SYNC pin.  
The switching frequency can be read back using the PMBus  
command READ_FREQUENCY (Register 0x95).  
FREQUENCY  
The update rate for each subsequent temperature reading  
(external forward reading, followed by external reverse reading)  
is approximately 200 ms if reverse sensing is enabled, and  
approximately 130 ms if reverse sensing is disabled, with 14-bit  
resolution (Register 0xFE5A[6:5] = 0x3).  
MASTER CLOCK FREQUENCY (fSYNC  
)
INTERNAL SWITCHING FREQUENCY (fSW  
)
110% fSW  
SYNCHRONIZATION TIME  
DEPENDS ON DPLL BANDWIDTH  
Overtemperature protection (OTP) can be set using  
SYNCHRONIZATION  
TIME DEPENDS ON  
DPLL BANDWIDTH  
OT_FAULT_LIMIT (Register 0x4F), OT_FAULT_RESPONSE  
(Register 0x50), and OT_WARN_LIMIT (Register 0x51). OTP  
functions for the forward diode only. The hysteresis for OTP is  
the difference between the OT_FAULT_LIMIT and OT_WARN_  
LIMIT values. For example, if OT_FAULT_LIMIT is set to disable  
all PWM outputs at 125°C and OT_WARN_LIMIT is set to 115°C,  
the ADP1055 stops switching at 125°C and begins switching  
again only when the temperature falls below 115°C.  
NOMINAL fSW  
90% fSW  
UNIT  
ON  
UNIT  
OFF  
UNIT  
ON  
TIME  
Figure 37. Tracking of SYNC Function  
GPIO AND PGOOD SIGNALS  
TEMPERATURE SENSING  
Four dedicated pins serve as general-purpose inputs/outputs  
(GPIOs). Each pin can be configured as an input or output with  
a programmable polarity (set in Register 0xFE40). Do not  
change the configuration of the pin from input to output or  
from output to input on the fly.  
The ADP1055 has two external temperature sensors. For the  
external temperature sensors, PN junction devices such as  
transistors are connected back to back; these devices are called  
forward diode and reverse diode (see Figure 38).  
FORWARD  
DIODE  
REVERSE  
DIODE  
JTD  
JRTN  
Figure 39. GPIO1 Configured as an Output with Normal Polarity  
Figure 38. Temperature Sensor, Forward and Reverse Sensing  
The temperature can be read using the following standard PMBus  
commands: READ_TEMPERATURE_2 (Register 0x8E) for the  
external sensing forward diode, and READ_TEMPERATURE_3  
(Register 0x8F) for the external sensing reverse diode.  
Figure 40. GPIO1 Configured as an Input with Negated Polarity  
When the pin is configured as an input, a programmable action  
can be taken (similar to the PMBus voltage faults) using Register  
0xFE39 to Register 0xFE3C (GPIOx_FAULT_RESPONSE).  
The ADP1055 measures the temperature readings of the external  
forward diode and the external reverse diode in that order. Using  
proprietary zero offset circuitry (patent pending), the inputs to  
the ADCs are zeroed out before each temperature measurement  
to compensate for temperature dependent offset variation, which  
affects the measurement result. This allows the forward and  
reverse sensing PN diodes to be kept far away from each other  
without affecting the reading significantly due to offset errors.  
When the GPIOx pin is configured as an output, internal signals  
known as PGOOD1 and PGOOD2 can be logically combined  
and output on the pin. The logic functions for the GPIO pins  
are programmable in Register 0xFE41 and Register 0xFE42.  
The ADP1055 is factory calibrated at ambient temperature for  
minimum error using the BC847A transistor (with nf = 1.00)  
Rev. A | Page 29 of 140  
 
 
 
ADP1055  
Data Sheet  
The POWER_GOOD_ON register (Register 0x5E) sets the voltage  
POWER_GOOD  
that the output voltage must exceed before  
can  
be set. Similarly, the output voltage must fall below the  
POWER_GOOD_OFF threshold (set in Register 0x5F) for  
POWER_GOOD  
to be reset.  
VOUT NOMINAL  
VOUT_UV  
Figure 41. Logical Functions Available Using PGOOD1 (LOGIC) PGOOD2  
Various flags can be programmed into PGOOD1 and PGOOD2  
using Register 0xFE44 and Register 0xFE45. When coupled  
with the GPIOs, these flags can be used to trigger signals to  
provide external logic functions by means of discrete circuits.  
For example, in Figure 42, the overtemperature flag or the  
VIN_UV flag can set PGOOD2. This feature is useful for  
signaling the power chain downstream so that any appropriate  
action can be taken. A delay (debounce) can be added to the  
PGOODx signals using Register 0xFE43.  
POWER_GOOD  
PSON  
TIME  
POWER_GOOD  
Figure 43.  
Flag Tripped by VOUT  
POWER_GOOD  
Note that the PMBus signal  
out to the GPIOx pins, but it can be brought out to the  
cannot be brought  
SMBALRT  
POWER_GOOD  
pin. The PMBus signal  
is accessible through  
POWER_GOOD  
STATUS_WORD (Register 0x79[11]).  
is  
asserted (0 means power is good) only if all of the following  
conditions are met:  
VOUT has exceeded POWER_GOOD_ON.  
VOUT has not fallen below POWER_GOOD_OFF.  
PGOOD1_FAULT is not set.  
PGOOD2_FAULT is not set.  
UVP is not associated with this flag; however, the PGOOD1_  
FAULT and PGOOD2_FAULT flags can be programmed to  
select UVP (VOUT_UV_FAULT). There is no debounce for  
Figure 42. Signals Routed into PGOOD1 and PGOOD2  
In addition to triggering the GPIOs, the PGOOD1_FAULT  
and PGOOD2_FAULT flags are set in Register 0xFE93[6]  
(FAULT_UNKNOWN[6]) and Register 0xFE93[7] (FAULT_  
UNKNOWN[7]) (where 0 means no fault). The same debounce  
applies to the flags.  
POWER_GOOD  
.
V
OUT  
SET AND  
RESET LOGIC  
RESET  
POWER_GOOD_ON  
VOUT_UTHD  
POWER_GOOD_OFF  
VOUT_LTHD  
SET  
PGOOD1_FAULT  
PGOOD2_FAULT  
OFF  
POWER_GOOD  
POWER_GOOD  
Figure 44.  
Signal Path  
Rev. A | Page 30 of 140  
 
Data Sheet  
ADP1055  
GPIO3 AND GPIO4 AS SNUBBER PWM OUTPUTS  
The GPIO3 and GPIO4 pins of the ADP1055 can be configured  
as two signals used for an active snubber. This circuitry can be  
used to provide a drive signals for an active clamp.  
Snubber Configuration  
The on time of the snubber and the dead time of the snubber  
signals can be programmed using Register 0xFE63 and  
Register 0xFE64[5:0], respectively. The active clamp signals  
turn on after a selectable dead time (0 ns to 315 ns in steps of  
5 ns, programmable using Register 0xFE64[5:0]). Using  
Register 0xFE65[7], the active clamp signals can be configured  
on one of the following:  
Figure 47. Option 1: GPIO3 and GPIO4 Configured as Regular Signals  
Falling edge of SR1 or SR2 signal  
OUTC OUTD  
Falling edge of  
and  
Figure 48. Option 2: GPIO3 Configured as an Active Snubber PWM Output;  
GPIO4 Configured as a Regular Signal  
The snubber signal stays on for a fixed value regardless of the  
duty cycle and load condition programmed in Register 0xFE63.  
However, the snubber signal is toggled as soon as it encounters  
the next SRx rising edge or the next OUTx falling edge, even if  
the programmed on time is of a greater value.  
Figure 49. Option 3: GPIO3 Configured as a Regular Signal;  
GPIO4 Configured as an Active Snubber PWM Output  
Figure 45. Active Clamp Snubber Configured on SRx Signals  
Figure 50. Option 4: GPIO3 and GPIO4 Configured  
as Active Snubber PWM Outputs  
The GPIO polarity bit can be configured using the same bits  
described in the GPIO and PGOOD Signals section. The  
polarity bit allows true versatility with the use of either P channel  
or N channel FETs, depending on the application. These PWM  
signals can be blanked during soft start and soft stop using  
Register 0xFE46[14] and Register 0xFE47[14]. The signals are  
active as long as the system does not shut down in response to a  
fault condition or a PSOFF command is issued.  
Figure 46. Active Clamp Snubber Configured on OUTx Signals  
Miscellaneous Snubber Configuration  
Using Register 0xFE64[7:6]), the snubber configuration can be  
set to one of these options:  
Option 1: Both GPIO3 and GPIO4 are configured as regular  
signals, as described in the GPIO and PGOOD Signals section  
(see Figure 47).  
Option 2: GPIO3 is configured as an active snubber  
PWM output; GPIO4 is configured as a regular signal  
(see Figure 48).  
Option 3: GPIO3 is configured as a regular signal; GPIO4 is  
configured as an active snubber PWM output (see Figure 49).  
Option 4: Both GPIO3 and GPIO4 are configured as active  
snubber PWM outputs (see Figure 50).  
Rev. A | Page 31 of 140  
 
 
 
 
 
ADP1055  
Data Sheet  
The constant current control loop has relatively low bandwidth  
because the current is averaged over a 328 μs period (9-bit  
decimation of the CS2 bit stream). The output voltage changes  
at a maximum rate of 1.18 V/sec at the VS pins; therefore, the  
instantaneous value of the current can exceed the constant  
current limit for a very short period of time, depending on the  
severity of the transient condition.  
AVERAGE CONSTANT CURRENT MODE  
The ADP1055 supports constant current (CC) mode. The  
constant current mode threshold is set in one of two ways:  
Using the PMBus definition of CC mode (Register  
0xFE4F[2] = 0)  
Using the manufacturer specific CC mode (Register  
0xFE4F[2] = 1)  
For a faster dynamic response of the constant current mode, the  
turbo mode can be used. In turbo mode, the averaging time can  
be decreased to a period of ~41 μs (6-bit decimation of the CS2  
bit stream). In turbo mode, the slew rate of the output voltage  
can be programmed using Register 0xFE5D[5:4].  
In both modes, the constant current limit can be set as a  
percentage of the IOUT_OC_FAULT_LIMIT—for example,  
3.125%, 6.25%, 12.5%, 25%, 50%, or 100%—using  
Register 0xFE5D[3:0].  
In the PMBus definition of CC mode, the constant current  
mode is activated on a IOUT_OC_FAULT fault, and the load  
current is limited to the CC limit, as specified in Register  
0xFE5D[3:0]. Only positive percentages are applicable when the  
PMBus definition of CC mode is used. The fault responses to  
IOUT_OC_FAULT in this case are defined as per the PMBus  
format. The system enters CC mode on detection of the CS2  
current (~2.6 ms, 12-bit averaging of CS2 ADC). Any further  
changes in the current while the device is in CC mode take  
place according to the averaging speed selectable in Register  
0xFE4F[7]. For CC mode to work properly using the PMBus  
faults, the IOUT_OC_FAULT debounce must be set to 0 ms.  
As the output voltage is reduced to maintain a constant load  
current, xxx_FAULT_RESPONSE (for example, Register  
0x47[7:6] = 01) can be used to program a fault response when  
the output voltage falls below a specific threshold set by  
IOUT_OC_LV_LIMIT (Register 0x48).  
It is important to note that although constant current mode can  
be applied to any current fault (input or output current) according  
to the PMBus specification, the ADP1055 applies the constant  
current mode only to maintain a constant output current. For  
example, if the IOUT_UC_FAULT is programmed to enter  
constant current mode, the ADP1055 does not boost the output  
voltage to maintain the current level set by IOUT_UC_LIMIT.  
In the manufacturer specific CC mode, the CC limit is exactly  
the limit that is programmed, and there is no need to trip the  
IOUT_OC_FAULT before entering CC mode. Fault responses  
to IOUT_OC_FAULT in this case are to ignore the fault or to  
shut down the device in response to the fault (Register 0x47[7:6] =  
11). Other settings programmed in the response section (for  
example, Register 0x47[7:6] = 00, 01, or 10) are ignored.  
Using the manufacturer specific fault response for constant  
current mode, the system can be forced into constant current  
mode at a specific threshold, and if this threshold persists for a  
specified amount of time (based on the debounce time), the  
IOUT_OC_FAULT is tripped (see Figure 52).  
DEPENDENT ON SLEW RATE  
AND CC TURBO MODE  
VOUT NOMINAL  
Below the IOUT_OC_FAULT_LIMIT threshold, the ADP1055  
operates in constant voltage mode, using the output voltage as  
the feedback signal for closed-loop operation.  
HICCUP  
IOUT_OC_FAST  
CC LIMIT  
IOUT_OC_FAULT_LIMIT  
IOUT NOMINAL  
When the ADP1055 crosses the constant current mode threshold,  
the CS2 current reading is used to control the output voltage  
regulation point. The output voltage is ramped down linearly as  
the load increases to ensure that the load current remains  
constant.  
TIME  
IOUT_OC_  
DEBOUNCE  
STARTS  
CONVERTER  
STARTS  
IOUT_OC_DEBOUNCE  
ENDS AND FAULT TRIPS  
AFTER RETRY  
ATTEMPT  
VOUT  
IOUT_OC_  
DEBOUNCE  
STARTS  
IOUT_OC_  
DEBOUNCE  
STARTS  
Figure 52. Constant Current with Hiccup  
32-BIT KEY CODE  
The ADP1055 supports a 32-bit password (key code) in  
addition to the EEPROM password set by Register 0xD5. This  
32-bit key code enables another level of protection for the user  
and the manufacturer to limit access to certain commands and  
operations.  
IOUT  
(0,0)  
IOUT_OC_FAULT_LIMIT  
Figure 51. Typical Characteristics in Constant Current (CC) Mode  
Rev. A | Page 32 of 140  
 
 
 
Data Sheet  
ADP1055  
Entering the Key Code  
1. After the EEPROM is unlocked, enter the 32-bit key code  
(default key code is 0xFFFFFFFF) using the KEY_CODE  
command (Register 0xD7).  
2. Enter the new key code using the same command, for  
example, 0x1FEEDBAC (a pneumonic for negative feedback  
in twos complement format).  
3. The key code is now changed to the new key code. Save the  
new key code into the user settings page of the EEPROM  
using the STORE_USER_ALL command (Register 0x15).  
The key code is a unique 32-bit pass code that is entered using  
the KEY_CODE command (Register 0xD7). Because this com-  
mand is a block read/block write command, the first data byte  
of this command is the number of bytes (4). When entering the  
key code, the data has this format: {0x04, KeyCode[7:0],  
KeyCode[15:8], KeyCode[23:16], KeyCode[31:17]}. (Note the  
low byte to high byte order of the 32-bit key code.) After the  
correct key code is entered, the user has full write access to all  
commands, including PMBus and manufacturer specific com-  
mands such as CMD_MASK (Register 0xF4) and EXTCMD_  
MASK (Register 0xF5), which can be used to disable other  
commands using the command masking feature. The key code  
is also needed to change the EEPROM password (Register 0xD5).  
SR PHASE-IN, SR TRANSITION, AND SR FAST  
PHASE-IN  
The SR1 and SR2 outputs are recommended for use as the  
PWM control signals when using synchronous rectification for  
the output (or secondary) rectifiers. These PWM signals can be  
configured similar to other PWM outputs.  
Command Mask  
The command mask feature allows any PMBus command or  
manufacturer specific command to be masked in the ADP1055.  
If the command is masked, a read or a write to that command  
results in a no acknowledge (NACK). PMBus commands are  
masked using Register 0xF4; manufacturer specific commands  
are masked using Register 0xF5. Using command masking, the  
user can block access to certain commands—such as commands  
that configure the switching frequency, the digital compensator,  
or the output voltage setpoint—while allowing access to the  
readback commands (READ_x, where x = IOUT, IN, VOUT,  
VIN, and so on). The SLV_ADDR_SELECT (Register 0xD0),  
EEPROM_PASSWORD (Register 0xD5), KEY_CODE (Register  
0xD7), EEPROM_INFO (Register 0xF1), CMD_MASK  
(Register 0xF4), and EXTCMD_MASK (Register 0xF5)  
commands are not maskable. It is recommended that the  
ADP1055 GUI be used to configure the masking function (see  
Figure 53).  
Figure 54. Example of SR Outputs in Light Load Mode (LLM)  
Figure 55. Example of SR Outputs in Heavy Load (CCM)  
When the mode changes from LLM to CCM, an abrupt change in  
the SR outputs may cause the output voltage to dip momentarily.  
An optional SR transition process (during which the pulse  
width of the SR PWM outputs is increased slowly) can be  
applied to the SR1 and SR2 outputs. The SR transition can be  
enabled by setting Register 0xFE50[5].  
The speed at which the SR edges move from zero duty cycle  
to maximum duty cycle (as determined by the control loop)  
can be programmed from 5 ns per tSW to 5 ns per 1024 tSW  
(tSW = switching cycle) using Register 0xFE5F[7:4].  
OUTPUT VOLTAGE SLEW RATE  
The output voltage slew rate (or transition rate) can be set using the  
PMBus VOUT_TRANSITION_RATE command (Register 0x27).  
The slew rate determines how quickly the output voltage is  
adjusted in response to a change in the digital reference.  
The fastest slew rate supported by the ADP1055 is 1 kV/sec,  
and the slowest rate is 14.3 V/sec. A PMBus command setting  
of 0 sets the slew rate to the slowest setting. This slew rate is the  
rate that the internal setpoint reference can change; the actual  
change of the output voltage depends on the bandwidth of the  
control loop and its ability to track the reference.  
The VOUT_TRANSITION_RATE command can be disabled  
using Register 0xFE65[2].  
Figure 53. Snapshot of the GUI Showing Lock and Unlock of Commands  
Changing the Key Code  
ADAPTIVE DEAD TIME COMPENSATION  
To change the key code, first unlock the EEPROM as described  
in the Unlock the EEPROM section.  
Register 0xFE1D to Register 0xFE24 are the adaptive dead time  
(ADT) registers. These registers allow the dead time between  
Rev. A | Page 33 of 140  
 
 
 
 
ADP1055  
Data Sheet  
PWM edges to be adapted on the fly. The ADT feature is activated  
when the primary or secondary current (CS1 or CS2) falls below  
the threshold programmed in Register 0xFE1E. The software  
GUI allows the user to easily program the dead time values, and  
it is recommended that the GUI be used for this purpose.  
resonant transition occurs when energy is dumped from the  
inductor to the capacitor (capacitor being charged with opposite  
polarity voltage). At one point, there is close to 0 V across the  
MOSFET, and at this point the power switch is turned on.  
If this energy is not sufficient, the MOSFET turns on without  
ZVS. In this case, ADT can be used to wait until the resonant  
transition reaches its peak value so that a near ZVS turn-on is  
achieved.  
SR DELAY  
The ADP1055 is well suited for dc-to-dc converters in isolated  
topologies. Each time a PWM signal crosses the isolation barrier,  
an additional propagation delay is added due to the isolating com-  
ponents. The ADP1055 allows programming of an adjustable  
delay (0 ns to 315 ns in steps of 5 ns) using Register 0xFE52[5:0].  
This delay moves both SR1 and SR2 later in time with respect to  
OUTA to OUTD to compensate for the added delay due to the  
isolating components. In this way, the edges of all PWM outputs  
can be aligned, and the SR delay can be applied separately as a  
constant dead time.  
Figure 56. Adaptive Dead Time Window in the GUI  
Before ADT is configured, the primary current threshold must  
be programmed. Each individual PWM rising and falling edge  
(t1 to t12) can then be programmed to have a specific dead time  
offset at no load (zero current). This offset can be positive or  
negative and is relative to the nominal edge position. When the  
current is between zero and the threshold, the amount of dead time  
is linearly adjusted in steps of 5 ns. The averaging period of the  
CS1/CS2 current is selected using Register 0xFE1E[7], and the  
speed of the dead time adjustment can also be programmed to  
accommodate faster or slower adjustment in Register 0xFE1D[5:0].  
CURRENT SHARING (ISHARE PIN)  
The ADP1055 supports both analog current sharing and digital  
current sharing. The ADP1055 can use either the CS1 current  
information or the CS2 current information for current sharing.  
Analog Current Sharing  
Analog current sharing uses the internal current sensing  
circuitry to provide a current reading to an external current  
error amplifier. Therefore, an additional differential current  
amplifier is not necessary.  
For example, if the CS1 threshold is set to 2 A, t1 has a nominal  
rising edge of 100 ns. If the ADT setting for t1 is 40 ns at no load,  
t1 moves to 140 ns when the current is 0 A and to 120 ns when  
the current is 1 A. Similarly, ADT can be applied in the negative  
direction.  
The current reading from CS1 or CS2 can be output to the ISHARE  
pin in the form of a digital bit stream, which is the output of the  
current sense ADC (see Figure 57). The bit stream is proportional  
to the current delivered by this unit to the load. By filtering this  
digital bit stream using an external RC filter, the current infor-  
mation is turned into an analog voltage that is proportional to  
the current delivered by this unit to the load. This voltage can  
be compared to the share bus voltage. If the unit is not supplying  
enough current, an error signal can be applied to the VS feed-  
back point. This signal causes the unit to increase its output voltage  
and, in turn, its current contribution to the load.  
The ADT feature is useful in quasi resonant topologies where an  
energy transfer occurs from the inductor (generally, from one or  
more of the leakage inductance, magnetizing inductance, and  
external inductance) to the capacitor (usually the drain-source  
capacitance of the MOSFET power switch) for the purpose of  
achieving zero voltage switching (ZVS).  
Generally, the condition for ensuring ZVS is that the energy in  
the inductor must exceed the energy in the capacitor. A  
CURRENT  
CS2+  
CS2–  
VOLTAGE  
CURRENT  
SENSE  
ADC  
ISHARE  
BIT STREAM  
SHARE  
BUS  
BIT STREAM  
LPF  
Figure 57. Analog Current Share Configuration  
Rev. A | Page 34 of 140  
 
 
 
Data Sheet  
ADP1055  
Digital Share Bus  
The digital share bus is based on a single-wire communication  
bus principle; that is, the clock and data signals are contained  
together.  
The digital share bus scheme is similar in principle to the tradi-  
tional analog share bus scheme. The difference is that instead of  
using a voltage on the share bus to represent current, a digital  
word is used.  
When two or more ADP1055 devices are connected, they syn-  
chronize their share bus timing. This synchronization is performed  
by the start bit at the beginning of a communications frame. If a  
new ADP1055 is hot-swapped onto an existing digital share bus,  
the device waits to begin sharing until the next frame. The new  
ADP1055 monitors the share bus until it sees a stop bit, which  
designates the end of a share frame. It then performs synchroni-  
zation with the other ADP1055 devices during the next start bit.  
The digital share bus frame is shown in Figure 60.  
The ADP1055 outputs a digital word onto the share bus. The  
digital word is a function of the current that the power supply is  
providing (the higher the current, the larger the digital word).  
The power supply with the highest current controls the bus  
(master). A power supply that is putting out less current (slave)  
sees that another supply is providing more power to the load  
than it is.  
Figure 59 shows the possible signals on the share bus.  
During the next cycle, the slave increases its current output contri-  
bution by increasing its output voltage. This cycle continues  
until the slave outputs the same current as the master, within a  
programmable tolerance range. Figure 58 shows the configu-  
ration of the digital share bus.  
LOGIC 1  
LOGIC 0  
V
DD  
IDLE  
t1  
t0  
PREVIOUS  
BIT  
NEXT  
BIT  
tBIT  
Figure 59. Share Bus High, Low, and Idle Bits  
CURRENT SENSE  
INFO  
ISHARE  
DIGITAL  
WORD  
The length of a bit (tBIT) is fixed at 10 ꢀs. A Logic 1 is defined as  
a high-to-low transition at the start of the bit and a low-to-high  
transition at 75% of tBIT. A Logic 0 is defined as a high-to-low  
transition at the start of the bit and a low-to-high transition at  
POWER SUPPLY A  
SHARE  
BUS  
25% of tBIT  
.
The bus is idle when it is high during the whole period of tBIT  
All other activity on the bus is illegal. Glitches up to tGLITCH  
(200 ns) are ignored.  
.
ISHARE  
CURRENT SENSE  
INFO  
DIGITAL  
WORD  
POWER SUPPLY B  
The digital word that represents the current information is eight  
bits long. The ADP1055 takes the eight MSBs of the CS1 or CS2  
reading (the current share signal specified in Register 0xFE2B[3])  
and uses this reading as the digital word. When read, the share  
bus value at any given time is equal to the CS1 or CS2 current  
reading (see Figure 61).  
Figure 58. Digital Current Share Configuration  
2 STOP BITS START BIT  
2 STOP BITS  
(IDLE)  
START BIT  
0
8-BIT DATA  
FRAME  
(IDLE)  
0
NEXT FRAME  
PREVIOUS  
FRAME  
Figure 60. Digital Current Share Frame Timing Diagram  
Rev. A | Page 35 of 140  
 
 
 
ADP1055  
Data Sheet  
Digital Share Bus Scheme  
Digital Share Bus Configuration  
Each power supply compares the digital word that it is outputting  
with the digital words of all the other supplies on the bus.  
The digital share bus can be configured in various ways. The  
bandwidth of the share bus loop is programmable in Register  
0xFE2B[2:0]. The extent to which a slave tries to match the  
current of the master is programmable in Register 0xFE2A[3:0].  
The slave moves up 1 LSB for every share bus transaction (eight  
data bits plus start and stop bits; see the description of Register  
0xFE2B in Table 156). The master moves down x LSBs per share  
bus transaction, where x is the share bus setting in Register  
0xFE2A[7:4]. The maximum limit for the output voltage of the  
slave is 400 mV at the VS pins. The ISHARE_FAULT is set  
when the current share loop reaches its maximum value, that is,  
400 mV at the VS pins. It is recommended that there be a load  
line of 5 mΩ to 10 mΩ between the output terminals of the power  
supply to the load.  
Round 1  
In Round 1, every supply first places its MSB on the bus. If a  
supply senses that its MSB is the same as the value on the bus, it  
continues to Round 2. If a supply senses that its MSB is less than  
the value on the bus, it means that this supply must be a slave.  
When a supply becomes a slave, it stops communicating on the  
share bus because it knows that it is not the master. The supply then  
increases its output voltage in an attempt to share more current.  
If two units have the same MSB, they both continue to Round 2  
because either of them may be the master.  
Round 2  
DROOP SHARING  
In Round 2, all supplies that are still communicating on the bus  
place their second MSB on the share bus. If a supply senses that  
its MSB is less than the value on the bus, it means that this supply  
must be a slave and it stops communicating on the share bus.  
The droop sharing functionality is implemented using the  
VOUT_DROOP command (Register 0x28). Using this command,  
a fixed amount of load line in mV/A can be applied to the  
output voltage. The output voltage is continuously sampled with  
a selectable rate (set in Register 0xFE65[1:0]) before the droop  
is applied. Under droop current sharing, the output voltage  
changes at a rate determined by the VOUT_TRANSITION_ RATE  
command. Setting 0xFE65[2] = 1 changes the internal voltage  
reference to the fastest internal supported rate.  
Round 3 to Round 8  
The same algorithm is repeated for up to eight rounds to allow  
supplies to compare their digital words and, in this way, to  
determine whether each unit is the master or a slave.  
PSU A  
V
DD  
0x4A  
MASTER  
8-BIT  
ISHARE  
WORD  
CS2+  
1m  
CS2–  
+
12 BITS  
8 BITS  
CURRENT  
SENSE  
ADC  
DIGITAL  
FILTER  
÷16  
SHARE  
BUS  
0xB5  
DIGITAL  
WORD  
0x4A  
8-BIT  
WORD  
I
= 35A  
35mV  
OUT  
1195 DEC  
0x4AB  
74 DEC  
0x4A  
1 LSB = 29.3µV  
35mV/29.3µV = 1195  
Figure 61. How the Share Bus Generates the Digital Word to Place on the Digital Share Bus  
Rev. A | Page 36 of 140  
 
 
Data Sheet  
ADP1055  
The ADP1055 enters pulse skipping mode when the required  
duty cycle is less than the modulation value set in Register 0xFE53.  
Register 0xFE50[0] = 0 sets all modulated edges to the start of  
the switching period. In the case of negative edge modulation,  
this setting can cause the PWM outputs to be inverted; therefore,  
setting Register 0xFE50[0] = 1 programs the device to make the  
PWM outputs = 0 V in pulse skipping. For topologies such as the  
full-bridge phase shifted topology, where two PWM outputs are  
on without modulation for half the switching period, the setting  
in Register 0xFE50[4] allows the ADP1055 to disable such  
PWM outputs whether modulation is enabled or not.  
LIGHT LOAD MODE AND DEEP LIGHT LOAD MODE  
To facilitate a reduction of power loss at light loads, the ADP1055  
supports light load mode and deep light load mode. The threshold,  
speed, and hysteresis for deep light load mode are selectable in  
Register 0xFE4B. In deep light load mode, a selectable set of  
PWM outputs can be disabled using Register 0xFE4C. Typical  
examples include shutting down the synchronous rectifiers or  
shutting down certain PWM outputs in an interleaved topology  
for phase shedding.  
SOFT STOP  
The ADP1055 supports soft stop functionality. Soft stop can be  
enabled for normal shutdown of the power supply using the  
OPERATION and ON_OFF_CONFIG commands, as described  
in the Power-Up and Power-Down section. Soft stop can also be  
enabled during a fault triggered condition using Register  
0xFE51[7:6]. The soft stop time is programmed using the  
TOFF_DELAY and TOFF_FALL commands (Register 0x64 and  
Register 0x65). During soft stop, various faults such as OTP,  
OVP, and GPIO faults can be masked using Register 0xFE47. To  
maintain a zero output voltage, the SR1 and SR2 PWM outputs  
can be programmed to stay on for an additional time (see the  
description of Register 0xFE50[7:6] in Table 193).  
Figure 62. Light Load Settings in the GUI  
The threshold, speed, and hysteresis for light load mode are  
programmed in Register 0xFE5F. In SR light load mode (SR  
LLM), the synchronous rectifiers operate in the forward  
conduction mode only; that is, they are turned off during the  
freewheeling period of the switching period in a buck derived  
isolated topology (either half wave or full wave rectifier on the  
output). In this way, the loss associated with the diode drop of  
the MOSFET is minimized by turning the channel of the  
MOSFET on, as well as maintaining the output inductor in  
discontinuous conduction mode (DCM). The rising and falling  
edges of the synchronous rectifiers in SR LLM are programmed  
in Register 0xFE19 to Register 0xFE1C.  
DUTY CYCLE DOUBLE UPDATE RATE  
The ADP1055 senses the output voltage just before the beginning  
of the switching period and, depending on the error voltage, the  
next duty cycle command is initiated. Because a transient  
condition can occur at any time between switching periods, the  
one-cycle update of the duty cycle causes a phase loss that is  
equal to  
When entering SR LLM from SR normal mode or deep LLM, or  
when exiting SR LLM to SR normal mode based on the hysteresis  
level, the SR edges move as programmed by the phase-in speed  
in Register 0xFE5F[7:4].  
Φ = 360 × (td × fC)  
The SR LLM settings (Register 0xFE19 to Register 0xFE1C)  
determine the minimum and maximum rising and falling edges  
of the SR PWM outputs in SR LLM mode. If the load demands  
a duty cycle between the minimum and maximum settings, the  
SR edges are adjusted according to the required duty cycle for  
OUTA to OUTD.  
where:  
td is the combined delay of the ADC sampling plus the loop  
calculations for the compensator plus any additional propagation  
delay.  
fC is the crossover frequency.  
The minimum delay for the system is D × tSW because it is only  
after D × tSW that the effect of the duty cycle command takes  
place. Due to this phase loss (which increases as the crossover  
frequency approaches the switching frequency), the crossover  
frequency of the system cannot be widened with satisfactory  
phase margin. To reduce the phase loss, the ADP1055 uses a  
double update rate for the duty cycle, whereby the output voltage  
is sampled just before half the switching period and the new duty  
cycle command is issued. In this way, the phase loss from two  
subsequent duty cycle commands is halved to D × tSW/2.  
To enable the deep light load mode, the light load mode  
threshold must be greater than zero.  
Figure 63. Overlay of All SR Modes  
Duty cycle double update rate is optional and is enabled by  
setting Register 0xFE57[0] = 1. When using the duty cycle  
double update rate, it is recommended that duty balance also be  
enabled (Register 0xFE57[7] = 1).  
PULSE SKIPPING  
The ADP1055 supports a pulse skipping mode in which a PWM  
pulse is not turned on for the entire switching period. Pulse  
skipping can be activated by setting Register 0xFE50[1] = 1.  
Rev. A | Page 37 of 140  
 
 
 
 
ADP1055  
Data Sheet  
for Register 0xFE56 causes the device to sample the peak  
current at the end of the logical AND of OUTA and OUTD  
(Peak 1) and the logical AND of OUTB and OUTC (Peak 2).  
If Peak 1 > Peak 2, the result is positive and the duty cycle  
of the selected edges is reduced. If Peak 2 > Peak 1, the result is  
negative and the duty cycle of the selected edges is increased.  
DUTY BALANCE, VOLT-SECOND BALANCE, AND  
FLUX BALANCING  
For power topologies that use the first and third quadrant of the  
BH curve, it is recommended that duty balance be enabled  
when using double update rate. Due to the nature of double  
update rate, it is possible that the average magnetizing current  
(and therefore the flux density of the transformer core) is not  
zero, but is equal to some positive or negative dc level. To prevent  
flux walking and an imbalance in the transformer, a combination  
of the duty balance and volt-second balance features can be used.  
In interleaved topologies, the volt-second balance feature can also  
be used for current balancing to ensure that each interleaved  
phase contributes equal power.  
2. Apply edge correction. Using the same example, negative edge  
correction is applied to OUTA and OUTD, whereas positive  
edge correction is applied to OUTB and OUTC. Appropriate  
edge correction is applied to the SR outputs as well.  
3. Enable volt-second balance by setting Register 0xFE25[6] = 1.  
This setting is gated by a GO command (Register 0xFE00).  
Volt-second balance is automatically disabled when the  
voltage on the CS1 pin is below 25 mV.  
For example, if a full bridge topology requires the diagonal edges of  
the H bridge to be equalized, the algorithm for duty balance  
averages the duty cycle over several switching cycles. Duty balance  
is a purely digital correction that is applied to the PWM edges  
based on past duty cycles and does not take into account any  
feedback from an ADC, as is the case for volt-second balance.  
Duty balance is enabled by setting Register 0xFE57[7] = 1; the  
speed at which the duty cycle is balanced is controlled by setting  
Register 0xFE57[5:4]. Additionally, the extent to which duty cycle  
correction (maximum of 160 ns for duty balance and volt-second  
balance each) can take place is specified using Register 0xFE57[2:1].  
Figure 64. Volt-Second Balance with Register 0xFE56 = 0x96  
Volt-second balance uses a sample-and-hold circuit (patent  
pending) that samples the peak current during both halves of  
the switching period. This feature is configured using Register  
0xFE56. The recommended settings for using the volt-second  
balance feature are as follows.  
1. Use Register 0xFE56 to set the positive and negative edges.  
Bits[7:4] set the positive period of integration, and Bits[3:0]  
set the negative period of integration. The edges are  
logically ANDed together.  
Typically, the diagonal edges of the H bridge are balanced.  
Figure 65. Volt-Second Balance with Register 0xFE56 = 0x69  
For example, in a full bridge topology, a setting of 10010110  
VIN  
OUTA  
OUTC  
VOUT  
SR2  
OUTB  
OUTD  
SR1  
SAMPLE  
AND HOLD  
WITH RESET  
CS1  
INPUT  
VS BALANCE  
ALGORITHM  
PWM  
VS BALANCE  
EDGE SELECT  
REGISTERS  
ADP1055  
Figure 66. Simplified Internal Structure of the Volt-Second Balance Circuit  
Rev. A | Page 38 of 140  
 
Data Sheet  
ADP1055  
FAULT RESPONSES AND STATE MACHINE MECHANICS  
When a potentially abnormal condition occurs in the power  
supply that is regulated by the ADP1055, a flag is asserted and  
the system waits for a programmed debounce time. If the flag is  
continuously asserted until the end of the debounce time, it is  
latched as a fault. The fault is then processed according to the  
programmed fault response setting. The fault is cleared only when  
the flag condition is removed. The debounce circuitry is reset when  
the flag condition is removed; until then the fault remains set.  
FLAGS  
The ADP1055 has an extensive set of flags that are set when  
certain limits, conditions, and thresholds are exceeded. The  
response to these flags is individually programmable. Flags can  
be ignored or used to trigger actions such as turning off certain  
PWM outputs or entering constant current mode. Flags can also  
be used to turn off the power supply. The ADP1055 can be pro-  
grammed to respond when these flags are reset.  
PRIORITY OF FAULTS  
The ADP1055 also has a set of latched fault registers (Register  
0xFE8C to Register 0xFE93). The latched fault registers have the  
same flags as the PMBus STATUS_x commands (Register 0x7A  
to Register 0x80), but the flags in the latched registers remain set  
so that intermittent faults can be detected. The CLEAR_FAULTS  
command (Register 0x03) clears the latched fault registers and  
resets all the flags.  
The response to each fault is configurable and is based on a priority  
level (see Table 7). A higher number indicates a higher priority.  
Table 7. Priority of Faults  
Priority  
Fault and Configured Fault Response  
12 (highest)  
Voltage fault: disable output  
11  
10  
9
8
7
Voltage fault: shutdown with no retry  
Current fault: shutdown with no retry  
Voltage fault: shutdown with limited retry  
Current fault: shutdown with limited retry  
Voltage fault: shutdown with unlimited retry  
Current fault: shutdown with unlimited retry  
FIRST FAULT ID (FFID)  
The first fault ID (FFID) information is used to capture the first  
fault that caused the system to shut down. Register 0xFE95 contains  
the ID of the first fault that caused the system to shut down. Faults  
captured in the first fault ID register have configured actions of  
shutdown immediate, shutdown with retries, and disable PWM  
outputs with watchdog timeout. The contents of Register 0xFE95  
cannot be overwritten unless the information is first cleared.  
6
5
Voltage fault: wait delay and shutdown with  
limited or unlimited retry  
4
3
Current fault: constant current with wait delay  
Current fault: constant current without tripping  
VOUT_LV  
The FFID can be cleared by the CLEAR_FAULTS command  
(Register 0x03), by a power cycle of the device, or by a PSON  
signal using Register 0x01, Register 0x02, or both. If the black  
box feature is enabled, the FFID can also be cleared when the  
information is saved into the black box.  
2
Current fault: constant current mode  
Voltage fault: ignore fault  
1 (lowest)  
Table 8. Example First Fault ID Scenarios  
Test Setup  
Condition  
Result  
OCP has retry/delay of 100 ms  
with Priority 10, debounce = 0.  
OVP has retry/delay of 200 ms  
with Priority 9, debounce = 0.  
OCP occurs at t = 0.  
OVP occurs at t = 10 ms.  
OCP fault is processed due to smaller debounce time (no retry time), as  
well as higher priority.  
OCP has retry/delay of 100 ms  
with Priority 10, debounce = 0.  
OVP has retry/delay of 0 ms with  
Priority 11, debounce = 0.  
OCP occurs at t = 0.  
OVP occurs at t = 10 ms.  
OCP fault is processed at t = 0; device waits 100 ms before action is taken.  
OCP fault is replaced by OVP, and then OVP fault is processed at t = 10 ms  
due to higher priority even though retry delay is larger.  
OCP has retry/delay of 100 ms  
with Priority 8, debounce = 5 ms.  
OVP has retry/delay of 200 ms  
with Priority 9, debounce = 100 ms.  
OCP occurs at t = 50 ms.  
OVP occurs at t = 0.  
OVP is registered as a fault at t = 100 ms. OCP is registered as a fault at  
t = 55 ms. However, at t = 100 ms, OCP loses priority and OVP is processed  
due to higher priority. Exception: If delay of OCP was smaller (for example,  
5 ms), then OCP action is processed.  
OCP has retry/delay of 100 ms  
with Priority 8, debounce = 0.  
OVP has retry/delay of 200 ms  
with Priority 7, debounce = 0.  
OCP occurs at t = 0.  
OVP occurs at t = 0.  
OCP fault is processed due to higher priority.  
Rev. A | Page 39 of 140  
 
 
 
 
 
ADP1055  
Data Sheet  
Using the priority of faults (see the Priority of Faults section),  
the fault that causes the ADP1055 to shut down is the one stored  
in the FFID. For example, a configuration includes these faults:  
The delayed fault initiates another set of three shutdown-retry  
cycles. This behavior effectively causes the system to retry  
indefinitely, even though the fault response is programmed to  
retry only three times.  
OVP fault with a delay of 100 ms and five retry times  
OCP fault with an action to shut down immediately with a  
0 ms delay  
A notable exception is TON_MAX_FAULT when overshoot  
protection is enabled. If the ADP1055 detects an out-of-  
regulation condition for x consecutive switching cycles during  
the soft start ramp (that is, the output voltage does not track the  
desired ramp-up voltage), the ADP1055 tries to remedy the  
situation by exiting soft start and retrying. As a result, the soft  
start ramp ends prematurely, which has the effect of resetting  
the retry counter.  
If the OVP fault occurs and after the third retry attempt, the  
OCP fault occurs, the OCP fault is stored in the FFID register.  
On the other hand, if all five OVP retries occur before the OCP  
fault occurs, the OVP fault is stored in the FFID. This statement  
is true only if Register 0xFE_48[1:0] is set to 01. If it is set to 10,  
the FFID is set to OVP on the first retry time.  
Table 9 provides a summary of faults and respective debounce  
times.  
Note that warning flags such as IOUT_OC_WARN and  
VOUT_OV_WARN do not have debounce times.  
FAULT CONDITION DURING SOFT START AND  
SOFT STOP  
The ADP1055 has a fault handler that can detect and track  
faults and, in the case where a fault is programmed to shut  
down and retry (restart) the system, the fault handler cycles the  
ADP1055 through a shutdown and soft start procedure.  
Throughout the soft start ramp, the fault handler continues to  
monitor the device for any faults that can trigger a fault  
response. Soft start blanking can be configured to ignore faults  
during the soft start ramp.  
If a fault condition occurs during soft start, the controller responds  
as programmed unless the flag is blanked. Flag blanking during  
soft start and soft stop is programmed in Register 0xFE46 and  
Register 0xF47, respectively.  
If a fault (for example, TON_MAX or IIN_OC) occurs at any  
time during the soft start process with an action set to a value  
other than shutdown, the remainder of the soft start ramp  
continues at the transition rate specified by the PMBus  
command VOUT_TRANSITION_RATE (Register 0x27).  
If a fault condition triggers a shutdown-retry cycle, the fault  
handler tracks the number of retry attempts of the programmed  
fault response and permanently shuts down the device when the  
configured number of retry times is reached. A shutdown-retry  
cycle is considered successful if the triggering fault is cleared at  
the end of the soft start ramp, at which point voltage regulation  
is achieved. Following a successful retry attempt, the fault handler  
removes the fault from its queue, clears all retry attempt counters,  
and monitors the device for the next highest priority fault.  
During soft start, the TON_MAX fault is valid; after output  
regulation is reached, the UVP fault is valid. This means that  
the system does not start monitoring for UVP fault until after  
the soft-start ramp-up.  
WATCHDOG TIMER  
In the case where the voltage fault response is set to disable the  
outputs and wait for the faults to clear (Bits[7:6] = 11), the  
ADP1055 disables the PWM outputs but does not immediately  
shut down and restart through a soft start cycle. The ADP1055  
keeps the PWM outputs disabled until the fault is cleared, after  
which the PWM outputs are reenabled.  
Debounce times can be added to a flag condition to effectively  
delay the fault condition beyond the end of the soft start ramp.  
Note that the fault handler considers this a successful retry  
attempt (because no fault is seen when transitioning from soft  
start to normal operation). The fault handler clears the fault and  
resets the retry counters. For example, consider a TON_RISE  
time of 10 ms, with a fault response set to shut down and retry  
three times, and a flag condition that occurs during the soft  
start ramp (t1 < 10 ms). If the debounce time (td) is small  
enough such that t1 + td < TON_RISE, the fault condition is  
latched before the end of the soft start ramp, and the ADP1055  
shuts down and retries accordingly, while incrementing the  
retry counter.  
If the fault is not cleared, the system can potentially remain in a  
dormant condition for an infinitely long time. To prevent this  
condition, a watchdog timer can be set to time out the fault  
condition. The WDT_SETTING command (Register 0xFE3F)  
is used to set a timeout of 0 sec, 1 sec, 5 sec, or 10 sec, after  
which the system shuts down, captures the FFID, and requires a  
power-up (CTRL pin or OPERATION command) to restart.  
After three retries, the ADP1055 shuts down, requiring a  
power-up to start again. However, if the debounce time (td) is  
large enough such that t1 + td > TON_RISE, the fault condition  
is latched after the ADP1055 transitions from soft start to  
normal operation. In this scenario, the fault condition is cleared  
and the retry counter is reset at the end of the soft start ramp.  
Rev. A | Page 40 of 140  
 
 
Data Sheet  
ADP1055  
Table 9. Summary of Faults with Debounce Times  
Function/PMBus  
Command  
Fault response  
Command  
Pin  
Comments  
Debounce  
LSB  
VOUT_OV_FAST  
OVP  
An analog comparator on this pin provides this protection. 0xFE2F[1:0]  
VOUT_OV_FAST_  
RESPONSE  
VOUT_OV_FAULT_  
RESPONSE  
VOUT_OV  
VS  
The ADC on this pin is averaged every 82 μs with 7-bit  
accuracy for this fault. This information is compared with  
the VOUT_OV_FAULT_LIMIT to set the flag.  
0xFE30[3:0]  
1.6/27  
VOUT_OV_WARN VS  
Same as VOUT_OV.  
Same as VOUT_UV.  
The ADC on this pin is averaged every 328 μs with 9-bit  
accuracy for this fault. This information is compared with  
the VOUT_UV_FAULT_LIMIT to set the flag.  
N/A  
N/A  
0xFE30[10:8]  
1.6/27  
1.6/29  
1.6/29  
N/A  
N/A  
VOUT_UV_WARN  
VOUT_UV  
VS  
VS  
VOUT_UV_FAULT_R  
ESPONSE  
IOUT_OC  
CS2  
The ADC on this pin is averaged every 2.6 ms with 12-bit  
accuracy for this fault. This information is compared with  
the IOUT_OC_FAULT_LIMIT to set the flag.  
0xFE31[3:0]  
IOUT_OC:  
IOUT_OC_  
CS2_Range/212 FAULT_RESPONSE  
The ADC on this pin is averaged every 328 μs with 9-bit  
accuracy for CC mode. This information is compared with  
the IOUT_OC_FAULT_LIMIT the threshold set in Register  
0xFE5D[2:0] to enter CC mode. For turbo mode, the  
averaging is every 41 μs with an equivalent 6-bit  
resolution.  
The ADC on this pin is averaged every 10.5 ms with 12-bit  
accuracy for this fault. This information is compared with  
the IOUT_OC_LV_FAULT_LIMIT to set the flag.  
CC mode:  
CS2_Range/29  
CC turbo mode:  
CS2_Range/26  
IOUT_OC_LV  
CS2  
0xFE30[15:14] CS2_Range/212  
IOUT_OC_FAST  
IOUT_UC  
CS2  
CS2  
An analog comparator on this pin provides this protection. 0xFE2D[1:0]  
IOUT_OC_FAST_  
FAULT_RESPONSE  
The ADC on this pin is averaged every 10.5 ms with 12-bit  
accuracy for this fault. This information is compared with  
IOUT_UC_FAULT_LIMIT to set the flag.  
0xFE31[7:4]  
IOUT_UC:  
IOUT_UC_FAULT_  
CS2_Range/212 RESPONSE  
The ADC on this pin is averaged every 328 μs with 9-bit  
accuracy for constant current mode. This information is  
compared with the IOUT_UC_FAULT_LIMIT the threshold  
set in Register 0xFE5D[2:0] to enter CC mode. For turbo  
mode, the averaging is every 41 μs with an equivalent 6-bit  
resolution.  
CC mode:  
CS2_Range/29  
CC turbo mode:  
CS2_Range/26  
IOUT_UC_FAST  
IIN_OC  
CS2  
CS1  
An analog comparator on this pin provides this protection. 0xFE2E[0]  
IOUT_UC_FAST_  
FAULT_RESPONSE  
IIN_OC_FAULT_  
RESPONSE  
The ADC on this pin is averaged every 10.5 ms with 12-bit  
accuracy for this fault. This information is compared with  
the IOUT_OC_FAULT_LIMIT to set the flag.  
0xFE31[11:8]  
1.6/212  
IIN_OC_FAST  
ISHARE  
CS1  
CS2  
An analog comparator on this pin provides this protection. 0xFE2C[1:0]  
IIN_OC_FAST_  
FAULT_RESPONSE  
ISHARE_FAULT_  
RESPONSE  
When maximum limit to change output voltage is reached. 0xFE31[15:12]  
IOUT_OC_WARN  
VIN_LOW  
CS2  
VFF  
Same as IOUT_OC.  
N/A  
CS2_Range/212  
1.6/29  
The ADC on this pin is averaged every 328 μs with 9-bit  
accuracy for this fault. This information is compared with  
the VIN_LOW to set the flag.  
The ADC on this pin is averaged every 328 μs with 9-bit  
accuracy for this fault. This information is compared with  
the VIN_UV_FAULT_LIMIT to set the flag.  
VIN_UV  
VFF  
0xFE30[13:11] 1.6/29  
VIN_UV_FAULT_  
RESPONSE  
VIN_UV_WARN  
VIN_OV  
VFF  
VFF  
Same as VIN_UV.  
N/A  
0xFE30[7:4]  
N/A  
The ADC on this pin is averaged every 328 μs with 9-bit  
accuracy for this fault. This information is compared with  
the VIN_OV_FAULT_LIMIT to set the flag.  
1.6/29  
VIN_OV_FAULT_  
RESPONSE  
VIN_OV_WARN  
POUT_OP  
VFF  
N/A  
Same as VIN_OV.  
N/A  
0xFE32[11:8]  
The multiplication of VS and CS2 ADCs averaged every  
2.6 ms with 11-bit accuracy for this fault. This information is  
compared with the POUT_OP_FAULT_LIMIT to set the flag.  
POUT_OP_FAULT_  
RESPONSE  
Rev. A | Page 41 of 140  
 
ADP1055  
Data Sheet  
Function/PMBus  
Command  
Fault response  
Command  
Pin  
Comments  
Debounce  
LSB  
OT  
N/A  
The ADC on this pin is averaged every 200 ms with 14-bit  
accuracy for this fault to provide two consecutive readings  
(external forward and external reverse temperature  
sensors). This information is compared with the  
0xFE32[3:0]  
OT_FAULT_  
RESPONSE  
OT_FAULT_LIMIT to set the flag. If external reverse is  
disabled, the averaging is performed every 130 ms.  
OT_WARN  
GPIOx_FAULT  
N/A  
GPIOx  
Same as OT.  
Immediate.  
N/A  
0xFE32[15:0]  
GPIOx_FAULT_  
RESPONSE  
TON_MAX_FAULT_  
RESPONSE  
TON_MAX  
N/A  
Immediate.  
0xFE32[7:4]  
1.6/29 for VS  
1.6/29 for VS  
TON_MAX_WARN N/A  
N/A  
VDD/VCORE_OV  
VDD  
VCORE  
VDD  
Immediate.  
Immediate.  
0xFE4D[5]  
0xFE4D[6]  
Shutdown  
VDD UV  
0xFE4D[4]  
STANDARD PMBUS FLAGS  
Figure 67 shows the standard PMBus flags supported by the ADP1055.  
STATUS_VOUT  
STATUS_INPUT  
7
6
5
4
3
2
1
0
VOUT_OV_FAULT  
7
6
5
4
3
2
1
0
VIN_OV_FAULT  
VIN_OV_WARNING  
VIN_UV_WARNING  
VIN_UV_FAULT  
STATUS_WORD  
(UPPER BYTE)  
VOUT_OV_WARNING  
VOUT_UV_WARNING  
VOUT_UV_FAULT  
7
6
5
4
3
2
1
0
VOUT  
IOUT/POUT  
INPUT  
VOUT_MAX WARNING  
TON_MAX_FAULT  
UNIT OFF FOR LOW INPUT VOLTAGE  
IIN_OC_FAULT  
MFR_SPECIFIC  
TOFF_MAX_WARNING  
VOUT TRACKING ERROR  
IIN_OC_WARNING  
POWER_GOOD  
FANS  
PIN_OP_WARNING  
OTHER  
UNKNOWN  
STATUS_IOUT  
STATUS_MFR_SPECIFIC  
7
6
5
4
3
2
1
0
IOUT_OC_FAULT  
7
6
5
4
3
2
1
0
GPIO4  
STATUS_BYTE  
ALSO IS THE LOWER BYTE OF  
STATUS_WORD  
IOUT_OC_LV_FAULT  
IOUT_OC_WARNING  
IOUT_UC_FAULT  
GPIO3  
GPIO2  
7
6
5
4
3
2
1
0
BUSY  
GPIO1  
CURRENT SHARE FAULT  
IN POWER LIMITING MODE  
POUT_OP_FAULT  
OFF  
IIN_OC_FAST_FAULT  
IOUT_UC_FAST_FAULT  
IOUT_OC_FAST_FAULT  
VOUT_OV_FAST  
VOUT_OV_FAULT  
IOUT_OC_FAULT  
VIN_UV_FAULT  
TEMPERATURE  
CML  
POUT_OP_WARNING  
NONE OF THE ABOVE  
STATUS_MFR_UNKNOWN  
STATUS_TEMPERATURE  
15 EEPROM UNLOCKED  
14 ADAPTIVE DEAD TIME  
13 SOFT START FILTER  
12 SOFT START RAMP  
11 MODULATION LIMIT  
10 VOLT-SEC BALANCE LIMIT  
7
6
5
4
3
2
1
0
OT_FAULT  
OT_WARNING  
UT_WARNING  
UT_FAULT  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
9
8
7
6
5
4
3
2
1
0
LIGHT_LOAD_MODE (LLM)  
CONSTANT CURRENT  
PGOOD2_FAULT  
PGOOD1_FAULT  
SYNC_UNLOCK  
SR OFF  
STATUS_CML  
STATUS_OTHER  
7
6
5
4
3
2
1
0
INVALID/UNSUPPORTED COMMAND  
INVALID/UNSUPPORTED DATA  
PACKET ERROR CHECK FAILED  
MEMORY FAULT DETECTED  
PROCESSOR FAULT DETECTED  
RESERVED  
7
6
5
4
3
2
1
0
RESERVED  
ADDRESS_WARNING  
VCORE_OV  
RESERVED  
INPUT A FUSE/BREAKER FAULT  
INPUT B FUSE/BREAKER FAULT  
INPUT A OR-ING DEVICE FAULT  
INPUT B OR-ING DEVICE FAULT  
OUTPUT OR-ING DEVICE FAULT  
RESERVED  
VDD_OV  
VDD_UV  
OTHER COMMUNICATION FAULT  
OTHER MEMORY OR LOGIC FAULT  
Figure 67. Standard PMBus Flags Supported by the ADP1055  
Rev. A | Page 42 of 140  
 
 
Data Sheet  
ADP1055  
BLACK BOX FEATURE  
If a device experiences multiple concurrent faults, the ID of the  
first fault that triggers the system to shut down is captured in  
the FIRST_FAULT_ID register (Register 0xFE95). The FFID  
and all flag status and telemetry data are captured in the black  
box at every write to the black box (see the Black Box Contents  
section for a list of the data saved). The last valid byte of each  
record is a PEC byte, which is used to calculate the validity of  
each record stored in the EEPROM.  
BLACK BOX OPERATION  
The ADP1055 supports a configurable black box feature. Using  
this feature, the device records to the EEPROM vital data about  
the faults that cause the system to shut down. Two dedicated  
EEPROM pages are used for this purpose: Page 2 and Page 3.  
When the ADP1055 encounters a fault with the action to shut  
down the device, a snapshot of the current telemetry is taken, as  
well as the first fault that caused the shutdown (see Figure 68).  
If the black box feature is enabled, this information is saved to  
the EEPROM before the device shuts down.  
Following each recording, the record number (Rec_No) is  
incremented, and this number is compared to the maximum  
allowed number of records. If Rec_No equals the maximum  
record number (158,000 or 16,000), no additional black box  
recording is allowed because the EEPROM has reached its  
maximum allowed erase program cycles and any additional  
recording is unreliable.  
SHUTDOWN  
DEBOUNCE  
V
OUT  
FAULT  
DETECTED  
BLACK BOX CONTENTS  
Page 2 and Page 3 of the EEPROM are reserved for black box  
operation. The size of each EEPROM page is 512 bytes; each  
page is composed of eight records with 64 bytes each. Page 2  
and Page 3 combined give a total of 16 records, which function  
as a circular buffer for recording black box information.  
PWM  
WRITE  
Figure 68. Black Box Write Operation  
The EEPROM is a page erase memory, and an entire page must  
be erased before the page can be written to. Due to the page erase  
requirement of the EEPROM, after writing the eighth record of  
any page, the next page is automatically erased to allow for  
continuous black box recording.  
This black box feature is extremely helpful in troubleshooting a  
failed system during testing and evaluation. If a system is recalled  
for failure analysis, it is possible to read this information from  
the EEPROM to help investigate the root cause of the failure.  
Only a limited number of writes to the EEPROM are allowed.  
Using Register 0xFE48[1:0], the user can set the level of infor-  
mation that is logged in the black box, as follows:  
Each time a record is written in the black box, the device  
increments the record number. Each EEPROM write records  
the registers listed in Table 10.  
No recording.  
PEC Byte  
Only record telemetry just before the final shutdown.  
Record telemetry of final shutdown and all intermittent  
retry attempts (if device is set to shut down and retry).  
Record telemetry of final shutdown, all retry attempts, and  
normal power-down operations using the CTRL pin or the  
OPERATION command.  
The packet error checking (PEC) byte at the end of each black  
box record is specific to each record and is calculated using a  
CRC-8 polynomial: C(x) = x8 + x2 + x1 + 1. The PEC byte is  
calculated on the first four bytes of each record (called the  
header block), one byte at a time. In a write to EEPROM, the  
PEC byte is appended to the data and is the last valid byte of  
that record. In a read from EEPROM, the header block of each  
record is used to calculate an expected PEC code, and this  
internally calculated PEC code is compared to the received PEC  
byte. If the comparison fails, the PEC_ERR bit (STATUS_  
CML[5]) is set, and that record is discarded because the validity  
of the data has been compromised.  
Using Register 0xFE48[2], the user can program the maximum  
number of records to 158,000 (recommended when the ambient  
temperature of the ADP1055 is less than 85°C) or to 16,000  
(when the ambient temperature of the ADP1055 is less than  
125°C). If the number of records exceeds the programmed  
value, the recording of data to the EEPROM is halted and the  
STATUS_CML bit (Register 0x7E[0]) is set and remains set.  
Data accumulated after the limit is reached is not reliable and  
should be ignored.  
Rev. A | Page 43 of 140  
 
 
 
 
ADP1055  
Data Sheet  
Table 10. Contents of Black Box Records  
BLACK BOX TIMING  
Byte  
Register Address  
Register Name  
Two EEPROM pages (Page 2 and Page 3) are used to store the  
black box data; each page contains eight records. Due to the  
page erase requirement of the EEPROM, when the black box  
has completed writing the last record to either page (Rec_No =  
8n − 1; n > 0, that is, 7, 15, 23, 31, and so on), a page erase  
operation is automatically initiated on the other page. The erase  
operation takes an additional 32 ms to complete.  
Header Block  
1
2
3
4
Rec_No[7:0]  
Rec_No[15:8]  
Rec_No[23:16]  
0xFE95  
FIRST_FAULT_ID[7:0]  
Data Block  
5
0x78  
STATUS_WORD[7:0] (same as  
STATUS_BYTE[7:0])  
STATUS_WORD[15:8]  
STATUS_VOUT  
STATUS_IOUT  
STATUS_INPUT  
STATUS_TEMPERATURE  
STATUS_CML  
STATUS_OTHER  
STATUS_MFR_SPECIFIC  
STATUS_UNKNOWN[7:0]  
STATUS_UNKNOWN[15:8]  
READ_VIN[7:0]  
READ_VIN[15:8]  
READ_IIN[7:0]  
READ_IIN[15:8]  
READ_VOUT[7:0]  
READ_VOUT[15:8]  
READ_IOUT[7:0]  
READ_IOUT[15:8]  
Reserved[7:0]  
Reserved[15:8]  
READ_TEMPERATURE_2[7:0]  
READ_TEMPERATURE_2[15:8]  
READ_TEMPERATURE_3[7:0]  
READ_TEMPERATURE_3[15:8]  
READ_DUTY_CYCLE[7:0]  
READ_DUTY_CYCLE[15:8]  
READ_FREQUENCY[7:0]  
READ_FREQUENCY[15:8]  
READ_POUT[7:0]  
During the erase operation, any PMBus transaction to the  
device receives a no acknowledge (NACK), and the busy bit  
(Bit 7) of STATUS_BYTE is set accordingly. At the end of the  
erase operation, the device resumes normal operation. The  
minimum time required to program a complete black box  
record is calculated as follows:  
6
7
8
9
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
0x80  
0xFE94  
0xFE94  
0x88  
0x88  
0x89  
0x89  
0x8B  
0x8B  
0x8C  
0x8C  
0x8D  
0x8D  
0x8E  
0x8E  
0x8F  
0x8F  
0x94  
0x94  
0x95  
0x95  
0x96  
0x96  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
PEC Block  
36  
T
PROG_BBOX (MIN) = (num_of_bytes + 1) × TPROG  
where:  
PROG = 30.72 μs.  
T
num_of_bytes = 36 (36 bytes in each black box record).  
If the erase operation is part of the sequence of saving data to the  
black box, the additional erase time is added to TPROG_BBOX (MIN)  
,
as follows:  
T
T
T
PROG_BBOX (MIN) = ~1.2 ms  
ERASE = ~32 ms  
PROG_BBOX (MAX) = ~33.2 ms  
When black box writing is enabled with the option to record  
retry attempts (Register 0xFE48[1:0] = 10 or 11), data can be  
saved between every unsuccessful attempt to restart the device.  
It is recommended that the minimum retry time be set to a value  
greater than 1.2 ms. If the retry time is insufficient for black box  
recording, the device prolongs the retry time so that the recording  
can finish before attempting to restart the power supply. This  
delay may result in inconsistent retry times between successive  
restart attempts. The retry time is programmed using the PMBus  
commands xxx_FAULT_RESPONSE, where xxx refers to the  
various configurable faults for that device.  
At every eighth recording, the TERASE time is added to the  
TPROG_BBOX (MIN) time, resulting in the TPROG_BBOX (MAX) time. If the  
READ_POUT[15:8]  
retry time is less than the maximum time, the device again delays  
the restart attempt to wait for the completion of the black box  
recording and the successive page erase.  
PEC[7:0]  
Undefined Block  
Black box operation is a direct result of a fault condition that  
triggers a power supply shutdown. To ensure that the black box  
is written to in the event of a brownout condition, a holdup  
capacitor on the VDD pin is recommended to ensure that all  
the information is written to the black box before the ADP1055  
reaches the UVLO threshold. (Instead of a holdup capacitor, an  
equivalent capacitor from the rail where 3.3 V is derived can be  
used to maintain the VDD voltage above UVLO.) The capacitor  
must be large enough to maintain power to the system over a  
time that exceeds TPROG_BBOX (MIN) which is approximately 10 μF  
on a 10 V rail until VDD falls below UVLO.  
37  
64  
Rev. A | Page 44 of 140  
 
 
Data Sheet  
ADP1055  
BLACK BOX READBACK  
BLACK BOX POWER SEQUENCING  
Two dedicated commands can be used to read back the contents  
of the black box data stored in the EEPROM. The READ_  
BLACKBOX_CURR command (Register 0xF2) is a block read  
command that returns the current record N (last record saved)  
with all related data, as defined in the Black Box Contents section.  
The READ_BLACKBOX_PREV command (Register 0xF3) is a  
block read command that returns the data for the previous record  
N − 1 (next-to-last record saved). Because these commands are  
block read commands, the first byte received is called the  
BYTE_COUNT and indicates to the PMBus master how many  
more bytes to read. In the ADP1055, BYTE_COUNT = 36.  
When the ADP1055 is powered up, the contents of the user  
settings in the EEPROM are downloaded into the internal  
registers. Immediately after this, the contents of the black box  
data (that is, Page 2 and Page 3) are read from the EEPROM by  
the device to determine the last valid Rec_No saved and to  
determine whether a page erase operation is required before  
starting up the device in normal mode.  
If the highest Rec_No is located on the last record of either page  
(that is, the next record to store data is at the start of the other  
page) and the other page has not been erased, the ADP1055  
automatically initiates a page erase to the other page to prepare  
it for further black box recording. The ADP1055 performs a  
soft start sequence only after the page erase is completed.  
For information about how to read from the EEPROM directly  
using these commands, see the Read Operation (Byte Read and  
Block Read) section. It is recommended that the GUI be used to  
read back the contents of the black box; the black box data is  
readily available in the GUI, which displays the data in a graphical  
format.  
Rev. A | Page 45 of 140  
 
 
ADP1055  
Data Sheet  
POWER SUPPLY CALIBRATION AND TRIM  
The ADP1055 allows the entire power supply to be calibrated  
and trimmed digitally in the production environment. The device  
can calibrate items including the output voltage, input voltage,  
input current, and input power, and it can trim for tolerance  
errors introduced by sense resistors, current transformers, and  
resistor dividers, as well as for its own internal circuitry.  
CS1 TRIM  
The current sense can be calibrated using a dc or ac signal to  
minimize errors due to external components.  
Using a DC Signal  
A known voltage (Vx) is applied at the CS1 pin. The CS1 ADC  
should output a digital code equal to Vx/1.6 × 4096. Adjust the  
CS1 gain trim register (Register 0xFE82) until the CS1 ADC  
value in Register 0xFE98 reads the correct digital code. For  
example, Register 0xFE98[13:2] reads a value of 1010 0000 0000  
when there is 1.0 V on the CS1 pin.  
The ADP1055 is factory trimmed, but it can be retrimmed by  
the user to compensate for the errors introduced by external  
components. The ADP1055 GUI allows the user to revert the  
trim settings to their factory default values using the RESTORE_  
DEFAULT_ALL command (Register 0x12). To unlock the trim  
registers for write access, perform consecutive writes to TRIM_  
PASSWORD (Register 0xD6) using the correct password. This  
password is the same one used to unlock the EEPROM using  
EEPROM_PASSWORD (Register 0xD5). The factory default  
password is 0xFF.  
Using an AC Signal  
A known current (Ix) is applied to the CS1 pin. This current  
passes through a current transformer, a diode rectifier, and an  
external resistor (RCS1) to convert the current information to a  
voltage (Vx). This voltage is fed into the CS1 pin. The voltage  
(Vx) is calculated as follows:  
The ADP1055 allows the user enough trim capability to trim for  
external components with a tolerance of 0.5% or better. If the  
ADP1055 is not trimmed in the production environment, it is  
recommended that components with a tolerance of 0.1% or  
better be used for the inputs to CS1, VFF, and VS to meet the  
data sheet specifications.  
Vx = Ix × (N1/N2) × RCS1  
where N1/N2 is the turns ratio of the current transformer.  
The CS1 ADC outputs a digital code equal to Vx/1.6 × 4096.  
Adjust the CS1 gain trim register (Register 0xFE82) until the  
CS1 ADC value in Register 0xFE98 reads the correct digital code.  
VOLTAGE CALIBRATION AND TRIM  
VFF CALIBRATION AND TRIM  
The voltage sense point can be calibrated digitally to minimize  
errors due to external components using the VOUT_TRIM  
command (Register 0x22). This calibration can be performed in  
the production environment, and the settings can be stored in  
the EEPROM of the ADP1055.  
The VFF feedforward ADC (see Figure 32) is used for voltage  
line feedforward and is factory trimmed. This ADC cannot be  
trimmed by the user.  
The VFF slow ADC requires a gain trim.  
The voltage sense inputs are optimized for sensing signals at  
1 V. In a 12 V system, a 12:1 resistor divider is required to reduce  
the 12 V signal down to 1 V. It is recommended that the output  
voltage of the power supply be reduced to 1 V at this pin for best  
performance. The tolerance of the resistor divider introduces  
errors that must be trimmed. The ADP1055 has enough trim  
range to trim out errors introduced by resistors with a tolerance  
of 0.5% or better.  
1. Enable the power supply with full load current at the nominal  
input voltage. The secondary peak reverse voltage on the  
output rectifiers is filtered by an external RCD circuit (see  
Figure 32).  
2. To trim the VFF ADC, reverse-calculate the primary  
voltage as follows:  
V
PRIMARY = Vx × (R1 + R2)/R2 × (N1/N2)  
where:  
The VS ADC produces a digital code equal to VS /1.6 × 4096.  
Vx is the voltage at the VFF pin.  
N1/N2 is the turns ratio. }  
The VS inputs require a gain trim. The following steps should  
be performed before any other trim routine.  
3. Adjust the VFF gain trim register (Register 0xFE81) until  
this calculated voltage is equal to the desired primary input  
voltage. For example, Register 0xFE96[13:2] reads a value  
of 1010 0000 0000 when there is 1.0 V on the VFF pin.  
1. Set the output regulation point to 100% of the nominal  
value.  
2. Enable the power supply with no load current. The power  
supply output voltage is divided down by the resistor divider  
to give 1 V across the VS+ and VS− differential input pins.  
3. Adjust the VS trim register (Register 0xFE80) until the VS  
voltage value in Register 0xFE97[13:2] reads 1010 0000 0000  
when there is 1.0 V on the pins.  
The resistors in Figure 32 are sized such that the first time  
constant, RC, is long enough to prevent overcharging of the  
capacitor (roughly 200 ns in a typical application), whereas the  
second time constant, (R1 + R2) × C, is long enough to keep the  
average voltage constant during the rectifier off time.  
Rev. A | Page 46 of 140  
 
 
 
 
Data Sheet  
ADP1055  
PMBUS DIGITAL COMMUNICATION  
The PMBus slave with PEC allows a device to interface to a  
PMBus compliant master device, as specified by the PMBus  
Power System Management Protocol Specification (Revision 1.2,  
September 6, 2010). The PMBus slave is a 2-wire interface that  
can be used to communicate with other PMBus compliant  
devices and is compatible in a multimaster, multislave bus  
configuration. The PMBus slave can communicate with master  
PMBus devices that support packet error checking (PEC), as  
well as with master devices that do not support PEC.  
Communication is initiated when the master device sends a  
command to the PMBus slave device. Commands can be read  
or write commands, in which case data is transferred between  
the devices in a byte wide format. Commands can also be send  
commands, in which case the command is executed by the slave  
device upon receiving the stop bit. The stop bit is the last bit in a  
complete data transfer, as defined in the PMBus/SMBus/I2C  
communication protocol. During communication, the master  
and slave devices send acknowledge or no acknowledge bits as a  
method of handshaking between devices.  
FEATURES  
In addition, the PMBus slave on the ADP1055 supports packet  
error checking (PEC) to improve reliability and communication  
robustness. The ADP1055 can communicate with master PMBus  
devices that support PEC, as well as with master devices that do  
not support PEC. See the SMBus specification for a more detailed  
description of the communication protocol.  
The function of the PMBus slave is to decode the command  
sent from the master device and respond as requested.  
Communication is established using an I2C-like 2-wire interface  
with a clock line (SCL) and data line (SDA). The PMBus slave is  
designed to externally move chunks of 8-bit data (bytes) while  
maintaining compliance with the PMBus protocol. The PMBus  
protocol is based on the SMBus Specification (Version 2.0,  
August 2000). The SMBus specification is, in turn, based on the  
Philips I2C Bus Specification (Version 2.1, January 2000). The  
PMBus incorporates the following features:  
When communicating with the master device, it is possible for  
illegal or corrupted data to be received by the PMBus slave device.  
In this case, the PMBus slave device should respond to the  
invalid command or data, as defined by the PMBus specification,  
and indicate to the master device that an error or fault condition  
has occurred. This method of handshaking can be used as a first  
level of defense against inadvertent programming of the slave  
device that can potentially damage the chip or system.  
Slave operation on multiple device systems  
7-bit addressing  
100 kbits/sec and 400 kbits/sec data rates  
Packet error checking  
Support for the Group Command Protocol  
Support for the Alert Response Address Protocol with  
arbitration  
The PMBus specification defines a set of generic PMBus  
commands that is recommended for a power management  
system. However, each PMBus device manufacturer can choose  
to implement and support certain commands as it deems fit for  
its system. In addition, the PMBus device manufacturer can  
choose to implement manufacturer-specific commands whose  
functions are not included in the generic PMBus command set.  
The list of standard PMBus and manufacturer-specific commands  
can be found in the Standard PMBus Commands Supported by  
the ADP1055 section and Manufacturer Specific Commands  
section.  
General call address support  
Support for clock low extension (clock stretching)  
Separate multiple byte receive and transmit FIFO  
Extensive fault monitoring  
OVERVIEW  
The PMBus slave module is a 2-wire interface that can be used  
to communicate with other PMBus compliant devices. Its transfer  
protocol is based on the Philips I2C transfer mechanism. The  
ADP1055 is always configured as a slave device in the overall  
system. The ADP1055 communicates with the master device  
using one data pin (SDA) and one clock pin (SCL). Because the  
ADP1055 is a slave device, it cannot generate the clock signal.  
However, it is capable of clock-stretching the SCL line to put the  
master device in a wait state when it is not ready to respond to  
the master’s request.  
TRANSFER PROTOCOL  
The PMBus slave follows the transfer protocol of the SMBus  
Specification (Version 2.0), which is based on the fundamental  
transfer protocol format of the Philips I2C Bus Specification  
(Version 2.1). Data transfers are byte wide, lower byte first. Each  
byte is transmitted serially, most significant bit (MSB) first.  
Figure 69 shows a basic transfer.  
7-BIT  
ADDRESS  
S
R/W  
A
8-BIT DATA  
A
...  
P
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
Figure 69. Basic Data Transfer  
For an in-depth discussion of the transfer protocols, see the  
SMBus and I2C specifications.  
Rev. A | Page 47 of 140  
 
 
 
 
 
ADP1055  
Data Sheet  
7-BIT  
SLAVE  
ADDRESS  
7-BIT  
SLAVE  
ADDRESS  
DATA TRANSFER COMMANDS  
COMMAND  
CODE  
S
W
A
A
Sr  
R
A
Data transfer using the PMBus slave is established using PMBus  
commands. The PMBus specification requires that all PMBus  
W
commands start with a slave address with the R/ bit cleared  
DATA  
BYTE LOW  
DATA  
BYTE HIGH  
PEC  
A
A
NA  
P
BYTE  
(set to 0), followed by the command code. (The only exception  
SMBALRT  
is  
Alert Response Address Protocol.)  
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
All PMBus commands supported by the ADP1055 device follow  
one of the protocol types shown in Figure 70 to Figure 77. (For  
PMBus master devices that do not support PEC, the PEC byte is  
removed.) Figure 70 to Figure 77 use the following abbreviations:  
Figure 74. Read Word Protocol with PEC  
7-BIT  
SLAVE  
ADDRESS  
COMMAND  
CODE  
BYTE  
COUNT = M  
S
W
A
A
A
A
S = start condition  
P = stop condition  
Sr = repeated start condition  
W = write bit (0)  
R = read bit (1)  
DATA  
BYTE  
1
DATA  
BYTE  
M
PEC  
BYTE  
. . .  
A
A
P
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
A = acknowledge bit (0)  
NA = no acknowledge bit (1)  
Figure 75. Block Write Protocol with PEC  
7-BIT  
SLAVE  
ADDRESS  
7-BIT  
SLAVE  
ADDRESS  
7-BIT SLAVE  
ADDRESS  
COMMAND  
CODE  
PEC  
BYTE  
S
W
A
A
A
P
COMMAND  
CODE  
S
W
A
A
Sr  
R
A
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
Figure 70. Send Protocol with PEC  
BYTE  
COUNT = N  
DATA  
BYTE 1  
DATA  
BYTE N  
PEC  
BYTE  
A
A
. . .  
A
NA  
P
PEC  
BYTE  
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
7-BIT SLAVE  
ADDRESS  
COMMAND  
CODE  
DATA  
BYTE  
S
W
A
A
A
A
P
Figure 76. Block Read Protocol with PEC  
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
7-BIT  
SLAVE  
ADDRESS  
Figure 71. Write Byte Protocol with PEC  
COMMAND  
CODE  
BYTE  
COUNT = M  
S
W
A
A
A
DATA  
BYTE  
LOW  
DATA  
BYTE  
HIGH  
7-BIT  
SLAVE  
ADDRESS  
COMMAND  
CODE  
S
W
A
A
A
A
7-BIT  
SLAVE  
ADDRESS  
DATA  
BYTE  
1
DATA  
BYTE  
M
A
. . .  
A
Sr  
R
A
PEC  
BYTE  
A
P
BYTE  
COUNT = N  
DATA  
BYTE 1  
DATA  
BYTE N  
PEC  
BYTE  
A
A
. . .  
A
NA  
P
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
Figure 72. Write Word Protocol with PEC  
Figure 77. Block Write and Block Read Protocol with PEC  
7-BIT  
SLAVE  
ADDRESS  
7-BIT  
SLAVE  
ADDRESS  
COMMAND  
CODE  
The PMBus slave module of the ADP1055 also supports  
S
W
A
A
Sr  
R
A
manufacturer-specific extended commands. These commands  
follow the same protocol as the standard PMBus commands.  
However, the command code consists of two bytes:  
DATA  
BYTE  
PEC  
BYTE  
A
A
P
Command code extension: 0xFE  
Extended command code: 0x00 to 0xFF  
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
Using the manufacturer-specific extended commands, the PMBus  
device manufacturer can add an additional 256 manufacturer-  
specific commands to its PMBus command set.  
Figure 73. Read Byte Protocol with PEC  
Rev. A | Page 48 of 140  
 
 
 
Data Sheet  
ADP1055  
GROUP COMMAND PROTOCOL  
START AND STOP CONDITIONS  
In addition to the communication protocols described in the  
Data Transfer Commands section, the PMBus slave supports a  
special group command in which commands are sent to multiple  
slaves in a single serial transmission. The commands to each  
slave can be different from one another, with each set of {slave-  
address, command} separated by a repeated start (Sr) bit (see  
Figure 78). At the end of a transmission to all slaves, a single  
stop (P) bit is sent to initiate concurrent execution of the  
received commands by all slaves.  
Start and stop conditions involve serial data transitions while  
the serial clock is at a logic high level. The PMBus slave device  
monitors the SDA and SCL lines to detect the start and stop  
conditions and transition its internal state machine accordingly.  
Figure 79 shows typical start and stop conditions.  
Note that the PEC byte transmitted to each slave is calculated  
using only its slave address, command code, and data bytes.  
Figure 79. Start and Stop Transitions  
COMMAND  
CODE  
1
SLAVE 1  
ADDRESS  
DATA  
1 . . . N  
PEC  
1
S
W
A
A
A
A
REPEATED START CONDITION  
COMMAND  
CODE  
2
SLAVE 2  
ADDRESS  
DATA  
1 . . . N  
PEC  
2
In general, a repeated start (Sr) condition is the absence of a stop  
condition between two transfers. The PMBus communication  
protocol makes use of the repeated start condition only when  
performing a read access (read byte, read word, and block read).  
Other uses of the repeated start condition are not allowed.  
Sr  
W
A
A
A
A
COMMAND  
CODE  
M
SLAVE M  
ADDRESS  
DATA  
1 . . . N  
PEC  
M
Sr  
W
A
A
A
A
P
GENERAL CALL SUPPORT  
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
The PMBus slave is capable of decoding and acknowledging a  
general call address. The PMBus device responds to both its own  
address and the general call address (0x00).  
Figure 78. Group Command Protocol with PEC  
CLOCK GENERATION AND STRETCHING  
Note that all PMBus commands must start with the slave address  
The ADP1055 is always a PMBus slave device in the overall  
W
with the R/ bit cleared (set to 0), followed by the command code.  
system; therefore, the device never needs to generate the clock,  
which is done by the master device in the system. However, the  
PMBus slave device is capable of clock stretching to put the  
master in a wait state. By stretching the SCL signal during the  
low period, the slave device communicates to the master device  
that it is not ready and that the master device must wait.  
This is also true when using the general call address to communi-  
cate with the PMBus slave device. The only exception to this  
SMBALRT  
rule is when the  
alert response address is used.  
ALERT RESPONSE ADDRESS (ARA)  
SMBALRT  
If a PMBus slave device supports the  
hardware pin  
to interrupt the master on a fault condition, the SMBus Alert  
Response Address Protocol must be supported to allow commu-  
nication between the master and slave on the device that triggers  
the fault.  
Conditions where the PMBus slave device stretches the SCL line  
low include the following:  
Master device is transmitting at a higher baud rate than the  
slave device.  
SMBALRT  
When the  
pin on the slave is asserted, the master  
Receive FIFO buffer of the slave device is full and must be  
read before continuing to prevent a data overflow  
condition.  
queries the address of the slave device that triggered the fault by  
sending the alert response address (0001 to 100x). In response  
SMBALRT  
to this address, the slave with the asserted  
pin  
Slave device is not ready to send data that the master has  
requested.  
acknowledges (ACKs) the address and responds with its own  
slave address (7-bit address and plus 0). If multiple slave devices  
Note that the slave device can stretch the SCL line only during the  
low period. Also, whereas the I2C specification allows indefinite  
stretching of the SCL line, the PMBus specification limits the  
maximum time that the SCL line can be stretched, or held low,  
to 25 ms, after which the ADP1055 must release the communica-  
tion lines and reset its state machine.  
SMBALRT  
have their  
pins asserted, the slave with the lowest  
address wins the arbitration and subsequently deasserts its  
SMBALRT  
pin.  
7-BIT  
ARA  
SLAVE  
ADDRESS  
PEC  
BYTE  
S
x
A
A
A
P
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
Figure 80. ARA Protocol with PEC  
Rev. A | Page 49 of 140  
 
 
 
 
 
 
 
 
ADP1055  
Data Sheet  
PMBUS ADDRESS SELECTION  
10-BIT ADDRESSING  
Control of the ADP1055 is implemented via the I2C interface.  
The ADP1055 device is connected to the I2C bus as a slave device  
under the control of a master device. The PMBus address of the  
ADP1055 is set by connecting an external resistor from the ADD  
pin to AGND. Table 11 lists the recommended resistor values  
and associated PMBus addresses.  
The PMBus slave device does not support 10-bit addressing as  
defined in the I2C specification.  
PACKET ERROR CHECKING  
The PMBus controller implements packet error checking (PEC)  
to improve reliability and communication robustness. Packet  
error checking is implemented by appending a PEC byte at the  
end of the message transfer. The PEC byte is calculated using a  
CRC-8 algorithm on all ADDR, CMD, and DATA bytes from  
the start to stop bits (excluding the ACK, NACK, start, restart,  
and stop bits). The PEC byte is appended to the end of the  
message by the device that supplied the last data byte. The  
receiver of the PEC byte is responsible for calculating its  
internal PEC code and comparing it to the received PEC byte.  
Table 11. PMBus Address Settings  
PMBus  
Addr 1  
PMBus  
Addr 2  
PMBus  
Addr 3  
PMBus  
Addr 4  
1% Resistor (Ω)  
(E96 series)  
0x40  
0x50  
0x60  
0x70  
210 (or connect  
to AGND)  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
750  
1330  
2050  
2670  
3570  
4420  
5360  
6340  
7320  
8450  
9530  
10,700  
12,100  
13,700  
The ADP1055 can communicate with master PMBus devices that  
support PEC, as well as with master devices that do not support  
PEC. If a PEC byte is available, the PMBus device checks the  
PEC byte and issues an acknowledge (ACK) if the PEC byte is  
correct. If the PEC byte comparison fails, the PMBus device  
issues a no acknowledge (NACK) in response to the PEC byte  
and does not process the command sent from the master.  
The PMBus device uses built-in hardware to calculate the PEC  
code using the CRC-8 polynomial, C(x) = x8 + x2 + x1 + 1. The  
PEC code is calculated one byte at a time, in the order that it is  
received. In a read transaction, the PMBus device appends the  
PEC byte following the last data byte. In a write transaction, the  
PMBus device compares the received PEC byte to the internally  
calculated PEC code.  
15,000 (or connect  
to VDD)  
Using a resistor enables the selection of 16 different base addresses  
from 0x40 to 0x4F. Additional addresses can be selected using the  
SLV_ADDR_SELECT command (Register 0xD0). For example,  
a device can be programmed to have an address of 0x65 by  
connecting a 3.57 kΩ resistor at the ADD pin and programming  
Register 0xD0[5:4] to 10 and saving to the EEPROM. The next  
time that the power is cycled to the ADP1055, the device responds  
to an address of 0x65. Other addresses can be selected.  
If an incorrect resistor value is used and the resulting I2C  
address is close to a threshold between two addresses, the  
STATUS_UNKNOWN flag is set (Register 0xFE94[3]). It is  
recommended that 1% tolerance resistors be used on the ADD  
pin. However, 5% resistors can be selected, but the use of some  
of the addresses will not be allowed due to the overlap of  
address ranges.  
ELECTRICAL SPECIFICATIONS  
All logic complies with the Electrical Specification outlined in  
the PMBus Power System Management Protocol Specification  
Part 1, Revision 1.2, dated September 6, 2010.  
FAULT CONDITIONS  
The PMBus protocol provides a comprehensive set of fault  
conditions that must be monitored and reported. These fault  
conditions can be grouped into two major categories: commu-  
nication faults and monitoring faults.  
Communication faults are error conditions associated with the  
data transfer mechanism of the PMBus protocol (see the following  
sections for more information).  
Monitoring faults are error conditions associated with the  
operation of the PMBus device, such as output overvoltage  
protection, and are specific to each PMBus device. For more  
information about the monitoring fault conditions, see the Fault  
Responses and State Machine Mechanics section.  
In addition to its programmed address, the ADP1055 responds  
to the standard PMBus broadcast address (general call) of 0x00.  
FAST MODE  
Fast mode (400 kHz) uses essentially the same mechanics as  
the standard mode of operation; the electrical specifications  
and timing are most affected. The PMBus slave is capable of  
communicating with a master device operating in standard  
mode (100 kHz) or fast mode.  
Rev. A | Page 50 of 140  
 
 
 
 
 
 
 
Data Sheet  
ADP1055  
Reading Too Few Bits (Item 10.8.3)  
TIMEOUT CONDITIONS  
Transmission is interrupted by a start or stop condition before a  
complete byte (eight bits) has been read. Not supported; any  
received data is ignored.  
The SMBus specification, Version 2.0, includes three clock  
stretching specifications related to timeout conditions. The  
timeout conditions are described in the following sections.  
Hosts Sends or Reads Too Few Bytes (Item 10.8.4)  
TTIMEOUT  
If a host ends a packet with a stop condition before the required  
bytes are sent/received, it is assumed that the host intended to  
stop the transfer. Therefore, the PMBus slave does not consider  
this to be an error and takes no action, except to flush any  
remaining bytes in the transmit FIFO.  
A timeout condition occurs if any single SCL clock pulse is held  
low for longer than the TTIMEOUT MIN of 25 ms. Upon detecting the  
timeout condition, the PMBus slave device has 10 ms to abort  
the transfer, release the bus lines, and be ready to accept a new  
start condition. The device initiating the timeout is required to  
hold the SCL clock line low for at least TTIMEOUT MAX = 35 ms,  
guaranteeing that the slave device is given enough time to reset  
its communication protocol.  
Host Sends Too Many Bytes (Item 10.8.5)  
If a host sends more bytes than are expected for the corresponding  
command, the PMBus slave considers this a data transmission  
fault and responds as follows:  
TLOW:SEXT  
The TLOW:SEXT = 25 ms specification is defined as the cumulative  
time that the SCL line is held low by the slave device in any one  
message from the start to the stop condition. The PMBus slave  
device is guaranteed by design not to violate this specification. If  
the slave device violates this specification, the master is allowed  
to abort the transaction in progress and issue a stop condition at  
the conclusion of the byte transfer in progress.  
Send a no acknowledge (NACK) for all unexpected bytes as  
they are received.  
Flush and ignore the received command and data.  
Sets the CML bit (Bit 1) in the STATUS_BYTE register.  
Set the invalid/unsupported data bit (Bit 6) in the  
STATUS_CML register.  
SMBALRT  
Notify the host through , if enabled.  
TLOW:MEXT  
Host Reads Too Many Bytes (Item 10.8.6)  
The TLOW:MEXT = 10 ms specification is defined as the cumulative  
time that the SCL line is held low by the master device in any one  
byte of a message between the start-to-acknowledge, acknowledge-  
to-acknowledge, or acknowledge-to-stop. If this specification is  
violated, the PMBus device treats it as a timeout condition and  
aborts the transfer. This check is not implemented in the ADP1055.  
If a host reads more bytes than are expected for the corresponding  
command, the PMBus slave considers this a data transmission  
fault and responds as follows:  
Send all 1s (0xFF) as long as the host continues to request  
data.  
Set the CML bit (Bit 1) in the STATUS_BYTE register.  
Set the Other bit (Bit 1) in the STATUS_CML register.  
DATA TRANSMISSION FAULTS  
Data transmission faults occur when two communicating devices  
violate the PMBus communication protocol. The following  
items are taken from the PMBus specification (Revision 1.2,  
September 6, 2010). See the PMBus specification for more  
information about each fault condition.  
SMBALRT  
Notify host through  
, if enabled.  
Device Busy (Item 10.8.7)  
PMBus slave device is too busy to respond to a request from the  
master device. This error can occur if the slave device is busy  
accessing the EEPROM (for example, erasing a page, downloading  
from EEPROM, or uploading to EEPROM). The PMBus slave  
considers this a data transmission fault and responds as follows:  
Corrupted Data, PEC (Item 10.8.1)  
This item refers to parity error checking. The PMBus slave  
device compares the received PEC byte with the calculated  
expected PEC byte of each transmission, starting from the start  
bit to the stop bit. If the comparison fails, it responds as follows:  
Send an acknowledge (ACK) for the address byte.  
Send a no acknowledge (NACK) for the command and  
data bytes.  
Send all 1s (0xFF) as long as the host continues to request  
data.  
Send a no acknowledge (NACK) for the PEC byte.  
Flush and ignore the received command and data.  
Set the CML bit (Bit 1) in the STATUS_BYTE register.  
Set the PEC bit (Bit 5) in the STATUS_CML register.  
Set the busy bit (Bit 7) in the STATUS_BYTE register.  
SMBALRT  
Notify the host through  
, if enabled.  
SMBALRT  
, if enabled.  
Notify the host through  
Sending Too Few Bits (Item 10.8.2)  
Transmission is interrupted by a start or stop condition before a  
complete byte (eight bits) has been sent. Not supported; any  
transmitted data is ignored.  
Rev. A | Page 51 of 140  
 
 
 
 
ADP1055  
Data Sheet  
Data Out of Range Fault (Item 10.9.4)  
DATA CONTENT FAULTS  
Data sent to the PMBus slave that is out of range is treated as a  
data content fault. See the Invalid or Unsupported Data (Item  
10.9.3) section for the actions taken by the PMBus device.  
Data content faults occur when data transmission is successful,  
but the PMBus slave device cannot process the data that is  
received from the master device.  
Reserved Bits (Item 10.9.5)  
Improperly Set Read Bit in the Address Byte (Item 10.9.1)  
Accesses to reserved bits are not a fault. Writes to reserved bits  
are ignored, and reads from reserved bits return 0s.  
W
All PMBus commands start with a slave address with the R/  
bit cleared to 0, followed by the command code. The only  
exception is the transmission of the SMBus alert response  
Write to Read-Only Commands  
address (0001 to 100x). If a host starts a PMBus transaction  
If a host performs a write to a read-only command, the PMBus  
slave considers this a data content fault and responds as follows:  
2
W
with R/ set in the address phase (equivalent to an I C read),  
the PMBus slave considers this a data content fault and  
responds as follows:  
Send a no acknowledge (NACK) for all unexpected data  
bytes as they are received.  
Send an acknowledge (ACK) for the address byte.  
Send a no acknowledge (NACK) for the command and  
data bytes.  
Flush and ignore the received command and data.  
Set the CML bit (Bit 1) in the STATUS_BYTE register.  
Set the invalid/unsupported data received bit (Bit 6) in the  
STATUS_CML register.  
Send all 1s (0xFF) as long as the host continues to request  
data.  
SMBALRT  
Notify the host through , if enabled.  
Set the CML bit (Bit 1) in the STATUS_BYTE register.  
Set the Other bit (Bit 1) in the STATUS_CML register.  
Note that this is the same error described in the Host Sends Too  
Many Bytes (Item 10.8.5) section.  
SMBALRT  
Notify the host through  
, if enabled.  
Read from Write-Only Commands  
Invalid or Unsupported Command Code (Item 10.9.2)  
If a host performs a read from a write-only command, the PMBus  
slave considers this a data content fault and responds as follows:  
If an invalid or unsupported command code is sent to the  
PMBus slave, the code is considered to be a data content fault,  
and the PMBus slave responds as follows:  
Send all 1s (0xFF) as long as the host continues to request  
data.  
Send a no acknowledge (NACK) for the illegal/  
unsupported command byte and data bytes.  
Flush and ignore the received command and data.  
Set the CML bit (Bit 1) in the STATUS_BYTE register.  
Set the invalid/unsupported command bit (Bit 7) in the  
STATUS_CML register.  
Set the CML bit (Bit 1) in the STATUS_BYTE register.  
Set the Other bit (Bit 1) in the STATUS_CML register.  
Note that this is the same error described in the Host Reads Too  
Many Bytes (Item 10.8.6) section.  
SMBALRT  
Notify the host through , if enabled.  
Invalid or Unsupported Data (Item 10.9.3)  
If invalid or unsupported data is sent to the PMBus slave (for  
certain commands), the PMBus slave considers this to be a data  
content fault and responds as follows:  
Send an acknowledge (ACK) for the unsupported data  
bytes (cannot send a no acknowledge (NACK) for the data  
because the decoding happens only after the data is  
acknowledged and sent to the decoding unit).  
Flush and ignore the received command and data.  
Set the CML bit (Bit 1) in the STATUS_BYTE register.  
Set the invalid/unsupported data received bit (Bit 6) in the  
STATUS_CML register.  
SMBALRT  
Notify the host through , if enabled.  
Rev. A | Page 52 of 140  
 
 
Data Sheet  
ADP1055  
LAYOUT GUIDELINES  
This section describes best practices to ensure optimal performance  
of the ADP1055. In general, place all components as close to the  
ADP1055 as possible. All signals should be referenced to their  
respective grounds.  
CS1 PIN  
Route the traces from the current sense transformer to  
the ADP1055 parallel to each other. Keep the traces close  
together and as far from the switch nodes as possible.  
CS2+ AND CS2− PINS  
EXPOSED PAD  
Route the traces from the sense resistor to the ADP1055 parallel  
to each other. Keep the traces close together and as far from the  
switch nodes as possible.  
Solder the exposed thermal pad on the underside of the ADP1055  
package to the PCB AGND plane.  
VCORE PIN  
VS+ AND VS− PINS  
Place a 330 nF decoupling capacitor from the VCORE pin to  
DGND, as close to the device as possible.  
Route the traces from the remote voltage sense point to the  
ADP1055 parallel to each other. Keep the traces close together  
and as far from the switch nodes as possible. Place a 100 nF  
capacitor from VS− to AGND to reduce common-mode noise.  
RES PIN  
Place a 10 kꢁ, 0.1% resistor from the RES pin to AGND, as  
close to the device as possible.  
VDD PIN  
JTD AND JRTN PINS  
Place decoupling capacitors as close to the device as possible. A  
4.7 μF capacitor from VDD to AGND is recommended.  
Route a single trace to the ADP1055 from the junction diode  
using a trace to JRTN. If single-ended sensing is preferred, tie  
the return to AGND using a dedicated trace. Make sure to lay  
out the temperature sensor by isolating it and keeping it away  
from any direct switch nodes. It is recommended that a 220 nF  
to 470 nF capacitor be placed between the base-emitter junctions  
of the thermal sensor.  
SDA AND SCL PINS  
Route the traces to the SDA and SCL pins parallel to each other.  
Keep the traces close together and as far from the switch nodes  
as possible. It may be advantageous to add a filtering circuit, as  
shown in Figure 81.  
+5V  
OVP PIN  
1
2
1
2
D48  
1N4148  
D50  
1N4148  
Route the OVP traces away from any switching nodes to avoid  
spuriously tripping the comparator at that pin.  
R55  
100  
SCL  
SDA  
C63  
33pF  
C60  
33pF  
SYNC PIN  
R56  
100Ω  
It is important to route the trace to the SYNC pin to prevent any  
noise from being coupled to the information in the signal. It is  
recommended that this trace be kept away from switch nodes  
and routed as an internal layer so that the AGND plane acts as a  
shield to this trace.  
1
2
1
2
D41  
1N4148  
D43  
1N4148  
C61  
33pF  
C62  
33pF  
J26  
HDR1X  
1
2
3
4
AGND AND DGND  
AGND  
Figure 81. I2C Filtering Circuit  
Create an AGND ground plane (preferably in the inner layer)  
and make a single-point (star) connection to the power supply  
system ground. Connect DGND to AGND with a very short  
trace using a star connection. It may be advantageous to have an  
entire VDD plane as an additional layer for noise immunity.  
Rev. A | Page 53 of 140  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADP1055  
Data Sheet  
EEPROM  
The ADP1055 has a built-in EEPROM controller that is used to  
communicate with the embedded 8k × 8-byte EEPROM. The  
EEPROM, also called Flash®/EE, is partitioned into two major  
blocks: the INFO block and the main block. The INFO block  
contains 128 8-bit bytes (for internal use only), and the main  
block contains 8k 8-bit bytes. The main block is further partitioned  
into 16 pages; each page contains 512 bytes.  
Wait at least 35 ms for the page erase operation to complete  
before executing the next I2C command.  
The EEPROM allows erasing of whole pages only; therefore, to  
change the data of any single byte in a page, the entire page  
must first be erased (set high) for that byte to be writable.  
Subsequent writes to any bytes in that page are allowed as long  
as that byte has not been written to a logic low previously.  
OVERVIEW  
READ OPERATION (BYTE READ AND BLOCK READ)  
The EEPROM controller provides an interface between the  
ADP1055 core logic and the built-in Flash/EE. The user can  
control data access to and from the EEPROM through this  
controller interface. Different I2C commands are available for  
the different operations to the EEPROM.  
Read from Main Block, Page 0 to Page 5  
Page 0 and Page 1 of the main block are reserved for storing the  
default settings and user settings, respectively. Page 2 and  
Page 3 are reserved for storing the black box information, and  
Page 4 and Page 5 are used to store the GUI settings and factory  
tracking information. These pages are intended to prevent third-  
party access to this data. To read a page from Page 0 to Page 5,  
the user must first unlock the EEPROM (see the Unlock the  
EEPROM section). After the EEPROM is unlocked, Page 0 to  
Page 5 are readable using the EEPROM_PAGE_xx commands,  
as described in the Read from Main Block, Page 6 to Page 15  
section. Note that when the EEPROM is locked, a read from  
Page 0 to Page 5 returns invalid data.  
Communication is initiated by the master device sending a  
command to the I2C slave device to access data from or send  
data to the EEPROM. Using read and write commands, data is  
transferred between devices in a byte wide format. Using a read  
command, data is received from the EEPROM and transmitted  
to the master device. Using a write command, data is received  
from the master device and stored in the EEPROM through the  
EEPROM controller. Send commands are also supported; a send  
command is executed by the slave device upon receiving the stop  
bit. The stop bit is the last bit in a complete data transfer, as defined  
in the I2C communication protocol. For a complete description  
of the I2C protocol, see the Philips I2C Bus Specification, Version 2.1,  
dated January 2000.  
Read from Main Block, Page 6 to Page 15  
Data in Page 6 to Page 15 of the main block is always readable,  
even with the EEPROM locked. The data in the EEPROM main  
block can be read one byte at a time or in multiple bytes in series  
using the EEPROM_PAGE_xx commands (Register 0xB0 to  
Register 0xBF).  
PAGE ERASE OPERATION  
The main block consists of 16 equivalent pages of 512 bytes each,  
numbered Page 0 to Page 15. Page 0 and Page 1 of the main block  
are reserved for storing the default settings and user settings,  
respectively. Page 2 and Page 3 are reserved for storing the black  
box information, and Page 4 and Page 5 are used to store the GUI  
settings and factory tracking information. The user cannot perform  
a page erase operation to any of Page 0 to Page 5.  
Before executing this command, the user must program the  
number of bytes to read using the EEPROM_NUM_RD_BYTES  
command (Register 0xD2). The user can also program the offset  
from the page boundary where the first read byte is returned using  
the EEPROM_ADDR_OFFSET command (Register 0xD3).  
In the following example, three bytes from Page 6 are read from  
the EEPROM, starting from the fifth byte of that page.  
Only Page 6 to Page 15 of the main block can be used to store  
data. To erase any page from Page 6 to Page 15, the EEPROM  
must first be unlocked for access. For instructions on how to  
unlock the EEPROM, see the Unlock the EEPROM section.  
1. Set the number of return bytes = 3.  
7-BIT SLAVE  
ADDRESS  
S
W
A
0xD2  
A
0x03  
A
P
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
Page 6 to Page 15 of the main block can be individually erased  
using the EEPROM_PAGE_ERASE command (Register 0xD4).  
2. Set address offset = 5.  
For example, to perform a page erase of Page 10, execute the  
following command:  
7-BIT  
SLAVE  
S
W
A
0xD3  
A
0x00  
A
0x05  
A
P
ADDRESS  
7-BIT SLAVE  
ADDRESS  
COMMAND  
CODE  
DATA  
BYTE  
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
S
W
A
A
A
P
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
Figure 82. Example Erase Command  
In this example, command code = 0xD4 and data byte = 0x0A.  
Rev. A | Page 54 of 140  
 
 
 
 
 
Data Sheet  
ADP1055  
3. Read three bytes from Page 6.  
2. Write four bytes to Page 9.  
7-BIT  
7-BIT  
SLAVE  
7-BIT  
BYTE  
COUNT = 4  
SLAVE  
S
W
A
0xB6  
A
Sr  
R
A
P
SLAVE  
W
A
0xB9  
A
S
A
ADDRESS  
ADDRESS  
ADDRESS  
BYTE  
COUNT = 0x03  
DATA  
BYTE 1  
DATA  
BYTE 3  
A
A
...  
NA  
DATA BYTE 1  
A
...  
DATA BYTE 4  
A
P
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
Note that the block read command can read a maximum of  
255 bytes for any single transaction.  
Note that the block write command can write a maximum of  
255 bytes for any single transaction.  
WRITE OPERATION (BYTE WRITE AND BLOCK  
WRITE)  
Write to Main Block, Page 0 and Page 5  
EEPROM PASSWORD  
On power-up, the EEPROM is locked and protected from  
accidental writes or erases. Only reads from Page 6 to Page 15 of  
the main block are allowed when the EEPROM is locked. Before  
any data can be written (programmed) to the EEPROM, the  
EEPROM must be unlocked for write access. After it is unlocked,  
the EEPROM is opened for reading, writing, and erasing.  
Page 0 and Page 1 of the main block are reserved for storing the  
default settings and user settings, respectively. Page 2 through  
Page 5 of the main block are reserved for storing the black box  
information, GUI settings, and factory tracking information. The  
user cannot perform a direct write operation to any page from  
Page 0 to Page 5 using the EEPROM_PAGE_00 to EEPROM_  
PAGE_05 commands. A user write to these pages returns a no  
acknowledge. To program the register contents of Page 1 of the  
main block, it is recommended that the STORE_USER_ALL  
command be used (Register 0x15). See the Save Register  
Settings to User Settings section.  
Unlock the EEPROM  
To unlock the EEPROM, perform two consecutive writes with  
the correct password (default = 0xFF) using the EEPROM_  
PASSWORD command (Register 0xD5). The EEPROM_  
UNLOCKED flag (Register 0xFE93, Bit 15) is set to indicate  
that the EEPROM is unlocked for write access.  
Lock the EEPROM  
Write to Main Block, Page 6 to Page 15  
To lock the EEPROM, write any byte other than the correct  
password using the EEPROM_PASSWORD command (Register  
0xD5). The EEPROM_UNLOCKED flag (Register 0xFE93,  
Bit 15) is cleared to indicate that the EEPROM is locked from  
write access.  
Before performing a write to Page 6 through Page 15 of the  
main block, the user must first unlock the EEPROM (see the  
Unlock the EEPROM section).  
Data in Page 6 to Page 15 of the EEPROM main block can be  
programmed (written to) one byte at a time or in multiple bytes  
in series using the EEPROM_PAGE_xx commands (Register 0xB6  
to Register 0xBF). Before executing this command, the user can  
program the offset from the page boundary where the first byte  
is written using the EEPROM_ADDR_OFFSET command  
(Register 0xD3).  
Change the EEPROM Password  
To change the EEPROM password, follow these steps:  
1. Enter the correct 32-bit key code using the KEY_CODE  
command (Register 0xD7).  
2. Write the old password using the EEPROM_PASSWORD  
command (Register 0xD5).  
3. Immediately write the new password using the EEPROM_  
PASSWORD command (Register 0xD5).  
If the targeted page has not yet been erased, the user can erase  
the page as described in the Page Erase Operation section.  
In the following example, four bytes are written to Page 9,  
starting from the 256th byte of that page.  
The password is now changed to the new password. Save the new  
password to the user settings by executing the STORE_USER_ALL  
command (Register 0x15).  
1. Set address offset = 256.  
7-BIT  
SLAVE  
S
W
A
0xD3  
A
0x01  
A
0x00  
A P  
ADDRESS  
= MASTER-TO-SLAVE  
= SLAVE-TO-MASTER  
Rev. A | Page 55 of 140  
 
 
 
ADP1055  
Data Sheet  
After the register settings are saved to the user settings, any  
DOWNLOADING EEPROM SETTINGS TO INTERNAL  
REGISTERS  
Download User Settings to Registers  
subsequent power cycle automatically downloads the latest  
stored user information from the EEPROM into the internal  
registers.  
The user settings are stored in Page 1 of the EEPROM main  
block. These settings are downloaded from the EEPROM into  
the registers under the following conditions:  
Note that execution of the STORE_USER_ALL command auto-  
matically performs a page erase to Page 1 of the EEPROM main  
block, after which the register settings are stored in the EEPROM.  
Therefore, it is important to wait at least 35 ms for the operation  
to complete before executing the next I2C command.  
On power-up. The user settings are automatically down-  
loaded into the internal registers, powering the ADP1055  
up in a state previously saved by the user.  
EEPROM CRC CHECKSUM  
On execution of the RESTORE_USER_ALL command  
(Register 0x16). This command allows the user to force a  
download of the user settings from Page 1 of the EEPROM  
main block into the internal registers.  
As a simple method of checking that the values downloaded from  
the EEPROM are consistent with the internal registers, a CRC  
checksum is implemented.  
When the data from the internal registers is saved to the  
EEPROM (Page 1 of the main block), the total number of  
1s from all the registers is counted and written into the  
EEPROM as the last byte of information. This is called the  
CRC checksum.  
When the data is downloaded from the EEPROM into the  
internal registers, a similar counter that sums all 1s from  
the values loaded into the registers is saved. This value is  
compared with the CRC checksum from the previous  
upload operation.  
Download Factory Default Settings to Registers  
The factory default settings are stored in Page 0 of the EEPROM  
main block. The factory default settings can be downloaded from  
the EEPROM into the internal registers using the RESTORE_  
DEFAULT_ALL command (Register 0x12).  
Note that when this command is executed, the key code and  
EEPROM passwords are also reset to their default factory  
settings of 0xFFFFFFFF and 0xFF, respectively.  
SAVING REGISTER SETTINGS TO THE EEPROM  
The register settings cannot be saved to the factory default set-  
tings located in Page 0 of the EEPROM main block. This is to  
prevent the user from accidentally overriding the factory trim  
settings and default register settings.  
If the values match, the download operation was successful. If  
the values differ, the EEPROM download operation failed, and  
the EEPROM CRC fault flag is set (Bit 4 of Register 0x7E).  
To read the EEPROM CRC checksum value, execute the  
EEPROM_CRC_CHKSUM command (Register 0xD1). This  
command returns the CRC checksum accumulated in the  
counter during the download operation.  
Save Register Settings to User Settings  
The register settings can be saved to the user settings located in  
Page 1 of the EEPROM main block using the STORE_USER_ALL  
command (Register 0x15). Before this command can be executed,  
the EEPROM must first be unlocked for writing (see the Unlock  
the EEPROM section).  
Note that the CRC checksum is an 8-bit cyclical accumulator  
that wraps around to 0 when 255 is reached.  
Rev. A | Page 56 of 140  
 
 
 
 
Data Sheet  
ADP1055  
SOFTWARE GUI  
A free software GUI is available for programming and configuring  
the ADP1055. The GUI is designed to be intuitive to power  
supply designers and dramatically reduces power supply design  
and development time.  
The software includes filter design and power supply PWM  
topology windows. The GUI is also an information center,  
displaying the status of all readings, monitoring, and flags on  
the ADP1055. The GUI takes into account all PMBus conversions;  
the user need only enter the voltage and current settings (or  
thresholds) in volts and amperes. All PMBus flags and readings  
are also displayed in the GUI. For more information about the  
GUI, see the ADP1055 product page).  
Evaluation boards are also available; for more information, see  
the ADP1055 product page).  
Figure 83. Voltage Settings Window of the ADP1055 GUI  
Figure 84. Monitor Window of the ADP1055 GUI  
Rev. A | Page 57 of 140  
 
ADP1055  
Data Sheet  
STANDARD PMBUS COMMANDS SUPPORTED BY THE ADP1055  
Table 12 lists the standard PMBus commands that are implemented on the ADP1055. Many of these commands are implemented in  
registers, which share the same hexadecimal value as the PMBus command code. All commands are maskable with the exceptions noted  
in Table 12.  
Table 12. PMBus Command List  
Command Code  
0x01  
0x02  
0x03  
0x10  
0x12  
0x15  
0x16  
0x19  
0x1B  
0x20  
0x21  
0x22  
0x23  
0x24  
0x27  
0x28  
0x29  
0x2A  
0x33  
0x35  
0x36  
0x37  
0x38  
0x39  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4F  
0x50  
0x51  
0x55  
0x56  
0x59  
0x5A  
0x5B  
0x5C  
0x5E  
Command Name  
Command Code  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x68  
0x69  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
0x80  
0x88  
0x89  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x94  
0x95  
0x96  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0xAD  
0xAE  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
0xB8  
Command Name  
POWER_GOOD_OFF  
TON_DELAY  
OPERATION  
ON_OFF_CONFIG  
CLEAR_FAULTS  
WRITE_PROTECT  
RESTORE_DEFAULT_ALL  
STORE_USER_ALL1  
RESTORE_USER_ALL1  
CAPABILITY  
SMBALERT_MASK  
VOUT_MODE  
VOUT_COMMAND  
VOUT_TRIM  
VOUT_CAL_OFFSET  
VOUT_MAX  
VOUT_TRANSITION_RATE  
VOUT_DROOP  
VOUT_SCALE_LOOP  
VOUT_SCALE_MONITOR  
FREQUENCY_SWITCH  
VIN_ON  
TON_RISE  
TON_MAX_FAULT_LIMIT  
TON_MAX_FAULT_RESPONSE  
TOFF_DELAY  
TOFF_FALL  
TOFF_MAX_WARN_LIMIT  
POUT_OP_FAULT_LIMIT  
POUT_OP_FAULT_RESPONSE  
STATUS_BYTE  
STATUS_WORD  
STATUS_VOUT  
STATUS_IOUT  
STATUS_INPUT  
STATUS_TEMPERATURE  
STATUS_CML  
STATUS_OTHER  
STATUS_MFR_SPECIFIC  
READ_VIN  
READ_IIN  
READ_VOUT  
READ_IOUT  
Reserved  
READ_TEMPERATURE_2  
READ_TEMPERATURE_3  
READ_DUTY_CYCLE  
READ_FREQUENCY  
READ_POUT  
PMBUS_REVISION  
MFR_ID  
MFR_MODEL  
MFR_REVISION  
MFR_LOCATION  
MFR_DATE  
MFR_SERIAL  
IC_DEVICE_ID  
IC_DEVICE_REV  
EEPROM_PAGE_00  
EEPROM_PAGE_01  
EEPROM_PAGE_02  
EEPROM_PAGE_03  
EEPROM_PAGE_04  
EEPROM_PAGE_05  
EEPROM_PAGE_06  
EEPROM_PAGE_07  
EEPROM_PAGE_08  
VIN_OFF  
INTERLEAVE  
IOUT_CAL_GAIN  
IOUT_CAL_OFFSET  
VOUT_OV_FAULT_LIMIT  
VOUT_OV_FAULT_RESPONSE  
VOUT_OV_WARN_LIMIT  
VOUT_UV_WARN_LIMIT  
VOUT_UV_FAULT_LIMIT  
VOUT_UV_FAULT_RESPONSE  
IOUT_OC_FAULT_LIMIT  
IOUT_OC_FAULT_RESPONSE  
IOUT_OC_LV_FAULT_LIMIT  
IOUT_OC_LV_FAULT_RESPONSE  
IOUT_OC_WARN_LIMIT  
IOUT_UC_FAULT_LIMIT  
IOUT_UC_FAULT_RESPONSE  
OT_FAULT_LIMIT  
OT_FAULT_RESPONSE  
OT_WARN_LIMIT  
VIN_OV_FAULT_LIMIT  
VIN_OV_FAULT_RESPONSE  
VIN_UV_FAULT_LIMIT  
VIN_UV_FAULT_RESPONSE  
IIN_OC_FAULT_LIMIT  
IIN_OC_FAULT_RESPONSE  
POWER_GOOD_ON  
Rev. A | Page 58 of 140  
 
 
Data Sheet  
ADP1055  
Command Code  
0xB9  
0xBA  
0xBB  
0xBC  
0xBD  
0xBE  
0xBF  
0xD0  
Command Name  
Command Code  
0xD3  
0xD4  
0xD5  
0xD6  
0xD7  
0xF1  
0xF2  
0xF3  
Command Name  
EEPROM_ADDR_OFFSET  
EEPROM_PAGE_ERASE  
EEPROM_PASSWORD1  
TRIM_PASSWORD  
KEY_CODE1  
EEPROM_PAGE_09  
EEPROM_PAGE_10  
EEPROM_PAGE_11  
EEPROM_PAGE_12  
EEPROM_PAGE_13  
EEPROM_PAGE_14  
EEPROM_PAGE_15  
SLV_ADDR_SELECT1  
EEPROM_CRC_CHKSUM  
EEPROM_NUM_RD_BYTES  
EEPROM_INFO1  
READ_BLACKBOX_CURR  
READ_BLACKBOX_PREV  
CMD_MASK1  
0xD1  
0xD2  
0xF4  
0xF5  
EXTCMD_MASK1  
1 This command is not maskable.  
Rev. A | Page 59 of 140  
ADP1055  
Data Sheet  
MANUFACTURER SPECIFIC COMMANDS  
Table 13 lists the manufacturer-specific PMBus commands that are implemented on the ADP1055. These commands are implemented in  
registers, which share the same hexadecimal value as the PMBus command code. All commands are maskable.  
Table 13. Manufacturer Specific Command List  
Command Code Command Name  
Command Code Command Name  
DEBOUNCE_SETTING_1  
0xFE00  
0xFE01  
0xFE02  
0xFE03  
0xFE04  
0xFE05  
0xFE06  
0xFE07  
0xFE08  
0xFE09  
0xFE0A  
0xFE0B  
0xFE0C  
0xFE0D  
0xFE0E  
0xFE0F  
0xFE10  
0xFE11  
0xFE12  
0xFE13  
0xFE14  
0xFE15  
0xFE16  
0xFE17  
0xFE18  
0xFE19  
0xFE1A  
0xFE1B  
0xFE1C  
0xFE1D  
0xFE1E  
0xFE1F  
0xFE20  
0xFE21  
0xFE22  
0xFE23  
0xFE24  
0xFE25  
0xFE26  
0xFE27  
0xFE28  
0xFE29  
0xFE2A  
0xFE2B  
0xFE2C  
0xFE2D  
0xFE2E  
0xFE2F  
GO_CMD  
0xFE30  
0xFE31  
0xFE32  
0xFE33  
0xFE34  
0xFE35  
0xFE36  
0xFE37  
0xFE38  
0xFE39  
0xFE3A  
0xFE3B  
0xFE3C  
0xFE3D  
0xFE3E  
0xFE3F  
0xFE40  
0xFE41  
0xFE42  
0xFE43  
0xFE44  
0xFE45  
0xFE46  
0xFE47  
0xFE48  
0xFE49  
0xFE4A  
0xFE4B  
0xFE4C  
0xFE4D  
0xFE4E  
0xFE4F  
0xFE50  
0xFE51  
0xFE52  
0xFE53  
0xFE55  
0xFE56  
0xFE57  
0xFE58  
0xFE59  
0xFE5A  
0xFE5B  
0xFE5C  
0xFE5D  
0xFE5E  
0xFE5F  
0xFE60  
NM_DIGFILT_LF_GAIN_SETTING  
NM_DIGFILT_ZERO_SETTING  
NM_DIGFILT_POLE_SETTING  
NM_DIGFILT_HF_GAIN_SETTING  
LLM_DIGFILT_LF_GAIN_SETTING  
LLM_DIGFILT_ZERO_SETTING  
LLM_DIGFILT_POLE_SETTING  
LLM_DIGFILT_HF_GAIN_SETTING  
SS_DIGFILT_LF_GAIN_SETTING  
SS_DIGFILT_ZERO_SETTING  
SS_DIGFILT_POLE_SETTING  
SS_DIGFILT_HF_GAIN_SETTING  
OUTA_REDGE_SETTING  
OUTA_FEDGE_SETTING  
OUTB_REDGE_SETTING  
OUTB_FEDGE_SETTING  
OUTC_REDGE_SETTING  
OUTC_FEDGE_SETTING  
OUTD_REDGE_SETTING  
OUTD_FEDGE_SETTING  
SR1_REDGE_SETTING  
SR1_FEDGE_SETTING  
SR2_REDGE_SETTING  
SR2_FEDGE_SETTING  
SR1_REDGE_LLM_SETTING  
SR1_FEDGE_LLM_SETTING  
SR2_REDGE_LLM_SETTING  
SR2_FEDGE_LLM_SETTING  
ADT_CONFIG  
ADT_THRESHOLD  
OUTA_DEAD_TIME  
OUTB_DEAD_TIME  
OUTC_DEAD_TIME  
OUTD_DEAD_TIME  
SR1_DEAD_TIME  
SR2_DEAD_TIME  
VSBAL_SETTING  
VSBAL_OUTA_B  
VSBAL_OUTC_D  
VSBAL_SR1_2  
FFWD_SETTING  
DEBOUNCE_SETTING_2  
DEBOUNCE_SETTING_3  
DEBOUNCE_SETTING_4  
VOUT_OV_FAST_FAULT_RESPONSE  
IOUT_OC_FAST_FAULT_RESPONSE  
IOUT_UC_FAST_FAULT_RESPONSE  
IIN_OC_FAST_FAULT_RESPONSE  
ISHARE_FAULT_RESPONSE  
GPIO1_FAULT_RESPONSE  
GPIO2_FAULT_RESPONSE  
GPIO3_FAULT_RESPONSE  
GPIO4_FAULT_RESPONSE  
PWM_FAULT_MASK  
DELAY_TIME_UNIT  
WDT_SETTING  
GPIO_SETTING  
GPIO1_2_KARNAUGH_MAP  
GPIO3_4_KARNAUGH_MAP  
PGOOD_FAULT_DEB  
PGOOD1_FAULT_SELECT  
PGOOD2_FAULT_SELECT  
SOFT_START_BLANKING  
SOFT_STOP_BLANKING  
BLACKBOX_SETTING  
PWM_DISABLE_SETTING  
FILTER_TRANSITION  
DEEP_LLM_SETTING  
DEEP_LLM_DISABLE_SETTING  
OVP_FAULT_CONFIG  
CS1_SETTING  
CS2_SETTING  
PULSE_SKIP_AND_SHUTDOWN  
SOFT_START_SETTING  
SR_DELAY  
MODULATION_LIMIT  
SYNC  
DUTY_BAL_EDGESEL  
DOUBLE_UPD_RATE  
VIN_SCALE_MONITOR  
IIN_CAL_GAIN  
TSNS_SETTING  
AUTO_GO_CMD  
DIODE_EMULATION  
CS2_CONST_CUR_MODE  
NL_ERR_GAIN_FACTOR  
SR_SETTING  
ISHARE_SETTING  
ISHARE_BANDWIDTH  
IIN_OC_FAST_SETTING  
IOUT_OC_FAST_SETTING  
IOUT_UC_FAST_SETTING  
VOUT_OV_FAST_SETTING  
NOMINAL_TEMP_POLE  
Rev. A | Page 60 of 140  
 
 
Data Sheet  
ADP1055  
Command Code Command Name  
Command Code Command Name  
0xFE61  
0xFE62  
0xFE63  
0xFE64  
0xFE65  
0xFE66  
0xFE67  
0xFE80  
0xFE81  
0xFE82  
0xFE86  
0xFE87  
0xFE88  
0xFE89  
0xFE8C  
0xFE8D  
0xFE8E  
0xFE8F  
LOW_TEMP_POLE  
0xFE90  
0xFE91  
0xFE92  
0xFE93  
0xFE94  
0xFE95  
0xFE96  
0xFE97  
0xFE98  
0xFE99  
0xFE9A  
0xFE9B  
0xFE9C  
0xFE9D  
0xFE9F  
0xFEA0  
0xFEA3  
FAULT_CML  
FAULT_OTHER  
LOW_TEMP_SETTING  
GPIO3_4_SNUBBER_ON_TIME  
GPIO3_4_SNUBBER_DELAY  
VOUT_DROOP_SETTING  
NL_BURST_MODE  
HF_ADC_CONFIG  
VS_TRIM  
VFF_GAIN_TRIM  
CS1_GAIN_TRIM  
TSNS_EXTFWD_GAIN_TRIM  
TSNS_EXTFWD_OFFSET_TRIM  
TSNS_EXTREV_GAIN_TRIM  
TSNS_EXTREV_OFFSET_TRIM  
FAULT_VOUT  
FAULT_IOUT  
FAULT_INPUT  
FAULT_TEMPERATURE  
FAULT_MFR_SPECIFIC  
FAULT_UNKNOWN  
STATUS_UNKNOWN  
FIRST_FAULT_ID  
VFF_VALUE  
VS_VALUE  
CS1_VALUE  
CS2_VALUE  
POUT_VALUE  
Reserved  
TSNS_EXTFWD_VALUE  
TSNS_EXTREV_VALUE  
MODULATION_VALUE  
ISHARE_VALUE  
ADD_ADC_VALUE  
Rev. A | Page 61 of 140  
ADP1055  
Data Sheet  
STANDARD PMBUS COMMAND DESCRIPTIONS  
STANDARD PMBUS COMMANDS  
OPERATION  
The OPERATION command, in conjunction with the CTRL pin, is used to turn the device on and off. Illegal values are 11xxxxxx.  
Table 14. Register 0x01—OPERATION  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Enable  
R/W  
These bits determine the device response to the OPERATION command.  
00 = immediate off (no sequencing).  
01 = soft off (power down according to the programmed TOFF_DELAY and TOFF_FALL).  
10 = device on.  
11 = reserved.  
[5:0]  
Reserved  
R
Reserved.  
ON_OFF_CONFIG  
The ON_OFF_CONFIG command configures the combination of the CTRL pin input and the OPERATION command needed to turn  
the device on and off, including how the device responds when power is applied. Illegal values are xxx100xx.  
Table 15. Register 0x02—ON_OFF_CONFIG  
Bits  
[7:5]  
4
Bit Name  
R/W  
Description  
Reserved  
R
Reserved.  
Power-up control R/W  
Sets the device power-up response.  
0 = device powers up when power is present.  
1 = device powers up only when commanded by the CTRL pin and the OPERATION command.  
3
2
1
0
Command  
enable  
R/W  
R/W  
Controls how the device responds to the OPERATION command.  
0 = ignores OPERATION command.  
1 = the OPERATION command must be set to 1 to enable the device (in addition to setting Bit 2).  
Pin enable  
Controls how the device responds to the value of the CTRL pin.  
0 = ignores the CTRL pin.  
1 = CTRL pin must be asserted to enable the device (in addition to setting Bit 3).  
CTRL pin polarity R/W  
Sets the polarity of the CTRL pin.  
0 = active low.  
1 = active high.  
CTRL pin power-  
down action  
R/W  
Actions to take on power-down when power-down is activated by the CTRL pin.  
0 = uses the TOFF_DELAY and TOFF_FALL values to stop the transfer of energy to the output.  
1 = turns off the output and stops energy transfer to the output as quickly as possible.  
CLEAR_FAULTS  
The CLEAR_FAULTS command is a send byte, no data. This command clears all fault bits in all PMBus status registers simultaneously.  
Table 16. Register 0x03—CLEAR_FAULTS  
Bits  
Bit Name  
Type  
Description  
N/A  
CLEAR_FAULTS  
Send  
Clears all bits in the PMBus status registers (Register 0x78 to Register 0x7E) simultaneously.  
WRITE_PROTECT  
The WRITE_PROTECT command is used to protect the PMBus device against accidental writes. Reads to the device are allowed  
regardless of the setting of this command.  
Table 17. Register 0x10—WRITE_PROTECT  
Bits  
Bit Name  
R/W  
R/W  
R/W  
R/W  
Description  
7
Write Protect 1  
Write Protect 2  
Write Protect 3  
Setting this bit disables writes to all commands except WRITE_PROTECT.  
Setting this bit disables writes to all commands except WRITE_PROTECT, OPERATION, and PAGE.  
6
5
Setting this bit disables writes to all commands except WRITE_PROTECT, OPERATION, PAGE,  
ON_OFF_CONFIG, and VOUT_COMMAND.  
[4:0]  
Reserved  
R
Reserved.  
Rev. A | Page 62 of 140  
 
 
Data Sheet  
ADP1055  
RESTORE_DEFAULT_ALL  
Table 18. Register 0x12—RESTORE_DEFAULT_ALL  
Bits  
Bit Name  
Type  
Description  
N/A  
RESTORE_DEFAULT_ALL  
Send  
This command downloads the factory default settings from the EEPROM into operating  
memory. It also resets the EEPROM password and the key code to their default values.  
STORE_USER_ALL  
Table 19. Register 0x15—STORE_USER_ALL  
Bits  
Bit Name  
Type  
Description  
N/A  
STORE_USER_ALL  
Send  
This command copies the entire contents of operating memory into the EEPROM (Page 1 of  
the main block) as the user settings.  
RESTORE_USER_ALL  
Table 20. Register 0x16—RESTORE_USER_ALL  
Bits  
Bit Name  
Type  
Description  
N/A  
RESTORE_USER_ALL  
Send  
This command downloads the stored user settings from EEPROM into operating memory.  
CAPABILITY  
This command allows host systems to determine the capabilities of the PMBus device (default value is 0xB0).  
Table 21. Register 0x19—CAPABILITY  
Bits  
Bit Name  
R/W  
Description  
7
Packet error checking  
R
Checks packet error capability of the device.  
1 = supported.  
[6:5]  
4
Maximum bus speed  
SMBALRT  
R
R
R
Checks the PMBus speed capability of the device.  
01 = maximum bus speed is 400 kHz.  
Checks support for the SMBALRT pin and the SMBus Alert Response Address Protocol.  
1 = supported.  
[3:0]  
Reserved  
Reserved.  
SMBALERT_MASK  
Table 22. Register 0x1B—SMBALERT_MASK  
Bits  
[15:8] STATUS_x command code  
[7:0] Mask byte  
Bit Name  
R/W  
Description  
W
Command code of the STATUS_x mask register to update.  
Update mask register with this value.  
W
VOUT_MODE  
The VOUT_MODE command sets the data format for output voltage related data. The data byte for the VOUT_MODE command consists  
of a 3-bit mode and 5-bit exponent parameter. The 3-bit mode determines whether the device uses linear format or direct format for the  
output voltage related commands. The 5-bit parameter sets the exponent value for linear format. VOUT_MODE[7:5] must be equal to 000.  
Table 23. Register 0x20—VOUT_MODE  
Bits  
Bit Name  
R/W  
Description  
[7:5]  
Mode  
R
Returns the output voltage data format. The value is fixed at 000, which means that only  
linear data format is supported.  
[4:0]  
Exponent-N  
R/W  
Twos complement N exponent used in the output voltage related commands in linear data  
format (V = Y × 2N).  
VOUT_COMMAND  
The VOUT_COMMAND command sets the output voltage. Exponent N is set using VOUT_MODE[4:0]. Bits[7:5] must be equal to 000.  
Table 24. Register 0x21—VOUT_COMMAND (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[15:0]  
Mantissa-Y  
R/W  
16-bit unsigned integer Y value for linear data format (V = Y × 2N). N is defined using VOUT_MODE[4:0].  
Rev. A | Page 63 of 140  
ADP1055  
Data Sheet  
VOUT_TRIM  
The VOUT_TRIM command applies a fixed offset voltage to the VOUT_COMMAND value.  
Table 25. Register 0x22—VOUT_TRIM  
Bits  
Bit Name  
R/W  
Description  
[15:0]  
Offset trim  
R/W  
Twos complement integer used to apply a fixed offset voltage to the VOUT_COMMAND value.  
VOUT_CAL_OFFSET  
The VOUT_CAL_OFFSET command is used to apply a fixed offset voltage to the VOUT_COMMAND value.  
Table 26. Register 0x23—VOUT_CAL_OFFSET  
Bits  
Bit Name  
R/W  
Description  
[15:0]  
Offset trim  
R/W  
Twos complement integer used to apply a fixed offset voltage to the VOUT_COMMAND value.  
VOUT_MAX  
The VOUT_MAX command sets an upper limit on the output voltage. Exponent N is set using VOUT_MODE[4:0].  
Table 27. Register 0x24—VOUT_MAX  
Bits  
Bit Name  
R/W  
Description  
[15:0]  
Mantissa-Y  
R/W  
Sets the output voltage upper limit. 16-bit unsigned integer Y value for linear data format (V = Y × 2N).  
VOUT_TRANSITION_RATE  
When the device receives a VOUT_COMMAND or OPERATION command that causes the output voltage to change, this command sets  
the output transition rate (or slew rate), in mV/μs, at which the VS pins change voltage.  
Table 28. Register 0x27—VOUT_TRANSITION_RATE  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
VOUT_DROOP  
The VOUT_DROOP command sets the rate, in mV/A, at which the output voltage decreases (or increases) with increasing (or  
decreasing) output current.  
Table 29. Register 0x28—VOUT_DROOP  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
VOUT_SCALE_LOOP  
The VOUT_SCALE_LOOP command sets the gain (KR) by which the commanded voltage (VOUT) is scaled to generate the internal  
reference voltage (VREF). VREF = VOUT × KR, where KR = Y × 2N.  
Table 30. Register 0x29—VOUT_SCALE_LOOP  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
VOUT_SCALE_MONITOR  
The VOUT_SCALE_MONITOR command sets the gain (KVOUT) by which the sensed output voltage at the DUT (VOUT_DUT) is scaled to  
generate the reading for the READ_VOUT command. READ_VOUT = VOUT_DUT × KVOUT, where KVOUT = Y × 2N.  
Table 31. Register 0x2A—VOUT_SCALE_MONITOR  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
Rev. A | Page 64 of 140  
Data Sheet  
ADP1055  
FREQUENCY_SWITCH  
The FREQUENCY_SWITCH command sets the switching frequency (in kHz) for the PMBus device. For a list of all supported switching  
frequencies, see Table 244.  
Table 32. Register 0x33—FREQUENCY_SWITCH (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
[15:11] Exponent-N  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
[10:0]  
Mantissa-Y  
VIN_ON  
The VIN_ON command sets the value of the input voltage (V rms) at which the device starts power conversion. Setting VIN_ON = 0  
effectively disables this function.  
Table 33. Register 0x35—VIN_ON  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
[15:11] Exponent-N  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
[10:0]  
Mantissa-Y  
VIN_OFF  
The VIN_OFF command sets the value of the input voltage (V rms) at which the device stops power conversion. VIN_OFF is not checked  
until the device reaches the regulation voltage or TON_MAX has expired.  
Table 34. Register 0x36—VIN_OFF  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
INTERLEAVE  
The INTERLEAVE command is used to arrange multiple devices so that their switching periods can be distributed in time.  
Table 35. Register 0x37—INTERLEAVE  
Bits  
Bit Name  
R/W  
Description  
[15:12] Reserved  
R
Reserved.  
[11:8]  
[7:4]  
[3:0]  
Group ID number R/W  
Number in group R/W  
Group identification number.  
Number of units in the group.  
Interleave order  
R/W  
Interleave order for this unit.  
0000 = 0 × 22.5° (0 × tSW/16).  
0001 = 1 × 22.5° (1 × tSW/16).  
0010 = 2 × 22.5° (2 × tSW/16).  
0011 = 3 × 22.5° (3 × tSW/16).  
1111 = 15 × 22.5° (15 × tSW/16).  
IOUT_CAL_GAIN  
The IOUT_CAL_GAIN command sets the ratio of the voltage at the current sense pins to the sensed current (in mꢁ).  
Table 36. Register 0x38—IOUT_CAL_GAIN  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
Rev. A | Page 65 of 140  
 
ADP1055  
Data Sheet  
IOUT_CAL_OFFSET  
The IOUT_CAL_OFFSET command is used to null any offsets in the output current sensing circuit (in amperes).  
Table 37. Register 0x39—IOUT_CAL_OFFSET  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
VOUT_OV_FAULT_LIMIT  
The VOUT_OV_FAULT_LIMIT command sets the upper voltage threshold (in volts) measured at the sense/output pin that causes an  
overvoltage fault condition. The exponent N is set using VOUT_MODE[4:0].  
Table 38. Register 0x40—VOUT_OV_FAULT_LIMIT  
Bits  
Bit Name  
R/W  
Description  
[15:0]  
Mantissa-Y  
R/W  
Unsigned Y-mantissa used in output voltage related commands in linear data format (V =Y × 2N).  
VOUT_OV_FAULT_RESPONSE  
The VOUT_OV_FAULT_RESPONSE command instructs the device on the actions to take due to an output overvoltage fault. The device  
notifies the host and sets the VOUT_OV_FAULT bit in the STATUS_BYTE register, the VOUT bit in the STATUS_WORD register, and  
the VOUT_OV_FAULT bit in the STATUS_VOUT register.  
Table 39. Register 0x41—VOUT_OV_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to an overvoltage fault condition.  
Bit 7  
Bit 6  
Response  
0
0
0
1
Do nothing.  
Continue operation for the delay time (Bits[2:0]). If the fault persists, retry the  
number of times specified by Bits[5:3].  
1
1
0
1
Shut down, disable the output, and respond as programmed in the retry  
setting (Bits[5:3]).  
Disable the output while the fault is present. Operation resumes and the  
output is enabled when the fault condition no longer exists.  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay time  
R/W  
Number of delay time units (see Register 0xFE3E).  
VOUT_OV_WARN_LIMIT  
The VOUT_OV_WARN_LIMIT command sets the upper voltage threshold (in volts) measured at the sense/output pin that causes an  
overvoltage warning condition. The exponent N is set using VOUT_MODE[4:0]. The device notifies the host and sets the NONE_OF_THE_  
ABOVE bit in the STATUS_BYTE register, the VOUT bit in the STATUS_WORD register, and the VOUT_OV_WARNING bit in the  
STATUS_VOUT register.  
Table 40. Register 0x42—VOUT_OV_WARN_LIMIT  
Bits  
Bit Name  
R/W  
Description  
[15:0]  
Mantissa-Y  
R/W  
Unsigned Y-mantissa used in output voltage related commands in linear data format (V =Y × 2N).  
Rev. A | Page 66 of 140  
Data Sheet  
ADP1055  
VOUT_UV_WARN_LIMIT  
The VOUT_UV_WARN_LIMIT command sets the lower voltage threshold (in volts) measured at the sense/output pin that causes an  
undervoltage warning condition. The exponent N is set using VOUT_MODE[4:0]. The device notifies the host and sets the NONE_OF_  
THE_ABOVE bit in the STATUS_BYTE register, the VOUT bit in the STATUS_WORD register, and the VOUT_UV_WARNING bit in  
the STATUS_VOUT register.  
Table 41. Register 0x43—VOUT_UV_WARN_LIMIT  
Bits  
Bit Name  
R/W  
Description  
[15:0]  
Mantissa-Y  
R/W  
Unsigned Y-mantissa used in output voltage related commands in linear data format (V =Y × 2N).  
VOUT_UV_FAULT_LIMIT  
The VOUT_UV_FAULT_LIMIT command sets the threshold value (in volts) measured at the sense/output pin that causes an under-  
voltage fault condition. The exponent N is set using VOUT_MODE[4:0].  
Table 42. Register 0x44—VOUT_UV_FAULT_LIMIT  
Bits  
Bit Name  
R/W  
Description  
[15:0]  
Mantissa-Y  
R/W  
Unsigned Y-mantissa used in output voltage related commands in linear data format (V =Y × 2N).  
VOUT_UV_FAULT_RESPONSE  
The VOUT_UV_FAULT_RESPONSE command instructs the device on actions to take due to an output undervoltage fault condition.  
The device notifies the host and sets the NONE_OF_THE_ABOVE bit in the STATUS_BYTE register, the VOUT bit in the STATUS_WORD  
register, and the VOUT_UV_FAULT bit in the STATUS_VOUT register.  
Table 43. Register 0x45—VOUT_UV_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to an undervoltage fault condition.  
Bit 7  
Bit 6  
Response  
0
0
0
1
Do nothing.  
Continue operation for the delay time (Bits[2:0]). If the fault persists, retry the  
number of times specified by Bits[5:3].  
1
1
0
1
Shut down, disable the output, and respond as programmed in the retry  
setting (Bits[5:3]).  
Disable the output while the fault is present. Operation resumes and the  
output is enabled when the fault condition no longer exists.  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay times  
R/W  
Number of delay time units (see Register 0xFE3E).  
Rev. A | Page 67 of 140  
ADP1055  
Data Sheet  
IOUT_OC_FAULT_LIMIT  
The IOUT_OC_FAULT_LIMIT command sets the threshold value (in amperes) measured at the sense pins that causes an overcurrent  
fault condition.  
Table 44. Register 0x46—IOUT_OC_FAULT_LIMIT  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
IOUT_OC_FAULT_RESPONSE  
The IOUT_OC_FAULT_RESPONSE command instructs the device on actions to take due to an output overcurrent fault condition. The  
device notifies the host and sets the IOUT_OC_FAULT bit in the STATUS_BYTE register, the IOUT bit in the STATUS_WORD register,  
and the IOUT_OC_FAULT bit in the STATUS_IOUT register.  
Table 45. Register 0x47—IOUT_OC_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to an overcurrent fault condition.  
Bit 7  
Bit 6  
Response  
0
0
Operate in current limiting mode, maintaining the output current at  
IOUT_OC_FAULT_LIMIT.  
0
1
1
1
0
1
Operate in current limiting mode, maintaining the output current at  
IOUT_OC_FAULT_LIMIT. If VOUT falls below the IOUT_OC_LV_FAULT_LIMIT,  
respond as programmed by the retry setting (Bits[5:3]).  
Continue operation in current limiting mode for the delay time (Bits[2:0]). If the  
device is still in current limiting mode, respond as programmed by the retry  
setting (Bits[5:3]).  
Shut down, disable the output, and respond as programmed by the retry  
setting (Bits[5:3]).  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay times  
R/W  
Number of delay time units (see Register 0xFE3E).  
IOUT_OC_LV_FAULT_LIMIT  
The IOUT_OC_LV_FAULT_LIMIT command sets the lower voltage threshold (in volts) measured at the sense/output pin that causes an  
undervoltage-in-CLM fault condition. This limit applies only when the device is operating in current limiting mode (CLM).  
Table 46. Register 0x48—IOUT_OC_LV_FAULT_LIMIT  
Bits  
Bit Name  
R/W  
Description  
[15:0]  
Mantissa-Y  
R/W  
Unsigned Y-mantissa used in output voltage related commands in linear data format (V =Y × 2N).  
N is specified by VOUT_MODE[4:0].  
Rev. A | Page 68 of 140  
Data Sheet  
ADP1055  
IOUT_OC_LV_FAULT_RESPONSE  
The IOUT_OC_LV_FAULT_RESPONSE command instructs the device on actions to take due to an output undervoltage-in-CLM fault  
condition. The device notifies the host and sets the IOUT_OC_FAULT bit in the STATUS_BYTE register, the IOUT bit in the STATUS_  
WORD register, and the IOUT_OC_LV_FAULT bit in the STATUS_IOUT register.  
Table 47. Register 0x49—IOUT_OC_LV_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to an undervoltage-in-CLM fault condition.  
Bit 7  
Bit 6  
Response  
0
0
0
1
Do nothing.  
Continue operation for the delay time (Bits[2:0]). If the fault persists, retry the  
number of times specified by Bits[5:3].  
1
1
0
1
Shut down, disable the output, and respond as programmed in the retry  
setting (Bits[5:3]).  
Disable the output while the fault is present. Operation resumes and the  
output is enabled when the fault condition no longer exists.  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay times  
R/W  
Number of delay time units (see Register 0xFE3E).  
IOUT_OC_WARN_LIMIT  
The IOUT_OC_WARN_LIMIT command sets the current (in amperes) measured at the sense/output pin that causes an overcurrent  
warning condition. The device notifies the host and sets the NONE_OF_THE_ABOVE bit in the STATUS_BYTE register, the IOUT bit  
in the STATUS_WORD register, and the IOUT_OC_WARNING bit in the STATUS_IOUT register.  
Table 48. Register 0x4A—IOUT_OC_WARN_LIMIT  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
Rev. A | Page 69 of 140  
ADP1055  
Data Sheet  
IOUT_UC_FAULT_LIMIT  
The IOUT_UC_FAULT_LIMIT command sets the current (in amperes) measured at the sense/output pin that causes an undercurrent  
fault condition.  
Table 49. Register 0x4B—IOUT_UC_FAULT_LIMIT  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
IOUT_UC_FAULT_RESPONSE  
The IOUT_UC_FAULT_RESPONSE command instructs the device on actions to take due to an output undercurrent fault condition. The  
device notifies the host and sets the NONE_OF_THE_ABOVE bit in the STATUS_BYTE register, the IOUT bit in the STATUS_WORD  
register, and the IOUT_UC_FAULT bit in the STATUS_IOUT register.  
Table 50. Register 0x4C—IOUT_UC_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to an undercurrent fault condition.  
Bit 7  
Bit 6  
Response  
0
0
0
1
Do nothing.  
Operate in current limiting mode, maintaining the output current at  
IOUT_OC_FAULT_LIMIT. If VOUT falls below the IOUT_OC_LV_FAULT_LIMIT,  
respond as programmed by the retry setting (Bits[5:3]).  
1
1
0
1
Continue operation in current limiting mode for the delay time (Bits[2:0]). If the  
device is still in current limiting mode, respond as programmed by the retry  
setting (Bits[5:3]).  
Shut down, disable the output, and respond as programmed by the retry  
setting (Bits[5:3]).  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay times  
R/W  
Number of delay time units (see Register 0xFE3E).  
OT_FAULT_LIMIT  
The OT_FAULT_LIMIT command sets the threshold value (in °C) that causes an overtemperature fault condition.  
Table 51. Register 0x4F—OT_FAULT_LIMIT  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
Rev. A | Page 70 of 140  
Data Sheet  
ADP1055  
OT_FAULT_RESPONSE  
The OT_FAULT_RESPONSE command instructs the device on actions to take due to an overtemperature fault condition. The device notifies the  
host and sets the TEMPERATURE bit in the STATUS_BYTE register and the OT_FAULT bit in the STATUS_TEMPERATURE register.  
Table 52. Register 0x50—OT_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determine the device response to an overtemperature fault condition.  
Bit 7  
Bit 6  
Response  
0
0
0
1
Do nothing.  
Continue operation for the delay time (Bits[2:0]). If the fault persists, retry the  
number of times specified by Bits[5:3].  
1
1
0
1
Shut down, disable the output, and respond as programmed in the retry  
setting (Bits[5:3]).  
Disable the output while the fault is present. Operation resumes and the  
output is enabled when the fault condition no longer exists.  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay times  
R/W  
Number of delay time units (see Register 0xFE3E).  
OT_WARN_LIMIT  
The OT_WARN_LIMIT command sets the threshold value (in °C) for an overtemperature warning condition. The device notifies the  
host and sets the TEMPERATURE bit in the STATUS_BYTE register and the OT_WARNING bit in the STATUS_TEMPERATURE register.  
Table 53. Register 0x51—OT_WARN_LIMIT  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
VIN_OV_FAULT_LIMIT  
The VIN_OV_FAULT_LIMIT command sets the upper voltage threshold (in volts) measured at the sense/input pin that causes an  
overvoltage fault condition.  
Table 54. Register 0x55—VIN_OV_FAULT_LIMIT  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
Rev. A | Page 71 of 140  
ADP1055  
Data Sheet  
VIN_OV_FAULT_RESPONSE  
The VIN_OV_FAULT_RESPONSE command instructs the device on the actions to take due to an input overvoltage fault condition. The  
device notifies the host and sets the NONE_OF_THE_ABOVE bit in the STATUS_BYTE register, the INPUT bit in the STATUS_WORD  
register, and the VIN_OV_FAULT bit in the STATUS_INPUT register.  
Table 55. Register 0x56—VIN_OV_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to an input overvoltage fault condition.  
Bit 7  
Bit 6  
Response  
0
0
0
1
Do nothing.  
Continue operation for the delay time (Bits[2:0]). If the fault persists, retry the  
number of times specified by Bits[5:3].  
1
1
0
1
Shut down, disable the output, and respond as programmed in the retry  
setting (Bits[5:3]).  
Disable the output while the fault is present. Operation resumes and the  
output is enabled when the fault condition no longer exists.  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay times  
R/W  
Number of delay time units (see Register 0xFE3E).  
VIN_UV_FAULT_LIMIT  
The VIN_UV_FAULT_LIMIT command sets the lower voltage threshold (in volts) measured at the sense/input pin that causes an  
undervoltage fault condition.  
Table 56. Register 0x59—VIN_UV_FAULT_LIMIT  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
VIN_UV_FAULT_RESPONSE  
The VIN_UV_FAULT_RESPONSE command instructs the device on the actions to take due to an input undervoltage fault condition.  
The device notifies the host and sets the VIN_UV_FAULT bit in the STATUS_BYTE register, the INPUT bit in the STATUS_WORD  
register, and the VIN_UV_FAULT bit in the STATUS_INPUT register.  
Table 57. Register 0x5A—VIN_UV_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to an input undervoltage fault condition.  
Bit 7  
Bit 6  
Response  
0
0
0
1
Do nothing.  
Continue operation for the delay time (Bits[2:0]). If the fault persists, retry the  
number of times specified by Bits[5:3].  
1
1
0
1
Shut down, disable the output, and respond as programmed in the retry  
setting (Bits[5:3]).  
Disable the output while the fault is present. Operation resumes and the  
output is enabled when the fault condition no longer exists.  
Rev. A | Page 72 of 140  
Data Sheet  
ADP1055  
Bits  
Bit Name  
R/W  
Description  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay times  
R/W  
Number of delay time units (see Register 0xFE3E).  
IIN_OC_FAULT_LIMIT  
The IIN_OC_FAULT_LIMIT command sets the threshold value (in amperes) measured at the sense/input pin that causes an overcurrent  
fault condition.  
Table 58. Register 0x5B—IIN_OC_FAULT_LIMIT  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
IIN_OC_FAULT_RESPONSE  
The IIN_OC_FAULT_RESPONSE command instructs the device on actions to take due to an input overcurrent fault condition. The  
device notifies the host and sets the OTHER bit in the STATUS_BYTE register, the INPUT bit in the STATUS_WORD register, and the  
IIN_OC_FAULT bit in the STATUS_INPUT register.  
Table 59. Register 0x5C—IIN_OC_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to an input overcurrent fault condition.  
Bit 7  
Bit 6  
Response  
0
0
Operate in current limiting mode, maintaining the output current at  
IOUT_OC_FAULT_LIMIT.  
0
1
1
1
0
1
Operate in current limiting mode, maintaining the output current at  
IOUT_OC_FAULT_LIMIT. If VOUT falls below the IOUT_OC_LV_FAULT_LIMIT,  
respond as programmed by the retry setting (Bits[5:3]).  
Continue operation in current limiting mode for the delay time (Bits[2:0]). If the  
device is still in current limiting mode, respond as programmed by the retry  
setting (Bits[5:3]).  
Shut down, disable the output, and respond as programmed by the retry  
setting (Bits[5:3]).  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay times  
R/W  
Number of delay time units (see Register 0xFE3E).  
Rev. A | Page 73 of 140  
ADP1055  
Data Sheet  
POWER_GOOD_ON  
The POWER_GOOD_ON command sets the output voltage (in volts) at which the POWER_GOOD signal is asserted.  
Table 60. Register 0x5E—POWER_GOOD_ON  
Bits  
Bit Name  
R/W  
Description  
Unsigned Y-mantissa used in output voltage related commands in linear data format (V =Y × 2N).  
[15:0]  
Mantissa-Y  
R/W  
POWER_GOOD_OFF  
The POWER_GOOD_OFF command sets the output voltage (in volts) at which the POWER_GOOD signal is deasserted.  
Table 61. Register 0x5F—POWER_GOOD_OFF  
Bits  
Bit Name  
R/W  
Description  
[15:0]  
Mantissa-Y  
R/W  
Unsigned Y-mantissa used in output voltage related commands in linear data format (V =Y × 2N).  
TON_DELAY  
The TON_DELAY command sets the turn-on delay time in milliseconds (ms) from start (ON_OFF_CONFIG) until VOUT starts to rise.  
The range is 0 ms to 1023 ms, in steps of 1 ms. The calculated value is rounded down.  
Table 62. Register 0x60—TON_DELAY  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
TON_RISE  
The TON_RISE command sets the rise time (in ms) from when VOUT starts to rise until the voltage enters the regulation band.  
Table 63. Register 0x61—TON_RISE  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
TON_MAX_FAULT_LIMIT  
The TON_MAX_FAULT_LIMIT command sets the upper time threshold (in ms) from power-up to the VOUT_UV_FAULT limit.  
Table 64. Register 0x62—TON_MAX_FAULT_LIMIT  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
TON_MAX_FAULT_RESPONSE  
The TON_MAX_FAULT_RESPONSE command instructs the device on the actions to take due to a TON_MAX fault condition. The  
device notifies the host and sets the NONE_OF_THE_ABOVE bit in the STATUS_BYTE register, the VOUT bit in the STATUS_WORD  
register, and the TON_MAX_FAULT bit in the STATUS_VOUT register.  
Table 65. Register 0x63—TON_MAX_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to a TON_MAX fault condition.  
Bit 7  
Bit 6  
Response  
0
0
0
1
Do nothing.  
Continue operation for the delay time (Bits[2:0]). If the fault persists, retry the  
number of times specified by Bits[5:3].  
1
1
0
1
Shut down, disable the output, and respond as programmed in the retry  
setting (Bits[5:3]).  
Disable the output while the fault is present. Operation resumes and the  
output is enabled when the fault condition no longer exists.  
Rev. A | Page 74 of 140  
Data Sheet  
ADP1055  
Bits  
Bit Name  
R/W  
Description  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay times  
R/W  
Number of delay time units (see Register 0xFE3E).  
TOFF_DELAY  
The TOFF_DELAY command sets the turn-off delay time in milliseconds (ms) from stop (ON_OFF_CONFIG) until the device stops  
transferring energy to the output. The range is 0 ms to 1023 ms, in steps of 1 ms. The calculated value is rounded down.  
Table 66. Register 0x64—TOFF_DELAY  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
TOFF_FALL  
The TOFF_FALL command sets the fall time (in ms) from the end of the turn-off delay time to voltage = 0 V.  
Table 67. Register 0x65—TOFF_FALL  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
TOFF_MAX_WARN_LIMIT  
The TOFF_MAX_WARN_LIMIT command sets the upper time threshold (in ms) that causes a TOFF_MAX warning condition, that is,  
the time it takes to power down the output voltage from VOUT to 12.5% of VOUT. The device notifies the host and sets the NONE_OF_THE_  
ABOVE bit in the STATUS_BYTE register, the VOUT bit in the STATUS_WORD register, and the TOFF_MAX_WARNING bit in the  
STATUS_VOUT register.  
Table 68. Register 0x66—TOFF_MAX_WARN_LIMIT  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
POUT_OP_FAULT_LIMIT  
The POUT_OP_FAULT_LIMIT command sets the upper power threshold (in watts) measured at the sense/output pin that causes an  
output overpower fault condition.  
Table 69. Register 0x68—POUT_OP_FAULT_LIMIT  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
Rev. A | Page 75 of 140  
ADP1055  
Data Sheet  
POUT_OP_FAULT_RESPONSE  
The POUT_OP_FAULT_RESPONSE command instructs the device on the actions to take due to an output overpower fault condition.  
The device notifies the host and sets the IOUT_OC_FAULT bit in the STATUS_BYTE register, the IOUT/POUT bit in the STATUS_WORD  
register, and the POUT_OP_FAULT bit in the STATUS_IOUT register.  
Table 70. Register 0x69—POUT_OP_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to an overpower fault condition.  
Bit 7  
Bit 6  
Response  
0
0
0
1
Do nothing.  
Continue operation for the delay time (Bits[2:0]). If the fault persists, retry the  
number of times specified by Bits[5:3].  
1
1
0
1
Shut down, disable the output, and respond as programmed in the retry  
setting (Bits[5:3]).  
Disable the output while the fault is present. Operation resumes and the  
output is enabled when the fault condition no longer exists.  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay times  
R/W  
Number of delay time units (see Register 0xFE3E).  
STATUS_BYTE  
The STATUS_BYTE register returns the lower byte of the STATUS_WORD register. A value of 1 in this command indicates that a fault  
has occurred. As per the PMBus standard, the BUSY bit is writable to allow the user to clear that latched bit using a write command with  
a 1 to Bit 7, similar to other STATUS_xxx commands. The other bits in this register cannot be cleared with a write to the STATUS_BYTE  
command, but should be cleared with a write to the STATUS_VOUT, STATUS_IOUT, STATUS_INPUT, STATUS_TEMP, or  
STATUS_CML command.  
Table 71. Register 0x78—STATUS_BYTE  
Bits  
Bit Name  
R/W Description  
7
BUSY  
R/W This bit is asserted if the device is busy and unable to respond.  
6
5
4
3
2
1
0
POWER_OFF  
VOUT_OV_FAULT  
IOUT_OC_FAULT  
VIN_UV_FAULT  
TEMPERATURE  
CML  
R
R
R
R
R
R
R
This bit is asserted if the unit is not providing power to the output.  
An output overvoltage fault has occurred.  
An output overcurrent fault has occurred.  
An input undervoltage fault has occurred.  
A temperature fault or warning has occurred.  
A communications, memory, or logic fault has occurred.  
A fault or warning not listed in Bits[7:1] has occurred.  
NONE_OF_THE_ABOVE  
Rev. A | Page 76 of 140  
Data Sheet  
ADP1055  
STATUS_WORD  
The STATUS_WORD register returns the upper and lower bytes of the STATUS_WORD command. A value of 1 in this command  
indicates that a fault has occurred.  
Table 72. Register 0x79—STATUS_WORD  
Bits  
Bit Name  
R/W Description  
15  
14  
13  
12  
VOUT  
IOUT/POUT  
INPUT  
MFR  
POWER_GOOD  
R
R
R
R
R
Output voltage fault or warning. A bit in STATUS_VOUT is set.  
Output current or output power fault or warning. A bit in STATUS_IOUT is set.  
Input voltage, input current, or input power fault or warning. A bit in STATUS_INPUT is set.  
Manufacturer-specific fault or warning.  
POWER_GOOD is a negation of POWER_GOOD, which means that the output power is not good.  
This bit is set when the sensed VOUT is less than the limit programmed in the POWER_GOOD_OFF  
command.  
11  
10  
9
8
7
6
5
4
3
2
1
0
FANS  
OTHER  
UNKNOWN  
BUSY  
POWER_OFF  
VOUT_OV_FAULT  
IOUT_OC_FAULT  
VIN_UV_FAULT  
TEMPERATURE  
CML  
R
R
R
Not supported.  
A bit in STATUS_OTHER is set.  
A fault or warning not listed in STATUS_WORD[15:1].  
R/W This bit is asserted if the device is busy and unable to respond.  
R
R
R
R
R
R
R
This bit is asserted if the unit is not providing power to the output.  
An output overvoltage fault has occurred.  
An output overcurrent fault has occurred.  
An input undervoltage fault has occurred.  
A temperature fault or warning has occurred.  
A communications, memory, or logic fault has occurred.  
A fault or warning not listed in Bits[7:1] has occurred.  
NONE_OF_THE_ABOVE  
STATUS_VOUT  
The STATUS_VOUT register returns the status of the output voltage. A value of 1 in this command indicates that a fault has occurred.  
Table 73. Register 0x7A—STATUS_VOUT  
Bits  
Bit Name  
R/W Description  
7
6
5
4
3
2
1
0
VOUT_OV_FAULT  
VOUT_OV_WARN  
VOUT_UV_WARN  
VOUT_UV_FAULT  
VOUT_MAX_WARN  
TON_MAX_FAULT  
TOFF_MAX_WARN  
VOUT_TRACKING_ERR  
R/W An output overvoltage fault has occurred.  
R/W An output overvoltage warning has occurred.  
R/W An output undervoltage warning has occurred.  
R/W An output undervoltage fault has occurred.  
R/W An attempt was made to set the output voltage to a value greater than the VOUT_MAX command.  
R/W The device took too long to power up without reaching the VOUT_UV fault limit.  
R/W The device took too long to power down to 12.5% of its output voltage.  
R
Not supported.  
STATUS_IOUT  
The STATUS_IOUT register returns the status of the output current. A value of 1 in this command indicates that a fault has occurred.  
Table 74. Register 0x7B—STATUS_IOUT  
Bits  
Bit Name  
R/W Description  
7
6
5
4
3
2
1
0
IOUT_OC_FAULT  
IOUT_OC_LV_FAULT  
IOUT_OC_WARN  
IOUT_UC_FAULT  
ISHARE_FAULT  
PLIM_MODE  
R/W An output overcurrent fault has occurred.  
R/W An output overcurrent fault and a low voltage fault have occurred.  
R/W An output overcurrent warning has occurred.  
R/W An output undercurrent fault has occurred.  
R/W A current sharing fault has occurred.  
R
Not supported.  
R/W An output overpower fault has occurred.  
R Not supported.  
POUT_OP_FAULT  
POUT_OP_WARN  
Rev. A | Page 77 of 140  
ADP1055  
Data Sheet  
STATUS_INPUT  
The STATUS_INPUT register returns the status of the input. A value of 1 in this command indicates that a fault has occurred.  
Table 75. Register 0x7C—STATUS_INPUT  
Bits  
Bit Name  
R/W  
R/W  
R
Description  
7
6
5
4
3
2
1
0
VIN_OV_FAULT  
VIN_OV_WARN  
VIN_UV_WARN  
VIN_UV_FAULT  
VIN_LOW  
IIN_OC_FAULT  
IIN_OC_WARN  
PIN_OP_WARN  
An input overvoltage fault has occurred.  
Not supported.  
Not supported.  
An input undervoltage fault has occurred.  
The device is off due to insufficient input voltage; that is, the input voltage is below the turn-off threshold.  
An input overcurrent fault has occurred.  
Not supported.  
R
R/W  
R/W  
R/W  
R
R
Not supported.  
STATUS_TEMPERATURE  
The STATUS_TEMPERATURE register returns temperature status. A value of 1 in this command indicates that a fault has occurred.  
Table 76. Register 0x7D—STATUS_TEMPERATURE  
Bits  
Bit Name  
OT_FAULT  
OT_WARN  
UT_WARN  
UT_FAULT  
Reserved  
R/W  
R/W  
R/W  
R
R
R
Description  
7
6
5
4
An overtemperature fault has occurred.  
An overtemperature warning has occurred.  
Not supported.  
Not supported.  
Reserved.  
[3:0]  
STATUS_CML  
The STATUS_CML register returns communications, memory, and logic (CML) status. A value of 1 in this command indicates that a  
fault has occurred.  
Table 77. Register 0x7E—STATUS_CML  
Bits  
Bit Name  
CMD_ERR  
DATA_ERR  
PEC_ERR  
CRC_ERR  
PROC_ERR  
Reserved  
COMM_ERR  
MEM_ERR  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R
R/W  
R/W  
Description  
7
6
5
4
3
2
1
0
Invalid or unsupported command received.  
Invalid or unsupported data received.  
Packet error check failed.  
Memory fault detected (for example, a CRC error).  
Not supported.  
Reserved.  
Other communication fault not specified by Bits[7:2].  
Other memory or logic fault not specified by Bits[7:2]. This bit is set if the black box record number  
has been reached (Register 0xFE48[2]).  
STATUS_MFR_SPECIFIC  
The STATUS_MFR_SPECIFIC register returns the status of manufacturer specific faults. A value of 1 in this command indicates that a  
fault has occurred.  
Table 78. Register 0x80—STATUS_MFR_SPECIFIC  
Bits  
Bit Name  
R/W Description  
7
GPIO4_FAULT  
R/W GPIO4 fault received.  
6
GPIO3_FAULT  
R/W GPIO3 fault received.  
5
GPIO2_FAULT  
R/W GPIO2 fault received.  
4
GPIO1_FAULT  
R/W GPIO1 fault received.  
3
2
IIN_OC_FAST_FAULT  
IOUT_UC_FAST_FAULT  
R/W Fast input overcurrent fault received.  
R/W Fast output reverse current fault received.  
1
0
IOUT_OC_FAST_FAULT R/W Fast output overcurrent current fault received.  
VOUT_OV_FAST_FAULT R/W Fast output overvoltage fault received.  
Rev. A | Page 78 of 140  
Data Sheet  
ADP1055  
READ_VIN  
The READ_VIN command returns the input voltage value (V) in linear data format (X = Y × 2N).  
Table 79. Register 0x88—READ_VIN  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
Description  
R
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
R
READ_IIN  
The READ_IIN command returns the input current value (A) in linear data format (X = Y × 2N).  
Table 80. Register 0x89—READ_IIN  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
Description  
R
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
R
READ_VOUT  
The READ_VOUT command returns the output voltage value (V) in linear data format (V = Y × 2N). Exponent N is set using  
VOUT_MODE[4:0].  
Table 81. Register 0x8B—READ_VOUT  
Bits  
Bit Name  
R/W  
Description  
[15:0]  
Mantissa-Y  
R
Unsigned Y-mantissa used in output voltage related commands in linear data format (V =Y × 2N).  
READ_IOUT  
The READ_IOUT command returns the output current value (A) in linear data format (V = Y × 2N).  
Table 82. Register 0x8C—READ_IOUT  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
Description  
R
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
R
Reserved  
This register is reserved.  
Table 83. Register 0x8D—Reserved  
Bits  
Bit Name  
R/W  
Description  
[15:0]  
Reserved  
R
Reserved.  
READ_TEMPERATURE_2  
The READ_TEMPERATURE_2 command returns the External 1 (forward diode) temperature (°C) in linear data format (X = Y × 2N).  
Table 84. Register 0x8E—READ_TEMPERATURE_2  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
Description  
R
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
R
READ_TEMPERATURE_3  
The READ_TEMPERATURE_3 command returns the External 2 (reverse diode) temperature (°C) in linear data format (X = Y × 2N).  
Table 85. Register 0x8F—READ_TEMPERATURE_3  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
Description  
R
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
R
Rev. A | Page 79 of 140  
ADP1055  
Data Sheet  
READ_DUTY_CYCLE  
The READ_DUTY_CYCLE command returns the duty cycle (%) in linear data format (X = Y × 2N).  
Table 86. Register 0x94—READ_DUTY_CYCLE  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
Description  
R
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
R
READ_FREQUENCY  
The READ_FREQUENCY command returns the actual switching frequency value (kHz) in linear data format (X = Y × 2N).  
Table 87. Register 0x95—READ_FREQUENCY  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
Description  
R
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
R
READ_POUT  
The READ_POUT command returns the output power (W) in linear data format (X = Y × 2N).  
Table 88. Register 0x96—READ_POUT  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
Description  
R
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
R
PMBUS_REVISION  
The PMBUS_REVISION command returns the PMBus version information. The ADP1055 is compliant with PMBus Revision 1.2.  
Reading this command results in a value of 0x22.  
Table 89. Register 0x98—PMBUS_REVISION  
Bits  
[7:4]  
[3:0]  
Bit Name  
R/W  
Description  
Part 1 revision  
Part 2 revision  
R
Compliant to PMBus Part 1 specification: 0010 = Revision 1.2.  
Compliant to PMBus Part 2 specification: 0010 = Revision 1.2.  
R
MFR_ID  
The MFR_ID register stores the manufacturer ID. This register can store 23 bytes.  
Table 90. Register 0x99—MFR_ID  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
MFR_ID  
Block read/write  
Return the manufacturer’s ID.  
MFR_MODEL  
The MFR_MODEL register stores the manufacturer model number. This register can store 19 bytes.  
Table 91. Register 0x9A—MFR_MODEL  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Model  
Block read/write  
Return the manufacturer’s model number.  
MFR_REVISION  
The MFR_REVISION register stores the manufacturer revision number. This register can store 23 bytes.  
Table 92. Register 0x9B—MFR_REVISION  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Revision  
Block read/write  
Return the manufacturer’s revision number.  
Rev. A | Page 80 of 140  
Data Sheet  
ADP1055  
MFR_LOCATION  
The MFR_LOCATION register stores the manufacturer location. This register can store nine bytes.  
Table 93. Register 0x9C—MFR_LOCATION  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Location  
Block read/write  
Return the manufacturer’s location.  
MFR_DATE  
The MFR_DATE register stores the manufacturer date. This register can store 11 bytes.  
Table 94. Register 0x9D—MFR_DATE  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Date  
Block read/write  
Return the manufacturer’s date.  
MFR_SERIAL  
The MFR_SERIAL register stores the manufacturer serial number. This register can store 13 bytes.  
Table 95. Register 0x9E—MFR_SERIAL  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Serial No  
Block read/write  
Return the manufacturer’s serial number.  
IC_DEVICE_ID  
The IC_DEVICE_ID register stores the ID and device number of the ADP1055. The default values are 0x02, 0x41, 0x55.  
Table 96. Register 0xAD—IC_DEVICE_ID  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Revision  
Block read/write  
Return the IC’s ID and device number: 0x02, 0x41, 0x55.  
IC_DEVICE_REV  
The IC_DEVICE_REV register stores the device revision number of the ADP1055. The default values are 0x01 and 0xREV.  
Table 97. Register 0xAE—IC_DEVICE_REV  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Revision  
Block read/write  
Device revision number: 0x01 0x11.  
EEPROM_PAGE_00 Through EEPROM_PAGE_15 Commands  
Register 0xB0 through Register 0xBF are read/write block commands. The EEPROM_PAGE_00 through EEPROM_PAGE_15 commands  
are used to read data from the EEPROM (Page 0 through Page 15) and to write data to the EEPROM (Page 6 through Page 15). For example,  
EEPROM_PAGE_07 reads from and writes to Page 7 of the EEPROM main block; EEPROM_PAGE_11 reads from and writes to Page 11  
of the EEPROM main block. For more information, see the EEPROM section.  
EEPROM_PAGE_00  
Table 98. Register 0xB0—EEPROM_PAGE_00  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
EEPROM_PAGE_00  
Block read  
Reserved by manufacturer for storing the default settings.  
EEPROM_PAGE_01  
Table 99. Register 0xB1—EEPROM_PAGE_01  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
EEPROM_PAGE_01  
Block read  
Reserved by manufacturer for storing the user settings.  
Rev. A | Page 81 of 140  
ADP1055  
Data Sheet  
EEPROM_PAGE_02  
Table 100. Register 0xB2—EEPROM_PAGE_02  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
EEPROM_PAGE_02  
Block read  
Reserved by manufacturer for storing black box information.  
EEPROM_PAGE_03  
Table 101. Register 0xB3—EEPROM_PAGE_03  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
EEPROM_PAGE_03  
Block read  
Reserved by manufacturer for storing black box information.  
EEPROM_PAGE_04  
Table 102. Register 0xB4—EEPROM_PAGE_04  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
EEPROM_PAGE_04  
Block read  
Reserved by manufacturer for storing GUI settings.  
EEPROM_PAGE_05  
Table 103. Register 0xB5—EEPROM_PAGE_05  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
EEPROM_PAGE_05  
Block read  
Reserved by manufacturer for storing factory tracking settings.  
EEPROM_PAGE_06  
Table 104. Register 0xB6—EEPROM_PAGE_06  
Bits Bit Name R/W Description  
[7:0] EEPROM_PAGE_06 Block read/write Block read/write of Page 6 of the EEPROM main block. The EEPROM must first be unlocked.  
EEPROM_PAGE_07  
Table 105. Register 0xB7—EEPROM_PAGE_07  
Bits Bit Name  
R/W  
Description  
[7:0] EEPROM_PAGE_07 Block read/write Block read/write of Page 7 of the EEPROM main block. The EEPROM must first be unlocked.  
EEPROM_PAGE_08  
Table 106. Register 0xB8—EEPROM_PAGE_08  
Bits Bit Name  
R/W  
Description  
[7:0] EEPROM_PAGE_08 Block read/write Block read/write of Page 8 of the EEPROM main block. The EEPROM must first be unlocked.  
EEPROM_PAGE_09  
Table 107. Register 0xB9—EEPROM_PAGE_09  
Bits Bit Name  
R/W  
Description  
[7:0] EEPROM_PAGE_09 Block read/write Block read/write of Page 9 of the EEPROM main block. The EEPROM must first be unlocked.  
Rev. A | Page 82 of 140  
Data Sheet  
ADP1055  
EEPROM_PAGE_10  
Table 108. Register 0xBA—EEPROM_PAGE_10  
Bits Bit Name  
R/W  
Description  
[7:0] EEPROM_PAGE_10 Block read/write Block read/write of Page 10 of the EEPROM main block. The EEPROM must first be unlocked.  
EEPROM_PAGE_11  
Table 109. Register 0xBB—EEPROM_PAGE_11  
Bits Bit Name  
R/W  
Description  
[7:0] EEPROM_PAGE_11 Block read/write Block read/write of Page 11 of the EEPROM main block. The EEPROM must first be unlocked.  
EEPROM_PAGE_12  
Table 110. Register 0xBC—EEPROM_PAGE_12  
Bits Bit Name  
R/W  
Description  
[7:0] EEPROM_PAGE_12 Block read/write Block read/write of Page 12 of the EEPROM main block. The EEPROM must first be unlocked.  
EEPROM_PAGE_13  
Table 111. Register 0xBD—EEPROM_PAGE_13  
Bits Bit Name  
R/W  
Description  
[7:0] EEPROM_PAGE_13 Block read/write Block read/write of Page 13 of the EEPROM main block. The EEPROM must first be unlocked.  
EEPROM_PAGE_14  
Table 112. Register 0xBE—EEPROM_PAGE_14  
Bits Bit Name  
R/W  
Description  
[7:0] EEPROM_PAGE_14 Block read/write Block read/write of Page 14 of the EEPROM main block. The EEPROM must first be unlocked.  
EEPROM_PAGE_15  
Table 113. Register 0xBF—EEPROM_PAGE_15  
Bits Bit Name  
R/W  
Description  
[7:0] EEPROM_PAGE_15 Block read/write Block read/write of Page 15 of the EEPROM main block. The EEPROM must first be unlocked.  
SLV_ADDR_SELECT  
On first power-up, a read to this command using the general call address (0x00) returns the I2C slave address of the ADP1055. Any  
subsequent writes to this register overwrite this information.  
Table 114. Register 0xD0—SLV_ADDR_SELECT  
Bits  
[7:6]  
[5:4]  
Bit Name  
R/W  
Description  
Reserved  
R
Returns 01.  
Address, high byte  
R/W  
00 = 0x40 to 0x4F (default address set by selecting resistor on the ADD pin).  
01 = 0x50 to 0x5F.  
10 = 0x60 to 0x6F.  
11 = 0x70 to 0x7F.  
[3:0]  
Address, low byte  
R/W  
Low byte of slave address (determined by the resistor value on the ADD pin).  
Rev. A | Page 83 of 140  
ADP1055  
Data Sheet  
EEPROM_CRC_CHKSUM  
Table 115. Register 0xD1—EEPROM_CRC_CHKSUM  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
CRC checksum  
R
Return the CRC checksum value from the EEPROM download operation.  
EEPROM_NUM_RD_BYTES  
Table 116. Register 0xD2—EEPROM_NUM_RD_BYTES  
Bits Bit Name  
R/W Description  
[7:0] Number of read bytes returned  
R/W Set the number of read bytes returned when using the EEPROM_PAGE_xx commands.  
EEPROM_ADDR_OFFSET  
Table 117. Register 0xD3—EEPROM_ADDR_OFFSET  
Bits  
Bit Name  
R/W  
Description  
[15:0]  
Address offset  
R/W  
Sets the address offset of the current EEPROM page.  
EEPROM_PAGE_ERASE  
Table 118. Register 0xD4—EEPROM_PAGE_ERASE  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Page erase  
W
Perform a page erase on the selected EEPROM page (Page 6 to Page 15). Wait 35 ms after each page  
erase operation. The EEPROM must first be unlocked. Page 0 to Page 5 are reserved and their  
contents must not be erased.  
EEPROM_PASSWORD  
Table 119. Register 0xD5—EEPROM_PASSWORD  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
EEPROM  
password  
W
Write the password to this register two consecutive times to unlock the EEPROM and/or to change  
the EEPROM password. The factory default password is 0xFF. To lock the EEPROM, type any value  
other than the password to this register.  
TRIM_PASSWORD  
Table 120. Register 0xD6—TRIM_PASSWORD  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Trim password  
W
Write the password to this register to unlock the trim registers for write access. Write the trim  
password twice to unlock the register; write any other value to exit. The trim password is the same  
as the EEPROM password (0xFF).  
KEY_CODE  
Table 121. Register 0xD7—KEY_CODE  
Bits  
Bit Name  
R/W  
Description  
[31:0]  
Keycode  
Block read/  
write  
Write the 32-bit keycode to this command to unlock access to Command 0xF4 and Command 0xF5.  
Write the key code password twice to unlock the commands; write any other value to lock them.  
The factory default password is 0xFFFFFFFF. The procedure includes a block write of four bytes. The  
readback returns five bytes; the fifth byte is 0 if locked or 1 if unlocked.  
EEPROM_INFO  
Table 122. Register 0xF1—EEPROM_INFO  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
EEPROM_INFO  
Block read  
Block read of the manufacturer data in the EEPROM.  
Rev. A | Page 84 of 140  
Data Sheet  
ADP1055  
READ_BLACKBOX_CURR  
Table 123. Register 0xF2—READ_BLACKBOX_CURR  
Bits  
Bit Name  
R/W  
Description  
VAR  
Block read This command returns the data for the current record N (last record saved in the black box). For  
information about the contents of the black box record, see the Black Box Contents section.  
READ_BLACKBOX_PREV  
Table 124. Register 0xF3—READ_BLACKBOX_PREV  
Bits  
Bit Name  
R/W  
Description  
VAR  
Block read This command returns the data for the previous record N − 1 (next-to-last record saved in the black  
box). For information about the contents of the black box record, see the Black Box Contents section.  
CMD_MASK  
The CMD_MASK command allows any PMBus command to be masked in the ADP1055. If the command is masked, a read or a write to  
that command results in a no acknowledge (NACK). The STORE_USER_ALL (Register 0x15) and RESTORE_USER_ALL (Register 0x16)  
commands are not maskable.  
Table 125. Register 0xF4—CMD_MASK  
Bits  
Bit Name  
R/W  
Description  
VAR  
Command  
masking  
Block  
This command can be used to disable (mask) any of the standard PMBus commands (Command 0x01  
read/write to Command 0xFF). To use this command, the correct key code must be written.  
Block count = 0x20 (32 bytes)  
Mask[255:0] = Masking status bits.  
[0] = Command 0x00.  
[255] = Command 0xFF.  
EXTCMD_MASK  
The EXTCMD_MASK command allows any manufacturer specific command to be masked in the ADP1055. If the command is masked,  
a read or a write to that command results in a no acknowledge (NACK).  
Table 126. Register 0xF5—EXTCMD_MASK  
Bits  
Bit Name  
R/W  
Description  
VAR  
Command  
masking  
Block  
This command can be used to disable (mask) any of the manufacturer specific PMBus commands  
read/write (Command 0xFE00 to Command 0xFEA3). To use this command, the correct key code must be written.  
Block count = 0x15 (21 bytes)  
Mask[167:0] = Masking status bits.  
[0] = Command 0xFE00.  
[167] = Command 0xFEA7.  
Rev. A | Page 85 of 140  
ADP1055  
Data Sheet  
MANUFACTURER SPECIFIC PMBUS COMMAND DESCRIPTIONS  
Table 127. Register 0xFE00—GO_CMD  
Bits  
Bit Name  
Reserved  
SYNC  
R/W  
R/W  
W
W
W
Description  
7
6
5
4
Reserved.  
This bit latches Register 0xFE55.  
This bit latches Register 0xFE29.  
This bit latches Register 0xFE57 and Register 0xFE25.  
VFF  
Double update rate,  
VS balance  
3
2
1
0
Filter GO  
W
W
W
W
This bit latches Register 0xFE4A, Register 0xFE01 to Register 0xFE0C, Register 0xFE5E, and  
Register 0xFE66.  
Update switching frequency programmed by FREQUENCY_SWITCH command  
(Register 0x33).  
Update Register 0xFE0D to Register 0xFE1C, Register 0xFE1F to Register 0xFE24, and  
Register 0xFE15 to Register 0xFE1C  
Update reference voltage commanded by the VOUT_COMMAND (Register 0x21).  
Frequency GO  
PWM GO  
Voltage reference GO  
POLE  
ZERO  
100Hz  
500Hz  
1kHz  
5kHz  
10kHz  
POLE LOCATION RANGE  
Figure 85. Digital Filter Programmability  
Table 128. Register 0xFE01—NM_DIGFILT_LF_GAIN_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
LF gain setting  
R/W  
This register determines the low frequency gain of the loop response in normal mode. It is  
programmable over a 20 dB range. Each LSB corresponds to a 0.3 dB increase. See Figure 85.  
Table 129. Register 0xFE02—NM_DIGFILT_ZERO_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Zero setting  
R/W  
This register determines the position of the final zero in normal mode. See Figure 85.  
Table 130. Register 0xFE03—NM_DIGFILT_POLE_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Pole setting  
R/W  
This register determines the position of the final pole in normal mode. See Figure 85.  
Table 131. Register 0xFE04—NM_DIGFILT_HF_GAIN_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
HF gain setting  
R/W  
This register determines the high frequency gain of the loop response in normal mode. It is  
programmable over a 20 dB range. Each LSB corresponds to a 0.3 dB increase. See Figure 85.  
Table 132. Register 0xFE05—LLM_DIGFILT_LF_GAIN_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
LF gain setting  
R/W  
This register determines the low frequency gain of the loop response in light load mode. It is  
programmable over a 20 dB range. Each LSB corresponds to a 0.3 dB increase. See Figure 85.  
Rev. A | Page 86 of 140  
 
 
Data Sheet  
ADP1055  
Table 133. Register 0xFE06—LLM_DIGFILT_ZERO_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Zero setting  
R/W  
This register determines the position of the final zero in light load mode. See Figure 85.  
Table 134. Register 0xFE07—LLM_DIGFILT_POLE_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Pole setting  
R/W  
This register determines the position of the final pole in light load mode. See Figure 85.  
Table 135. Register 0xFE08—LLM_DIGFILT_HF_GAIN_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
HF gain setting  
R/W  
This register determines the high frequency gain of the loop response in light load mode. It is  
programmable over a 20 dB range. Each LSB corresponds to a 0.3 dB increase. See Figure 85.  
Table 136. Register 0xFE09—SS_DIGFILT_LF_GAIN_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
LF gain setting  
R/W  
This register determines the low frequency gain of the loop response in soft start mode. It is  
programmable over a 20 dB range. Each LSB corresponds to a 0.3 dB increase. See Figure 85.  
Table 137. Register 0xFE0A—SS_DIGFILT_ZERO_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Zero setting  
R/W  
This register determines the position of the final zero in soft start mode. See Figure 85.  
Table 138. Register 0xFE0B—SS_DIGFILT_POLE_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Pole setting  
R/W  
This register determines the position of the final pole in soft start mode. See Figure 85.  
Table 139. Register 0xFE0C—SS_DIGFILT_HF_GAIN_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
HF gain setting  
R/W  
This register determines the high frequency gain of the loop response in soft start mode. It is  
programmable over a 20 dB range. Each LSB corresponds to a 0.3 dB increase. See Figure 85.  
Table 140. Register 0xFE0D, Register 0xFE0F, Register 0xFE11, Register 0xFE13—OUTA_REDGE_SETTING,  
OUTB_REDGE_SETTING, OUTC_REDGE_SETTING, OUTD_REDGE_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[15:4]  
t1, t3, t5, t7  
R/W  
This register contains the 12-bit t1, t3, t5, t7 time. Each LSB corresponds to 5 ns resolution.  
The minimum and maximum possible duty cycle is 0% and 100%, respectively.  
1 = PWM modulation acts on the t1, t3, t5, t7 edge.  
0 = no PWM modulation of the t1, t3, t5, t7 edge.  
3
Modulate enable  
t1, t3, t5, t7 sign  
Reserved  
R/W  
R/W  
R
2
1 = negative sign. Increase of PWM modulation moves t1, t3, t5, t7 right.  
0 = positive sign. Increase of PWM modulation moves t1, t3, t5, t7 left.  
Reserved.  
[1:0]  
Table 141. Register 0xFE0E, Register 0xFE10, Register 0xFE12, Register 0xFE14—OUTA_FEDGE_SETTING,  
OUTB_FEDGE_SETTING, OUTC_FEDGE_SETTING, OUTD_FEDGE_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[15:4]  
t2, t4, t6, t8  
R/W  
This register contains the 12-bit t2, t4, t6, t8 time. Each LSB corresponds to 5 ns resolution.  
The minimum and maximum possible duty cycle is 0% and 100%, respectively.  
1 = PWM modulation acts on the t2, t4, t6, t8 edge.  
0 = no PWM modulation of the t2, t4, t6, t8 edge.  
3
Modulate enable  
t2, t4, t6, t8 sign  
Reserved  
R/W  
R/W  
R
2
1 = negative sign. Increase of PWM modulation moves t2, t4, t6, t8 right.  
0 = positive sign. Increase of PWM modulation moves t2, t4, t6, t8 left.  
Reserved.  
[1:0]  
Rev. A | Page 87 of 140  
ADP1055  
Data Sheet  
Table 142. Register 0xFE15, Register 0xFE17—SR1_REDGE_SETTING, SR2_REDGE_SETTING (Requires Use of the GO Bit in  
Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[15:4] t9, t11  
R/W  
This register contains the 12-bit t9, t11 time. Each LSB corresponds to 5 ns resolution.  
The minimum and maximum possible duty cycle is 0% and 100%, respectively.  
1 = PWM modulation acts on the t9, t11 edge.  
3
Modulate enable  
R/W  
R/W  
R
0 = no PWM modulation of the t9, t11 edge.  
2
t9, t11 sign  
Reserved  
1 = negative sign. Increase of PWM modulation moves t9, t11 right.  
0 = positive sign. Increase of PWM modulation moves t9, t11 left.  
Reserved.  
[1:0]  
Table 143. Register 0xFE16, Register 0xFE18—SR1_FEDGE_SETTING, SR2_FEDGE_SETTING (Requires Use of the GO Bit in  
Register 0xFE00)  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
[15:4] t10, t12  
This register contains the 12-bit t10, t12 time. Each LSB corresponds to 5 ns resolution.  
1 = PWM modulation acts on the t10, t12 edge.  
0 = no PWM modulation of the t10, t12 edge.  
1 = negative sign. Increase of PWM modulation moves t10, t12 right.  
0 = positive sign. Increase of PWM modulation moves t10, t12 left.  
Reserved.  
3
Modulate enable  
2
t10, t12 sign  
Reserved  
R/W  
R
[1:0]  
Table 144. Register 0xFE19, Register 0xFE1B—SR1_REDGE_LLM_SETTING, SR2_REDGE_LLM_SETTING (Requires Use of the  
GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[15:4] t9, t11  
R/W  
This register contains the 12-bit t9, t11 time. Each LSB corresponds to 5 ns resolution. This is the  
SR setting in light load mode.  
The minimum and maximum possible duty cycle is 0% and 100%, respectively.  
1 = PWM modulation acts on the t9, t11 edge.  
0 = no PWM modulation of the t9, t11 edge.  
3
Modulate enable  
R/W  
R/W  
R
2
t9, t11 sign  
Reserved  
1 = negative sign. Increase of PWM modulation moves t9, t11 right.  
0 = positive sign. Increase of PWM modulation moves t9, t11 left.  
Reserved.  
[1:0]  
Table 145. Register 0xFE1A, Register 0xFE1C—SR1_FEDGE_LLM_SETTING, SR2_FEDGE_LLM_SETTING (Requires Use of the  
GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[15:4] t10, t12  
R/W  
This register contains the 12-bit t10, t12 time. Each LSB corresponds to 5 ns resolution. This is the  
SR setting in light load mode.  
The minimum and maximum possible duty cycle is 0% and 100%, respectively.  
1 = PWM modulation acts on the t10, t12 edge.  
0 = no PWM modulation of the t10, t12 edge.  
3
Modulate Enable  
R/W  
R/W  
R
2
t10, t12 sign  
Reserved  
1 = negative sign. Increase of PWM modulation moves t10, t12 right.  
0 = positive sign. Increase of PWM modulation moves t10, t12 left.  
Reserved.  
[1:0]  
Rev. A | Page 88 of 140  
Data Sheet  
ADP1055  
Table 146. Register 0xFE1D—ADT_CONFIG  
Bits  
Bit Name  
R/W  
Description  
7
Averaging period R/W  
1 = 9-bit averaging (327 μs).  
0 = 12-bit averaging (2.6 ms).  
0 = CS1 as reference.  
1 = CS2 as reference.  
6
ADT reference  
Update rate  
R/W  
R/W  
[5:3]  
The ADT algorithm adjusts the dead time in steps of 5 ns. These bits are used to program  
the number of PWM switching cycles between each step. The number is calculated as 2N + 1,  
where N is the 3-bit value specified by these bits. If N = 6 (110), each PWM edge is adjusted  
by 5 ns every 26 + 1 = 65 switching cycles.  
[2:0]  
Multiplier  
R/W  
These bits specify the programming step for Register 0xFE1F to Register 0xFE22, Bits[6:4] and  
Bits[2:0].  
Bit 2  
Bit 1  
Bit 0  
Multiplier  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
5
10  
15  
20  
25  
30  
35  
40  
Table 147. Register 0xFE1E—ADT_THRESHOLD  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
Adaptive dead time  
threshold  
R/W  
This register sets the ADT threshold. This 8-bit number is compared to the eight MSBs of the  
CS1/CS2 value register.  
When the current level measured on CS1/CS2 falls below this threshold, the edges of the PWM  
signals are affected as a linear function of the CS1/CS2 current, as programmed in Register 0xFE1F  
to Register 0xFE24. When this register is programmed to 0x00, the ADT function is disabled.  
When CS1 is used as the reference, each LSB in this register corresponds to 1.6 V/28 = 6.25 mV.  
When CS2 is used as the reference, each LSB in this register corresponds to 26.25 mV, 52.5 mV,  
or 420 mV]/28 = 102.539 μV, 205.078 μV, or 1640.625 μV. Also note that when CS2 is used as the  
reference, the maximum allowed value in this register is 224 (0xE0).  
Table 148. Register 0xFE1F, Register 0xFE20, Register 0xFE21, Register 0xFE22—OUTA_DEAD_TIME, OUTB_DEAD_TIME,  
OUTC_DEAD_TIME, OUTD_DEAD_TIME (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
7
t1, t3, t5, t7, t9, t11  
polarity  
R/W  
0 = positive polarity.  
1 = negative polarity.  
[6:4]  
t1, t3, t5, t7, t9, t11  
offset  
R/W  
This value multiplied by Register 0xFE1D[2:0] determines the offset for t1, t3, t5, t7, t9, t11 from  
nominal timing at no load.  
Bit 6  
Bit 5  
Bit 4  
Offset (ns)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
3
t2, t4, t6, t8, t10, t12  
polarity  
R/W  
0 = positive polarity.  
1 = negative polarity.  
Rev. A | Page 89 of 140  
ADP1055  
Data Sheet  
Bits  
Bit Name  
R/W  
Description  
[2:0]  
t2, t4, t6, t8, t10, t12  
offset  
R/W  
This value multiplied by Register 0xFE1D[2:0] determines the offset for t2, t4, t6, t8, t10, t12 from  
nominal timing at no load.  
Bit 2  
Bit 1  
Bit 0  
Offset (ns)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
Table 149. Register 0xFE23, Register 0xFE24—SR1_DEAD_TIME, SR2_DEAD_TIME (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
7
t9, t11 polarity  
R/W  
0 = positive polarity.  
1 = negative polarity.  
[6:4]  
t9, t11 offset  
R/W  
This value multiplied by Register 0xFE1D[2:0] determines the offset for t1, t3, t5, t7, t9, t11 from  
nominal timing at no load.  
Bit 6  
Bit 5  
Bit 4  
Offset (ns)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
3
t10, t12 polarity  
t10, t12 offset  
R/W  
R/W  
0 = positive polarity.  
1 = negative polarity.  
[2:0]  
This value multiplied by Register 0xFE1D[2:0] determines the offset for t2, t4, t6, t8, t10, t12 from  
nominal timing at no load.  
Bit 2  
Bit 1  
Bit 0  
Offset (ns)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
Table 150. Register 0xFE25—VSBAL_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
7
Reserved  
R
Reserved.  
6
Volt-second balance  
enable  
R/W  
Setting this bit enables volt-second balance for the main transformer (used for full-bridge  
configurations).  
5
4
Reserved  
R
Set to 0 for proper operation.  
Volt-second disable  
during soft start  
R/W  
0 = do not blank volt-second balance control during soft start (recommended).  
1 = blank volt-second balance control during soft start.  
3
2
Reserved  
Reserved  
R
R
Reserved.  
Reserved.  
Rev. A | Page 90 of 140  
Data Sheet  
ADP1055  
Bits  
Bit Name  
R/W  
Description  
[1:0]  
Volt-second balance  
gain setting  
R/W  
These bits set the gain of the volt-second balance circuit. The gain can be changed by a factor  
of 64. When these bits are set to 00, it takes approximately 700 ms to achieve volt-second balance.  
When these bits are set to 11, it takes approximately 10 ms to achieve volt-second balance.  
Bit 1  
Bit 0  
Volt-Second Balance Gain  
0
0
1
1
0
1
0
1
1
4
16  
64  
Table 151. Register 0xFE26—VSBAL_OUTA_B  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
7
Modulate enable, t1  
t1 sign  
Setting this bit enables modulation from balance control on the OUTA rising edge, t1.  
0 = positive sign. Increase of balance control modulation moves t1 right.  
1 = negative sign. Increase of balance control modulation moves t1 left.  
Setting this bit enables modulation from balance control on the OUTA falling edge, t2.  
0 = positive sign. Increase of balance control modulation moves t2 right.  
1 = negative sign. Increase of balance control modulation moves t2 left.  
Setting this bit enables modulation from balance control on the OUTB rising edge, t3.  
0 = positive sign. Increase of balance control modulation moves t3 right.  
1 = negative sign. Increase of balance control modulation moves t3 left.  
Setting this bit enables modulation from balance control on the OUTB falling edge, t4.  
0 = positive sign. Increase of balance control modulation moves t4 right.  
1 = negative sign. Increase of balance control modulation moves t4 left.  
6
5
4
Modulate enable, t2  
t2 sign  
R/W  
R/W  
3
2
Modulate enable, t3  
t3 sign  
R/W  
R/W  
1
0
Modulate enable, t4  
t4 sign  
R/W  
R/W  
Table 152. Register 0xFE27—VSBAL_OUTC_D  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
7
Modulate enable, t5  
t5 sign  
Setting this bit enables modulation from balance control on the OUTC rising edge, t5.  
0 = positive sign. Increase of balance control modulation moves t5 right.  
1 = negative sign. Increase of balance control modulation moves t5 left.  
Setting this bit enables modulation from balance control on the OUTC falling edge, t6.  
0 = positive sign. Increase of balance control modulation moves t6 right.  
1 = negative sign. Increase of balance control modulation moves t6 left.  
Setting this bit enables modulation from balance control on the OUTD rising edge, t7.  
0 = positive sign. Increase of balance control modulation moves t7 right.  
1 = negative sign. Increase of balance control modulation moves t7 left.  
Setting this bit enables modulation from balance control on the OUTD falling edge, t8.  
0 = positive sign. Increase of balance control modulation moves t8 right.  
1 = negative sign. Increase of balance control modulation moves t8 left.  
6
5
4
Modulate enable, t6  
t6 sign  
R/W  
R/W  
3
2
Modulate enable, t7  
t7 sign  
R/W  
R/W  
1
0
Modulate enable, t8  
t8 sign  
R/W  
R/W  
Table 153. Register 0xFE28—VSBAL_SR1_2  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
7
Modulate enable, t9  
t9 sign  
Setting this bit enables modulation from balance control on the SR1 rising edge, t9.  
0 = positive sign. Increase of balance control modulation moves t9 right.  
1 = negative sign. Increase of balance control modulation moves t9 left.  
Setting this bit enables modulation from balance control on the SR1 falling edge, t10.  
0 = positive sign. Increase of balance control modulation moves t10 right.  
1 = negative sign. Increase of balance control modulation moves t10 left.  
Setting this bit enables modulation from balance control on the SR2 rising edge, t11.  
0 = positive sign. Increase of balance control modulation moves t11 right.  
1 = negative sign. Increase of balance control modulation moves t11 left.  
Setting this bit enables modulation from balance control on the SR2 falling edge, t12.  
0 = positive sign. Increase of balance control modulation moves t12 right.  
1 = negative sign. Increase of balance control modulation moves t12 left.  
Rev. A | Page 91 of 140  
6
5
4
Modulate enable, t10  
t10 sign  
R/W  
R/W  
3
2
Modulate enable, t11  
t11 sign  
R/W  
R/W  
1
0
Modulate enable, t12  
t12 sign  
R/W  
R/W  
ADP1055  
Data Sheet  
Table 154. Register 0xFE29—FFWD_SETTING (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
[7:4]  
3
Bit Name  
R/W  
R/W  
R/W  
Description  
Reserved  
Reserved.  
Disable feedforward  
during soft start  
If voltage line feedforward is enabled, this bit disables it during the soft start process. This  
operation is gated by the filter GO bit (Register 0xFE00).  
0 = feedforward enabled during soft start (recommended setting).  
1 = feedforward disabled during soft start.  
2
Feedforward enable  
R/W  
This bit enables the voltage line feedforward loop. This operation is gated by the filter GO bit  
(Register 0xFE00]).  
0 = feedforward disabled.  
1 = feedforward enabled.  
0 = default.  
1
0
LF 8× gain increase  
R/W  
R/W  
1 = 8× LF gain.  
Global bit for nonlinear  
gain  
0 = 1×/1.25×/1.5×/2× gain.  
1 = 1×/2×/3×/4× gain.  
Table 155. Register 0xFE2A—ISHARE_SETTING  
Bits  
Bit Name  
R/W  
Description  
[7:4]  
Number of bits  
dropped by master  
R/W  
These bits determine how much a master device reduces its output voltage to maintain current  
sharing. Each LSB corresponds to 1.6 V/216 = 24 μV (at the VS pins). This LSB is multiplied or  
divided by the setting in the share bus bandwidth register.  
[3:0]  
Bit difference between  
master and slave  
R/W  
These bits determine how closely a slave tries to match the current of the master device. The  
higher the setting, the larger the voltage difference that satisfies the current sharing criteria.  
Table 156. Register 0xFE2B—ISHARE_BANDWIDTH  
Bits  
[7:5]  
4
Bit Name  
Reserved  
Bitstream  
R/W  
Description  
R
Reserved.  
R/W  
1 = the current sense ADC reading is output on the ISHARE pin. This bit stream can be used for  
analog current sharing. (recommended setting for standalone power supplies).  
0 = the digital share bus signal is output on the ISHARE pin. This signal can be used for digital  
current sharing.  
3
Current share select  
Share bus bandwidth  
R/W  
R/W  
1 = CS1 reading used for current share.  
0 = CS2 reading used for current share.  
[2:0]  
These bits determine the amount of bandwidth dedicated to the share bus. The value 000 is the  
lowest possible bandwidth, and the value 111 is the highest possible bandwidth.  
The slave moves up 1 LSB for every share bus transaction (that is, eight data bits plus the start  
and stop bits). The master moves down x LSBs per share bus transaction, where x is the share  
bus register setting (Register 0xFE2A[7:4]).  
0 = divide LSB by 16 (1 LSB = 24 μV/16).  
1 = divide LSB by 8.  
2 = divide LSB by 4.  
3 = divide LSB by 2.  
4 = nominal.  
5 = multiply LSB by 2.  
6 = multiply LSB by 4.  
7 = multiply LSB by 8.  
8 = multiply LSB by 16.  
Rev. A | Page 92 of 140  
 
Data Sheet  
ADP1055  
Table 157. Register 0xFE2C—IIN_OC_FAST_SETTING  
Bits  
[7:3]  
2
Bit Name  
Reserved  
Threshold  
R/W  
Description  
R
Reserved.  
R/W  
0 = 1.2 V range.  
1 = 250 mV range.  
[1:0]  
Debounce  
R/W  
Bit 1  
Bit 0  
Debounce Time  
0 ns  
40 ns  
80 ns  
120 ns  
0
0
1
1
0
1
0
1
Table 158. Register 0xFE2D—IOUT_OC_FAST_SETTING  
Bits  
Bit Name  
R/W  
Description  
[7:2]  
Threshold  
R/W  
When the ADC range is 480 mV, LSB = 600/63 = 9.52 mV.  
When the ADC range is 30 mV or 60 mV, LSB = 60/63 = 0.952 mV.  
Threshold = LSB × Register 0xFE2D[7:2].  
[1:0]  
Debounce  
R/W  
Bit 1  
Bit 0  
Debounce Time  
0 ns  
40 ns  
200 ns  
400 ns  
0
0
1
1
0
1
0
1
Table 159. Register 0xFE2E—IOUT_UC_FAST_SETTING  
Bits  
Bit Name  
R/W  
Description  
[7:2]  
Threshold  
R/W  
|LSB| = 30/63 = 0.476 mV.  
Range is +30 mV to −30 mV in 64 steps.  
Polarity = 0: Threshold = − 0.477 mV × Register 0xFE2E[7:2].  
Polarity = 1: Threshold = + 0.472 mV × Register 0xFE2E [7:2].  
Note that the IOUT_UC_FAST fault is set when the CS2 reverse comparator is asserted for the  
minimum debounce programmed time. Once set, the IOUT_UC_FAST fault is cleared from  
327 μs to 656 μs following the deassertion of the CS2 reverse comparator.  
1
0
Polarity  
R/W  
R/W  
1 = 0 to +30 mV range.  
0 = 0 to −30 mV range.  
Debounce  
The debounce setting is set by Register 0xFE2D[1:0]. For example, if Register 0xFE2D[1:0] = 10,  
the IOUT_OC_FAST_SETTING is 200 ns and the IOUT_UC_FAST_SETTING is 800 ns.  
00 = 40 ns.  
01 = 200 ns.  
10 = 800 ns.  
11 = 1200 ns.  
Table 160. Register 0xFE2F—VOUT_OV_FAST_SETTING  
Bits  
[7:2]  
[1:0]  
Bit Name  
Threshold  
Debounce  
R/W  
R/W  
R/W  
Description  
64 steps: Threshold = 0.8 + (Register 0xFE2F[7:2]) × 0.8/63.  
These bits set the debounce time.  
Bit 1  
Bit 0  
Typical Debounce Time  
40 ns  
2 μs + 1 μs  
5 μs + 1 μs  
10 μs + 1 μs  
0
0
1
1
0
1
0
1
Rev. A | Page 93 of 140  
ADP1055  
Data Sheet  
Table 161. Register 0xFE30—DEBOUNCE_SETTING_1  
Bits  
Bit Name  
R/W  
Description  
[15:14] IOUT_OC_LV_DEB  
R/W  
These bits set the debounce time for the IOUT_OC_LV fault.  
Bit 15  
Bit 14 Debounce  
0
0
1
1
0
1
0
1
0
1 ms + 10 ꢀs  
10 ms + 100 ꢀs  
100 ms + 1 ms  
[13:11] VIN_UV_DEB  
R/W  
R/W  
R/W  
These bits set the debounce time for the VIN_UV fault.  
Bit 13  
Bit 12 Bit 11 Debounce  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1 ms + 10 ꢀs  
2.5 ms + 10 ꢀs  
5 ms + 10 ꢀs  
10 ms + 100 ꢀs  
50 ms + 100 ꢀs  
100 ms + 1 ms  
250 ms + 1 ms  
[10:8]  
VOUT_UV_DEB  
These bits set the debounce time for the VOUT_UV fault.  
Bit 10  
Bit 9  
Bit 8  
Debounce  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1 ms + 10 ꢀs  
2.5 ms + 10 ꢀs  
5 ms + 10 ꢀs  
10 ms + 100 ꢀs  
50 ms + 100 ꢀs  
100 ms + 1 ms  
250 ms + 1 ms  
[7:4]  
VIN_OV_DEB  
These bits set the debounce time for the VIN_OV fault.  
Bit 7  
0
Bit 6  
0
Bit 5  
0
Bit 4  
0
Debounce  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
100 ꢀs + 1 ꢀs  
250 ꢀs + 1 ꢀs  
500 ꢀs + 1 ꢀs  
750 ꢀs + 10 ꢀs  
1 ms + 10 ꢀs  
2.5 ms + 10 ꢀs  
5 ms + 10 ꢀs  
7.5 ms + 100 ꢀs  
10 ms + 100 ꢀs  
25 ms + 100 ꢀs  
50 ms + 100 ꢀs  
75 ms + 1 ms  
100 ms + 1 ms  
250 ms + 1 ms  
500 ms + 1 ms  
Rev. A | Page 94 of 140  
Data Sheet  
ADP1055  
Bits  
Bit Name  
R/W  
Description  
[3:0]  
VOUT_OV_DEB  
R/W  
These bits set the debounce time for the VOUT_OV fault.  
Bit 3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Bit 2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
Bit 1 Bit 0 Debounce  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
100 ꢀs + 1 ꢀs  
250 ꢀs + 1 ꢀs  
500 ꢀs + 1 ꢀs  
750 ꢀs + 10 ꢀs  
1 ms + 10 ꢀs  
2.5 ms + 10 ꢀs  
5 ms + 10 ꢀs  
7.5 ms + 100 ꢀs  
10 ms + 100 ꢀs  
25 ms + 100 ꢀs  
50 ms + 100 ꢀs  
75 ms + 1 ms  
100 ms + 1 ms  
250 ms + 1 ms  
500 ms + 1 ms  
Table 162. Register 0xFE31—DEBOUNCE_SETTING_2  
Bits  
Bit Name  
R/W  
Description  
[15:12] ISHARE_DEB  
R/W  
These bits set the debounce time for the ISHARE fault.  
Bit 15  
Bit 14 Bit 13 Bit 12 Debounce  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1 ms + 10 ꢀs  
2.5 ms + 10 ꢀs  
5 ms + 10 ꢀs  
7.5 ms + 100 ꢀs  
10 ms + 100 ꢀs  
25 ms + 100 ꢀs  
50 ms + 100 ꢀs  
75 ms + 1 ms  
100 ms + 1 ms  
250 ms + 1 ms  
500 ms + 1 ms  
750 ms + 10 ms  
1 sec + 10 ms  
2.5 sec + 10 ms  
5 sec + 10 ms  
Rev. A | Page 95 of 140  
ADP1055  
Data Sheet  
Bits  
Bit Name  
R/W  
Description  
[11:8]  
IIN_OC_DEB  
R/W  
These bits set the debounce time for the IIN_OC fault.  
Bit 11  
Bit 10 Bit 9 Bit 8 Debounce  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1 ms + 10 ꢀs  
2.5 ms + 10 ꢀs  
5 ms + 10 ꢀs  
7.5 ms + 100 ꢀs  
10 ms + 100 ꢀs  
25 ms + 100 ꢀs  
50 ms + 100 ꢀs  
75 ms + 1 ms  
100 ms + 1 ms  
250 ms + 1 ms  
500 ms + 1 ms  
750 ms + 10 ms  
1 sec + 10 ms  
2.5 sec + 10 ms  
5 sec + 10 ms  
[7:4]  
IOUT_UC_DEB  
R/W  
These bits set the debounce time for the IOUT_UC fault.  
Bit 7  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Bit 6  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
Bit 5 Bit 4 Debounce  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1 ms + 10 ꢀs  
2.5 ms + 10 ꢀs  
5 ms + 10 ꢀs  
7.5 ms + 100 ꢀs  
10 ms + 100 ꢀs  
25 ms + 100 ꢀs  
50 ms + 100 ꢀs  
75 ms + 1 ms  
100 ms + 1 ms  
250 ms + 1 ms  
500 ms + 1 ms  
750 ms + 10 ms  
1 sec + 10 ms  
2.5 sec + 10 ms  
5 sec + 10 ms  
Rev. A | Page 96 of 140  
Data Sheet  
ADP1055  
Bits  
Bit Name  
R/W  
Description  
[3:0]  
IOUT_OC_DEB  
R/W  
These bits set the debounce time for the IOUT_OC fault.  
Bit 3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Bit 2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
Bit 1 Bit 0 Debounce  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1 ms + 10 ꢀs  
2.5 ms + 10 ꢀs  
5 ms + 10 ꢀs  
7.5 ms + 100 ꢀs  
10 ms + 100 ꢀs  
25 ms + 100 ꢀs  
50 ms + 100 ꢀs  
75 ms + 1 ms  
100 ms + 1 ms  
250 ms + 1 ms  
500 ms + 1 ms  
750 ms + 10 ms  
1 sec + 10 ms  
2.5 sec + 10 ms  
5 sec + 10 ms  
Table 163. Register 0xFE32—DEBOUNCE_SETTING_3  
Bits  
[15:12] Reserved  
[11:8] POUT_OP_DEB  
Bit Name  
R/W  
Description  
R
Reserved.  
R/W  
These bits set the debounce time for the POUT_OP fault.  
Bit 11  
Bit 10 Bit 9 Bit 8 Debounce  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
100 ꢀs + 1 ꢀs  
250 ꢀs + 1 ꢀs  
500 ꢀs + 1 ꢀs  
750 ꢀs + 10 ꢀs  
1 ms + 10 ꢀs  
2.5 ms + 10 ꢀs  
5 ms + 10 ꢀs  
7.5 ms + 100 ꢀs  
10 ms + 100 ꢀs  
25 ms + 100 ꢀs  
50 ms + 100 ꢀs  
75 ms + 1 ms  
100 ms + 1 ms  
250 ms + 1 ms  
500 ms + 1 ms  
Rev. A | Page 97 of 140  
ADP1055  
Data Sheet  
Bits  
Bit Name  
TON_MAX_DEB  
R/W  
Description  
[7:4]  
R/W  
These bits set the debounce time for the TON_MAX fault.  
Bit 7  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Bit 6  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
Bit 5 Bit 4 Debounce  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
100 ꢀs + 1 ꢀs  
250 ꢀs + 1 ꢀs  
500 ꢀs + 1 ꢀs  
750 ꢀs + 10 ꢀs  
1 ms + 10 ꢀs  
2.5 ms + 10 ꢀs  
5 ms + 10 ꢀs  
7.5 ms + 100 ꢀs  
10 ms + 100 ꢀs  
25 ms + 100 ꢀs  
50 ms + 100 ꢀs  
75 ms + 1 ms  
100 ms + 1 ms  
250 ms + 1 ms  
500 ms + 1 ms  
[3:0]  
OT_DEB  
R/W  
These bits set the debounce time for the overtemperature fault.  
Bit 3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Bit 2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
Bit 1 Bit 0 Debounce  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1 ms + 10 ꢀs  
2.5 ms + 10 ꢀs  
5 ms + 10 ꢀs  
7.5 ms + 100 ꢀs  
10 ms + 100 ꢀs  
25 ms + 100 ꢀs  
50 ms + 100 ꢀs  
75 ms + 1 ms  
100 ms + 1 ms  
250 ms + 1 ms  
500 ms + 1 ms  
750 ms + 10 ms  
1 sec + 10 ms  
2.5 sec + 10 ms  
5 sec + 10 ms  
Rev. A | Page 98 of 140  
Data Sheet  
ADP1055  
Table 164. Register 0xFE33—DEBOUNCE_SETTING_4  
Bits  
Bit Name  
R/W  
Description  
[15:12] GPIO4_DEB  
R/W  
These bits set the debounce time for the GPIO4 fault.  
Bit 15  
Bit 14 Bit 13 Bit 12 Debounce  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
80 ns  
1 ꢀs + 1 ꢀs  
100 ꢀs + 1 ꢀs  
500 ꢀs + 1 ꢀs  
1 ms + 10 ꢀs  
2.5 ms + 10 ꢀs  
5 ms + 10 ꢀs  
7.5 ms + 100 ꢀs  
10 ms + 100 ꢀs  
25 ms + 100 ꢀs  
50 ms + 100 ꢀs  
75 ms + 1 ms  
100 ms + 1 ms  
250 ms + 1 ms  
500 ms + 1 ms  
[11:8]  
GPIO3_DEB  
R/W  
These bits set the debounce time for the GPIO3 fault.  
Bit 11  
Bit 10 Bit 9  
Bit 8  
0
1
0
1
0
1
0
1
Debounce  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
80 ns  
1 ꢀs + 1 ꢀs  
100 ꢀs + 1 ꢀs  
500 ꢀs + 1 ꢀs  
1 ms + 10 ꢀs  
2.5 ms + 10 ꢀs  
5 ms + 10 ꢀs  
7.5 ms + 100 ꢀs  
10 ms + 100 ꢀs  
25 ms + 100 ꢀs  
50 ms + 100 ꢀs  
75 ms + 1 ms  
100 ms + 1 ms  
250 ms + 1 ms  
500 ms + 1 ms  
0
1
0
1
0
1
0
1
Rev. A | Page 99 of 140  
ADP1055  
Data Sheet  
Bits  
Bit Name  
GPIO2_DEB  
R/W  
Description  
[7:4]  
R/W  
These bits set the debounce time for the GPIO2 fault.  
Bit 7  
0
0
0
0
0
0
0
0
Bit 6  
0
0
0
0
1
1
1
1
Bit 5 Bit 4 Debounce  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
80 ns  
1 ꢀs + 1 ꢀs  
100 ꢀs + 1 ꢀs  
500 ꢀs + 1 ꢀs  
1 ms + 10 ꢀs  
2.5 ms + 10 ꢀs  
5 ms + 10 ꢀs  
7.5 ms + 100 ꢀs  
10 ms + 100 ꢀs  
25 ms + 100 ꢀs  
50 ms + 100 ꢀs  
75 ms + 1 ms  
100 ms + 1 ms  
250 ms + 1 ms  
500 ms + 1 ms  
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
[3:0]  
GPIO1_DEB  
R/W  
These bits set the debounce time for the GPIO1 fault.  
Bit 3  
Bit 2  
Bit 1 Bit 0 Debounce  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
80 ns  
1 ꢀs + 1 ꢀs  
100 ꢀs + 1 ꢀs  
500 ꢀs + 1 ꢀs  
1 ms + 10 ꢀs  
2.5 ms + 10 ꢀs  
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
5 ms + 10 ꢀs  
7.5 ms + 100 ꢀs  
10 ms + 100 ꢀs  
25 ms + 100 ꢀs  
50 ms + 100 ꢀs  
75 ms + 1 ms  
100 ms + 1 ms  
250 ms + 1 ms  
500 ms + 1 ms  
Rev. A | Page 100 of 140  
Data Sheet  
ADP1055  
The VOUT_OV_FAST_FAULT_RESPONSE command instructs the device on the actions to take due to an output fast overvoltage fault  
condition. The device notifies the host and sets the NONE_OF_THE_ABOVE bit in STATUS_BYTE register, the MFR_SPECIFIC bit in  
STATUS_WORD register, and the VOUT_OV_FAST_FAULT bit in STATUS_MFR_SPECIFIC register.  
Table 165. Register 0xFE34—VOUT_OV_FAST_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to a fast overvoltage fault condition.  
Bit 7  
Bit 6  
Response  
0
0
0
1
Do nothing.  
Continue operation for the delay time (Bits[2:0]). If the fault persists, retry the  
number of times specified by Bits[5:3].  
1
1
0
1
Shut down, disable the output, and respond as programmed in the retry  
setting (Bits[5:3]).  
Disable the output while the fault is present. Operation resumes and the  
output is enabled when the fault condition no longer exists.  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay time  
R/W  
Number of delay time units (see Register 0xFE3E).  
The IOUT_OC_FAST_FAULT_RESPONSE command instructs the device on the actions to take due to an output fast overcurrent fault  
condition. The device notifies the host and sets the NONE_OF_THE_ABOVE bit in STATUS_BYTE register, the MFR_SPECIFIC bit in  
STATUS_WORD register, and the IOUT_OC_FAST_FAULT bit in STATUS_MFR_SPECIFIC register.  
Table 166. Register 0xFE35—IOUT_OC_FAST_FAULT_RESPONSE  
Bits  
Bit Name  
R/W Description  
[7:6]  
Response  
R/W Determines the device response to a fast overcurrent fault condition.  
Bit 7  
Bit 6  
Response  
0
0
0
1
Operate in current limiting mode, maintaining the output current at IOUT_OC_FAULT_LIMIT.  
Operate in current limiting mode, maintaining the output current at IOUT_OC_FAULT_LIMIT. If  
VOUT falls below the IOUT_OC_LV_FAULT_LIMIT, respond as programmed by the retry  
setting (Bits[5:3]).  
1
1
0
1
Continue operation in current limiting mode for the delay time (Bits[2:0]). If the device is  
still in current limiting mode, respond as programmed by the retry setting (Bits[5:3]).  
Shut down, disable the output, and respond as programmed by the retry setting (Bits[5:3]).  
[5:3]  
Retry  
setting  
R/W Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay times  
R/W Number of delay time units (see Register 0xFE3E).  
Rev. A | Page 101 of 140  
ADP1055  
Data Sheet  
The IOUT_UC_FAST_FAULT_RESPONSE command instructs the device on the actions to take due to an output fast undercurrent fault  
condition. The device notifies the host and sets the NONE_OF_THE_ABOVE bit in STATUS_BYTE register, the MFR_SPECIFIC bit in  
STATUS_WORD register, and the IOUT_UC_FAST_FAULT bit in STATUS_MFR_SPECIFIC register.  
Table 167. Register 0xFE36—IOUT_UC_FAST_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to a fast undercurrent fault condition.  
Bit 7  
Bit 6  
Response  
0
0
Operate in current limiting mode, maintaining the output current at  
IOUT_OC_FAULT_LIMIT.  
0
1
1
1
0
1
Operate in current limiting mode, maintaining the output current at  
IOUT_OC_FAULT_LIMIT. If VOUT falls below the IOUT_OC_LV_FAULT_LIMIT,  
respond as programmed by the retry setting (Bits[5:3]).  
Continue operation in current limiting mode for the delay time (Bits[2:0]). If the  
device is still in current limiting mode, respond as programmed by the retry  
setting (Bits[5:3]).  
Shut down, disable the output, and respond as programmed by the retry  
setting (Bits[5:3]).  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay times  
R/W  
Number of delay time units (see Register 0xFE3E).  
The IIN_OC_FAST_FAULT_RESPONSE command instructs the device on the actions to take due to an input fast overcurrent fault  
condition. The device notifies the host and sets the NONE_OF_THE_ABOVE bit in STATUS_BYTE register, the MFR_SPECIFIC bit in  
STATUS_WORD register, and the IIN_OC_FAST_FAULT bit in STATUS_MFR_SPECIFIC register.  
Table 168. Register 0xFE37—IIN_OC_FAST_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to a fast input overcurrent fault condition.  
Bit 7  
Bit 6  
Response  
0
0
Operate in current limiting mode, maintaining the output current at  
IOUT_OC_FAULT_LIMIT.  
0
1
1
1
0
1
Operate in current limiting mode, maintaining the output current at  
IOUT_OC_FAULT_LIMIT. If VOUT falls below the IOUT_OC_LV_FAULT_LIMIT,  
respond as programmed by the retry setting (Bits[5:3]).  
Continue operation in current limiting mode for the delay time (Bits[2:0]). If the  
device is still in current limiting mode, respond as programmed by the retry  
setting (Bits[5:3]).  
Shut down, disable the output, and respond as programmed by the retry  
setting (Bits[5:3]).  
Rev. A | Page 102 of 140  
Data Sheet  
ADP1055  
Bits  
Bit Name  
R/W  
Description  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay times  
R/W  
Number of delay time units (see Register 0xFE3E).  
The ISHARE_FAULT_RESPONSE command instructs the device on the actions to take due to a current sharing fault condition. The  
device notifies the host and sets the NONE_OF_THE_ABOVE bit in STATUS_BYTE register, the IOUT bit in STATUS_WORD register,  
and the ISHARE_FAULT bit in STATUS_MFR_SPECIFIC register.  
Table 169. Register 0xFE38—ISHARE_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to a current sharing fault condition.  
Bit 7  
Bit 6  
Response  
0
0
Operate in current limiting mode, maintaining the output current at  
IOUT_OC_FAULT_LIMIT.  
0
1
1
1
0
1
Operate in current limiting mode, maintaining the output current at  
IOUT_OC_FAULT_LIMIT. If VOUT falls below the IOUT_OC_LV_FAULT_LIMIT,  
respond as programmed by the retry setting (Bits[5:3]).  
Continue operation in current limiting mode for the delay time (Bits[2:0]). If the  
device is still in current limiting mode, respond as programmed by the retry  
setting (Bits[5:3]).  
Shut down, disable the output, and respond as programmed by the retry  
setting (Bits[5:3]).  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay times  
R/W  
Number of delay time units (see Register 0xFE3E).  
Rev. A | Page 103 of 140  
ADP1055  
Data Sheet  
The GPIO1_FAULT_RESPONSE command instructs the device on the actions to take due to a GPIO1 fault condition. The device notifies  
the host and sets the NONE_OF_THE_ABOVE bit in STATUS_BYTE register, the MFR_SPECIFIC bit in STATUS_WORD register, and  
the GPIO1_FAULT bit in STATUS_MFR_SPECIFIC register.  
Table 170. Register 0xFE39—GPIO1_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to a GPIO1 fault condition.  
Bit 7  
Bit 6  
Response  
0
0
0
1
Do nothing.  
Continue operation for the delay time (Bits[2:0]). If the fault persists, retry the  
number of times specified by Bits[5:3].  
1
1
0
1
Shut down, disable the output, and respond as programmed in the retry  
setting (Bits[5:3]).  
Disable the output while the fault is present. Operation resumes and the  
output is enabled when the fault condition no longer exists.  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay time  
R/W  
Number of delay time units (see Register 0xFE3E).  
The GPIO2_FAULT_RESPONSE command instructs the device on the actions to take due to a GPIO2 fault condition. The device notifies  
the host and sets the NONE_OF_THE_ABOVE bit in STATUS_BYTE register, the MFR_SPECIFIC bit in STATUS_WORD register, and  
the GPIO2_FAULT bit in STATUS_MFR_SPECIFIC register.  
Table 171. Register 0xFE3A—GPIO2_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to a GPIO2 fault condition.  
Bit 7  
Bit 6  
Response  
0
0
0
1
Do nothing.  
Continue operation for the delay time (Bits[2:0]). If the fault persists, retry the  
number of times specified by Bits[5:3].  
1
1
0
1
Shut down, disable the output, and respond as programmed in the retry  
setting (Bits[5:3]).  
Disable the output while the fault is present. Operation resumes and the  
output is enabled when the fault condition no longer exists.  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay time  
R/W  
Number of delay time units (see Register 0xFE3E).  
Rev. A | Page 104 of 140  
Data Sheet  
ADP1055  
The GPIO3_FAULT_RESPONSE command instructs the device on the actions to take due to a GPIO3 fault condition. The device notifies  
the host and sets the NONE_OF_THE_ABOVE bit in STATUS_BYTE register, the MFR_SPECIFIC bit in STATUS_WORD register, and  
the GPIO3_FAULT bit in STATUS_MFR_SPECIFIC register.  
Table 172. Register 0xFE3B—GPIO3_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to a GPIO3 fault condition.  
Bit 7  
Bit 6  
Response  
0
0
0
1
Do nothing.  
Continue operation for the delay time (Bits[2:0]). If the fault persists, retry the  
number of times specified by Bits[5:3].  
1
1
0
1
Shut down, disable the output, and respond as programmed in the retry  
setting (Bits[5:3]).  
Disable the output while the fault is present. Operation resumes and the  
output is enabled when the fault condition no longer exists.  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay time  
R/W  
Number of delay time units (see Register 0xFE3E).  
The GPIO4_FAULT_RESPONSE command instructs the device on the actions to take due to a GPIO4 fault condition. The device notifies  
the host and sets the NONE_OF_THE_ABOVE bit in STATUS_BYTE register, the MFR_SPECIFIC bit in STATUS_WORD register, and  
the GPIO4_FAULT bit in STATUS_MFR_SPECIFIC register.  
Table 173. Register 0xFE3C—GPIO4_FAULT_RESPONSE  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Response  
R/W  
Determines the device response to a GPIO4 fault condition.  
Bit 7  
Bit 6  
Response  
0
0
0
1
Do nothing.  
Continue operation for the delay time (Bits[2:0]). If the fault persists, retry the  
number of times specified by Bits[5:3].  
1
1
0
1
Shut down, disable the output, and respond as programmed in the retry  
setting (Bits[5:3]).  
Disable the output while the fault is present. Operation resumes and the  
output is enabled when the fault condition no longer exists.  
[5:3]  
Retry setting  
R/W  
Number of retry attempts following a fault condition. A fault condition can be cleared by a reset,  
a power-off/power-on sequence, or a loss of bias power.  
Bit 5  
Bit 4  
Bit 3  
Number of Retries  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
Infinite  
[2:0]  
Delay time  
R/W  
Number of delay time units (see Register 0xFE3E).  
Rev. A | Page 105 of 140  
ADP1055  
Data Sheet  
Register 0xFE3D masks PWM disabling when a fault condition causes the device to disable the output and wait for the fault to clear  
(Response[7:6] = 11). Note that this masking register applies only when the ADP1055 is servicing a fault condition that has the fault  
response programmed to Bits[7:6] = 11.  
Table 174. Register 0xFE3D—PWM_FAULT_MASK  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
5
4
3
2
Reserved  
Mask SR2  
Mask SR1  
Mask OUTD  
Mask OUTC  
Mask OUTB  
Mask OUTA  
R
Reserved.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0 = SR2 disabled on fault; 1 = SR2 ignores fault.  
0 = SR1 disabled on fault; 1 = SR1 ignores fault.  
0 = OUTD disabled on fault; 1 = OUTD ignores fault.  
0 = OUTC disabled on fault; 1 = OUTC ignores fault.  
0 = OUTB disabled on fault; 1 = OUTB ignores fault.  
0 = OUTA disabled on fault; 1 = OUTA ignores fault.  
1
0
Table 175. Register 0xFE3E—DELAY_TIME_UNIT  
Bits  
Bit Name  
R/W  
Description  
7
Current fault delay time R/W  
unit  
0 = ms.  
1 = μs.  
[6:4]  
Current fault delay time R/W  
multiplier  
Bit 6  
Bit 5  
Bit 4  
Multiplier  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
4
16  
64  
128  
256  
512  
1024  
3
Voltage/other  
fault delay time unit  
R/W  
R/W  
0 = ms.  
1 = μs.  
[2:0]  
Voltage/other fault  
delay time multiplier  
Bit 2  
Bit 1  
Bit 0  
Multiplier  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
4
16  
64  
128  
256  
512  
1024  
Table 176. Register 0xFE3F—WDT_SETTING  
Bits  
[7:2]  
[1:0]  
Bit Name  
R/W  
Description  
Reserved  
R
Reserved.  
Watchdog timeout  
Bit 1  
Bit 0  
Timeout  
Disable  
1 sec  
5 sec  
10 sec  
0
0
1
1
0
1
0
1
Rev. A | Page 106 of 140  
Data Sheet  
ADP1055  
Table 177. Register 0xFE40—GPIO_SETTING  
Bits  
Bit Name  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
7
GPIO4 polarity  
GPIO4 direction  
GPIO3 polarity  
GPIO3 direction  
GPIO2 polarity  
GPIO2 direction  
GPIO1 polarity  
GPIO1 direction  
0 = active high; 1 = active low  
0 = input; 1 = output  
6
5
0 = active high; 1 = active low  
0 = input; 1 = output  
4
3
0 = active high; 1 = active low  
0 = input; 1 = output  
2
1
0 = active high; 1 = active low  
0 = input; 1 = output  
0
Table 178. Register 0xFE41—GPIO1_2_KARNAUGH_MAP  
Bits  
Bit Name  
R/W  
Description  
[7:4]  
GPIO2 logic function  
R/W  
0x0 = GND  
0x1 = PGOOD1 AND PGOOD2  
0x2 = PGOOD1 AND ~PGOOD2  
0x3 = PGOOD1  
0x4 = ~PGOOD1 AND PGOOD2  
0x5 = PGOOD2  
0x6 = PGOOD1 XOR PGOOD2  
0x7 = PGOOD1 OR PGOOD2  
0x8 = PGOOD1 NOR PGOOD2  
0x9 = PGOOD1 XNOR PGOOD2  
0xA = ~PGOOD2  
0xB = PGOOD1 OR ~PGOOD2  
0xC = ~PGOOD1  
0xD = ~PGOOD1 OR PGOOD2  
0xE = PGOOD1 NAND PGOOD2  
0xF = VDD  
[3:0]  
GPIO1 logic function  
R/W  
0x0 = GND  
0x1 = PGOOD1 AND PGOOD2  
0x2 = PGOOD1 AND ~PGOOD2  
0x3 = PGOOD1  
0x4 = ~PGOOD1 AND PGOOD2  
0x5 = PGOOD2  
0x6 = PGOOD1 XOR PGOOD2  
0x7 = PGOOD1 OR PGOOD2  
0x8 = PGOOD1 NOR PGOOD2  
0x9 = PGOOD1 XNOR PGOOD2  
0xA = ~PGOOD2  
0xB = PGOOD1 OR ~PGOOD2  
0xC = ~PGOOD1  
0xD = ~PGOOD1 OR PGOOD2  
0xE = PGOOD1 NAND PGOOD2  
0xF = VDD  
Rev. A | Page 107 of 140  
ADP1055  
Data Sheet  
Table 179. Register 0xFE42—GPIO3_4_KARNAUGH_MAP  
Bits  
Bit Name  
R/W  
Description  
[7:4]  
GPIO4 logic function  
R/W  
0x0 = GND  
0x1 = PGOOD1 AND PGOOD2  
0x2 = PGOOD1 AND ~PGOOD2  
0x3 = PGOOD1  
0x4 = ~PGOOD1 AND PGOOD2  
0x5 = PGOOD2  
0x6 = PGOOD1 XOR PGOOD2  
0x7 = PGOOD1 OR PGOOD2  
0x8 = PGOOD1 NOR PGOOD2  
0x9 = PGOOD1 XNOR PGOOD2  
0xA = ~PGOOD2  
0xB = PGOOD1 OR ~PGOOD2  
0xC = ~PGOOD1  
0xD = ~PGOOD1 OR PGOOD2  
0xE = PGOOD1 NAND PGOOD2  
0xF = VDD  
[3:0]  
GPIO3 logic function  
R/W  
0x0 = GND  
0x1 = PGOOD1 AND PGOOD2  
0x2 = PGOOD1 AND ~PGOOD2  
0x3 = PGOOD1  
0x4 = ~PGOOD1 AND PGOOD2  
0x5 = PGOOD2  
0x6 = PGOOD1 XOR PGOOD2  
0x7 = PGOOD1 OR PGOOD2  
0x8 = PGOOD1 NOR PGOOD2  
0x9 = PGOOD1 XNOR PGOOD2  
0xA = ~PGOOD2  
0xB = PGOOD1 OR ~PGOOD2  
0xC = ~PGOOD1  
0xD = ~PGOOD1 OR PGOOD2  
0xE = PGOOD1 NAND PGOOD2  
0xF = VDD  
Table 180. Register 0xFE43—PGOOD_FAULT_DEB  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
PGOOD2_OFF_DEB  
R/W  
Bit 7  
Bit 6  
Debounce (ms)  
0
0
0
0
1
1
1
0
1
150 + 10  
350 + 10  
550 + 10  
Debounce (ms)  
0
[5:4]  
[3:2]  
PGOOD2_ON_DEB  
PGOOD1_OFF_DEB  
R/W  
R/W  
Bit 5  
Bit 4  
0
0
0
1
1
1
0
1
150 + 10  
350 + 10  
550 + 10  
Debounce (ms)  
0
150 + 10  
350 + 10  
550 + 10  
Bit 3  
Bit 2  
0
0
1
1
0
1
0
1
Rev. A | Page 108 of 140  
Data Sheet  
ADP1055  
Bits  
Bit Name  
R/W  
Description  
[1:0]  
PGOOD1_ON_DEB  
R/W  
Bit 1  
Bit 0  
Debounce (ms)  
0
150 + 10  
350 + 10  
550 + 10  
0
0
1
1
0
1
0
1
Table 181. Register 0xFE44—PGOOD1_FAULT_SELECT  
Bits  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
Bit Name  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
TON_MAX_FAULT  
IOUT_UC_FAULT  
POUT_OP_FAULT  
IIN_OC_FAULT  
VIN_OV_FAULT  
VOUT_UV_FAULT  
VOUT_OV_FAULT  
IOUT_OC_FAULT  
VIN_UV_FAULT  
IIN_OC_FAST_FAULT  
IOUT_OC_FAST_FAULT  
VOUT_OV_FAST  
SOFT_START_RAMP  
OT_FAULT  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD1 flag (Bit 6 of STATUS_UNKNOWN)  
4
3
2
1
SR_OFF  
OFF  
0
Table 182. Register 0xFE45—PGOOD2_FAULT_SELECT  
Bits  
Bit Name  
R/W  
Description  
15  
14  
13  
12  
VOUT (STATUS_WORD[15])  
IOUT/POUT (STATUS_WORD[14]) R/W  
INPUT (STATUS_WORD[13])  
TEMPERATURE  
R/W  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
R/W  
R/W  
(STATUS_WORD[2])  
11  
10  
9
8
7
6
5
4
3
GPIO2/GPIO4  
GPIO1/GPIO3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
TOFF_MAX_WARN  
IOUT_UC_FAST_FAULT  
Constant current  
IIN_OC_FAST_FAULT  
IOUT_OC_FAST_FAULT  
VOUT_OV_FAST  
SOFT_START_RAMP  
SYNC_UNLOCK  
Maximum black box record  
reached  
2
1
0
Soft start filter  
R/W  
1 = this flag, if asserted, sets the PGOOD2 flag (Bit 7 of STATUS_UNKNOWN)  
Table 183. Register 0xFE46—SOFT_START_BLANKING  
Bits  
Bit Name  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
15  
14  
13  
12  
VOUT_OV_FAULT  
GPIO3/GPIO4 snubber  
TON_MAX_FAULT  
VIN_OV_FAULT  
VIN_UV_FAULT  
1 = this flag is ignored during soft start  
1 = the GPIO3/GPIO4 snubber outputs are disabled during soft start  
1 = this flag is ignored during soft start  
1 = this flag is ignored during soft start  
1 = this flag is ignored during soft start  
Rev. A | Page 109 of 140  
11  
 
 
ADP1055  
Data Sheet  
Bits  
10  
9
Bit Name  
R/W  
R/W  
R/W  
R/W  
Description  
IIN_OC_FAULT  
IOUT_OC_FAULT  
IOUT_UC_FAULT and  
IOUT_UC_FAST_FAULT  
1 = this flag is ignored during soft start  
1 = this flag is ignored during soft start  
1 = this flag is ignored during soft start  
8
7
6
5
4
3
2
1
0
POUT_OP_FAULT  
IIN_OC_FAST_FAULT  
IOUT_OC_FAST_FAULT  
VOUT_OV_FAST  
IOUT_OC_LV_FAULT  
GPIO1/GPIO3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1 = this flag is ignored during soft start  
1 = this flag is ignored during soft start  
1 = this flag is ignored during soft start  
1 = this flag is ignored during soft start  
1 = this flag is ignored during soft start  
1 = this flag is ignored during soft start  
1 = this flag is ignored during soft start  
1 = this flag is ignored during soft start  
GPIO2/GPIO4  
OT_FAULT  
Table 184. Register 0xFE47—SOFT_STOP_BLANKING  
Bits  
15  
14  
13  
12  
11  
10  
9
Bit Name  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
VOUT_OV_FAULT  
GPIO3/GPIO4 snubber  
TOFF_MAX_WARN  
VIN_OV_FAULT  
VIN_UV_FAULT  
IIN_OC_FAULT  
IOUT_OC_FAULT  
IOUT_UC_FAULT and  
IOUT_UC_FAST_FAULT  
1 = this flag is ignored during soft stop  
1 = the GPIO3/GPIO4 snubber outputs are disabled during soft stop  
1 = this flag is ignored during soft stop  
1 = this flag is ignored during soft stop  
1 = this flag is ignored during soft stop  
1 = this flag is ignored during soft stop  
1 = this flag is ignored during soft stop  
1 = this flag is ignored during soft stop  
8
7
6
5
4
3
2
1
0
POUT_OP_FAULT  
IIN_OC_FAST_FAULT  
IOUT_OC_FAST_FAULT  
VOUT_OV_FAST  
IOUT_OC_LV_FAULT  
GPIO1/GPIO3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1 = this flag is ignored during soft stop  
1 = this flag is ignored during soft stop  
1 = this flag is ignored during soft stop  
1 = this flag is ignored during soft stop  
1 = this flag is ignored during soft stop  
1 = this flag is ignored during soft stop  
1 = this flag is ignored during soft stop  
1 = this flag is ignored during soft stop  
GPIO2/GPIO4  
OT_FAULT  
Table 185. Register 0xFE48—BLACKBOX_SETTING  
Bits  
[7:3]  
[2]  
Bit Name  
R/W  
Description  
Reserved  
R
Reserved.  
Maximum record  
number  
R/W  
Sets the maximum record number at which the black box recording feature is disabled.  
0 = 150,000. Recommended when operating at <85°C.  
1 = 16,000. Recommended when operating at 125°C.  
[1:0]  
Recording options  
R/W  
Sets black box recording options before shutting down the power supply. The minimum time for  
the black box to write all the status registers into the EEPROM is approximately 1.1 ms. When black  
box writing is enabled for the save on every retry shutdown cycle, the minimum retry delay time  
must be greater than the time to write to the EEPROM (1.1 ms).  
Bit 1  
Bit 0 Options  
0
0
1
1
0
1
0
1
No recording.  
Record only telemetry just before the final shutdown.  
Record telemetry of final shutdown and all retry attempts.  
Record telemetry of final shutdown, all retry attempts, and normal unit-off per  
the CTRL pin and the OPERATION command.  
Rev. A | Page 110 of 140  
Data Sheet  
ADP1055  
Table 186. Register 0xFE49—PWM_DISABLE_SETTING  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
5
Reserved  
R
Reserved.  
SR2 disable  
SR1 disable  
OUTD disable  
OUTC disable  
OUTB disable  
OUTA disable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Setting this bit disables the SR2 output.  
Setting this bit disables the SR1 output.  
Setting this bit disables the OUTD output.  
Setting this bit disables the OUTC output.  
Setting this bit disables the OUTB output.  
Setting this bit disables the OUTA output.  
4
3
2
1
0
Table 187. Register 0xFE4A—FILTER_TRANSITION (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
7
Overshoot  
protection  
R/W  
0 = disable setpoint reference tracking.  
1 = enable setpoint reference tracking (see the Integrator Windup and Output Voltage Regulation  
Loss (Overshoot Protection) section).  
6
Overshoot speed  
R/W  
R/W  
0 = if VOUT is out of regulation for 96 out of 128 switching cycles, the reference moves to the last  
known value of VOUT (9-bit precision) and tries to return to regulation at a controlled rate given by  
the VOUT_TRANSITION_RATE command.  
1 = if VOUT is out of regulation for 48 out of 64 switching cycles, VREF tracks VOUT (9-bit precision).  
Double update rate affects this register.  
[5:3]  
HF ADC  
000 = autocorrection loop disabled.  
configuration  
001 = autocorrection loop bandwidth set to approximately 9 Hz.  
010 = autocorrection loop bandwidth set to approximately 19 Hz.  
011 = autocorrection loop bandwidth set to approximately 37 Hz.  
100 = autocorrection loop bandwidth set to approximately 75 Hz.  
101 = autocorrection loop bandwidth set to approximately 150 Hz.  
110 = autocorrection loop bandwidth set to approximately 300 Hz.  
111 = autocorrection loop bandwidth set to approximately 600 Hz.  
2
Enable soft transition R/W  
Transition speed R/W  
Enables soft transition between filter settings to minimize output transients. All four parameters of  
each filter are linearly transitioned to the new value.  
[1:0]  
The filter changes in 32 steps, with one step applied at the interval specified by these bits.  
Bit 1  
Bit 0 Speed  
0
0
1
1
0
1
0
1
32 × tSW (total transition time = 32 × 32 × tSW = 1024 × tSW)  
8 × tSW (total transition time = 8 × 32 = 256 × tSW)  
2 × tSW (total = 64 × tSW)  
1 × tSW (total = 32 × tSW)  
Table 188. Register 0xFE4B—DEEP_LLM_SETTING  
Bits  
Bit Name  
R/W  
Description  
[7:5]  
Deep LLM thresholds  
R/W  
These bits set the load current limit on the CS2 ADC below which SR1 and SR2 enter deep light  
load mode. The averaging time, debounce, and hysteresis are programmed in Register 0xFE4B.  
SR outputs are always off in pulse skip mode.  
Bit 7  
Bit 6  
Bit 5  
Thresholds (LSBs)  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
4
8
12  
16  
20  
24  
1
1
1
28  
Rev. A | Page 111 of 140  
ADP1055  
Data Sheet  
Bits  
Bit Name  
R/W  
Description  
[4:3]  
Deep light load mode  
averaging speed  
R/W  
Sets the averaging speed and resolution used for the deep light load mode thresholds. Faster  
speed corresponds to lower resolution, and therefore to smaller accuracy of the threshold.  
Bit 4  
Bit 3  
Speed (μs)  
0
0
1
1
0
1
0
1
37.5 (six bits)  
82 (seven bits)  
163 (eight bits)  
327 (nine bits)  
[2:1]  
Deep light load mode  
hysteresis  
R/W  
Sets the amount of hysteresis applied to the deep light load mode thresholds. The size of the  
LSB is affected by the speed and resolution selected in Bits[4:3]. For example, if the ADC range  
of 30 mV is used with 8-bit resolution, the LSB size is 30 mV/28 = 117.187 μV.  
Bit 2  
Bit 1  
LSBs  
3
8
12  
16  
0
0
1
1
0
1
0
1
0
Fast phase-in  
R/W  
0 = SR transition speed is always the value programmed during all transitions, as set by  
Register 0xFE5F[7:4].  
1 = the SR transition speed is the value programmed in Register 0xFE5F[7:4] for the first  
transition process (whenever that occurs after PSON according to the settings), but for every  
subsequent transition, the SR outputs transition at the fastest speed, that is, 5 ns/tSW.  
Table 189. Register 0xFE4C—DEEP_LLM_DISABLE_SETTING  
Bits  
Bit Name  
R/W  
Description  
7
SR phase-in enable  
R/W  
0 = disable SR phase-in.  
1 = enable SR phase-in.  
6
5
4
3
2
1
0
OUTD disable  
OUTC disable  
OUTB disable  
OUTA disable  
SR2 disable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Setting this bit means that OUTD is disabled if the load current drops below the deep light load  
threshold.  
Setting this bit means that OUTC is disabled if the load current drops below the deep light load  
threshold.  
Setting this bit means that OUTB is disabled if the load current drops below the deep light load  
threshold.  
Setting this bit means that OUTA is disabled if the load current drops below the deep light load  
threshold.  
Setting this bit means that SR2 are disabled if the load current drops below the deep light load  
threshold.  
SRs enable during soft  
stop  
Setting this bit means that SR2 are disabled if the load current drops below the deep light load  
threshold.  
SRs enable during soft  
stop  
Setting this bit reenables the SRs during soft stop to facilitate discharging the load. The  
recommended setting is 1.  
Table 190. Register 0xFE4D—OVP_FAULT_CONFIG  
Bits Bit Name  
R/W  
Description  
7
6
5
4
VDD/VCORE OV fault ignore R/W  
0 = VDD OV and VCORE OV flags are not ignored  
1 = VDD OV and VCORE OV flags are ignored  
0 = do not download EEPROM again following a fault shutdown  
1 = download EEPROM following a fault shutdown  
0 = 2 μs + 1 μs debounce  
VDD/VCORE OV restart  
VDD/VCORE OV debounce  
VDD UV debounce  
R/W  
R/W  
R/W  
1 = 500 μs + 10 μs debounce  
0 = no debounce  
1 = 120 ns debounce  
Rev. A | Page 112 of 140  
Data Sheet  
ADP1055  
Bits Bit Name  
R/W  
Description  
[3:2] VOUT_OV sampling  
R/W  
Bit 3 Bit 2 Sampling  
0
0
0
1
One sample sets the VOUT_OV flag (80 μs sampling period)  
Two consecutive samples that read a value greater than the one set in  
VOUT_OV_FAULT_LIMIT set the VOUT_OV flag (160 μs sampling period)  
1
1
0
1
Three consecutive samples that read a value greater than the one set in  
VOUT_OV_FAULT_LIMIT set the VOUT_OV flag (240 μs sampling period)  
Four consecutive samples that read a value greater than the one set in  
VOUT_OV_FAULT_LIMIT set the VOUT_OV flag (320 μs sampling period)  
[1:0] Reserved  
Reserved  
Table 191. Register 0xFE4E—CS1_SETTING  
Bits Bit Name  
Reserved  
[6:4] CS1 fast OCP blanking  
R/W  
Description  
7
R
Reserved.  
R/W  
Set the CS1 fast OCP blanking time to 0 ns, 40 ns, 80 ns, 120 ns, 200 ns, 400 ns, 600 ns,  
or 800 ns.  
3
CS1 fast OCP bypass  
R/W  
R/W  
Setting this bit means that the GPIO1 pin is used for CS1 fast OCP instead of the CS1 pin.  
[2:0] CS1 fast OCP timeout  
Set the number of consecutive switching cycles with a CS1 OCP condition before the  
IIN_OC_FAST_FAULT flag is set: 1, 4, 16, 128, 256, 384, 512, or 1024.  
Table 192. Register 0xFE4F—CS2_SETTING  
Bits Bit Name  
R/W  
R/W  
R/W  
Description  
7
CC turbo mode  
Reduces the CS2 average time from 328 μs to 41 μs for CC mode.  
[6:4] CS2 fast OCP  
timeout  
Sets the number of consecutive switching cycles with a CS2 OCP condition before the  
IOUT_OC_FAST_FAULT flag is set: 1, 4, 16, 128, 256, 384, 512, or 1024.  
3
Peak constant  
current mode  
R/W  
R/W  
When this bit is set, CS2 fast OCP cycle-by-cycle protection on OUTA to OUTD is disabled. The CS2 fast  
OCP timeout is still active.  
2
Average constant  
current disable  
0 = average constant current mode is enabled/disabled, as defined by PMBus.  
Threshold = IOUT_OC_FAULT_LIMIT.  
ILIM = IOUT_OC_FAULT_LIMIT × (100 + percentage), where percentage and polarity are defined in  
Register 0xFE5D[3:0]. The current fault response is PMBus compliant.  
1 = average constant current mode is always on (not PMBus compliant).  
Threshold = ILIM = IOUT_OC_FAULT_LIMIT × (100 percentage), where percentage and polarity are  
defined in Register 0xFE5D[3:0].  
Current fault response defaults to these settings (Response Bits[7:6]).  
00 = ignore fault.  
01 = ignore fault.  
10 = ignore fault.  
11 = shut down, disable the output, and respond as programmed in retry setting (Bits[5:3]).  
Sets the CS2 ADC range.  
[1:0] CS2 range  
R/W  
Bit 1  
Bit 0  
ADC Range (mV)  
30 (low-side sensing)  
60 (low-side sensing)  
480 (high-side sensing)  
Reserved  
0
0
1
1
0
1
0
1
Rev. A | Page 113 of 140  
ADP1055  
Data Sheet  
Table 193. Register 0xFE50—PULSE_SKIP_AND_SHUTDOWN  
Bits Bit Name  
R/W  
Description  
[7:6] Addition PS on time after  
end of soft stop ramp  
R/W  
To allow any negative current to dissipate, PWM outputs such as the SR outputs are kept active  
after the soft stop ramp-down.  
Bit 7 Bit 6 LSBs  
0
0
No additional on time at the end of soft stop. All PWM outputs are shut off  
immediately at end of ramp. The SR PWM outputs continue to increase their  
modulation limit and completely turn on for the entire switching cycle after  
the maximum limit is reached.  
0
1
1
1
0
1
2 ms of extra on time.  
4 ms of extra on time.  
8 ms of extra on time.  
5
4
Instant SR transition  
Pulse killer mode  
R/W  
R/W  
1 = SR outputs move from LLM to normal mode instantly.  
0 = SR outputs transition from one mode to another (LLM to CCM or CCM to LLM) at the phase-in  
speed (recommended).  
Register 0xFE50[0] kills all PWM outputs that are modulated. However, this bit kills all PWM  
outputs whether modulated or not (useful for FBPS topology where there are two fixed duty  
cycle PWM outputs).  
1 = kill all PWM outputs during pulse skip.  
0 = do not kill all PWM outputs during pulse skip.  
3
End-of-cycle shutdown  
R/W  
0 = all PWM outputs are disabled immediately on a shutdown condition.  
1 = all PWM outputs are disabled at the end of the switching cycle on a shutdown condition.  
2
1
Soft stop pulse skipping  
enable  
R/W  
R/W  
If set, allow pulse skipping during soft stop (regardless of value of Bit 1). However, SR1 and SR2  
never pulse skip during soft stop.  
Pulse skipping enable  
0 = disable.  
1 = enable.  
0
Pulse skipping zero PWM  
R/W  
0 = pulse skipping drives all modulated PWM outputs to 0 V.  
1 = sets all modulated edges to t = 0.  
Table 194. Register 0xFE51—SOFT_START_SETTING  
Bits Bit Name  
R/W  
Description  
7
6
Soft stop enable for  
current faults  
R/W  
0 = disable soft stop on a current fault.  
1 = enable soft stop on a current fault.  
0 = disable soft stop on a voltage fault.  
1 = enable soft stop on a voltage and other fault.  
Soft stop enable for other R/W  
faults  
[5:3] SR phase-in speed up  
factor during soft stop  
R/W  
During the soft stop process, these bits increase the SR edge transitioning speed that is  
specified by Register 0xFE5F[7:4]. The speed-up factor is 2x where x is this 3-bit number. The  
maximum speed of the SR edge is 40 ns per tSW.  
For example, if Register 0xFE5F specifies 5 ns per 4 tSW, setting these three bits to 2 increases  
the SR speed to 5 ns per tSW (5 ns/4tSW × 22). Setting these bits to 3 increases the SR speed to  
10 ns per tSW (5 ns/4tSW × 23). Setting these bits to 7 increases the SR speed to 40 ns per tSW (the  
maximum rate). A smaller value means slower SR transitioning.  
2
1
Force soft start filter  
R/W  
R/W  
1 = soft start filter is used regardless of whether the low temperature filter is active or not.  
0 = allow switching to DCM filter during soft start.  
1 = never switch to DCM filter during soft start.  
Disable light load filter  
during soft start  
0
Soft start from precharge  
R/W  
Setting this bit to 1 enables the soft start from precharge function. When this function is  
enabled, the soft start ramp starts from the last known value of the voltage detected on VS .  
Rev. A | Page 114 of 140  
 
Data Sheet  
ADP1055  
Table 195. Register 0xFE52—SR_DELAY  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
SR blanking  
R/W  
These bits add blanking to the reverse current comparator from the falling edges of the SR LLM  
edges. Adding dead time to the SR edges effectively gives additional blanking. When the SR  
outputs are disabled upon a negative going zero crossing transition, they remain disabled for a  
period of 327 μs to 754 μs to ensure that the comparator is not falsely triggered.  
Bit 7  
Bit 6  
Blanking (ns)  
0
0
1
1
0
1
0
1
40  
80  
120  
160  
[5:0]  
SR driver delay  
R/W  
These bits specify the 6-bit representation of the SR delay in steps of 5 ns.  
000000 = 0 ns.  
000001 = 5 ns.  
000010 = 10 ns.  
111111 = 63 × 5 ns = 315 ns.  
Table 196. Register 0xFE53—MODULATION_LIMIT  
Bits  
Bit Name  
R/W  
R/W  
R/W  
Description  
7
Full bridge mode  
Modulation limits  
Enable this bit when operating in full bridge mode. It affects the modulation high limit.  
[6:0]  
This value sets the minimum/maximum modulation limits relative to the nominal edge value. The  
resolution depends on the switching frequency range.  
Switching Frequency Range (kHz)  
48.8 to 97.7  
97.7 to 195.3  
195.3 to 390.6  
390.6 to 781  
Resolution Corresponding to LSB  
Register 0xFE53[6:0] × 32 × 5 ns  
Register 0xFE53[6:0] × 16 × 5 ns  
Register 0xFE53[6:0] × 8 × 5 ns  
Register 0xFE53[6:0] × 4 × 5 ns  
Register 0xFE53[6:0] × 2 × 5 ns  
f
SW > 781  
Table 197. Register 0xFE55—SYNC (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
7
Bit Name  
Reserved  
PLL disable  
R/W  
R
Description  
Reserved.  
6
R/W  
0 = enable SYNC function.  
1 = disable SYNC function.  
[5:2]  
1
Reserved  
R
Reserved.  
Jitter enable  
R/W  
R/W  
1 = enable jitter on clock (to randomize frequency components).  
0
5 ns resolution  
enable  
0 = tSW varies in multiples of 10 ns (50% point is synchronized with 5 ns; see the External Frequency  
Synchronization section).  
1 = tSW varies in multiples of 5 ns.  
Table 198. Register 0xFE56—DUTY_BAL_EDGESEL  
Bits  
Bit Name  
R/W  
Description  
[7:4]  
Positive integration R/W  
of PWM outputs  
1 = selects the PWM outputs to be AND’ed together for positive integration  
Bit 7 = OUTA  
Bit 6 = OUTB  
Bit 5 = OUTC  
Bit 4 = OUTD  
[3:0]  
Negative integration R/W  
of PWM outputs  
1 = selects the PWM outputs to be AND’ed together for negative integration  
Bit 3 = OUTA  
Bit 2 = OUTB  
Bit 1 = OUTC  
Bit 0 = OUTD  
Rev. A | Page 115 of 140  
ADP1055  
Data Sheet  
Table 199. Register 0xFE57—DOUBLE_UPD_RATE (Requires Use of the GO Bit in Register 0xFE00)  
Bits Bit Name  
R/W  
Description  
0 = disable.  
1 = enable.  
7
6
Enable duty balance  
R/W  
Enable OCP duty  
equalization  
R/W  
R/W  
1 = enable OCP duty equalization. When OCP occurs, shut down any OUTx that is high and  
generate an equalizing OCP to balance the complementary output. Refer to Register 0xFE56  
for the selection of PWM outputs.  
[5:4] Duty balance  
averaging time  
These bits control how rapidly the misbalance information is used to correct for imbalance.  
Bit 5  
Bit 4  
Time  
0
0
1
1
0
1
0
1
Normal value: cycle-by-cycle integral is divided by 8 and applied to OUTx.  
2× faster: cycle-by-cycle integral is divided by 4 and applied to OUTx.  
4× faster: cycle-by-cycle integral is divided by 2 and applied to OUTx.  
8× faster: no averaging; cycle-by-cycle integral is applied on the next cycle  
to OUTx.  
3
Reserved  
R/W  
R/W  
Set to 0 for proper operation.  
[2:1] Duty balance and VS  
balance limit  
To balance OUTA and OUTB, time is added to or subtracted from OUTA and OUTB and added to or  
subtracted from OUTC and OUTD, as in VS balance. These bits set the maximum balance value.  
Bit 2  
Bit 1  
Limit (ns)  
0
0
1
1
0
1
0
1
160  
80  
40  
20  
0
Enable double update R/W  
rate  
0 = disable.  
1 = enable.  
The VIN_SCALE_MONITOR command sets the gain (KVIN) by which the input sensed voltage at the DUT (VIN_DUT) is scaled to generate  
the reading for the READ_VIN command. READ_VIN = VIN_DUT × KVIN, where KVIN = Y × 2N.  
Table 200. Register 0xFE58—VIN_SCALE_MONITOR  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
The IIN_CAL_GAIN command sets the ratio of the voltage at the input current sense pins to the sensed current (in ohms).  
Table 201. Register 0xFE59—IIN_CAL_GAIN  
Bits  
[15:11] Exponent-N  
[10:0] Mantissa-Y  
Bit Name  
R/W  
R/W  
R/W  
Description  
Twos complement N-exponent used in linear data format (X = Y × 2N).  
Twos complement Y-mantissa used in linear data format (X = Y × 2N).  
The TSNS_SETTING command is the temperature sensor current select.  
Table 202. Register 0xFE5A—TSNS_SETTING  
Bits Bit Name  
R/W  
R/W  
R/W  
Description  
7
Enable reverse diode  
1 = enable external reverse temperature sensor  
[6:5] Resolution  
11 = 11 bit  
10 = 12 bit  
01 = 13 bit  
00 = 14 bit  
4
3
Reserved  
R/W  
Set this bit to 0 for proper operation.  
Temperature sense level R/W  
shift disable  
0 = enable internal diode level shifter during external TJ sense. This setting is recommended for a  
single-ended (PN) diode connected between JTD and AGND.  
1 = disable internal diode level shifter during external TJ sense. This setting is recommended for  
differential sensing.  
[2:0] Temperature sense  
current select  
R/W  
Set these bits to 0x04 for proper operation (10 μA).  
Rev. A | Page 116 of 140  
Data Sheet  
ADP1055  
Table 203. Register 0xFE5B—AUTO_GO_CMD  
Bits Bit Name  
R/W  
Description  
[7:2] Reserved  
R
Reserved.  
1
0
Frequency auto-go  
enable  
R/W  
0 = GO_CMD, Bit 2 (Register 0xFE00) is required to latch the programmed frequency in  
FREQUENCY_SWITCH into the internal loop frequency.  
1 = write to FREQUENCY_SWITCH is automatically latched into the internal loop switching  
frequency.  
VREF auto-go enable  
R/W  
0 = GO_CMD, Bit 0 (Register 0xFE00) is required to latch the programmed reference voltage in  
VOUT_COMMAND into the internal loop frequency.  
1 = write to any commands affecting the reference voltage is automatically latched into the  
internal loop reference voltage.  
Commands that affect the reference voltage include VOUT_COMMAND, VOUT_MODE,  
VOUT_MAX, VOUT_TRIM, VOUT_CAL_OFFSET, VOUT_SCALE_LOOP, and VOUT_DROOP.  
Table 204. Register 0xFE5C—DIODE_EMULATION  
Bits Bit Name  
R/W  
Description  
[7:5] SR debounce  
R/W  
These bits delay the onset of LLM or CCM when the light load mode or deep light load mode  
threshold is crossed. The device transitions from CCM to LLM based on the debounce time  
specified using these bits and the light load mode threshold. The same is true when the device  
transitions from LLM to CCM and is also valid for deep light load mode.  
For example, if the device is in CCM and the load current step places the device in LLM, the  
device physically enters LLM, that is, the SR outputs start phasing after the debounce time set by  
these bits. The same debounce time delays the entry to DCM.  
Entering deep light load mode is possible only if the ADP1055 is already in DCM (that is, the  
device is already below the DCM threshold) and SR transitioning is finished.  
Bit 7  
Bit 6  
Bit 5  
Debounce Time (tSW)  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
64  
128  
256  
512  
768  
1152  
1
1
1
2048  
[4:2] Reserved  
R
Reserved.  
1
Diode emulation mode  
R/W  
0 = disable diode emulation mode (SR LLM and deep LLM are active if the thresholds are  
correctly set).  
1 = enable diode emulation mode (SR LLM setting is disabled. Only deep LLM is active if the  
threshold is correctly set). Once the SR outputs are disabled upon a negative going zero crossing  
transition, they are disabled for a period of 327 μs to 754 μs to ensure that the comparator is not  
falsely triggered.  
0
SR toggle rate in diode  
emulation mode  
R/W  
0 = SR outputs toggle once in one tSW.  
1 = SR outputs toggle twice in one tSW (recommended setting).  
Table 205. Register 0xFE5D—CS2_CONST_CUR_MODE  
Bits  
[7:6]  
[5:4]  
Bit Name  
R/W  
Description  
Reserved  
R
Reserved.  
Slew rate during CC mode  
(turbo mode only)  
R/W  
00 = Nominal slew rate of (8 × 1.18) V/sec  
Setting 00 provides 2x nominal at VS pins in CC turbo mode  
01 = 16×  
10 = 24×  
11 = 32×  
3
CC mode thresholds polarity R/W  
0 = positive (% above OCP limit)  
1 = negative (% below OCP limit)  
Rev. A | Page 117 of 140  
 
ADP1055  
Data Sheet  
[2:0]  
CC mode thresholds  
R/W  
Percentage above or below OCP limit (IOUT_OC_FAULT_LIMIT)  
00 = 0%  
001 = 3.125%  
010 = 6.25%  
011 = 12.5%  
100 = 25%  
101 = 50%  
11x = 100%  
The NL_ERR_GAIN_FACTOR register applies nonlinear gain. Bits[7:6] apply nonlinear gain to the 1% to 2% range, where the total  
ADC range is 5% of 1 V, that is, 50 mV. Bits[5:4] apply nonlinear gain to the 2% to 3.2% range, where the total ADC range is 5% of 1 V,  
that is, 50 mV. Bits[3:2] apply nonlinear gain to the 3.2% to 3.9% range, where the total ADC range is 5% of 1 V, that is, 50 mV.  
Bits[1:0] apply nonlinear gain to the 3.9% and greater range, where the total ADC range is 5% of 1 V, that is, 50 mV.  
Table 206. Register 0xFE5E—NL_ERR_GAIN_FACTOR (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
Nonlinear gain,  
1% to 2% range  
R/W  
Bit 7  
Bit 6  
Gain  
0
0
1× gain  
0
1
1
1
0
1
2× gain or 1.25× (see Register 0xFE29[0])  
4× gain or 1.5× (see Register 0xFE29[0])  
8× gain or 2× (see Register 0xFE29[0])  
Gain  
[5:4]  
[3:2]  
[1:0]  
Nonlinear gain,  
2% to 3.2% range  
R/W  
R/W  
R/W  
Bit 5  
Bit 4  
0
0
1
1
0
1
0
1
1× gain  
2× gain or 1.25× (see Register 0xFE29[0])  
4× gain or 1.5× (see Register 0xFE29[0])  
8× gain or 2× (see Register 0xFE29[0])  
Gain  
Nonlinear gain,  
3.2% to 3.9% range  
Bit 3  
Bit 2  
0
0
1
1
0
1
0
1
1× gain  
2× gain or 1.25× (see Register 0xFE29[0])  
4× gain or 1.5× (see Register 0xFE29[0])  
8× gain or 2× (see Register 0xFE29[0])  
Gain  
Nonlinear gain,  
Bit 1  
Bit 0  
3.9% or greater range  
0
0
1
1
0
1
0
1
1× gain  
2× gain or 1.25× (see Register 0xFE29[0])  
4× gain or 1.5× (see Register 0xFE29[0])  
8× gain or 2× (see Register 0xFE29[0])  
Rev. A | Page 118 of 140  
Data Sheet  
ADP1055  
Table 207. Register 0xFE5F—SR_SETTING  
Bits Bit Name  
R/W  
Description  
[7:4] SR phase-in  
speed  
R/W  
SR edges move by 5 ns every 1/2/4/8/16/32/64/128/256/384/512/640/768/832/960/1024 (total of 16).  
SR outputs are always phased in during soft start, soft stop, and all mode transitions; for example, if SR  
outputs enter pulse skip or are disabled, they turn on again at the phase-in speed selected by these  
bits.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Multiplier  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
2
4
8
16  
32  
64  
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
128  
256  
384  
512  
640  
768  
832  
1
1
1
1
1
1
0
1
960  
1024  
[3:1] SR LLM threshold R/W  
These bits set the load current limit on the CS2 ADC below which SR1 and SR2 enter the light load mode  
(SR on during forward conduction only). Averaging time, debounce, and hysteresis are the same  
values set in Register 0xFE4B.  
Bit 3  
Bit 2  
Bit 1  
Thresholds (LSBs)  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
4
8
12  
16  
20  
24  
1
1
1
28  
0
Blank SR during  
soft start  
R/W  
1 = blank SR during soft start.  
Table 208. Register 0xFE60—NOMINAL_TEMP_POLE  
Bits Bit Name  
R/W  
Description  
[7:0] ADD_PZ  
R/W  
Additional pole/zero setting. A value of 0 disables ADD_PZ.  
The analog frequency (in rad/sec) is located at w = ln(reg_val/256)/tSW, where tSW is the switching  
period and reg_val is the contents of Register 0xFE60 and Register 0xFE61 in decimal format.  
Table 209. Register 0xFE61—LOW_TEMP_POLE  
Bits Bit Name  
R/W  
Description  
[7:0] ADD_PZ  
R/W  
Additional pole/zero setting. A value of 0 disables ADD_PZ.  
The analog pole frequency in rad/sec is located at w = ln(0xFE61[7:0]/256)/tSW, where tSW is the  
switching period.  
Rev. A | Page 119 of 140  
ADP1055  
Data Sheet  
Table 210. Register 0xFE62—LOW_TEMP_SETTING  
Bits Bit Name  
R/W Description  
7
ADD_PZ configuration  
R/W 0 = ADD_PZ is configured as a digital pole.  
1 = ADD_PZ is configured as a digital zero.  
[6:4] Low temperature  
threshold  
R/W If non-zero, the filter switches from the NMF (normal mode filter) to the SS filter (soft start filter) in  
steps of 4°C.  
000 = regular filter operation independent of temperature unless the sensing point (configured in  
Bits[1:0]) is set to GPIO2 (the filter then changes based on the GPIO2 pin).  
001 = below −14°C, the soft start filter is used for regulation instead of the normal mode filter.  
010 = below −10°C, the soft start filter is used for regulation instead of the normal mode filter.  
011 = below −6°C, the soft start filter is used for regulation instead of the normal mode filter.  
100 = below −2°C, the soft start filter is used for regulation instead of the normal mode filter.  
101 = below +2°C, the soft start filter is used for regulation instead of the normal mode filter.  
110 = below +6°C, the soft start filter is used for regulation instead of the normal mode filter.  
111 = below +10°C, the soft start filter is used for regulation instead of the normal mode filter.  
[3:2] Low temperature  
hysteresis  
R/W Each bit is 5°C of hysteresis.  
00 = 5°C.  
01 = 10°C.  
10 = 15°C.  
11 = 20°C.  
[1:0] Low temperature  
sensing point  
R/W 00 = reserved.  
01 = external FWD temperature sensing.  
10 = external REV temperature sensing.  
11 = rising edge of GPIO2.  
Table 211. Register 0xFE63—GPIO3_4_SNUBBER_ON_TIME  
Bits  
Bit Name  
R/W Description  
[7:0]  
Snubber on time  
R/W Maximum on time of GPIO3/GPIO4 (if SR/OUTC/OUTD goes high, then the GPIO3/GPIO4 output  
goes low/high) in units of 20 ns  
0x00 = 0 ns  
0x01 = 20 ns  
0xFE = 5.08 μs  
0xFF = on until SRx goes high or OUTC or OUTD goes low  
Table 212. Register 0xFE64—GPIO3_4_SNUBBER_DELAY  
Bits Bit Name  
R/W Description  
[7:6] GPIO4 snubber enable  
R/W 00 = disable active snubber on GPIO3/GPIO4.  
01 = only GPIO3 is active snubber. GPIO3 goes high after the snubber delay time in  
Register 0xFE64[5:0].  
10 = only GPIO4 is active snubber. GPIO4 goes high after the snubber delay time in  
Register 0xFE64[5:0].  
11 = GPIO3 and GPIO4 are active snubber outputs. GPIO3 is the inverse of SR1 or OUTC; GPIO4 is  
the inverse of SR2 or OUTC, depending on Register 0xFE65[7].  
[5:0] Snubber delay  
R/W Dead time delay from fall of SR to rise of GPIO3/GPIO4, in units of 5 ns, regardless of the polarity of  
GPIO3/GPIO4.  
0x00 = 0 ns.  
0x01 = 5 ns.  
0x3F = 315 ns.  
Rev. A | Page 120 of 140  
Data Sheet  
ADP1055  
Table 213. Register 0xFE65—VOUT_DROOP_SETTING  
Bits  
Bit Name  
R/W  
Description  
7
Snubber selection  
R/W  
0 = falling edge of SRx is used to activate the snubber.  
1 = falling edge of OUTC or OUTD is used to activate the snubber.  
Reserved.  
[6:3]  
2
Reserved  
R
Disable VOUT_  
R/W  
1 = disable. The voltage reference immediately jumps to the value set by VOUT_COMMAND.  
TRANSITION_RATE  
0 = enable. The output voltage changes from one value to another as programmed by the  
VOUT_TRANSITION_RATE command.  
[1:0]  
VOUT_DROOP  
sampling rate  
R/W  
For the purposes of VOUT_DROOP, IOUT is sampled at the following intervals:  
00 = 7 bits = 82 μs.  
01 = 8 bits = 164 μs.  
10 = 9 bits = 327 μs.  
11 = 10 bits = 655 μs.  
Table 214. Register 0xFE66—NC_BURST_MODE (Requires Use of the GO Bit in Register 0xFE00)  
Bits  
Bit Name  
R/W  
Description  
[7:6]  
ADC threshold  
R/W  
Burst occurs if the ADC error exceeds the specified threshold.  
00 = error threshold > | 1%| of 1 V (that is, 10 mV)  
01 = error threshold > | 2%| of 1 V (that is, 20 mV)  
10 = error threshold > | 3%| of 1 V (that is, 30 mV)  
11 = error threshold > | 4%| of 1 V (that is, 40 mV)  
Set to 0 for no burst  
[5:3]  
2
Number of burst  
cycles  
R/W  
R/W  
Enable burst in  
LLM/DEM only  
1 = burst in light load mode and diode emulation mode only (not in CCM)  
0 = burst in any mode  
[1:0]  
Burst magnitude  
R/W  
Magnitude of burst in percentage of duty cycle that is added to the present duty cycle  
00 = 6.25%  
01 = 12.5%  
10 = 25%  
11 = 50%  
Table 215. Register 0xFE67—HF_ADC_CONFIG  
Bits  
Bit Name  
R/W  
Description  
[7:4]  
HF ADC samples  
R/W  
These bits specify the number of samples taken by the flash ADC for loop regulation. The number  
of samples ranges from 1 (Bits[7:4] = 0000) to 16 (Bits[7:4] = 1111). Following are suggested values  
depending on the frequency range and whether double update rate is enabled.  
Frequency Range (kHz)  
fSW ≤ 250  
250 < fSW ≤ 300  
300 < fSW ≤ 724.638  
724.638 < fSW ≤ 1000  
Double Update Rate Enabled Double Update Rate Disabled  
1111 (16 samples)  
0111 (8 samples)  
0011 (4 samples)  
0001 (2 samples)  
1111 (16 samples)  
1111 (16 samples)  
1111 (16 samples)  
0111 (8 samples)  
[3:0]  
Reserved  
R/W  
Set these bits to 000 for proper operation.  
Table 216. Register 0xFE80—VS_TRIM  
Bits  
Bit Name  
R/W  
Description  
7
Gain polarity  
R/W  
1 = negative gain is introduced.  
0 = positive gain is introduced.  
[6:0]  
Gain trim  
R/W  
These bits set the amount of gain trim that is applied to the VS ADC reading. This register trims  
the voltage at the VS pins for external resistor tolerances. The VS trim must be performed before  
the load OVP and load UVP trims are performed. The total range for these bits is 6.25%. The  
LSB = (6.25%)/128.  
Rev. A | Page 121 of 140  
 
ADP1055  
Data Sheet  
Table 217. Register 0xFE81—VFF_GAIN_TRIM  
Bits Bit Name  
R/W  
Description  
7
Gain polarity  
R/W  
1 = negative gain is introduced.  
0 = positive gain is introduced.  
[6:0] Gain trim  
R/W  
These bits set the gain trim for the VFF ADC. Total range is 12.5% with 128 steps in the positive direction  
and 127 steps in the negative direction, and the LSB = 12.5%/128.  
Table 218. Register 0xFE82—CS1_GAIN_TRIM  
Bits Bit Name  
R/W  
Description  
7
Gain polarity  
R/W  
1 = negative gain is introduced.  
0 = positive gain is introduced.  
[6:0] Gain trim  
R/W  
These bits set the gain trim for the primary side current gain. Total range is 12.5% with 128 steps in the  
positive direction and 127 steps in the negative direction, and the LSB = 12.5%/128.  
Table 219. Register 0xFE86—TSNS_EXTFWD_GAIN_TRIM  
Bits Bit Name  
R/W  
Description  
[7:0] Gain trim  
R/W  
Gain trim in twos complement added to scaling factor (977 for 10-bit resolution set) for external forward  
diode temperature measurement. For example,  
Register 0xFE5A[6:5] = 00 corresponds to an increase in gain by 1/489%  
Register 0xFE86 = 0x01 corresponds to an increase in gain by 1/977%  
Register 0xFE86 = 0x02 corresponds to an increase in gain by 2/977%  
Table 220. Register 0xFE87—TSNS_EXTFWD_OFFSET_TRIM  
Bits Bit Name  
R/W  
Description  
[7:0] Offset trim  
R/W  
Offset trim added to the acquisition result of the forward diode temperature measurement; 1 LSB  
corresponds to 0.0156°C, in twos complement format. Maximum correction is 2°C.  
Table 221. Register 0xFE88—TSNS_EXTREV_GAIN_TRIM  
Bits Bit Name  
R/W  
Description  
[7:0] Gain trim  
R/W  
Gain trim in twos complement added to scaling factor (977 for 10-bit resolution set) for external reverse  
diode temperature measurement. For example,  
Register 0xFE88 = 0x01 corresponds to an increase in gain by 1/977%  
Register 0xFE88 = 0x02 corresponds to an increase in gain by 2/977%  
Table 222. Register 0xFE89—TSNS_EXTREV_OFFSET_TRIM  
Bits Bit Name  
R/W  
Description  
[7:0] Offset trim  
R/W  
Offset trim added to the acquisition result of the reverse diode temperature measurement; 1 LSB  
corresponds to 0.0156°C, in twos complement format. Maximum correction is 2°C.  
Table 223. Register 0xFE8C—FAULT_VOUT  
Bits Bit Name  
R/W  
Description  
[7:0] FAULT_VOUT  
R
Unlatched fault conditions after debounce (see STATUS_VOUT for latched version)  
Table 224. Register 0xFE8D—FAULT_IOUT  
Bits Bit Name  
R/W  
Description  
[7:0] FAULT_IOUT  
R
Unlatched fault conditions after debounce (see STATUS_IOUT for latched version)  
Table 225. Register 0xFE8E—FAULT_INPUT  
Bits Bit Name  
R/W  
Description  
[7:0] FAULT_INPUT  
R
Unlatched fault conditions after debounce (see STATUS_INPUT for latched version)  
Rev. A | Page 122 of 140  
Data Sheet  
ADP1055  
Table 226. Register 0xFE8F—FAULT_TEMPERATURE  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
FAULT_TEMPERATURE  
R
Unlatched fault conditions after debounce (see STATUS_TEMPERATURE for latched version)  
Table 227. Register 0xFE90—FAULT_CML  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
FAULT_CML  
R
Unlatched fault conditions after debounce (see STATUS_CML for latched version)  
Table 228. Register 0xFE91—FAULT_OTHER  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
FAULT_OTHER  
R
Unlatched fault conditions after debounce (see STATUS_OTHER for latched version)  
Table 229. Register 0xFE92—FAULT_MFR_SPECIFIC  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
FAULT_MFR_SPECIFIC  
R
Unlatched fault conditions after debounce (see STATUS_MFR_SPECIFIC for latched version)  
Table 230. Register 0xFE93—FAULT_UNKNOWN  
Bits  
Bit Name  
R/W  
Description  
[15:0]  
FAULT_UNKNOWN  
R
Unlatched fault conditions after debounce (see STATUS_UNKNOWN for latched version)  
Table 231. Register 0xFE94—STATUS_UNKNOWN  
Bits  
Bit Name  
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
15  
EEPROM unlocked  
Adaptive dead time  
Soft start filter  
The EEPROM is unlocked.  
14  
Adaptive dead time threshold has been crossed.  
The soft start filter is in use.  
13  
12  
Soft start ramp  
The reference is being ramped up (soft start) or ramped down (soft stop).  
or soft stop ramp  
11  
10  
Modulation limit  
R/W  
R/W  
Modulation is at its minimum or maximum limit.  
Volt-second and  
Volt-second balance or duty balance at is the maximum/minimum limit.  
duty balance limit  
9
8
7
6
5
4
Light load mode  
Constant current  
PGOOD2 fault  
PGOOD1 fault  
Sync unlock  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The device is in light load mode.  
Power supply is operating in constant current mode (constant current mode is enabled).  
PGOOD2 fault. At least one of the flags listed in Register 0xFE45 has been set (see Table 182).  
PGOOD1 fault. At least one of the flags listed in Register 0xFE44 has been set (see Table 181).  
Sync mode is enabled, but unit not locked to sync input frequency.  
SR off  
Synchronous rectifiers SR1 and SR2 are disabled. This flag is set when one of the following cases  
is true: SR1 and SR2 are disabled by the user; the load current has fallen below the threshold in  
Register 0xFE4B[7:5]; a fault has been set that was configured to disable the synchronous  
rectifiers; or SR outputs are blanked during soft start and during a pulse skip condition.  
3
2
1
Address warning  
VCORE OV  
R/W  
R/W  
R/W  
I2C/PMBus address warning. ADD resistor value out-of-range.  
2.5 V VCORE is above limit. Action is set to immediate shutdown.  
VDD OV  
VDD is above limit. The I2C interface stays functional, but a unit power-off/power-on sequence  
is required to restart the power supply. The response to a VDD overvoltage is programmable in  
Register 0xFE4D[6].  
0
VDD UV  
R/W  
VDD is below limit. The response to a VDD undervoltage immediate shutdown.  
Rev. A | Page 123 of 140  
ADP1055  
Data Sheet  
Table 232. Register 0xFE95—FIRST_FAULT_ID  
Bits  
Bit Name  
R/W  
Description  
[7:0]  
First-fault ID (in hex)  
R
0x00 = no fault  
0x01 = VOUT_OV  
0x02 = VOUT_OV_FAST  
0x03 = VOUT_UV  
0x04 = IOUT_OC_LV  
0x05 = VIN_OV  
0x06 = VIN_UV  
0x07 = OT  
0x08 = TON_MAX  
0x09 = POUT_OP  
0x0A = GPIO1  
0x0B = GPIO2  
0x0C = GPIO3  
0x0D = GPIO4  
0x0E = IOUT_OC  
0x0F = IOUT_OC_FAST  
0x10 = IOUT_UC  
0x11 = IOUT_UC_FAST  
0x12 = IIN_OC  
0x13 = IIN_OC_FAST  
0x14 = ISHARE  
Table 233. Register 0xFE96—VFF_VALUE  
Bits  
Bit Name  
R/W  
Description  
[15:0] VFF value  
R
This register contains the feedforward information. This value has 12 bits of resolution from  
Bit 13 to Bit 2.  
Table 234. Register 0xFE97—VS_VALUE  
Bits  
[15:0] VS value  
(output voltage)  
Bit Name  
R/W  
Description  
R
This register contains the output voltage information. This value has 12 bits of resolution from  
Bit 13 to Bit 2.  
Table 235. Register 0xFE98—CS1_VALUE  
Bits  
[15:0] CS1 value  
(input current)  
Bit Name  
R/W  
Description  
R
This register contains the input current information. This value has 12 bits of resolution from Bit  
13 to Bit 2.  
Table 236. Register 0xFE99—CS2_VALUE  
Bits  
[15:0] CS2 value  
(output current)  
Bit Name  
R/W  
Description  
R
This register contains the 12-bit output current information. This value is the voltage drop  
across the sense resistor. To obtain the current value, divide the value of this register by the  
sense resistor value. The CS2 pins have a full-scale input range of 30 mV, 60 mV, or 480 mV (set  
in Register 0xFE4F[1:0]).  
When the CS2 input range is set to 30 mV, the LSB step size is 7.32 ꢀV. For example, at a 15 mV  
input signal on CS2, the value in this register is 15 mV/7.32 ꢀV = 1000 0000 0000.  
Table 237. Register 0xFE9A—POUT_VALUE  
Bits  
Bit Name  
R/W  
Description  
[15:0] CS2 × VS value  
(output power)  
R
This register contains the 16-bit output power information. This value is the product of the  
remote output voltage value (VS) and the output current reading (CS2).  
Rev. A | Page 124 of 140  
Data Sheet  
ADP1055  
Table 238. Register 0xFE9B—Reserved  
Bits  
Bit Name  
R/W  
Description  
[15:0]  
Reserved  
R
Reserved.  
Table 239. Register 0xFE9C—TSNS_EXTFWD_VALUE  
Bits  
Bit Name  
R/W  
Description  
[15:7]  
[6:0]  
Integer  
Decimal  
R
R
Twos complement integer in the range of −256 to +255  
Decimal component of the temperature reading  
Table 240. Register 0xFE9D—TSNS_EXTREV_VALUE  
Bits  
[15:7] Integer  
[6:0] Decimal  
Bit Name  
R/W  
Description  
R
R
Twos complement integer in the range of −256 to +255  
Decimal component of the temperature reading  
Table 241. Register 0xFE9F—MODULATION_VALUE  
Bits Bit Name  
R/W Description  
[7:0] Modulation  
value  
R
This register contains the 8-bit modulation information. It outputs the amount of modulation from 0% to  
100% that is being placed on the modulating edges.  
Table 242. Register 0xFEA0—ISHARE_VALUE  
Bits Bit Name  
R/W Description  
This register contains the 8-bit share bus voltage information. If the power supply is the master, this register  
outputs 0.  
[7:0] Share bus  
value  
R
Table 243. Register 0xFEA3—ADD_ADC_VALUE  
Bits Bit Name  
R/W Description  
[7:0] ADD ADC  
value  
R
This register contains the address information. This value has eight bits of resolution.  
LSB = 1.6/28 = 6.25 mV. At 1 V input, the value in this register is 160 (0xA0). It is used in conjunction with  
Register 0xD0[5:4].  
Rev. A | Page 125 of 140  
ADP1055  
Data Sheet  
SUPPORTED SWITCHING FREQUENCIES  
Table 244 lists switching frequencies supported by the ADP1055. For information about setting the switching frequency, see the  
FREQUENCY_SWITCH section. For entries with the same exponent and mantissa values, the entry with the lower period value is valid.  
Table 244. Supported Switching Frequencies  
Period (ns)  
20,470  
20,460  
20,430  
20,400  
20,380  
20,350  
20,330  
20,300  
20,270  
20,250  
20,220  
20,200  
20,170  
20,150  
20,120  
20,100  
20,070  
20,050  
20,020  
20,000  
19,970  
19,950  
19,920  
19,900  
19,870  
19,850  
19,820  
19,800  
19,770  
19,750  
19,720  
19,700  
19,680  
19,650  
19,630  
19,600  
19,580  
19,550  
19,530  
19,510  
19,480  
19,460  
19,440  
19,410  
19,390  
19,370  
19,340  
Frequency (kHz)  
48.85197851  
48.87585533  
48.94762604  
49.01960784  
49.06771344  
49.14004914  
49.18839154  
49.26108374  
49.33399112  
49.38271605  
49.45598417  
49.5049505  
49.57858205  
49.62779156  
49.70178926  
49.75124378  
49.82561036  
49.87531172  
49.95004995  
50  
50.07511267  
50.12531328  
50.20080321  
50.25125628  
50.32712632  
50.37783375  
50.45408678  
50.50505051  
50.58168943  
50.63291139  
50.70993915  
50.76142132  
50.81300813  
50.89058524  
50.94243505  
51.02040816  
51.07252298  
51.15089514  
51.20327701  
51.25576627  
51.33470226  
51.38746146  
51.44032922  
51.51983514  
51.57297576  
51.62622612  
51.70630817  
Exponent  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
Mantissa  
782  
782  
783  
784  
785  
786  
787  
788  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
820  
821  
822  
823  
824  
825  
826  
827  
Period (ns)  
19,320  
19,300  
19,270  
19,250  
19,230  
19,200  
19,180  
19,160  
19,130  
19,110  
19,090  
19,070  
19,040  
19,020  
19,000  
18,970  
18,950  
18,930  
18,910  
18,890  
18,860  
18,840  
18,820  
18,800  
18,770  
18,750  
18,730  
18,710  
18,690  
18,660  
18,640  
18,620  
18,600  
18,580  
18,560  
18,530  
18,510  
18,490  
18,470  
18,450  
18,430  
18,410  
18,390  
18,360  
18,340  
18,320  
18,300  
Frequency (kHz)  
51.75983437  
51.8134715  
Exponent  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
Mantissa  
828  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
870  
871  
872  
873  
874  
51.89413596  
51.94805195  
52.00208008  
52.08333333  
52.13764338  
52.19206681  
52.27391532  
52.32862376  
52.38344683  
52.4383849  
52.5210084  
52.57623554  
52.63157895  
52.71481286  
52.77044855  
52.8262018  
52.88207298  
52.93806247  
53.02226935  
53.07855626  
53.13496281  
53.19148936  
53.27650506  
53.33333333  
53.39028297  
53.44735436  
53.50454789  
53.59056806  
53.64806867  
53.7056928  
53.76344086  
53.82131324  
53.87931034  
53.96654074  
54.02485143  
54.08328826  
54.14185165  
54.20054201  
54.25935974  
54.31830527  
54.37737901  
54.46623094  
54.52562704  
54.58515284  
54.64480874  
Rev. A | Page 126 of 140  
 
 
Data Sheet  
ADP1055  
Period (ns)  
18,280  
18,260  
18,240  
18,220  
18,200  
18,180  
18,160  
18,140  
18,120  
18,090  
18,070  
18,050  
18,030  
18,010  
17,990  
17,970  
17,950  
17,930  
17,910  
17,890  
17,870  
17,850  
17,830  
17,810  
17,790  
17,770  
17,750  
17,730  
17,710  
17,690  
17,670  
17,660  
17,640  
17,620  
17,600  
17,580  
17,560  
17,540  
17,520  
17,500  
17,480  
17,460  
17,440  
17,420  
17,410  
17,390  
17,370  
17,350  
17,330  
17,310  
17,290  
17,270  
17,250  
Frequency (kHz)  
Exponent  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
Mantissa  
875  
876  
877  
878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
920  
921  
922  
923  
924  
925  
926  
928  
Period (ns)  
17,240  
17,220  
17,200  
17,180  
17,160  
17,140  
17,130  
17,110  
17,090  
17,070  
17,050  
17,030  
17,020  
17,000  
16,980  
16,960  
16,940  
16,930  
16,910  
16,890  
16,870  
16,850  
16,840  
16,820  
16,800  
16,780  
16,770  
16,750  
16,730  
16,710  
16,700  
16,680  
16,660  
16,640  
16,630  
16,610  
16,590  
16,580  
16,560  
16,540  
16,520  
16,510  
16,490  
16,470  
16,460  
16,440  
16,420  
16,410  
16,390  
16,370  
16,350  
16,340  
16,320  
Frequency (kHz)  
58.00464037  
58.07200929  
58.13953488  
58.20721769  
58.27505828  
58.34305718  
58.37711617  
58.44535359  
58.51375073  
58.58230814  
58.65102639  
58.71990605  
58.75440658  
58.82352941  
58.89281508  
58.96226415  
59.03187721  
59.06674542  
59.13660556  
59.20663114  
59.27682276  
59.34718101  
59.3824228  
Exponent  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
Mantissa  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
940  
940  
941  
942  
943  
945  
945  
946  
947  
948  
950  
950  
951  
952  
954  
954  
955  
956  
958  
958  
959  
960  
962  
962  
963  
964  
965  
966  
967  
969  
969  
970  
971  
972  
973  
974  
975  
976  
977  
979  
979  
980  
54.70459519  
54.7645126  
54.8245614  
54.88474204  
54.94505495  
55.00550055  
55.0660793  
55.12679162  
55.18763797  
55.27915976  
55.34034311  
55.40166205  
55.46311703  
55.5247085  
55.58643691  
55.64830273  
55.71030641  
55.77244841  
55.8347292  
55.89714925  
55.95970901  
56.02240896  
56.08524958  
56.14823133  
56.21135469  
56.27462015  
56.33802817  
56.40157924  
56.46527386  
56.52911249  
56.59309564  
56.62514156  
56.6893424  
56.75368899  
56.81818182  
56.88282139  
56.9476082  
57.01254276  
57.07762557  
57.14285714  
57.20823799  
57.27376861  
57.33944954  
57.40528129  
57.43825388  
57.50431282  
57.57052389  
57.63688761  
57.7034045  
57.7700751  
57.83689994  
57.90387956  
57.97101449  
59.4530321  
59.52380952  
59.59475566  
59.63029219  
59.70149254  
59.77286312  
59.84440455  
59.88023952  
59.95203837  
60.0240096  
60.09615385  
60.13229104  
60.20469597  
60.27727547  
60.31363088  
60.38647343  
60.45949214  
60.53268765  
60.56935191  
60.64281383  
60.71645416  
60.75334143  
60.82725061  
60.90133983  
60.93845216  
61.01281269  
61.08735492  
61.16207951  
61.1995104  
61.2745098  
Rev. A | Page 127 of 140  
ADP1055  
Data Sheet  
Period (ns)  
16,300  
16,290  
16,270  
16,260  
16,240  
16,220  
16,210  
16,190  
16,170  
16,160  
16,140  
16,120  
16,110  
16,090  
16,080  
16,060  
16,040  
16,030  
16,010  
16,000  
15,980  
15,960  
15,950  
15,930  
15,920  
15,900  
15,880  
15,870  
15,850  
15,840  
15,820  
15,810  
15,790  
15,770  
15,760  
15,740  
15,730  
15,710  
15,700  
15,680  
15,670  
15,650  
15,640  
15,620  
15,590  
15,560  
15,530  
15,500  
15,470  
15,440  
15,410  
15,380  
15,350  
Frequency (kHz)  
61.34969325  
61.38735421  
61.462815  
Exponent  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−4  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
Mantissa  
982  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
993  
993  
994  
995  
996  
Period (ns)  
15,320  
15,290  
15,260  
15,230  
15,200  
15,180  
15,150  
15,120  
15,090  
15,060  
15,030  
15,000  
14,980  
14,950  
14,920  
14,890  
14,860  
14,840  
14,810  
14,780  
14,760  
14,730  
14,700  
14,670  
14,650  
14,620  
14,590  
14,570  
14,540  
14,510  
14,490  
14,460  
14,440  
14,410  
14,380  
14,360  
14,330  
14,310  
14,280  
14,260  
14,230  
14,200  
14,180  
14,150  
14,130  
14,100  
14,080  
14,050  
14,030  
14,010  
13,980  
13,960  
13,930  
Frequency (kHz)  
65.27415144  
65.40222368  
65.53079948  
65.65988181  
65.78947368  
65.87615283  
66.00660066  
66.13756614  
66.26905235  
66.40106242  
66.53359947  
66.66666667  
66.75567423  
66.88963211  
67.02412869  
67.15916723  
67.29475101  
67.38544474  
67.52194463  
67.65899865  
67.75067751  
67.88866259  
68.02721088  
68.16632584  
68.25938567  
68.3994528  
68.54009596  
68.63417982  
68.77579092  
68.91798759  
69.01311249  
69.15629322  
69.25207756  
69.3962526  
69.54102921  
69.63788301  
69.78367062  
69.88120196  
70.0280112  
Exponent  
Mantissa  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
61.50061501  
61.57635468  
61.65228113  
61.69031462  
61.76652254  
61.84291899  
61.88118812  
61.95786865  
62.03473945  
62.07324643  
62.15040398  
62.18905473  
62.26650062  
62.34413965  
62.38303182  
62.4609619  
62.5  
62.57822278  
62.6566416  
62.69592476  
62.77463905  
62.81407035  
62.89308176  
62.97229219  
63.01197227  
63.09148265  
63.13131313  
63.21112516  
63.25110689  
63.33122229  
63.4115409  
63.45177665  
63.53240152  
63.57279085  
63.65372374  
63.69426752  
63.7755102  
63.81620932  
63.89776358  
63.93861893  
64.02048656  
64.14368185  
64.26735219  
64.39150032  
64.51612903  
64.64124111  
64.76683938  
64.89292667  
65.01950585  
65.1465798  
998  
998  
999  
1000  
1001  
1003  
1003  
1004  
1005  
1006  
1008  
1008  
1009  
1010  
1011  
1012  
1013  
1015  
1015  
1017  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
512  
70.12622721  
70.27406887  
70.42253521  
70.52186178  
70.67137809  
70.77140835  
70.92198582  
71.02272727  
71.17437722  
71.27583749  
71.37758744  
71.53075823  
71.63323782  
71.78750897  
513  
514  
515  
516  
517  
518  
519  
520  
521  
Rev. A | Page 128 of 140  
Data Sheet  
ADP1055  
Period (ns)  
13,910  
13,880  
13,860  
13,840  
13,810  
13,790  
13,760  
13,740  
13,720  
13,690  
13,670  
13,650  
13,620  
13,600  
13,580  
13,550  
13,530  
13,510  
13,490  
13,460  
13,440  
13,420  
13,400  
13,370  
13,350  
13,330  
13,310  
13,280  
13,260  
13,240  
13,220  
13,200  
13,170  
13,150  
13,130  
13,110  
13,090  
13,070  
13,050  
13,020  
13,000  
12,980  
12,960  
12,940  
12,920  
12,900  
12,880  
12,860  
12,840  
12,820  
12,800  
12,770  
12,750  
Frequency (kHz)  
Exponent  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
Mantissa  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
Period (ns)  
12,730  
12,710  
12,690  
12,670  
12,650  
12,630  
12,610  
12,590  
12,570  
12,550  
12,530  
12,510  
12,500  
12,480  
12,460  
12,440  
12,420  
12,400  
12,380  
12,360  
12,340  
12,320  
12,300  
12,280  
12,260  
12,250  
12,230  
12,210  
12,190  
12,170  
12,150  
12,130  
12,120  
12,100  
12,080  
12,060  
12,040  
12,030  
12,010  
11,990  
11,970  
11,950  
11,940  
11,920  
11,900  
11,880  
11,860  
11,850  
11,830  
11,810  
11,790  
11,780  
11,760  
Frequency (kHz)  
78.55459544  
78.67820614  
78.80220646  
78.92659826  
79.0513834  
79.17656374  
79.30214116  
79.42811755  
79.55449483  
79.6812749  
79.8084597  
79.93605116  
80  
Exponent  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
Mantissa  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
653  
653  
654  
655  
656  
657  
658  
660  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
675  
675  
676  
677  
679  
679  
680  
71.8907261  
72.04610951  
72.15007215  
72.25433526  
72.41129616  
72.51631617  
72.6744186  
72.78020378  
72.88629738  
73.04601899  
73.15288954  
73.26007326  
73.42143906  
73.52941176  
73.6377025  
73.80073801  
73.90983001  
74.019245  
74.12898443  
74.29420505  
74.4047619  
74.51564829  
74.62686567  
74.79431563  
74.90636704  
75.01875469  
75.13148009  
75.30120482  
75.4147813  
75.52870091  
75.6429652  
75.75757576  
75.93014427  
76.04562738  
76.1614623  
76.27765065  
76.39419404  
76.51109411  
76.62835249  
76.80491551  
76.92307692  
77.04160247  
77.16049383  
77.2797527  
77.3993808  
77.51937984  
77.63975155  
77.76049767  
77.88161994  
78.00312012  
78.125  
80.12820513  
80.25682183  
80.38585209  
80.51529791  
80.64516129  
80.77544426  
80.90614887  
81.03727715  
81.16883117  
81.30081301  
81.43322476  
81.56606852  
81.63265306  
81.76614881  
81.9000819  
82.03445447  
82.16926869  
82.30452675  
82.44023083  
82.50825083  
82.6446281  
82.78145695  
82.91873964  
83.05647841  
83.12551953  
83.26394671  
83.4028357  
83.54218881  
83.68200837  
83.7520938  
83.89261745  
84.03361345  
84.17508418  
84.31703204  
84.38818565  
84.53085376  
84.67400508  
84.81764207  
84.88964346  
85.03401361  
78.30853563  
78.43137255  
Rev. A | Page 129 of 140  
ADP1055  
Data Sheet  
Period (ns)  
11,740  
11,730  
11,710  
11,690  
11,670  
11,660  
11,640  
11,620  
11,610  
11,590  
11,570  
11,560  
11,540  
11,520  
11,510  
11,490  
11,470  
11,460  
11,440  
11,420  
11,410  
11,390  
11,370  
11,360  
11,340  
11,330  
11,310  
11,290  
11,280  
11,260  
11,250  
11,230  
11,220  
11,200  
11,180  
11,170  
11,150  
11,140  
11,120  
11,110  
11,090  
11,080  
11,060  
11,040  
11,030  
11,010  
11,000  
10,980  
10,970  
10,950  
10,940  
10,920  
10,910  
Frequency (kHz)  
85.17887564  
85.2514919  
Exponent  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
Mantissa  
681  
682  
683  
684  
686  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
701  
701  
702  
704  
704  
705  
706  
707  
709  
709  
710  
711  
712  
713  
714  
716  
716  
717  
718  
719  
720  
721  
722  
723  
725  
725  
727  
727  
729  
729  
731  
731  
733  
733  
Period (ns)  
10,890  
10,880  
10,860  
10,850  
10,840  
10,820  
10,810  
10,790  
10,780  
10,760  
10,750  
10,730  
10,720  
10,700  
10,690  
10,680  
10,660  
10,650  
10,630  
10,620  
10,610  
10,590  
10,580  
10,560  
10,550  
10,540  
10,520  
10,510  
10,490  
10,480  
10,470  
10,450  
10,440  
10,430  
10,410  
10,400  
10,380  
10,370  
10,360  
10,340  
10,330  
10,320  
10,300  
10,290  
10,280  
10,260  
10,250  
10,240  
10,230  
10,210  
10,200  
10,190  
10,170  
Frequency (kHz)  
91.82736455  
91.91176471  
92.08103131  
92.16589862  
92.25092251  
92.42144177  
92.50693802  
92.67840593  
92.76437848  
92.93680297  
93.02325581  
93.19664492  
93.28358209  
93.45794393  
93.5453695  
93.6329588  
93.80863039  
93.89671362  
94.07337723  
94.16195857  
94.25070688  
94.42870633  
94.51795841  
94.6969697  
94.78672986  
94.87666034  
95.05703422  
95.14747859  
95.32888465  
95.41984733  
95.51098376  
95.6937799  
95.78544061  
95.87727709  
96.06147935  
96.15384615  
96.33911368  
96.43201543  
96.52509653  
96.71179884  
96.8054211  
96.89922481  
97.08737864  
97.18172983  
97.27626459  
97.46588694  
97.56097561  
97.65625  
Exponent  
Mantissa  
735  
735  
737  
737  
738  
739  
740  
741  
742  
743  
744  
746  
746  
748  
748  
749  
750  
751  
753  
753  
754  
755  
756  
758  
758  
759  
760  
761  
763  
763  
764  
766  
766  
767  
768  
769  
771  
771  
772  
774  
774  
775  
777  
777  
778  
780  
780  
781  
782  
784  
784  
785  
787  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
85.3970965  
85.54319932  
85.68980291  
85.76329331  
85.91065292  
86.05851979  
86.13264427  
86.28127696  
86.43042351  
86.50519031  
86.65511265  
86.80555556  
86.88097307  
87.03220191  
87.18395815  
87.2600349  
87.41258741  
87.56567426  
87.64241893  
87.79631255  
87.95074758  
88.02816901  
88.18342152  
88.26125331  
88.4173298  
88.57395926  
88.65248227  
88.80994671  
88.88888889  
89.04719501  
89.12655971  
89.28571429  
89.44543828  
89.52551477  
89.68609865  
89.76660682  
89.92805755  
90.0090009  
90.17132552  
90.25270758  
90.4159132  
90.57971014  
90.66183137  
90.82652134  
90.90909091  
91.07468124  
91.15770283  
91.32420091  
91.40767824  
91.57509158  
91.65902841  
97.75171065  
97.94319295  
98.03921569  
98.13542689  
98.32841691  
Rev. A | Page 130 of 140  
Data Sheet  
ADP1055  
Period (ns)  
10,160  
10,150  
10,130  
10,120  
10,110  
10,100  
10,080  
10,070  
10,060  
10,050  
10,030  
10,020  
10,010  
10,000  
9980  
9970  
9960  
9950  
9930  
9920  
9910  
9900  
9880  
9870  
9860  
9850  
9840  
9820  
9810  
9800  
9790  
9770  
9760  
9750  
9740  
9730  
9720  
9700  
9690  
Frequency (kHz)  
Exponent  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
Mantissa  
787  
788  
790  
791  
791  
792  
794  
794  
795  
796  
798  
798  
799  
800  
802  
802  
803  
804  
806  
806  
807  
808  
810  
811  
811  
812  
813  
815  
815  
816  
817  
819  
820  
821  
821  
822  
823  
825  
826  
826  
827  
828  
829  
831  
832  
832  
833  
834  
835  
837  
838  
839  
839  
Period (ns)  
9520  
9510  
9500  
9480  
9470  
9460  
9450  
9440  
9430  
9420  
9410  
9400  
9380  
9370  
9360  
9350  
9340  
9330  
9320  
9310  
9300  
9290  
9280  
9260  
9250  
9240  
9230  
9220  
9210  
9200  
9190  
9180  
9170  
9160  
9150  
9140  
9130  
9120  
9110  
9100  
9090  
9080  
9070  
9060  
9040  
9030  
9020  
9010  
9000  
8990  
8980  
8970  
8960  
Frequency (kHz)  
105.0420168  
105.1524711  
105.2631579  
105.4852321  
105.5966209  
105.7082452  
105.8201058  
105.9322034  
106.0445387  
106.1571125  
106.2699256  
106.3829787  
106.6098081  
106.7235859  
106.8376068  
106.9518717  
107.0663812  
107.1811361  
107.2961373  
107.4113856  
107.5268817  
107.6426265  
107.7586207  
107.9913607  
108.1081081  
108.2251082  
108.3423619  
108.4598698  
108.577633  
108.6956522  
108.8139282  
108.9324619  
109.0512541  
109.1703057  
109.2896175  
109.4091904  
109.5290252  
109.6491228  
109.7694841  
109.8901099  
110.0110011  
110.1321586  
110.2535832  
110.3752759  
110.619469  
Exponent  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
Mantissa  
840  
841  
842  
844  
845  
846  
847  
847  
848  
849  
850  
851  
853  
854  
855  
856  
857  
857  
858  
859  
860  
861  
862  
864  
865  
866  
867  
868  
869  
870  
871  
871  
872  
873  
874  
875  
876  
877  
878  
879  
880  
881  
882  
883  
885  
886  
887  
888  
889  
890  
891  
892  
893  
98.42519685  
98.52216749  
98.71668312  
98.81422925  
98.91196835  
99.00990099  
99.20634921  
99.30486594  
99.40357853  
99.50248756  
99.70089731  
99.8003992  
99.9000999  
100  
100.2004008  
100.3009027  
100.4016064  
100.5025126  
100.7049345  
100.8064516  
100.9081736  
101.010101  
101.2145749  
101.3171226  
101.4198783  
101.5228426  
101.6260163  
101.8329939  
101.9367992  
102.0408163  
102.145046  
102.3541453  
102.4590164  
102.5641026  
102.6694045  
102.7749229  
102.8806584  
103.0927835  
103.1991744  
103.3057851  
103.4126163  
103.5196687  
103.626943  
103.8421599  
103.950104  
104.0582726  
104.1666667  
104.2752868  
104.3841336  
104.6025105  
104.7120419  
104.8218029  
104.9317943  
9680  
9670  
9660  
9650  
9630  
9620  
9610  
9600  
9590  
9580  
9560  
9550  
9540  
9530  
110.7419712  
110.864745  
110.9877913  
111.1111111  
111.2347052  
111.3585746  
111.4827202  
111.6071429  
Rev. A | Page 131 of 140  
ADP1055  
Data Sheet  
Period (ns)  
8950  
8940  
8930  
8920  
8910  
8900  
8890  
8880  
8870  
8860  
8850  
8840  
8830  
8820  
8810  
8800  
8790  
8780  
8770  
8760  
8750  
8740  
8730  
8720  
8710  
8700  
8690  
8680  
8670  
8660  
8650  
8640  
8630  
8620  
8610  
8600  
8590  
8580  
8570  
8560  
8550  
8540  
8530  
8520  
8510  
8500  
8490  
8480  
8470  
8460  
8450  
8440  
8430  
Frequency (kHz)  
111.7318436  
111.8568233  
111.9820829  
112.1076233  
112.2334456  
112.3595506  
112.4859393  
112.6126126  
112.7395716  
112.8668172  
112.9943503  
113.1221719  
113.2502831  
113.3786848  
113.507378  
113.6363636  
113.7656428  
113.8952164  
114.0250855  
114.1552511  
114.2857143  
114.416476  
114.5475372  
114.6788991  
114.8105626  
114.9425287  
115.0747986  
115.2073733  
115.3402537  
115.4734411  
115.6069364  
115.7407407  
115.8748552  
116.0092807  
116.1440186  
116.2790698  
116.4144354  
116.5501166  
116.6861144  
116.8224299  
116.9590643  
117.0960187  
117.2332943  
117.370892  
117.5088132  
117.6470588  
117.7856302  
117.9245283  
118.0637544  
118.2033097  
118.3431953  
118.4834123  
118.623962  
Exponent  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
Mantissa  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
935  
936  
937  
938  
939  
940  
941  
942  
943  
945  
946  
947  
948  
949  
Period (ns)  
8420  
8410  
8400  
8390  
8380  
8370  
8360  
8350  
8340  
8330  
8320  
8310  
8300  
8290  
8280  
8270  
8260  
8250  
8240  
8230  
8220  
8210  
8200  
8190  
8180  
8170  
8160  
8150  
8140  
8130  
8120  
8110  
8100  
8090  
8080  
8070  
8060  
8050  
8040  
8030  
8020  
8010  
8000  
7990  
7980  
7970  
7960  
7950  
7940  
7930  
7920  
7910  
7900  
Frequency (kHz)  
118.7648456  
118.9060642  
119.047619  
119.1895113  
119.3317422  
119.474313  
119.6172249  
119.760479  
119.9040767  
120.0480192  
120.1923077  
120.3369434  
120.4819277  
120.6272618  
120.7729469  
120.9189843  
121.0653753  
121.2121212  
121.3592233  
121.5066829  
121.6545012  
121.8026797  
121.9512195  
122.1001221  
122.2493888  
122.3990208  
122.5490196  
122.6993865  
122.8501229  
123.00123  
123.1527094  
123.3045623  
123.4567901  
123.6093943  
123.7623762  
123.9157373  
124.0694789  
124.2236025  
124.3781095  
124.5330012  
124.6882793  
124.8439451  
125  
Exponent  
Mantissa  
950  
951  
952  
954  
955  
956  
957  
958  
959  
960  
962  
963  
964  
965  
966  
967  
969  
970  
971  
972  
973  
974  
976  
977  
978  
979  
980  
982  
983  
984  
985  
986  
988  
989  
990  
991  
993  
994  
995  
996  
998  
999  
1000  
1001  
1003  
1004  
1005  
1006  
1008  
1009  
1010  
1011  
1013  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
125.1564456  
125.3132832  
125.4705144  
125.6281407  
125.7861635  
125.9445844  
126.1034048  
126.2626263  
126.4222503  
126.5822785  
Rev. A | Page 132 of 140  
Data Sheet  
ADP1055  
Period (ns)  
7890  
7880  
7870  
7860  
7850  
7840  
7830  
7820  
7810  
7790  
7780  
7760  
7750  
7730  
7720  
7700  
7690  
7670  
7660  
7640  
7630  
7610  
7600  
7590  
7570  
7560  
7540  
7530  
7510  
7500  
7490  
7470  
7460  
7440  
7430  
7420  
7400  
7390  
7380  
7360  
7350  
7330  
7320  
7310  
7290  
7280  
7270  
7250  
7240  
7230  
7220  
7200  
7190  
Frequency (kHz)  
Exponent  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−3  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
Mantissa  
1014  
1015  
1017  
1018  
1019  
1020  
1022  
1023  
512  
513  
514  
515  
516  
517  
518  
519  
520  
522  
522  
524  
524  
526  
526  
527  
528  
529  
531  
531  
533  
533  
534  
535  
536  
538  
538  
539  
541  
541  
542  
543  
544  
546  
546  
547  
549  
549  
550  
552  
552  
553  
554  
556  
556  
Period (ns)  
7180  
7160  
7150  
7140  
7130  
7110  
7100  
7090  
7070  
7060  
7050  
7040  
7020  
7010  
7000  
6990  
6980  
6960  
6950  
6940  
6930  
6920  
6900  
6890  
6880  
6870  
6860  
6840  
6830  
6820  
6810  
6800  
6790  
6770  
6760  
6750  
6740  
6730  
6720  
6710  
6700  
6680  
6670  
6660  
6650  
6640  
6630  
6620  
6610  
6600  
6580  
6570  
6560  
Frequency (kHz)  
139.275766  
Exponent  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
Mantissa  
557  
559  
559  
560  
561  
563  
563  
564  
566  
567  
567  
568  
570  
571  
571  
572  
573  
575  
576  
576  
577  
578  
580  
581  
581  
582  
583  
585  
586  
587  
587  
588  
589  
591  
592  
593  
593  
594  
595  
596  
597  
599  
600  
601  
602  
602  
603  
604  
605  
606  
608  
609  
610  
126.7427123  
126.9035533  
127.064803  
127.2264631  
127.388535  
127.5510204  
127.7139208  
127.8772379  
128.0409731  
128.3697047  
128.5347044  
128.8659794  
129.0322581  
129.3661061  
129.5336788  
129.8701299  
130.0390117  
130.3780965  
130.5483029  
130.8900524  
131.061599  
131.4060447  
131.5789474  
131.7523057  
132.1003963  
132.2751323  
132.6259947  
132.8021248  
133.1557923  
133.3333333  
133.5113485  
133.8688086  
134.0482574  
134.4086022  
134.589502  
134.7708895  
135.1351351  
135.3179973  
135.501355  
135.8695652  
136.0544218  
136.425648  
136.6120219  
136.7989056  
137.1742112  
137.3626374  
137.5515818  
137.9310345  
138.121547  
138.3125864  
138.5041551  
138.8888889  
139.0820584  
139.6648045  
139.8601399  
140.0560224  
140.2524544  
140.6469761  
140.8450704  
141.0437236  
141.4427157  
141.6430595  
141.8439716  
142.0454545  
142.4501425  
142.6533524  
142.8571429  
143.0615165  
143.2664756  
143.6781609  
143.8848921  
144.092219  
144.3001443  
144.5086705  
144.9275362  
145.137881  
145.3488372  
145.5604076  
145.7725948  
146.1988304  
146.4128843  
146.627566  
146.8428781  
147.0588235  
147.275405  
147.7104874  
147.9289941  
148.1481481  
148.3679525  
148.5884101  
148.8095238  
149.0312966  
149.2537313  
149.7005988  
149.9250375  
150.1501502  
150.3759398  
150.6024096  
150.8295626  
151.0574018  
151.2859304  
151.5151515  
151.9756839  
152.2070015  
152.4390244  
Rev. A | Page 133 of 140  
ADP1055  
Data Sheet  
Period (ns)  
6550  
6540  
6530  
6520  
6510  
6500  
6490  
6480  
6470  
6460  
6450  
6440  
6430  
6420  
6410  
6400  
6380  
6370  
6360  
6350  
6340  
6330  
6320  
6310  
6300  
6290  
6280  
6270  
6260  
6250  
6240  
6230  
6220  
6210  
6200  
6190  
6180  
6170  
6160  
6150  
6140  
6130  
6120  
6110  
6100  
6090  
6080  
6070  
6060  
6050  
6040  
6030  
6020  
Frequency (kHz)  
152.6717557  
152.9051988  
153.1393568  
153.3742331  
153.609831  
153.8461538  
154.0832049  
154.3209877  
154.5595054  
154.7987616  
155.0387597  
155.2795031  
155.5209953  
155.7632399  
156.0062402  
156.25  
156.7398119  
156.9858713  
157.2327044  
157.480315  
157.7287066  
157.9778831  
158.2278481  
158.4786054  
158.7301587  
158.9825119  
159.2356688  
159.4896332  
159.7444089  
160  
160.2564103  
160.5136437  
160.7717042  
161.0305958  
161.2903226  
161.5508885  
161.8122977  
162.0745543  
162.3376623  
162.601626  
162.8664495  
163.132137  
163.3986928  
163.6661211  
163.9344262  
164.2036125  
164.4736842  
164.7446458  
165.0165017  
165.2892562  
165.5629139  
165.8374793  
166.1129568  
Exponent  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
Mantissa  
611  
612  
613  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
Period (ns)  
6010  
6000  
5990  
5980  
5970  
5960  
5950  
5940  
5930  
5920  
5910  
5900  
5890  
5880  
5870  
5860  
5850  
5840  
5830  
5820  
5810  
5800  
5790  
5780  
5770  
5760  
5750  
5740  
5730  
5720  
5710  
5700  
5690  
5680  
5670  
5660  
5650  
5640  
5630  
5620  
5610  
5600  
5590  
5580  
5570  
5560  
5550  
5540  
5530  
5520  
5510  
5500  
5490  
Frequency (kHz)  
166.3893511  
166.6666667  
166.9449082  
167.2240803  
167.5041876  
167.7852349  
168.0672269  
168.3501684  
168.6340641  
168.9189189  
169.2047377  
169.4915254  
169.7792869  
170.0680272  
170.3577513  
170.6484642  
170.9401709  
171.2328767  
171.5265866  
171.8213058  
172.1170396  
172.4137931  
172.7115717  
173.0103806  
173.3102253  
173.6111111  
173.9130435  
174.2160279  
174.5200698  
174.8251748  
175.1313485  
175.4385965  
175.7469244  
176.056338  
Exponent  
Mantissa  
666  
667  
668  
669  
670  
671  
672  
673  
675  
676  
677  
678  
679  
680  
681  
683  
684  
685  
686  
687  
688  
690  
691  
692  
693  
694  
696  
697  
698  
699  
701  
702  
703  
704  
705  
707  
708  
709  
710  
712  
713  
714  
716  
717  
718  
719  
721  
722  
723  
725  
726  
727  
729  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
176.366843  
176.6784452  
176.9911504  
177.3049645  
177.6198934  
177.9359431  
178.2531194  
178.5714286  
178.8908766  
179.2114695  
179.5332136  
179.8561151  
180.1801802  
180.5054152  
180.8318264  
181.1594203  
181.4882033  
181.8181818  
182.1493625  
Rev. A | Page 134 of 140  
Data Sheet  
ADP1055  
Period (ns)  
5480  
5470  
5460  
5450  
5440  
5430  
5420  
5410  
5400  
5390  
5380  
5370  
5360  
5350  
5340  
5330  
5320  
5310  
5300  
5290  
5280  
5270  
5260  
5250  
5240  
5230  
5220  
5210  
5200  
5190  
5180  
5170  
5160  
5150  
5140  
5130  
5120  
5110  
5100  
5090  
5080  
5070  
5060  
5050  
5040  
5030  
5020  
5010  
5000  
4990  
4980  
4970  
4960  
Frequency (kHz)  
Exponent  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
Mantissa  
730  
731  
733  
734  
735  
737  
738  
739  
741  
742  
743  
745  
746  
748  
749  
750  
752  
753  
755  
756  
758  
759  
760  
762  
763  
765  
766  
768  
769  
771  
772  
774  
775  
777  
778  
780  
781  
783  
784  
786  
787  
789  
791  
792  
794  
795  
797  
798  
800  
802  
803  
805  
806  
Period (ns)  
4950  
4940  
4930  
4920  
4910  
4900  
4890  
4880  
4870  
4860  
4850  
4840  
4830  
4820  
4810  
4800  
4790  
4780  
4770  
4760  
4750  
4740  
4730  
4720  
4710  
4700  
4690  
4680  
4670  
4660  
4650  
4640  
4630  
4620  
4610  
4600  
4590  
4580  
4570  
4560  
4550  
4540  
4530  
4520  
4510  
4500  
4490  
4480  
4470  
4460  
4450  
4440  
4430  
Frequency (kHz)  
202.020202  
Exponent  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
Mantissa  
808  
810  
811  
813  
815  
816  
818  
820  
821  
823  
825  
826  
828  
830  
832  
833  
835  
837  
839  
840  
842  
844  
846  
847  
849  
851  
853  
855  
857  
858  
860  
862  
864  
866  
868  
870  
871  
873  
875  
877  
879  
881  
883  
885  
887  
889  
891  
893  
895  
897  
899  
901  
903  
182.4817518  
182.8153565  
183.1501832  
183.4862385  
183.8235294  
184.1620626  
184.501845  
184.8428835  
185.1851852  
185.528757  
185.8736059  
186.2197393  
186.5671642  
186.9158879  
187.2659176  
187.6172608  
187.9699248  
188.3239171  
188.6792453  
189.0359168  
189.3939394  
189.7533207  
190.1140684  
190.4761905  
190.8396947  
191.2045889  
191.5708812  
191.9385797  
192.3076923  
192.6782274  
193.0501931  
193.4235977  
193.7984496  
194.1747573  
194.5525292  
194.9317739  
195.3125  
202.4291498  
202.8397566  
203.2520325  
203.6659878  
204.0816327  
204.4989775  
204.9180328  
205.338809  
205.7613169  
206.185567  
206.6115702  
207.0393375  
207.4688797  
207.9002079  
208.3333333  
208.7682672  
209.2050209  
209.6436059  
210.0840336  
210.5263158  
210.9704641  
211.4164905  
211.8644068  
212.3142251  
212.7659574  
213.2196162  
213.6752137  
214.1327623  
214.5922747  
215.0537634  
215.5172414  
215.9827214  
216.4502165  
216.9197397  
217.3913043  
217.8649237  
218.3406114  
218.8183807  
219.2982456  
219.7802198  
220.2643172  
220.7505519  
221.2389381  
221.72949  
195.6947162  
196.0784314  
196.4636542  
196.8503937  
197.2386588  
197.6284585  
198.019802  
198.4126984  
198.8071571  
199.2031873  
199.6007984  
200  
222.2222222  
222.7171492  
223.2142857  
223.7136465  
224.2152466  
224.7191011  
225.2252252  
225.7336343  
200.4008016  
200.8032129  
201.2072435  
201.6129032  
Rev. A | Page 135 of 140  
ADP1055  
Data Sheet  
Period (ns)  
4420  
4410  
4400  
4390  
4380  
4370  
4360  
4350  
4340  
4330  
4320  
4310  
4300  
4290  
4280  
4270  
4260  
4250  
4240  
4230  
4220  
4210  
4200  
4190  
4180  
4170  
4160  
4150  
4140  
4130  
4120  
4110  
4100  
4090  
4080  
4070  
4060  
4050  
4040  
4030  
4020  
4010  
4000  
3990  
3980  
3970  
3960  
3950  
3940  
3930  
3920  
3910  
3900  
Frequency (kHz)  
226.2443439  
226.7573696  
227.2727273  
227.7904328  
228.3105023  
228.8329519  
229.3577982  
229.8850575  
230.4147465  
230.9468822  
231.4814815  
232.0185615  
232.5581395  
233.1002331  
233.6448598  
234.1920375  
234.741784  
235.2941176  
235.8490566  
236.4066194  
236.9668246  
237.5296912  
238.0952381  
238.6634845  
239.2344498  
239.8081535  
240.3846154  
240.9638554  
241.5458937  
242.1307506  
242.7184466  
243.3090024  
243.902439  
244.4987775  
245.0980392  
245.7002457  
246.3054187  
246.9135802  
247.5247525  
248.1389578  
248.7562189  
249.3765586  
250  
Exponent  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−2  
−1  
Mantissa  
905  
907  
909  
911  
913  
915  
917  
920  
922  
924  
926  
928  
930  
932  
935  
937  
939  
941  
943  
946  
948  
950  
952  
955  
957  
959  
962  
964  
966  
969  
971  
973  
976  
978  
980  
983  
985  
988  
990  
993  
995  
998  
1000  
1003  
1005  
1008  
1010  
1013  
1015  
1018  
1020  
1023  
513  
Period (ns)  
3890  
3880  
3870  
3860  
3850  
3840  
3830  
3820  
3810  
3800  
3790  
3780  
3770  
3760  
3750  
3740  
3730  
3720  
3710  
3700  
3690  
3680  
3670  
3660  
3650  
3640  
3630  
3620  
3610  
3600  
3590  
3580  
3570  
3560  
3550  
3540  
3530  
3520  
3510  
3500  
3490  
3480  
3470  
3460  
3450  
3440  
3430  
3420  
3410  
3400  
3390  
3380  
3370  
Frequency (kHz)  
257.0694087  
257.7319588  
258.3979328  
259.0673575  
259.7402597  
260.4166667  
261.0966057  
261.7801047  
262.4671916  
263.1578947  
263.8522427  
264.5502646  
265.2519894  
265.9574468  
266.6666667  
267.3796791  
268.0965147  
268.8172043  
269.541779  
270.2702703  
271.00271  
271.7391304  
272.479564  
273.2240437  
273.9726027  
274.7252747  
275.4820937  
276.2430939  
277.0083102  
277.7777778  
278.551532  
279.3296089  
280.1120448  
280.8988764  
281.6901408  
282.4858757  
283.286119  
284.0909091  
284.9002849  
285.7142857  
286.5329513  
287.3563218  
288.184438  
289.017341  
289.8550725  
290.6976744  
291.5451895  
292.3976608  
293.255132  
294.1176471  
294.9852507  
295.8579882  
296.735905  
Exponent  
Mantissa  
514  
515  
517  
518  
519  
521  
522  
524  
525  
526  
528  
529  
531  
532  
533  
535  
536  
538  
539  
541  
542  
543  
545  
546  
548  
549  
551  
552  
554  
556  
557  
559  
560  
562  
563  
565  
567  
568  
570  
571  
573  
575  
576  
578  
580  
581  
583  
585  
587  
588  
590  
592  
593  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
250.6265664  
251.2562814  
251.8891688  
252.5252525  
253.164557  
253.8071066  
254.4529262  
255.1020408  
255.7544757  
256.4102564  
Rev. A | Page 136 of 140  
Data Sheet  
ADP1055  
Period (ns)  
3360  
3350  
3340  
3330  
3320  
3310  
3300  
3290  
3280  
3270  
3260  
3250  
3240  
3230  
3220  
3210  
3200  
3190  
3180  
3170  
3160  
3150  
3140  
3130  
3120  
3110  
3100  
3090  
3080  
3070  
3060  
3050  
3040  
3030  
3020  
3010  
3000  
2990  
2980  
2970  
2960  
2950  
2940  
2930  
2920  
2910  
2900  
2890  
2880  
2870  
2860  
2850  
2840  
Frequency (kHz)  
Exponent  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
Mantissa  
595  
597  
599  
601  
602  
604  
606  
608  
610  
612  
613  
615  
617  
619  
621  
623  
625  
627  
629  
631  
633  
635  
637  
639  
641  
643  
645  
647  
649  
651  
654  
656  
658  
660  
662  
664  
667  
669  
671  
673  
676  
678  
680  
683  
685  
687  
690  
692  
694  
697  
699  
702  
704  
Period (ns)  
2830  
2820  
2810  
2800  
2790  
2780  
2770  
2760  
2750  
2740  
2730  
2720  
2710  
2700  
2690  
2680  
2670  
2660  
2650  
2640  
2630  
2620  
2610  
2600  
2590  
2580  
2570  
2560  
2550  
2540  
2530  
2520  
2510  
2500  
2490  
2480  
2470  
2460  
2450  
2440  
2430  
2420  
2410  
2400  
2390  
2380  
2370  
2360  
2350  
2340  
2330  
2320  
2310  
Frequency (kHz)  
353.3568905  
354.6099291  
355.8718861  
357.1428571  
358.4229391  
359.7122302  
361.0108303  
362.3188406  
363.6363636  
364.9635036  
366.3003663  
367.6470588  
369.00369  
370.3703704  
371.7472119  
373.1343284  
374.5318352  
375.9398496  
377.3584906  
378.7878788  
380.2281369  
381.6793893  
383.1417625  
384.6153846  
386.1003861  
387.5968992  
389.1050584  
390.625  
Exponent  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
Mantissa  
707  
709  
712  
714  
717  
719  
722  
725  
727  
730  
733  
735  
738  
741  
743  
746  
749  
752  
755  
758  
760  
763  
766  
769  
772  
775  
778  
781  
784  
787  
791  
794  
797  
800  
803  
806  
810  
813  
816  
820  
823  
826  
830  
833  
837  
840  
844  
847  
851  
855  
858  
862  
866  
297.6190476  
298.5074627  
299.4011976  
300.3003003  
301.2048193  
302.1148036  
303.030303  
303.9513678  
304.8780488  
305.8103976  
306.7484663  
307.6923077  
308.6419753  
309.5975232  
310.5590062  
311.5264798  
312.5  
313.4796238  
314.4654088  
315.4574132  
316.4556962  
317.4603175  
318.4713376  
319.4888179  
320.5128205  
321.5434084  
322.5806452  
323.6245955  
324.6753247  
325.732899  
326.7973856  
327.8688525  
328.9473684  
330.0330033  
331.1258278  
332.2259136  
333.3333333  
334.4481605  
335.5704698  
336.7003367  
337.8378378  
338.9830508  
340.1360544  
341.2969283  
342.4657534  
343.6426117  
344.8275862  
346.0207612  
347.2222222  
348.4320557  
349.6503497  
350.877193  
352.1126761  
392.1568627  
393.7007874  
395.256917  
396.8253968  
398.4063745  
400  
401.6064257  
403.2258065  
404.8582996  
406.504065  
408.1632653  
409.8360656  
411.5226337  
413.2231405  
414.9377593  
416.6666667  
418.4100418  
420.1680672  
421.9409283  
423.7288136  
425.5319149  
427.3504274  
429.1845494  
431.0344828  
432.9004329  
Rev. A | Page 137 of 140  
ADP1055  
Data Sheet  
Period (ns)  
2300  
2290  
2280  
2270  
2260  
2250  
2240  
2230  
2220  
2210  
2200  
2190  
2180  
2170  
2160  
2150  
2140  
2130  
2120  
2110  
2100  
2090  
2080  
2070  
2060  
2050  
2040  
2030  
2020  
2010  
2000  
1990  
1980  
1970  
1960  
1950  
1940  
1930  
1920  
1910  
1900  
1890  
1880  
1870  
1860  
1850  
1840  
1830  
1820  
1810  
1800  
1790  
1780  
Frequency (kHz)  
434.7826087  
436.6812227  
438.5964912  
440.5286344  
442.4778761  
444.4444444  
446.4285714  
448.4304933  
450.4504505  
452.4886878  
454.5454545  
456.6210046  
458.7155963  
460.8294931  
462.962963  
465.1162791  
467.2897196  
469.4835681  
471.6981132  
473.9336493  
476.1904762  
478.4688995  
480.7692308  
483.0917874  
485.4368932  
487.804878  
490.1960784  
492.6108374  
495.049505  
497.5124378  
500  
502.5125628  
505.0505051  
507.6142132  
510.2040816  
512.8205128  
515.4639175  
518.134715  
520.8333333  
523.5602094  
526.3157895  
529.1005291  
531.9148936  
534.7593583  
537.6344086  
540.5405405  
543.4782609  
546.4480874  
549.4505495  
552.4861878  
555.5555556  
558.6592179  
561.7977528  
Exponent  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
−1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Mantissa  
870  
873  
877  
881  
885  
889  
893  
897  
901  
905  
909  
913  
917  
922  
926  
930  
935  
939  
943  
948  
952  
957  
962  
966  
971  
976  
980  
985  
990  
995  
1000  
1005  
1010  
1015  
1020  
513  
515  
518  
521  
524  
526  
529  
532  
535  
538  
541  
543  
546  
549  
552  
556  
559  
562  
Period (ns)  
1770  
1760  
1750  
1740  
1730  
1720  
1710  
1700  
1690  
1680  
1670  
1660  
1650  
1640  
1630  
1620  
1610  
1600  
1590  
1580  
1570  
1560  
1550  
1540  
1530  
1520  
1510  
1500  
1490  
1480  
1470  
1460  
1450  
1440  
1430  
1420  
1410  
1400  
1390  
1380  
1370  
1360  
1350  
1340  
1330  
1320  
1310  
1300  
1290  
1280  
1270  
1260  
1250  
Frequency (kHz)  
564.9717514  
568.1818182  
571.4285714  
574.7126437  
578.0346821  
581.3953488  
584.7953216  
588.2352941  
591.7159763  
595.2380952  
598.8023952  
602.4096386  
606.0606061  
609.7560976  
613.4969325  
617.2839506  
621.1180124  
625  
628.9308176  
632.9113924  
636.9426752  
641.025641  
645.1612903  
649.3506494  
653.5947712  
657.8947368  
662.2516556  
666.6666667  
671.1409396  
675.6756757  
680.2721088  
684.9315068  
689.6551724  
694.4444444  
699.3006993  
704.2253521  
709.2198582  
714.2857143  
719.4244604  
724.6376812  
729.9270073  
735.2941176  
740.7407407  
746.2686567  
751.8796992  
757.5757576  
763.3587786  
769.2307692  
775.1937984  
781.25  
Exponent  
Mantissa  
565  
568  
571  
575  
578  
581  
585  
588  
592  
595  
599  
602  
606  
610  
613  
617  
621  
625  
629  
633  
637  
641  
645  
649  
654  
658  
662  
667  
671  
676  
680  
685  
690  
694  
699  
704  
709  
714  
719  
725  
730  
735  
741  
746  
752  
758  
763  
769  
775  
781  
787  
794  
800  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
787.4015748  
793.6507937  
800  
0
Rev. A | Page 138 of 140  
Data Sheet  
ADP1055  
Period (ns)  
1240  
1230  
1220  
1210  
1200  
1190  
1180  
1170  
1160  
1150  
1140  
1130  
1120  
Frequency (kHz)  
Exponent  
Mantissa  
806  
813  
820  
826  
833  
840  
847  
855  
862  
870  
877  
885  
Period (ns)  
1110  
1100  
1090  
1080  
1070  
1060  
1050  
1040  
1030  
1020  
1010  
1000  
Frequency (kHz)  
900.9009009  
909.0909091  
917.4311927  
925.9259259  
934.5794393  
943.3962264  
952.3809524  
961.5384615  
970.8737864  
980.3921569  
990.0990099  
1000  
Exponent  
Mantissa  
901  
909  
917  
926  
935  
943  
952  
962  
971  
980  
990  
1000  
806.4516129  
813.0081301  
819.6721311  
826.446281  
833.3333333  
840.3361345  
847.4576271  
854.7008547  
862.0689655  
869.5652174  
877.1929825  
884.9557522  
892.8571429  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
893  
Rev. A | Page 139 of 140  
ADP1055  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
32  
24  
1
0.50  
BSC  
*
3.75  
EXPOSED  
PAD  
3.60 SQ  
3.55  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5  
WITH THE EXCEPTION OF THE EXPOSED PAD DIMENSION.  
Figure 86. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad  
(CP-32-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
ADP1055ACPZ-RL  
ADP1055ACPZ-R7  
ADP1055-EVALZ  
ADP1055DC1-EVALZ  
ADP-I2C-USB-Z  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
ADP1055 Evaluation Board  
ADP1055 Daughter Card  
USB to I2C Adapter  
CP-32-12  
CP-32-12  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12004-0-3/15(A)  
Rev. A | Page 140 of 140  
 
 

相关型号:

ADP1055-EVALZ

Digital Controller for Power Supply Applications with PMBus Interface
ADI

ADP1055ACPZ-R7

Digital Controller for Power Supply Applications with PMBus Interface
ADI

ADP1055ACPZ-RL

Digital Controller for Power Supply Applications with PMBus Interface
ADI

ADP1055DC1-EVALZ

Digital Controller for Power Supply Applications with PMBus Interface
ADI

ADP1071-1

Isolated Synchronous Flyback Controller
ADI

ADP1071-1ACCZ

Isolated Synchronous Flyback Controller
ADI

ADP1071-1ACCZ-R7

Isolated Synchronous Flyback Controller with Integrated iCoupler
ADI

ADP1071-1ACCZ-RL

Isolated Synchronous Flyback Controller
ADI

ADP1071-1ARWZ

Isolated Synchronous Flyback Controller with Integrated iCoupler
ADI

ADP1071-1ARWZ-R7

Isolated Synchronous Flyback Controller with Integrated iCoupler
ADI

ADP1071-1ARWZ-RL

Isolated Synchronous Flyback Controller with Integrated iCoupler
ADI

ADP1071-1EVALZ

Isolated Synchronous Flyback Controller
ADI