ADP120-1-ACBZ30R7 [ADI]

IC,VOLT REGULATOR,FIXED,+3V,CMOS,BGA,4PIN,PLASTIC;
ADP120-1-ACBZ30R7
型号: ADP120-1-ACBZ30R7
厂家: ADI    ADI
描述:

IC,VOLT REGULATOR,FIXED,+3V,CMOS,BGA,4PIN,PLASTIC

文件: 总20页 (文件大小:613K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
100 mA, Low Quiescent Current,  
CMOS Linear Regulator  
ADP120  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
ADP120  
Input voltage range: 2.3 V to 5.5 V  
Output voltage range: 1.2 V to 3.3 V  
Output current: 100 mA  
V
= 2.3V  
V
= 1.8V  
IN  
OUT  
1
2
3
5
VIN  
GND  
EN  
VOUT  
+
+
1µF  
1µF  
Low quiescent current  
4
NC  
I
I
GND = 11 μA with zero load  
GND = 22 μA with 100 mA load  
NC = NO CONNECT  
Low shutdown current: <1 μA  
Low dropout voltage  
Figure 1. ADP120 TSOT with Fixed Output Voltage, 1.8 V  
ADP120: 100 mV @ 100 mA load  
ADP120-1: 60 mV @ 100 mA load  
High PSRR  
73 dB @ 1 kHz at VOUT = 1.2 V  
70 dB @ 10 kHz at VOUT = 1.2 V  
Low noise: 40 μV rms at VOUT = 1.2 V  
No noise bypass capacitor required  
Initial accuracy: 1ꢀ  
Stable with small 1 μF ceramic output capacitor  
16 fixed output voltage options  
Current limit and thermal overload protection  
Logic controlled enable  
ADP120-1  
V
= 2.3V  
V
= 1.8V  
OUT  
IN  
VIN  
VOUT  
+
+
1µF  
1µF  
EN  
GND  
Figure 2. ADP120-1 WLCSP with Fixed Output Voltage, 1.8 V  
5-lead TSOT package  
4-ball 0.4 mm pitch WLCSP  
APPLICATIONS  
Mobile phones  
Digital camera and audio devices  
Portable and battery-powered equipment  
Post regulation  
GENERAL DESCRIPTION  
The ADP120 and ADP120-1 are low quiescent current, low  
dropout, linear regulators that operate from 2.3 V to 5.5 V and  
provide up to 100 mA of output current. The low 100 mV  
dropout voltage at 100 mA load improves efficiency and allows  
operation over a wide input voltage range. The low 25 μA of  
quiescent current at full load make the ADP120 and the  
ADP120-1 ideal for battery-operated portable equipment.  
The ADP120 and ADP120-1 are available in 16 fixed output  
voltage options, ranging from 1.2 V to 3.3 V. The parts are  
optimized for stable operation with small 1 ꢀF ceramic output  
capacitors. The ADP120 and ADP120-1 deliver good transient  
performance with minimal board area.  
Short-circuit protection and thermal overload protection circuits  
prevent damage in adverse conditions. The ADP120 is available  
in a tiny 5-lead TSOT and the ADP120-1 is available in a 4-ball  
0.4 mm pitch WLCSP for the smallest footprint solution to  
meet a variety of portable applications.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
ADP120  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 11  
Applications Information.............................................................. 12  
Capacitor Selection .................................................................... 12  
Undervoltage Lockout ............................................................... 13  
Enable Feature ............................................................................ 13  
Current Limit and Thermal Overload Protection ................. 14  
Thermal Considerations............................................................ 14  
PCB Layout Considerations...................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Typical Application Circuits............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Recommended Specifications: Input and Output Capacitors 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Data................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
5/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADP120  
SPECIFICATIONS  
VIN = (VOUT + 0.4 V) or 2.3 V, whichever is greater; EN= VIN, IOUT = 10 mA, CIN = COUT = 1 ꢀF, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Conditions  
Min  
Typ  
11  
Max  
Unit  
V
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
TJ = −40°C to +125°C  
IOUT = 0 μA  
IOUT = 0 μA , TJ = −40°C to +125°C  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 100 mA  
IOUT = 100 mA, TJ = −40°C to +125°C  
EN = GND  
2.3  
5.5  
IGND  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
%
21  
29  
35  
15  
22  
SHUTDOWN CURRENT  
IGND-SD  
0.1  
EN = GND, TJ = −40°C to +125°C  
IOUT = 10 mA  
1.5  
+1  
FIXED OUTPUT VOLTAGE ACCURACY VOUT  
−1  
100 μA < IOUT < 100 mA,VIN = (VOUT + 0.4 V) to 5.5 V  
−2  
+2  
%
100 μA < IOUT < 100 mA,VIN = (VOUT + 0.4 V) to 5.5 V,  
TJ = −40°C to +125°C  
−2.5  
+2.5  
%
REGULATION  
Line Regulation  
∆VOUT/∆VIN VIN = (VOUT + 0.4 V) to 5.5 V, IOUT = 1 mA,  
TJ = −40°C to +125°C  
∆VOUT/∆IOUT IOUT = 1 mA to 100 mA  
−0.03  
+0.03  
0.005  
%/V  
Load Regulation1  
0.001  
%/mA  
%/mA  
IOUT = 1 mA to 100 mA, TJ = −40°C to +125°C  
DROPOUT VOLTAGE2  
ADP120  
VDROPOUT  
VOUT = 3.3 V  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 100 mA  
IOUT = 100 mA, TJ = −40°C to +125°C  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 100 mA  
IOUT = 100 mA, TJ = −40°C to +125°C  
VOUT = 3.3 V  
8
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
μs  
12  
120  
9
80  
6
ADP120-1  
60  
90  
START-UP TIME3  
CURRENT LIMIT THRESHOLD4  
TSTART-UP  
ILIMIT  
120  
180  
110  
1.2  
350  
mA  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
TSSD  
TJ rising  
150  
15  
°C  
°C  
TSSD-HYS  
EN INPUT  
EN Input Logic High  
EN Input Logic Low  
EN Input Leakage Current  
VIH  
VIL  
VI-LEAKAGE  
2.3 V ≤ VIN ≤ 5.5 V  
2.3 V ≤ VIN ≤ 5.5 V  
EN = VIN or GND  
EN = VIN or GND, TJ = −40°C to +125°C  
V
V
μA  
μA  
0.4  
1
0.05  
UNDERVOLTAGE LOCKOUT  
Input Voltage Rising  
Input Voltage Falling  
Hysteresis  
UVLO  
UVLORISE  
UVLOFALL  
UVLOHYS  
OUTNOISE  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
2.25  
V
V
mV  
1.5  
120  
65  
52  
OUTPUT NOISE  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 3.3 V  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 2.5 V  
10 Hz to 100 kHz, VIN = 5 V, VOUT = 1.2 V  
μV rms  
μV rms  
μV rms  
40  
Rev. 0 | Page 3 of 20  
 
ADP120  
Parameter  
Symbol  
Conditions  
Min  
Typ  
60  
66  
Max  
Unit  
dB  
dB  
POWER SUPPLY REJECTION RATIO  
PSRR  
10 kHz, VIN = 5 V, VOUT = 3.3 V  
10 kHz, VIN = 5 V, VOUT = 2.5 V  
10 kHz, VIN = 5 V, VOUT = 1.2 V  
70  
dB  
1 Based on an endpoint calculation using 1 mA and 100 mA loads. See Figure 6 for typical load regulation performance for loads less than 1 mA.  
2 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output  
voltages above 2.3 V.  
3 Start-up time is defined as the time between the rising edge of EN to VOUT being at 90% of its nominal value.  
4 Current limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V, or 2.7 V.  
RECOMMENDED SPECIFICATIONS: INPUT AND OUTPUT CAPACITORS  
Table 2.  
Parameter  
Symbol  
CAPMIN  
RESR  
Conditions  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
Min  
Typ  
Max  
Unit  
μF  
MINIMUM INPUT AND OUTPUT CAPACITANCE1  
0.70  
0.001  
CAPACITOR ESR  
1
Ω
1 The minimum input and output capacitance should be greater than 0.70 ꢀF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R- and X5R-type capacitors are recommended,  
Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. 0 | Page 4 of 20  
 
ADP120  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Junction-to-ambient thermal resistance (θJA) of the package is  
based on modeling and calculation using a four-layer board.  
The junction-to-ambient thermal resistance is highly dependent  
on the application and board layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
board design is required. The value of θJA may vary, depending on  
PCB material, layout, and environmental conditions. Specified  
value of θJA is based on a four-layer, 4 in. × 3 in., 2 1/2 oz.  
copper board, as per JEDEC standards. For more information,  
see Application Note AN-772, A Design and Manufacturing  
Guide for the Lead Frame Chip Scale Package (LFCSP).  
Parameter  
Rating  
VIN to GND  
VOUT to GND  
−0.3 V to +6 V  
−0.3 V to VIN  
EN to GND  
−0.3 V to +6 V  
−65°C to +150°C  
−40°C to +125°C  
JEDEC J-STD-020  
Storage Temperature Range  
Operating Junction Temperature Range  
Soldering Conditions  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ΨJB is the junction-to-board thermal characterization parameter  
with units of °C/W. ΨJB of the package is based on modeling and  
calculation using a four-layer board. The JESD51-12, Guidelines  
for Reporting and Using Package Thermal Information, states  
that thermal characterization parameters are not the same as  
thermal resistances. ΨJB measures the component power flowing  
through multiple thermal paths rather than a single path as in  
thermal resistance, θJB. Therefore, ΨJB thermal paths include  
convection from the top of the package as well as radiation from  
the package, factors that make ΨJB more useful in real-world  
applications. Maximum junction temperature (TJ) is calculated  
from the board temperature (TB) and power dissipation (PD)  
using the formula  
THERMAL DATA  
Absolute maximum ratings apply individually only, not in  
combination. The ADP120 and ADP120-1 can be damaged  
when the junction temperature limits are exceeded. Monitoring  
ambient temperature does not guarantee that TJ is within the  
specified temperature limits. In applications with high power  
dissipation and poor thermal resistance, the maximum ambient  
temperature may have to be derated.  
TJ = TB + (PD × ΨJB)  
In applications with moderate power dissipation and low PCB  
thermal resistance, the maximum ambient temperature can  
exceed the maximum limit as long as the junction temperature  
is within specification limits. The junction temperature (TJ) of  
the device is dependent on the ambient temperature (TA), the  
power dissipation of the device (PD), and the junction-to-ambient  
thermal resistance of the package (θJA).  
Refer to JESD51-8 and JESD51-12 for more detailed informa-  
tion about ΨJB.  
THERMAL RESISTANCE  
θJA and ΨJB are specified for the worst-case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
Maximum junction temperature (TJ) is calculated from the  
ambient temperature (TA) and power dissipation (PD) using the  
formula  
Table 4. Thermal Resistance  
Package Type  
θJA  
ΨJB  
43  
58  
Unit  
°C/W  
°C/W  
5-Lead TSOT  
4-Ball, 0.4 mm Pitch WLCSP  
170  
260  
TJ = TA + (PD × θJA)  
ESD CAUTION  
Rev. 0 | Page 5 of 20  
 
ADP120  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
ADP120-1  
1
2
1
2
3
5
VIN  
GND  
EN  
VOUT  
A
B
VIN  
VOUT  
ADP120  
TOP VIEW  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
4
NC  
EN  
GND  
NC = NO CONNECT  
Figure 4. 4-Ball WLCSP Pin Configuration  
Figure 3. 5-Lead TSOT Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
TSOT WLCSP  
1
2
3
A1  
B2  
B1  
VIN  
GND  
EN  
Regulator Input Supply. Bypass VIN to GND with a 1 μF or greater capacitor.  
Ground.  
Enable Input. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For automatic  
startup, connect EN to VIN.  
4
5
N/A  
A2  
NC  
VOUT  
No Connect. Not connected internally.  
Regulated Output Voltage. Bypass VOUT to GND with a 1 μF or greater capacitor.  
Rev. 0 | Page 6 of 20  
 
ADP120  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 2.3 V, VOUT = 1.8 V, IOUT = 10 mA, CIN = COUT = 1 ꢀF, TA = 25°C, unless otherwise noted.  
35  
LOAD = 10µA  
LOAD = 100µA  
1.804  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
30  
1.802  
1.800  
1.798  
1.796  
1.794  
1.792  
1.790  
25  
20  
15  
10  
5
LOAD = 10µA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
0
–40°C  
–5°C  
25°C  
(°C)  
85°C  
125°C  
–40°C  
–5°C  
25°C  
(°C)  
85°C  
125°C  
T
J
T
J
Figure 5. Output Voltage vs. Junction Temperature  
Figure 8. Ground Current vs. Junction Temperature  
30  
1.805  
1.803  
1.801  
1.799  
1.797  
1.795  
25  
20  
15  
10  
5
0
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 9. Ground Current vs. Load Current  
Figure 6. Output Voltage vs. Load Current  
1.805  
1.803  
1.801  
1.799  
1.797  
1.795  
30  
25  
20  
15  
10  
5
LOAD = 10µA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 10µA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
0
2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
(V)  
IN  
IN  
Figure 10. Ground Current vs. Input Voltage  
Figure 7. Output Voltage vs. Input Voltage  
Rev. 0 | Page 7 of 20  
 
 
ADP120  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.3V  
2.30V  
2.50V  
3.00V  
3.50V  
4.20V  
5.50V  
OUT  
= 25°C  
T
A
0
–50  
–25  
0
25  
50  
75  
100  
125  
1
10  
(mA)  
100  
TEMPERATURE (°C)  
I
LOAD  
Figure 11. Shutdown Current vs. Temperature at Various Input Voltages  
Figure 14. Dropout Voltage vs. Load Current, WLCSP, VOUT = 3.3 V  
80  
3.35  
V
= 3.3V  
OUT  
= 25°C  
T
A
70  
60  
50  
40  
30  
20  
10  
0
3.30  
3.25  
3.20  
3.15  
V
V
V
V
V
@ 1mA  
OUT  
OUT  
OUT  
OUT  
OUT  
@ 10mA  
@ 20mA  
@ 50mA  
@ 100mA  
3.10  
3.05  
1
10  
(mA)  
100  
3.20  
3.25  
3.30  
3.35  
3.40  
(V)  
3.45  
3.50  
3.55  
3.60  
I
V
LOAD  
IN  
Figure 12. Dropout Voltage vs. Load Current, TSOT, VOUT = 3.3 V  
Figure 15. Output Voltage vs. Input Voltage (in Dropout), WLCSP, VOUT = 3.3 V  
3.35  
60  
I
I
I
I
I
@ 1mA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
@ 10mA  
@ 20mA  
@ 50mA  
@ 100mA  
3.30  
3.25  
3.20  
3.15  
50  
40  
30  
20  
10  
0
V
V
V
V
V
@ 1mA  
OUT  
OUT  
OUT  
OUT  
OUT  
@ 10mA  
@ 20mA  
@ 50mA  
@ 100mA  
3.10  
3.05  
3.20  
3.25  
3.30  
3.35  
3.40  
(V)  
3.45  
3.50  
3.55  
3.60  
3.20  
3.25  
3.30  
3.35  
3.40  
(V)  
3.45  
3.50  
3.55  
3.60  
V
V
IN  
IN  
Figure 16. Ground Current vs. Input Voltage (in Dropout)  
Figure 13. Output Voltage vs. Input Voltage (in Dropout), TSOT, VOUT = 3.3 V  
Rev. 0 | Page 8 of 20  
ADP120  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
100mA  
10mA  
1mA  
100µA  
NO LOAD  
V
V
V
= 50mV  
3.3V/100mA  
3.3V/100µA  
1.2V/100mA  
1.2V/100µA  
1.8V/100mA  
1.8V/100µA  
RIPPLE  
= 5V  
IN  
= 1.2V  
= 1µF  
OUT  
C
OUT  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Power Supply Rejection Ratio vs. Frequency  
Figure 20. Power Supply Rejection Ratio vs. Frequency  
Various Output Voltages and Load Currents  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
100mA  
10mA  
1mA  
100µA  
NO LOAD  
V
V
V
= 50mV  
RIPPLE  
= 5V  
IN  
= 1.8V  
= 1µF  
OUT  
C
OUT  
3.3V  
1.8V  
1
1.2V  
0.1  
0.01  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. Power Supply Rejection Ratio vs. Frequency  
Figure 21. Output Noise Spectrum, VIN = 5 V, ILOAD = 10 mA, COUT = 1 μF  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
70  
100mA  
10mA  
1mA  
100µA  
NO LOAD  
V
V
V
= 50mV  
3.3V  
RIPPLE  
= 5V  
IN  
= 3.3V  
= 1µF  
60  
OUT  
C
OUT  
2.5V  
50  
1.8V  
1.5V  
1.2V  
40  
30  
20  
10  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
0.001  
0.01  
0.1  
I
1
10  
100  
FREQUENCY (Hz)  
(mA)  
LOAD  
Figure 19. Power Supply Rejection Ratio vs. Frequency  
Figure 22. Output Noise vs. Load Current and Output Voltage  
VIN = 5 V, COUT = 1 μF  
Rev. 0 | Page 9 of 20  
ADP120  
I
I
LOAD  
LOAD  
1mA TO 100mA LOAD STEP,  
2.5A/µs  
4V TO 5V INPUT VOLTAGE STEP,  
2V/µs  
V
OUT  
V
OUT  
V
V
= 5V  
= 1.8V  
V
C
= 1.8V,  
IN  
OUT  
OUT  
= C  
= 1µF  
IN  
OUT  
(40µs/DIV)  
(4µs/DIV)  
Figure 23. Load Transient Response, CIN and COUT = 1 μF  
Figure 25. Line Transient Response, Load Current = 100 mA  
I
LOAD  
I
LOAD  
1mA TO 100mA LOAD STEP,  
2.5A/µs  
4V TO 5V INPUT VOLTAGE STEP,  
2V/µs  
V
OUT  
V
OUT  
V
V
= 5V  
= 1.8V  
V
C
= 1.8V,  
IN  
OUT  
OUT  
= C  
= 1µF  
IN  
OUT  
(40µs/DIV)  
(10µs/DIV)  
Figure 24. Load Transient Response, CIN and COUT = 4.7 μF  
Figure 26. Line Transient Response, Load Current = 1 mA  
Rev. 0 | Page 10 of 20  
ADP120  
THEORY OF OPERATION  
The ADP120 and ADP120-1 are low quiescent current, low  
dropout linear regulators that operate from 2.3 V to 5.5 V and  
provide up to 100 mA of output current. Drawing a low 22 μA  
of quiescent current (typical) at full load makes the ADP120  
and ADP120-1 ideal for battery-operated portable equipment.  
Shutdown current consumption is typically 100 nA.  
Internally, the ADP120 and ADP120-1 consist of a reference, an  
error amplifier, a feedback voltage divider, and a PMOS pass tran-  
sistor. Output current is delivered via the PMOS pass device,  
which is controlled by the error amplifier. The error amplifier  
compares the reference voltage with the feedback voltage from  
the output and amplifies the difference. If the feedback voltage  
is lower than the reference voltage, the gate of the PMOS device  
is pulled lower, allowing more current to pass and increasing  
the output voltage. If the feedback voltage is higher than the  
reference voltage, the gate of the PMOS device is pulled higher,  
allowing less current to pass and decreasing the output voltage.  
Optimized for use with small 1 ꢀF ceramic capacitors, the  
ADP120 and ADP120-1 provide excellent transient  
performance.  
ADP120  
VIN  
GND  
EN  
VOUT  
The ADP120 and ADP120-1 are available in 16 output voltage  
options, ranging from 1.2 V to 3.3 V. The ADP120 and ADP120-1  
use the EN pin to enable and disable the VOUT pin under normal  
operating conditions. When EN is high, VOUT turns on, when  
EN is low, VOUT turns off. For automatic startup, EN can be  
tied to VIN.  
R1  
SHORT CIRCUIT,  
UVLO, AND  
THERMAL  
PROTECT  
SHUTDOWN  
0.8V REFERENCE  
R2  
Figure 27. Internal Block Diagram  
Rev. 0 | Page 11 of 20  
 
ADP120  
APPLICATIONS INFORMATION  
CAPACITOR SELECTION  
Input and Output Capacitor Properties  
Output Capacitor  
Use any good quality ceramic capacitors with the ADP120 or  
ADP120-1, as long as they meet the minimum capacitance and  
maximum ESR requirements. Ceramic capacitors are manufac-  
tured with a variety of dielectrics, each with different behavior  
over temperature and applied voltage. Capacitors must have a  
dielectric adequate to ensure the minimum capacitance over  
the necessary temperature range and dc bias conditions. X5R  
or X7R dielectrics with a voltage rating of 6.3 V or 10 V are  
recommended for best performance. Y5V and Z5U dielectrics  
are not recommended for use with any LDO because of their  
poor temperature and dc bias characteristics.  
The ADP120 and ADP120-1 are designed for operation with  
small, space-saving ceramic capacitors, but function with most  
commonly used capacitors as long as care is taken with regard  
to the effective series resistance (ESR) value. The ESR of the  
output capacitor affects stability of the LDO control loop. A  
minimum of 0.70 ꢀF capacitance with an ESR of 1 Ω or less is  
recommended to ensure stability of the ADP120 and ADP120-1.  
Transient response to changes in load current is also affected by  
output capacitance. Using a larger value of output capacitance  
improves the transient response of the ADP120 and ADP120-1  
to large changes in load current. Figure 28 and Figure 29 show  
the transient responses for output capacitance values of 1 ꢀF  
and 4.7 ꢀF, respectively.  
Figure 30 depicts the capacitance vs. voltage bias characteristic  
of a 0402 1 ꢀF, 10 V, X5R capacitor. The voltage stability of a capa-  
citor is strongly influenced by the capacitor size and voltage rating.  
In general, a capacitor in a larger package or higher voltage rating  
exhibits better stability. The temperature variation of the X5R  
dielectric is about 15ꢁ over the −40°C to +85°C temperature  
range and is not a function of package or voltage rating.  
1.2  
I
LOAD  
1mA TO 100mA LOAD STEP,  
2.5A/µs  
MURATA PART NUMBER:  
GRM155R61A105KE15  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
OUT  
V
C
= 1.8V,  
OUT  
= C  
= 1µF  
IN  
OUT  
(400ns/DIV)  
Figure 28. Output Transient Response, COUT = 1 ꢀF  
I
LOAD  
1mA TO 100mA LOAD STEP,  
2.5A/µs  
0
2
4
6
8
10  
VOLTAGE (V)  
Figure 30. Capacitance vs. Voltage Characteristic  
Use Equation 1 to determine the worst-case capacitance accounting  
for capacitor variation over temperature, component tolerance,  
and voltage.  
V
OUT  
CEFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
(1)  
where:  
V
C
= 1.8V,  
OUT  
= C  
= 4.7µF  
IN  
OUT  
CBIAS is the effective capacitance at the operating voltage.  
(400ns/DIV)  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
Figure 29. Output Transient Response, COUT = 4.7 ꢀF  
Input Bypass Capacitor  
In this example, the worst-case temperature coefficient  
(TEMPCO) over −40°C to +85°C is assumed to be 15ꢁ for an  
X5R dielectric. The tolerance of the capacitor (TOL) is assumed  
to be 10ꢁ, and CBIAS is 0.94 μF at 1.8 V as shown in Figure 30.  
Connecting a 1 ꢀF capacitor from VIN to GND reduces the cir-  
cuit sensitivity to printed circuit board (PCB) layout, especially  
when long input traces or high source impedance are encountered.  
If greater than 1 ꢀF of output capacitance is required, increase  
the input capacitor to match it.  
Substituting these values in Equation 1 yields  
CEFF = 0.94 μF × (1 − 0.15) × (1 − 0.1) = 0.719 μF  
Rev. 0 | Page 12 of 20  
 
 
 
 
ADP120  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over temper-  
ature and tolerance at the chosen output voltage.  
To guarantee the performance of the ADP120 and ADP120-1, it  
is imperative that the effects of dc bias, temperature, and toler-  
ances on the behavior of the capacitors are evaluated for each  
application.  
EN ACTIVE  
EN INACTIVE  
UNDERVOLTAGE LOCKOUT  
The ADP120 and ADP120-1 each have an internal undervol-  
tage lockout circuit that disables all inputs and the output when  
the input voltage is less than approximately 2.2 V. This ensures  
that the ADP120 and ADP120-1 inputs and the output behave in  
a predictable manner during power-up.  
2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50  
V
(V)  
IN  
Figure 32. Typical EN Pin Thresholds vs. Input Voltage  
ENABLE FEATURE  
The ADP120 and ADP120-1 utilize an internal soft start to limit  
the inrush current when the output is enabled. The start-up  
time for the 1.8 V option is approximately 120 ꢀs from the time  
the EN active threshold is crossed to when the output reaches  
90ꢁ of its final value. The start-up time is somewhat dependant  
on the output voltage setting and increases slightly as the output  
voltage increases.  
The ADP120 and ADP120-1 use the EN pin to enable and  
disable the VOUT pin under normal operating conditions. As  
shown in Figure 31, when a rising voltage on EN crosses the active  
threshold, VOUT turns on. When a falling voltage on EN  
crosses the inactive threshold, VOUT turns off.  
6
V
OUT  
EN  
5
EN  
4
3.3V  
3
V
V
= 5V  
2
IN  
1.8V  
= 1.8V  
OUT  
C
= C  
= 100mA  
= 1µF  
1.2V  
IN  
OUT  
I
LOAD  
1
(40ms/DIV)  
Figure 31. Typical EN Pin Operation  
0
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (µs)  
As shown in Figure 31, the EN pin has hysteresis built-in. This  
prevents on/off oscillations that can occur due to noise on the  
EN pin as it passes through the threshold points.  
Figure 33. Typical Start-Up Time  
The EN pin active/inactive thresholds are derived from the VIN  
voltage; therefore, these thresholds vary with changing input  
voltage. Figure 32 shows typical EN active/inactive thresholds  
when the input voltage varies from 2.3 V to 5.5 V.  
Rev. 0 | Page 13 of 20  
 
 
 
ADP120  
To guarantee reliable operation, the junction temperature of  
the ADP120 and ADP120-1 must not exceed 125°C. To ensure  
the junction temperature stays below this maximum value, the  
user needs to be aware of the parameters that contribute to  
junction temperature changes. These parameters include ambient  
temperature, power dissipation in the power device, and thermal  
resistances between the junction and ambient air (θJA). The θJA  
number is dependent on the package assembly compounds that  
are used and the amount of copper used to solder the package  
GND pins to the PCB. Table 6 shows typical θJA values of the  
5-lead TSOT and 4-ball WLCSP packages for various PCB copper  
sizes. Table 7 shows the typical ΨJB value of the 5-lead TSOT and  
4-ball WLCSP.  
CURRENT LIMIT AND THERMAL OVERLOAD  
PROTECTION  
The ADP120 and ADP120-1 are protected against damage due  
to excessive power dissipation by current and thermal overload  
protection circuits. The ADP120 and ADP120-1 are designed to  
current limit when the output load reaches 150 mA (typical).  
When the output load exceeds 150 mA, the output voltage  
reduces to maintain a constant current limit.  
Thermal overload protection is built-in limiting the junction  
temperature to a maximum of 150°C (typical). Under extreme  
conditions (that is, high ambient temperature and power dissi-  
pation) when the junction temperature starts to rise above 150°C,  
the output turns off, reducing the output current to zero. When  
the junction temperature drops below 135°C, the output turns  
on again restoring output current to its nominal value.  
Table 6. Typical θJA Values  
θJA (°C/W)  
Copper Size (mm2)  
01  
ADP120  
170  
ADP120-1  
260  
Consider the case where a hard short from VOUT to GND  
occurs. At first, the ADP120 and ADP120-1 current limit  
conducting only 150 mA into the short. If self-heating of the  
junction is great enough to cause its temperature to rise above  
150°C, thermal shutdown activates, turning off the output and  
reducing the output current to zero. As the junction tempera-  
ture cools and drops below 135°C, the output turns on and  
conducts 150 mA into the short, again causing the junction  
temperature to rise above 150°C. This thermal oscillation  
between 135°C and 150°C causes a current oscillation between  
150 mA and 0 mA that continues as long as the short remains at  
the output.  
50  
152  
159  
100  
300  
500  
146  
134  
131  
157  
153  
151  
1 Device soldered to minimum size pin traces.  
Table 7. Typical ΨJB Values  
ΨJB (°C/W)  
ADP120, TSOT  
ADP120-1, WLCSP  
58.4  
42.8  
The junction temperature of the ADP120 and ADP120-1 can be  
calculated from the following equation:  
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions. For reliable  
operation, device power dissipation must be externally limited  
to prevent junction temperatures from exceeding 125°C.  
TJ = TA + (PD × θJA)  
where:  
(2)  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
THERMAL CONSIDERATIONS  
In most applications, the ADP120 and ADP120-1 do not dissi-  
pate much heat due to their high efficiency. However, in  
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
)
(3)  
applications with high ambient temperature, high supply voltage to  
output voltage differential, the heat dissipated in the package is  
large enough that it can cause the junction temperature of the  
die to exceed the maximum junction temperature of 125°C.  
where:  
I
I
LOAD is the load current.  
GND is the ground current.  
V
IN and VOUT are input and output voltages, respectively.  
When the junction temperature exceeds 150°C, the converter  
enters thermal shutdown. It recovers only after the junction  
temperature has decreased below 135°C to prevent any permanent  
damage. Therefore, thermal analysis for the chosen application  
is very important to guarantee reliable performance over all  
conditions. The junction temperature of the die is the sum of  
the ambient temperature of the environment and the tempera-  
ture rise of the package due to the power dissipation, as shown  
in Equation 2.  
Power dissipation due to ground current is quite small and can  
be ignored. Therefore, the junction temperature equation  
simplifies to the following:  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(4)  
As shown in Equation 4, for a given ambient temperature, input-  
to-output voltage differential, and continuous load current there  
exists a minimum copper size requirement for the PCB to ensure  
the junction temperature does not rise above 125°C. The following  
figures show junction temperature calculations for different  
ambient temperatures, load currents, VIN-to-VOUT differentials,  
and areas of PCB copper.  
Rev. 0 | Page 14 of 20  
 
 
 
 
ADP120  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
I
= 100mA  
L
I
= 75mA  
= 50mA  
= 25mA  
L
I
= 100mA  
L
I
L
I
= 75mA  
L
I
L
60  
60  
I
= 50mA  
= 25mA  
L
I
L
I
= 10mA  
40  
40  
L
I
= 1mA  
L
20  
20  
I
= 10mA  
3.5  
L
I
= 1mA  
L
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
4.0  
4.5  
4.5  
4.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
V
IN  
IN  
OUT  
OUT  
Figure 34. TSOT, 500 mm2 of PCB Copper, TA = 25°C  
Figure 37. TSOT, 500 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
I
= 100mA  
L
I
= 75mA  
L
I
= 100mA  
L
I
= 50mA  
= 25mA  
L
I
= 75mA  
= 50mA  
= 25mA  
L
I
L
I
60  
60  
L
I
L
40  
40  
I
= 10mA  
L
I
= 1mA  
L
20  
20  
I
= 10mA  
3.5  
L
I
= 1mA  
L
0
0
0.5  
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
4.0  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
V
IN  
IN  
OUT  
OUT  
Figure 35. TSOT, 100 mm2 of PCB Copper, TA = 25°C  
Figure 38. TSOT, 100 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
I
= 100mA  
L
I
= 75mA  
L
I
= 100mA  
L
I
= 50mA  
L
I
= 75mA  
= 50mA  
L
I
= 25mA  
= 1mA  
L
I
L
60  
60  
I
= 25mA  
L
I
= 10mA  
L
40  
40  
I
L
20  
20  
I
= 10mA  
3.5  
L
I
= 1mA  
L
0
0
0.5  
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
4.0  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
V
IN  
IN  
OUT  
OUT  
Figure 36. TSOT, 0 mm2 of PCB Copper, TA = 25°C  
Figure 39. TSOT, 0 mm2 of PCB Copper, TA = 50°C  
Rev. 0 | Page 15 of 20  
ADP120  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
I
= 100mA  
L
I
= 75mA  
L
I
= 100mA  
L
I
= 50mA  
= 25mA  
L
I
= 75mA  
= 50mA  
= 25mA  
L
I
L
I
60  
60  
L
I
L
40  
40  
I
= 10mA  
L
I
= 1mA  
L
20  
20  
I
= 10mA  
3.5  
L
I
= 1mA  
L
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
4.0  
4.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
V
IN  
IN  
OUT  
OUT  
Figure 40. WLCSP, 500 mm2 of PCB Copper, TA = 25°C  
Figure 43. WLCSP, 500 mm2 of PCB Copper, TA = 50°C  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
I
= 100mA  
L
I
= 75mA  
L
I
= 100mA  
L
I
= 50mA  
= 25mA  
L
I
= 75mA  
= 50mA  
= 25mA  
L
I
L
I
L
60  
60  
I
L
40  
40  
I
= 10mA  
L
I
= 1mA  
L
20  
20  
I
= 10mA  
3.5  
L
I
= 1mA  
L
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
4.0  
4.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
V
IN  
IN  
OUT  
OUT  
Figure 41. WLCSP, 100 mm2 of PCB Copper, TA = 25°  
Figure 44. WLCSP, 100 mm2 of PCB Copper, TA = 50°  
140  
120  
100  
80  
140  
120  
100  
80  
MAX JUNCTION TEMPERATURE  
MAX JUNCTION TEMPERATURE  
I
= 75mA  
I
= 100mA  
L
I
= 100mA  
L
L
I
= 75mA  
L
I
= 50mA  
= 25mA  
L
I
= 50mA  
= 25mA  
L
I
L
60  
60  
I
L
I
= 10mA  
40  
40  
L
I
= 1mA  
L
20  
20  
I
= 10mA  
L
I
= 1mA  
L
0
0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
V
IN  
IN  
OUT  
OUT  
Figure 42. WLCSP, 0 mm2 of PCB Copper, TA = 25°C  
Figure 45. WLCSP, 0 mm2 of PCB Copper, TA = 50°C  
Rev. 0 | Page 16 of 20  
ADP120  
PCB LAYOUT CONSIDERATIONS  
In cases where the board temperature is known, use the thermal  
characterization parameter, ΨJB, to estimate the junction  
temperature rise. Maximum junction temperature (TJ) is  
calculated from the board temperature (TB) and power  
dissipation (PD) using the formula  
Improve heat dissipation from the package by increasing the  
amount of copper attached to the pins of the ADP120 and  
ADP120-1. However, as listed in Table 6, a point of diminishing  
returns is eventually reached, beyond which an increase in the  
copper size does not yield significant heat dissipation benefits.  
TJ = TB + (PD × ΨJB)  
(5)  
Place the input capacitor as close as possible to the VIN and  
GND pins. Place the output capacitor as close as possible to the  
VOUT and GND pins. Use of 0402- or 0603-size capacitors and  
resistors achieves the smallest possible footprint solution on  
boards where area is limited.  
140  
MAX JUNCTION TEMPERATURE  
120  
100  
80  
60  
40  
20  
0
I
= 50mA  
L
I
I
= 75mA  
= 10mA  
I
= 100mA  
L
L
GND  
GND  
I
= 25mA  
L
I
= 1mA  
L
L
ANALOG DEVICES  
ADP120-xx-EVALZ  
C1  
C2  
U1  
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
3.5  
4.0  
4.5  
V
(V)  
IN  
OUT  
J1  
Figure 46. TSOT, TA = 85°C  
140  
120  
100  
80  
VIN  
VOUT  
MAX JUNCTION TEMPERATURE  
I
= 50mA  
L
I
= 75mA  
I
= 100mA  
L
L
EN  
GND  
GND  
I
= 25mA  
I
= 10mA  
L
I
= 1mA  
L
L
Figure 48. TSOT PCB Layout  
60  
J1  
ADP120-1-xx-EVALZ  
40  
VOUT  
VIN  
20  
C1  
C2  
U1  
WLC  
SP  
0
0.5  
1.0  
1.5  
2.0  
2.5  
– V  
3.0  
(V)  
3.5  
4.0  
4.5  
V
IN  
OUT  
GND  
Figure 47. WLCSP, TA = 85°C  
GND  
EN  
Figure 49. WLCSP PCB Layout  
Rev. 0 | Page 17 of 20  
 
ADP120  
OUTLINE DIMENSIONS  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
*
0.90  
0.87  
0.84  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 50. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
0.660  
0.600  
0.540  
0.860  
0.820 SQ  
0.780  
A1 BALL  
CORNER  
SEATING  
PLANE  
2
1
A
B
0.280  
0.260  
0.240  
0.40  
BALL PITCH  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.230  
0.200  
0.170  
0.050 NOM  
COPLANARITY  
Figure 51. 4-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-4-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Output  
Voltage (V)  
Package  
Option  
Model  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
Branding  
L9R  
L9Q  
L9P  
L9N  
L8P  
L8Q  
L8R  
L8S  
L8T  
L8U  
L8V  
ADP120-AUJZ12R71  
ADP120-AUJZ15R71  
ADP120-AUJZ18 R71  
ADP120-AUJZ33R71  
ADP120-1-ACBZ12R71  
ADP120-1-ACBZ15R71  
ADP120-1-ACBZ155R71  
ADP120-1-ACBZ16R71  
ADP120-1-ACBZ165R71  
ADP120-1-ACBZ17R71  
ADP120-1-ACBZ175R71  
1.2  
1.5  
1.8  
3.3  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
1.2  
1.5  
1.55  
1.6  
1.65  
1.7  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
1.75  
Rev. 0 | Page 18 of 20  
 
ADP120  
Output  
Voltage (V)  
Package  
Option  
Model  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
Branding  
L8W  
L8X  
L8Y  
L8Z  
L90  
L91  
L92  
L93  
ADP120-1-ACBZ18 R71  
ADP120-1-ACBZ188R71  
ADP120-1-ACBZ20R71  
ADP120-1-ACBZ25R71  
ADP120-1-ACBZ278R71  
ADP120-1-ACBZ28R71  
ADP120-1-ACBZ29R71  
ADP120-1-ACBZ30R71  
ADP120-1-ACBZ33R71  
ADP120-33-EVALZ1  
ADP120-18-EVALZ1  
ADP120-15-EVALZ1  
ADP120-12-EVALZ1  
ADP120-1-28-EVALZ1  
ADP120-1-25-EVALZ1  
ADP120-1-18-EVALZ1  
ADP120-1-15-EVALZ1  
ADP120-1-12-EVALZ1  
1.8  
1.875  
2.0  
2.5  
2.775  
2.8  
2.9  
3.0  
3.3  
3.3  
1.8  
1.5  
1.2  
2.8  
2.5  
1.8  
1.5  
1.2  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
4-Ball WLCSP  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
CB-4-2  
4-Ball WLCSP  
L94  
ADP120 3.3 V Output Evaluation Board  
ADP120 1.8 V Output Evaluation Board  
ADP120 1.5 V Output Evaluation Board  
ADP120 1.2 V Output Evaluation Board  
ADP120-1 2.8 V Output Evaluation Board  
ADP120-1 2.5 V Output Evaluation Board  
ADP120-1 1.8 V Output Evaluation Board  
ADP120-1 1.5 V Output Evaluation Board  
ADP120-1 1.2 V Output Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 19 of 20  
 
ADP120  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06901-0-5/08(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADP120-1-ACBZ33R7

IC,VOLT REGULATOR,FIXED,+3.3V,CMOS,BGA,4PIN,PLASTIC
ADI

ADP120-12-EVALZ

100 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP120-15-EVALZ

100 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP120-18-EVALZ

100 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP120-33-EVALZ

100 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP120-ACBZ12R7

100 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP120-ACBZ155R7

100 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP120-ACBZ15R7

100 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP120-ACBZ165R7

100 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP120-ACBZ16R7

100 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP120-ACBZ175R7

100 mA, Low Quiescent Current, CMOS Linear Regulator
ADI

ADP120-ACBZ17R7

100 mA, Low Quiescent Current, CMOS Linear Regulator
ADI