ADP124CP-3.3-EVALZ [ADI]

5.5 V Input, 500 mA, Low Quiescent Current, CMOS Linear Regulators; 5.5 V输入500毫安,低静态电流, CMOS线性稳压器
ADP124CP-3.3-EVALZ
型号: ADP124CP-3.3-EVALZ
厂家: ADI    ADI
描述:

5.5 V Input, 500 mA, Low Quiescent Current, CMOS Linear Regulators
5.5 V输入500毫安,低静态电流, CMOS线性稳压器

稳压器
文件: 总20页 (文件大小:632K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5.5 V Input, 500 mA, Low Quiescent  
Current, CMOS Linear Regulators  
Data Sheet  
ADP124/ADP125  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
Input voltage supply range: 2.3 V to 5.5 V  
500 mA maximum output current  
Fixed and adjustable output voltage versions  
1% initial accuracy  
Up to 31 fixed-output voltage options available  
from 1.75 V to 3.3 V  
1
2
3
4
8
7
6
5
VOUT  
VIN  
V
OUT  
= 3.3V  
V
= 5.5V  
IN  
ADP124  
VOUT  
VIN  
C2  
C1  
VOUT  
SENSE  
NC  
EN  
ON  
GND  
OFF  
Adjustable-output voltage range from 0.8 V to 5.0 V  
Very low dropout voltage: 130 mV  
Figure 1. ADP124 with Fixed Output Voltage  
Low quiescent current: 45 µA  
Low shutdown current: <1 µA  
V
= 3.3V  
OUT  
1
2
3
4
8
7
6
5
VOUT  
VIN  
V
= 5.5V  
C1  
IN  
Excellent PSRR performance: 60 dB at 100 kHz  
Excellent load/line transient response  
Optimized for small 1.0 μF ceramic capacitors  
Current limit and thermal overload protection  
Logic controlled enable  
ADP125  
VOUT  
VIN  
C2  
R1  
R2  
NC  
EN  
ADJ  
ON  
GND  
OFF  
Compact 8-lead exposed paddle MSOP and LFCSP packages  
Figure 2. ADP 125 with Adjustable Output Voltage  
APPLICATIONS  
Digital camera and audio devices  
Portable and battery-powered equipment  
Automatic meter reading (AMR) meters  
GPS and location management units  
Medical instrumentation  
Point of load power  
GENERAL DESCRIPTION  
The ADP124/ADP125 are low quiescent current, low dropout  
linear regulators. They are designed to operate from an input  
voltage between 2.3 V and 5.5 V and to provide up to 500 mA  
of output current. The low 130 mV dropout voltage at a 500 mA  
load improves efficiency and allows operation over a wide input  
voltage range.  
The ADP124/ADP125 are specifically designed for stable operation  
with tiny 1 µF ceramic input and output capacitors to meet the  
requirements of high performance, space constrained applications.  
The ADP124/ADP125 have an internal soft start that gives a  
constant start-up time of 350 µs. Short-circuit protection and  
thermal overload protection circuits prevent damage in adverse  
conditions. The ADP124/ADP125 are available in 8-lead  
exposed paddle MSOP and LFCSP packages. When compared  
with the standard MSOP and LFCSP packages, the exposed  
paddle MSOP and LFCSP packages have lower thermal resistance  
JA). The lower thermal resistance package allows the ADP124/  
ADP125 to meet the needs of a variety of portable applications  
while minimizing the rise in junction temperature.  
The low 210 μA of quiescent current with a 500 mA load makes the  
ADP124/ADP125 ideal for battery-operated portable equipment.  
The ADP124 is capable of 31 fixed-output voltages from 1.75 V  
to 3.3 V. The ADP125 is the adjustable version of the device and  
allows the output voltage to be set between 0.8 V and 5.0 V by  
an external voltage divider.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2009–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
ADP124/ADP125  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 11  
Applications Information .............................................................. 12  
Capacitor Selection .................................................................... 12  
Undervoltage Lockout ............................................................... 13  
Enable Feature ............................................................................ 13  
Current Limit and Thermal Overload Protection ................. 14  
Thermal Considerations............................................................ 14  
Junction Temperature Calculations ......................................... 15  
Printed Circuit Board Layout Considerations........................ 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Typical Application Circuits............................................................ 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Recommended Capacitor Specifications................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Data ................................................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
REVISION HISTORY  
6/12—Rev. B to Rev. C  
Changes to Table 3.............................................................................5  
Updated Outline Dimensions........................................................17  
4/12—Rev. A to Rev. B  
Updated Outline Dimensions........................................................17  
Changes to Ordering Guide ...........................................................18  
9/10—Rev. 0 to Rev. A  
Added 8-Lead LFCSP Package..................................... Throughout  
Added Figure 4 and Figure 6 (Renumbered Sequentially) ......... 6  
Changes to Thermal Conditions Section and Table 6 ............... 14  
Added Table 7.................................................................................. 14  
Changes to Junction Temperature Calculations Section........... 15  
Added Figure 44.............................................................................. 16  
Updated Outline Dimensions....................................................... 17  
Changes to Ordering Guide .......................................................... 18  
12/09—Revision 0: Initial Version  
Rev. C | Page 2 of 20  
 
Data Sheet  
ADP124/ADP125  
SPECIFICATIONS  
Unless otherwise noted, VIN = (VOUT + 0.5 V) or 2.3 V, whichever is greater; ADJ connected to VOUT; IOUT = 10 mA; CIN = 1.0 µF;  
C
OUT = 1.0 µF; TA = 25°C.  
Table 1.  
Parameter  
Symbol  
VIN  
Test Conditions  
Min  
Typ  
45  
Max  
Unit  
V
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT1  
2.3  
5.5  
IGND  
IOUT = 0 µA  
IOUT = 0 µA, TJ = −40°C to +125°C  
IOUT = 1 mA  
IOUT = 1 mA, TJ = −40°C to +125°C  
IOUT = 250 mA  
IOUT = 250 mA, TJ = −40°C to +125°C  
IOUT = 500 mA  
IOUT = 500 mA, TJ = −40°C to +125°C  
EN = GND  
EN = GND, TJ = −40°C to +125°C  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
105  
120  
210  
280  
1
60  
160  
210  
0.1  
SHUTDOWN CURRENT  
ISD  
OUTPUT VOLTAGE ACCURACY2  
Fixed Output  
VOUT  
IOUT = 10 mA  
100 µA < IOUT < 500 mA, VIN = (VOUT + 0.5 V) to 5.5 V,  
TJ = −40°C to +125°C  
−1  
−2  
+1  
+1.5  
%
%
Adjustable Output  
IOUT = 10 mA  
100 µA < IOUT < 500 mA, VIN = 2.3 V to 5.5 V,  
TJ = −40°C to +125°C  
0.495 0.500  
0.485 0.500  
0.505  
0.515  
V
V
LINE REGULATION  
LOAD REGULATION3  
∆VOUT/∆VIN  
VIN = VIN = 2.3 V to 5.5 V, TJ = −40°C to +125°C  
−0.05  
+0.05 %/V  
%/mA  
0.001 %/mA  
nA  
∆VOUT/∆IOUT IOUT = 1 mA to 500 mA  
IOUT = 1 mA to 500 mA, TJ = −40°C to +125°C  
0.0005  
ADJ INPUT BIAS CURRENT  
DROPOUT VOLTAGE4  
ADJI-BIAS  
VDROPOUT  
2.3 V ≤ VIN ≤ 5.5 V, ADJ connected to VOUT  
15  
3
IOUT = 10 mA, VOUT > 2.3 V  
mV  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 250 mA, VOUT > 2.3 V  
IOUT = 250 mA, TJ = −40°C to +125°C  
IOUT = 500 mA, VOUT > 2.3V  
IOUT = 500 mA, TJ = −40°C to +125°C  
VOUT = 3.0 V  
5
mV  
mV  
mV  
mV  
mV  
µs  
65  
130  
350  
120  
230  
1000  
START-UP TIME5  
tSTART-UP  
ILIMIT  
CURRENT LIMIT THRESHOLD6  
550  
1.2  
750  
mA  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
TSSD  
TJ rising  
150  
15  
°C  
°C  
TSSD-HYS  
EN INPUT  
EN Input Logic High  
EN Input Logic Low  
EN Input Leakage Current  
VIH  
VIL  
VI-LEAKAGE  
2.3 V ≤ VIN ≤ 5.5 V  
2.3 V ≤ VIN ≤ 5.5 V  
EN = VIN or GND  
EN = VIN or GND, TJ = −40°C to +125°C  
V
V
µA  
µA  
0.4  
1
0.1  
UNDERVOLTAGE LOCKOUT  
Input Voltage Rising  
Input Voltage Falling  
Hysteresis  
UVLO  
UVLORISE  
UVLOFALL  
UVLOHYS  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
TA = 25°C  
2.1  
V
V
mV  
1.5  
125  
Rev. C | Page 3 of 20  
 
ADP124/ADP125  
Data Sheet  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
25  
35  
45  
55  
65  
60  
Max  
Unit  
OUTPUT NOISE  
OUTNOISE  
10 Hz to 100 kHz, VIN = 5.5 V, VOUT = 1.2 V  
10 Hz to 100 kHz, VIN = 5.5 V, VOUT = 1.8 V  
10 Hz to 100 kHz, VIN = 5.5 V, VOUT = 2.5 V  
10 Hz to 100 kHz, VIN = 5.5 V, VOUT = 3.3 V  
10 Hz to 100 kHz, VIN = 5.5 V, VOUT = 4.2V  
10 kHz to 100 kHz, VOUT = 1.8 V, 2.5 V, 3.3 V  
µV rms  
µV rms  
µV rms  
µV rms  
µV rms  
dB  
POWER SUPPLY REJECTION RATIO  
(VIN = VOUT +1V)  
PSRR  
1 The current from the external resistor divider network in the case of adjustable voltage output (as with the ADP125) should be subtracted from the ground current measured.  
2 Accuracy when VOUT is connected directly to ADJ. When VOUT voltage is set by external feedback resistors, absolute accuracy in adjust mode depends on the tolerances of  
the resistors used.  
3 Based on an endpoint calculation using 1 mA and 500 mA loads.  
4 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output voltages  
greater than 2.3 V.  
5 Start-up time is defined as the time between the rising edge of EN to VOUT being at 90% of its nominal value.  
6 Current limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.3 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.3 V, or 2.97 V.  
RECOMMENDED CAPACITOR SPECIFICATIONS  
Table 2.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Minimum Input and Output  
Capacitance1  
CAPMIN  
TA = −40°C to +125°C  
0.70  
µF  
Capacitor ESR  
RESR  
TA = −40°C to +125°C  
0.001  
1
Ω
1 The minimum input and output capacitance should be greater than 0.70 µF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended;  
Y5V and Z5U capacitors are not recommended for use with this LDO.  
Rev. C | Page 4 of 20  
 
 
 
 
 
Data Sheet  
ADP124/ADP125  
ABSOLUTE MAXIMUM RATINGS  
application and board layout. In applications in which high maxi-  
mum power dissipation exists, close attention to thermal board  
design is required. The value of θJA may vary, depending on PCB  
material, layout, and environmental conditions. The specified  
values of θJA are based on a 4-layer, 4 inch × 3 inch circuit board.  
Refer to JESD 51-7 for detailed information on the board  
construction.  
Table 3.  
Parameter  
Rating  
VIN to GND  
ADJ to GND  
EN to GND  
VOUT to GND  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−0.3 V to VIN  
Storage Temperature Range  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
Soldering Conditions  
−65°C to +150°C  
−40°C to +85°C  
−40°C to +125°C  
JEDEC J-STD-020  
ΨJB is the junction-to-board thermal characterization parameter  
and is measured in °C /W. The ΨJB of the package is based on  
modeling and calculation using a 4-layer board. The Guidelines for  
Reporting and Using Package Thermal Information: JESD51-12  
states that thermal characterization parameters are not the same  
as thermal resistances. ΨJB measures the component power flowing  
through multiple thermal paths rather than a single path as in  
thermal resistance, θJB. Therefore, ΨJB thermal paths include  
convection from the top of the package as well as radiation from  
the package—factors that make ΨJB more useful in real-world  
applications. Maximum junction temperature (TJ) is calculated  
from the board temperature (TB) and power dissipation (PD)  
using the formula  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
THERMAL DATA  
Absolute maximum ratings apply individually only, not in  
combination. The ADP124/ADP125 can be damaged when the  
junction temperature limits are exceeded. Monitoring ambient  
temperature does not guarantee that TJ will remain within the  
specified temperature limits. In applications with high power  
dissipation and poor thermal resistance, the maximum ambient  
temperature may have to be limited.  
TJ = TB + (PD × ΨJB)  
Refer to JESD51-8 and JESD51-12 for more detailed information  
about ΨJB.  
THERMAL RESISTANCE  
θJA and ΨJB are specified for the worst-case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
In applications with moderate power dissipation and low PCB  
thermal resistance, the maximum ambient temperature can  
exceed the maximum limit as long as the junction temperature  
is within specification limits. The junction temperature (TJ) of  
the device is dependent on the ambient temperature (TA), the  
power dissipation of the device (PD), and the junction-to-ambient  
thermal resistance of the package (θJA).  
Table 4. Thermal Resistance  
Package Type  
8-Lead MSOP  
8-Lead LFCSP  
θJA  
ΨJB  
Unit  
°C/W  
°C/W  
102.8  
68.9  
31.8  
44.1  
ESD CAUTION  
Maximum junction temperature (TJ) is calculated from the  
ambient temperature (TA) and power dissipation (PD) using the  
formula  
TJ = TA + (PD × θJA)  
The junction-to-ambient thermal resistance (θJA) of the package  
is based on modeling and calculation using a 4-layer board. The  
junction-to-ambient thermal resistance is highly dependent on the  
Rev. C | Page 5 of 20  
 
 
 
 
 
ADP124/ADP125  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
VOUT  
VOUT  
1
2
3
4
8
7
6
5
VIN  
VIN  
NC  
EN  
VOUT  
VOUT  
ADJ  
1
2
3
4
8
7
6
5
VIN  
VIN  
NC  
EN  
ADP124  
ADP125  
TOP VIEW  
TOP VIEW  
VOUT SENSE  
GND  
(Not to Scale)  
(Not to Scale)  
GND  
NOTES  
1. NC = NO CONNECT.  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED PAD MUST BE CONNECTED TO GROUND.  
2. THE EXPOSED PAD MUST BE CONNECTED TO GROUND.  
Figure 3. ADP124 Fixed Output MSOP Pin Configuration  
Figure 5. ADP125 Adjustable Output MSOP Pin Configuration  
VOUT  
VOUT  
1
2
3
4
8
7
6
5
VIN  
VIN  
NC  
EN  
VOUT  
VOUT  
ADJ  
1
2
3
4
8
7
6
5
VIN  
VIN  
NC  
EN  
ADP124  
TOP VIEW  
(Not to Scale)  
ADP125  
TOP VIEW  
(Not to Scale)  
VOUT SENSE  
GND  
GND  
NOTES  
1. NC = NO CONNECT.  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED PAD MUST BE CONNECTED TO GROUND.  
2. THE EXPOSED PAD MUST BE CONNECTED TO GROUND.  
Figure 4. ADP124 Fixed Output LFCSP Pin Configuration  
Figure 6. ADP125 Adjustable Output LFCSP Pin Configuration  
Table 5. Pin Function Descriptions  
Mnemonic  
Pin No. ADP124  
ADP125 Description  
1
2
3
VOUT  
VOUT  
VOUT SENSE N/A  
VOUT  
VOUT  
Regulated Output Voltage. Bypass VOUT to GND with a 1 µF or greater capacitor.  
Regulated Output Voltage. Bypass VOUT to GND with a 1 µF or greater capacitor.  
Feedback Node for the Error Amplifier. Connect to VOUT.  
N/A  
ADJ  
Feedback Node for the Error Amplifier. Connect the midpoint of an external divider from VOUT to GND  
to this pin to set the output voltage.  
4
5
GND  
EN  
GND  
EN  
Ground.  
Enable Input. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For  
automatic startup, connect EN to VIN.  
6
7
8
NC  
NC  
No Connect. This pin is not connected internally.  
VIN  
VIN  
EPAD  
VIN  
VIN  
EPAD  
Regulator Input Supply. Bypass VIN to GND with a 1 µF or greater capacitor.  
Regulator Input Supply. Bypass VIN to GND with a 1 µF or greater capacitor.  
The exposed pad must be connected to ground.  
Rev. C | Page 6 of 20  
 
Data Sheet  
ADP124/ADP125  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 3.8 V, V OUT = 3.3V, IOUT = 10 mA, CIN = 1.0 µF, COUT = 1.0 µF, TA = 25°C, unless otherwise noted.  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
300  
250  
200  
150  
100  
50  
I
I
= 500mA  
= 300mA  
OUT  
OUT  
I
I
I
I
I
I
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 300mA  
= 500mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
I
I
= 100mA  
= 10mA  
OUT  
I
= 100µA  
OUT  
I
= 1mA  
OUT  
+25  
OUT  
–40  
–5  
+85  
+125  
–40  
–5  
+25  
+85  
+125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 7. Output Voltage vs. Junction Temperature  
Figure 10. Ground Current vs. Junction Temperature  
3.309  
3.308  
3.307  
3.306  
3.305  
3.304  
3.303  
250  
200  
150  
100  
50  
0
0.1  
0.1  
1
10  
(mA)  
100  
1000  
1
10  
(mA)  
100  
1000  
I
I
OUT  
LOAD  
Figure 8. Output Voltage vs. Load Current  
Figure 11. Ground Current vs. Load Current  
3.310  
3.308  
3.306  
3.304  
3.302  
3.300  
3.298  
3.296  
3.294  
3.292  
250  
230  
210  
190  
170  
150  
130  
110  
90  
I
I
= 500mA  
= 300mA  
OUT  
OUT  
I
I
I
I
I
I
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 300mA  
= 500mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
I
I
= 100mA  
= 10mA  
OUT  
I
= 1mA  
OUT  
I
= 100µA  
5.00  
OUT  
OUT  
70  
50  
3.50  
3.50  
4.00  
4.50  
(V)  
5.00  
5.50  
4.00  
4.50  
(V)  
5.50  
V
V
IN  
IN  
Figure 9. Output Voltage vs. Input Voltage  
Figure 12. Ground Current vs. Input Voltage  
Rev. C | Page 7 of 20  
 
ADP124/ADP125  
Data Sheet  
0.7  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
I
I
I
I
= 10mA  
OUT  
OUT  
OUT  
OUT  
0.6  
= 100mA  
= 300mA  
= 500mA  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
V
V
V
V
V
= 5.50  
= 5.40  
= 5.20  
= 5.00  
= 4.40  
= 4.20  
= 3.80  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
–50  
–25  
0
25  
50  
75  
100  
125  
3.00  
3.10  
3.20  
3.30  
(V)  
3.40  
3.50  
3.60  
TEMPERATURE (°C)  
V
IN  
Figure 13. Shutdown Current vs. Temperature at Various Input Voltages  
Figure 16. Output Voltage vs. Input Voltage (in Dropout)  
120  
100  
80  
60  
40  
20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
I
I
I
I
I
I
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 300mA  
= 500mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
C
= V  
+1V  
= 50mV  
IN  
RIPPLE  
= C  
OUT  
= 1µF  
IN  
OUT  
1
10  
100  
1000  
10  
100  
1k  
10k  
100k  
1M  
10M  
I
(mA)  
OUT  
FREQUENCY (Hz)  
Figure 14. Dropout Voltage vs. Load Current  
Figure 17. Power Supply Rejection Ratio vs. Frequency, VOUT = 2.8 V, VIN = 3.8 V  
450  
400  
350  
300  
250  
200  
150  
100  
50  
–10  
–20  
I
I
I
I
I
I
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 300mA  
= 500mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
I
I
I
I
= 10mA  
OUT  
OUT  
OUT  
OUT  
= 100mA  
= 300mA  
= 500mA  
V
V
C
= V  
+1V  
= 50mV  
IN  
RIPPLE  
= C  
OUT  
= 1µF  
IN  
OUT  
0
3.00  
3.10  
3.20  
3.30  
3.40  
(V)  
3.50  
3.60  
3.70  
10  
100  
1k  
10k  
100k  
1M  
10M  
V
FREQUENCY (Hz)  
IN  
Figure 15. Ground Current vs. Input Voltage (in Dropout)  
Figure 18. Power Supply Rejection Ratio vs. Frequency, VOUT = 3.3 V, VIN = 4.3 V  
Rev. C | Page 8 of 20  
Data Sheet  
ADP124/ADP125  
–10  
5
4
3
2
1
0
–20  
I
I
I
I
I
I
= 100µA  
= 1mA  
= 10mA  
= 100mA  
= 300mA  
= 500mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
= 4.2V  
OUT  
V
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
= 3.3V  
OUT  
V
= 2.8V  
OUT  
V
V
C
= V  
+ 1V  
= 50mV  
IN  
RIPPLE  
= C  
OUT  
= 1µF  
IN  
OUT  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 19. Power Supply Rejection Ratio vs. Frequency, VOUT = 4.2 V, VIN = 5.2 V  
Figure 22. Output Noise Spectrum, VIN = 5 V  
–10  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
V
V
V
V
V
V
= 2.8V, I  
= 3.3V, I  
= 4.2V, I  
= 2.8V, I  
= 3.3V, I  
= 4.2V, I  
= 10mA  
= 10mA  
= 10mA  
= 500mA  
= 500mA  
= 500mA  
V
V
= 4.2V  
= 3.3V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
OUT  
V
= 2.8V  
OUT  
V
V
C
= V  
+ 1V  
= 50mV  
IN  
RIPPLE  
= C  
OUT  
= 1µF  
IN  
OUT  
10  
100  
1k  
10k  
100k  
1M  
10M  
0.001  
0.01  
0.1  
1
10  
100  
1k  
I
LOAD  
(mA)  
FREQUENCY (Hz)  
Figure 20. Power Supply Rejection Ratio vs. Frequency,  
Various Output Voltages and Load Currents  
Figure 23. Output Noise vs. Load Current and Output Voltage, VIN = 5 V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
I
OUT  
V
V
V
V
= 3.1V, I  
= 3.3V, I  
= 3.8V, I  
= 4.8V, I  
= 10mA  
= 10mA  
= 10mA  
= 10mA  
IN  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
1mA TO 500mA LOAD STEP  
1
V
OUT  
2
V
V
V
V
= 3.1V, I  
= 3.3V, I  
= 3.8V, I  
= 4.8V, I  
= 500mA  
= 500mA  
= 500mA  
= 500mA  
IN  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
V
V
= 4V  
= 3.3V  
IN  
OUT  
CH1 500mA Ω B CH2 50.0mV  
M40.0µs  
9.800%  
A CH1 200mA  
B
W
W
10  
100  
1k  
10k  
100k  
1M  
10M  
T
FREQUENCY (Hz)  
Figure 21. Power Supply Rejection Ratio vs. Headroom Voltage (VIN − VOUT),  
OUT = 2.8 V  
Figure 24. Load Transient Response, COUT = 1 μF  
V
Rev. C | Page 9 of 20  
ADP124/ADP125  
Data Sheet  
I
OUT  
1mA TO 500mA LOAD STEP  
V
IN  
4V TO 4.5V VOLTAGE STEP  
1
V
OUT  
2
1
2
V
OUT  
V
V
= 4V  
= 3.3V  
IN  
OUT  
B
B
W
CH1 500mA Ω B CH2 50.0mV  
M40.0µs  
9.800%  
A
CH1 200mA  
CH1 1.00V B  
CH2 2.00mV  
M10.0µs  
T 9.800%  
A
CH3 200mA  
W
W
W
T
Figure 25. Load Transient Response, COUT = 4.7 μF  
Figure 27. Line Transient Response, Load Current = 500 mA  
V
IN  
4V TO 4.5V VOLTAGE STEP  
V
OUT  
2
1
B
CH1 1.00V B  
CH2 2.00mV  
M10.0µs  
9.600%  
A CH3 2.36V  
W
W
T
Figure 26. Line Transient Response, Load Current = 1 mA  
Rev. C | Page 10 of 20  
Data Sheet  
ADP124/ADP125  
THEORY OF OPERATION  
The ADP124/ADP125 are low quiescent current, low dropout  
linear regulators that operate from 2.3 V to 5.5 V and can provide  
up to 500 mA of output current. Drawing a low 210 µA of quies-  
cent current (typical) at full load makes the ADP124/ADP125  
ideal for battery-operated portable equipment. Shutdown current  
consumption is typically 100 nA.  
The ADP124/ADP125 use the EN pin to enable and disable the  
VOUT pin under normal operating conditions. When EN is high,  
VOUT turns on; when EN is low, VOUT turns off. For automatic  
startup, EN can be tied to VIN.  
ADP124  
VIN  
VOUT  
Optimized for use with small 1 µF ceramic capacitors, the  
ADP124/ADP125 provide excellent transient performance.  
VOUT SENSE  
SHORT CIRCUIT,  
UVLO, AND  
THERMAL  
R1  
R2  
Internally, the ADP124/ADP125 consist of a reference, an error  
amplifier, a feedback voltage divider, and a PMOS pass transistor.  
Output current is delivered via the PMOS pass device, which is  
controlled by the error amplifier. The error amplifier compares  
the reference voltage with the feedback voltage from the output  
and amplifies the difference. If the feedback voltage is lower than  
the reference voltage, the gate of the PMOS device is pulled lower,  
allowing more current to pass and increasing the output voltage.  
If the feedback voltage is higher than the reference voltage, the  
gate of the PMOS device is pulled higher, allowing less current  
to pass and decreasing the output voltage.  
GND  
PROTECT  
EN  
SHUTDOWN  
0.5V REFERENCE  
NOTES  
1. R1 AND R2 ARE INTERNAL RESISTORS, AVAILABLE ON  
THE ADP124 ONLY.  
Figure 28. ADP124 Internal Block Diagram (Fixed Output)  
ADP125  
The adjustable ADP125 has an output voltage range of 0.8 V to  
5.0 V. The output voltage is set by the ratio of two external resistors,  
as shown in Figure 2. The device servos the output to maintain  
the voltage at the ADJ pin at 0.5 V referenced to ground. The  
current in R1 is then equal to 0.5 V/R2 and the current in R1 is  
the current in R2 plus the ADJ pin bias current. The ADJ pin  
bias current, 15 nA at 25°C, flows through R1 into the ADJ pin.  
VIN  
VOUT  
SHORT CIRCUIT,  
UVLO, AND  
THERMAL  
GND  
EN  
PROTECT  
ADJ  
The output voltage can be calculated using the equation:  
SHUTDOWN  
0.5V REFERENCE  
V
OUT = 0.5 V(1 + R1/R2) + (ADJI-BIAS)(R1)  
The value of R1 should be less than 200 kΩ to minimize errors  
in the output voltage caused by the ADJ pin bias current. For  
example, when R1 and R2 each equal 200 kΩ, the output voltage  
is 1.0 V. The output voltage error introduced by the ADJ pin  
bias current is 3 mV or 0.3%, assuming a typical ADJ pin bias  
current of 15 nA at 25°C.  
Figure 29. ADP125 Internal Block Diagram (Adjustable Output)  
Note that in shutdown, the output is turned off and the divider  
current is 0.  
Rev. C | Page 11 of 20  
 
ADP124/ADP125  
Data Sheet  
APPLICATIONS INFORMATION  
CAPACITOR SELECTION  
Output Capacitor  
Input Bypass Capacitor  
Connecting a 1 µF capacitor from VIN to GND reduces the circuit  
sensitivity to the printed circuit board (PCB) layout, especially  
when a long input trace or high source impedance is encountered.  
If greater than 1 µF of output capacitance is required, the input  
capacitor should be increased to match it.  
The ADP124/ADP125 are designed for operation with small,  
space-saving ceramic capacitors, but these devices can function  
with most commonly used capacitors as long as care is taken to  
ensure an appropriate effective series resistance (ESR) value. The  
ESR of the output capacitor affects the stability of the LDO control  
loop. A minimum of 0.70 µF capacitance with an ESR of 1 Ω or  
less is recommended to ensure stability of the ADP124/ADP125.  
The transient response to changes in load current is also affected by  
the output capacitance. Using a larger value of output capacitance  
improves the transient response of the ADP124/ADP125 to  
dynamic changes in load current. Figure 30 and Figure 31 show  
the transient responses for output capacitance values of 1 µF and  
4.7 µF, respectively.  
Input and Output Capacitor Properties  
Any good quality ceramic capacitors can be used with the  
ADP124/ADP125, as long as the capacitor meets the minimum  
capacitance and maximum ESR requirements. Ceramic capacitors  
are manufactured with a variety of dielectrics, each with different  
behavior over temperature and applied voltage. Capacitors must  
have an adequate dielectric to ensure the minimum capacitance  
over the necessary temperature range and dc bias conditions.  
Using an X5R or X7R dielectric with a voltage rating of 6.3 V or  
10 V is recommended. However, using Y5V and Z5U dielectrics  
are not recommended for any LDO, due to their poor temperature  
and dc bias characteristics.  
I
OUT  
1mA TO 500mA LOAD STEP  
1
Figure 32 depicts the capacitance vs. capacitor voltage bias charac-  
teristics of an 0402, 1 µF, 10 V X5R capacitor. The voltage stability  
of a capacitor is strongly influenced by the capacitor size and the  
voltage rating. In general, a capacitor in a larger package or of a  
higher voltage rating exhibits better stability. The temperature  
variation of the X5R dielectric is about 15% over the −40°C to  
+85°C temperature range and is not a function of package or  
voltage rating.  
2
V
OUT  
V
V
= 4V  
= 3.3V  
IN  
OUT  
1.10  
B
CH1 500mA Ω B CH2 50.0mV  
M400ns  
W
A CH1 200mA  
W
T
13.20%  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
Figure 30. Output Transient Response, COUT = 1 µF  
I
OUT  
1mA TO 500mA LOAD STEP  
1
2
V
OUT  
0
1
2
3
4
5
6
7
BIAS VOLTAGE (V)  
V
V
= 4V  
= 3.3V  
IN  
OUT  
Figure 32. Capacitance vs. Capacitor Voltage Bias Characteristics  
Equation 1 can be used to determine the worst-case capacitance,  
accounting for capacitor variation over temperature, component  
tolerance, and voltage.  
B
CH1 500mA Ω B CH2 50.0mV  
M400ns  
W
A CH1 200mA  
W
T
13.60%  
Figure 31. Output Transient Response, COUT = 4.7 µF  
CEFF = C × (1 − TEMPCO) × (1 − TOL)  
(1)  
where:  
C
EFF is the effective capacitance at the operating voltage.  
C is the rated capacitance value.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
Rev. C | Page 12 of 20  
 
 
 
 
 
Data Sheet  
ADP124/ADP125  
In this example, the worst-case temperature coefficient (TEMPCO)  
over −40°C to +85°C is assumed to be 15% for an X5R dielectric.  
The tolerance of the capacitor (TOL) is assumed to be 10%, and  
C is 0.94 μF at 4.2 V from the graph in Figure 32.  
The active and inactive thresholds of the EN pin are derived from  
the VIN voltage. Therefore, these thresholds vary as the input  
voltage changes. Figure 34 shows typical EN active and inactive  
thresholds when the VIN voltage varies from 2.3 V to 5.5 V.  
1.05  
Substituting these values in Equation 1 yields  
1.00  
0.95  
C
EFF = 0.94 μF × (1 − 0.15) × (1 − 0.1) = 0.719 μF  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over tem-  
perature and tolerance at the chosen output voltage.  
RISING  
0.90  
0.85  
0.80  
To guarantee the performance of the ADP124/ADP125, it is  
imperative that the effects of dc bias, temperature, and tolerances  
on the behavior of the capacitors are evaluated for each application.  
FALLING  
0.75  
0.70  
0.65  
UNDERVOLTAGE LOCKOUT  
The ADP124/ADP125 have an internal undervoltage lockout  
circuit that disables all inputs and the output when the input  
voltage is less than approximately 2 V. This ensures that the  
ADP124/ADP125 inputs and the output behave in a predictable  
manner during power-up.  
0.60  
2.2  
2.7  
3.2  
3.7  
(V)  
4.2  
4.7  
5.2  
V
IN  
Figure 34. Typical EN Pin Thresholds vs. Input Voltage  
The ADP124/ADP125 use an internal soft start to limit the  
inrush current when the output is enabled. The start-up time  
for the 2.8 V option is approximately 350 µs from the time the  
EN active threshold is crossed to when the output reaches 90%  
of its final value. As shown in Figure 35, the start-up time is  
dependent on the output voltage setting and increases slightly  
as the output voltage increases.  
ENABLE FEATURE  
The ADP124/ADP125 uses the EN pin to enable and disable the  
VOUT pin under normal operating conditions. As shown in  
Figure 33, when a rising voltage on EN crosses the active threshold,  
VOUT turns on. Conversely, when a falling voltage on EN crosses  
the inactive threshold, VOUT turns off.  
3.5  
V
= 5V  
IN  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 4.2V  
= 3.3V  
OUT  
OUT  
V
V
= 2.8V  
OUT  
1
2
B
CH1 1.00V CH2 1.00V  
M100µs  
296.800µs  
A
CH1  
2.00V  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
W
T
V
EN  
Figure 35. Typical Start-Up Time  
Figure 33. Typical EN Pin Operation  
As shown in Figure 33, the EN pin has built-in hysteresis. This  
prevents on/off oscillations that may occur due to noise on the  
EN pin as it passes through the threshold points.  
Rev. C | Page 13 of 20  
 
 
 
 
 
ADP124/ADP125  
Data Sheet  
Table 6. Typical θJA Values for Specified PCB Copper Sizes  
CURRENT LIMIT AND THERMAL OVERLOAD  
PROTECTION  
θJA (°C/W)  
Copper  
Size (mm2) MSOP  
The ADP124/ADP125 are protected from damage due to excessive  
power dissipation by current and thermal overload protection  
circuits. The ADP124/ADP125 are designed to limit the current  
when the output load reaches 750 mA (typical). When the output  
load exceeds 750 mA, the output voltage is reduced to maintain  
a constant current limit.  
LFCSP  
177.8  
138.2  
79.8  
67.8  
53.5  
25  
108.6  
75.5  
42.5  
34.7  
26.1  
100  
500  
1000  
6400  
Thermal overload protection is included, which limits the junction  
temperature to a maximum of 150°C typical. Under extreme con-  
ditions (that is, high ambient temperature and power dissipation),  
when the junction temperature starts to rise above 150°C, the  
output is turned off, reducing output current to zero. When the  
junction temperature cools to less than 135°C, the output is turned  
on again and the output current is restored to its nominal value.  
Table 7. Typical ΨJB Values  
ΨJB (°C/W)  
MSOP  
LFCSP  
31.7  
44.1  
The junction temperature of the ADP124/ADP125 can be  
calculated from the following equation:  
Consider the case where a hard short from VOUT to GND occurs.  
At first, the ADP124/ADP125 limit the current so that only 750 mA  
is conducted into the short. If self-heating causes the junction  
temperature to rise above 150°C, thermal shutdown activates,  
turning off the output and reducing the output current to zero.  
When the junction temperature cools to less than 135°C, the  
output turns on and conducts 750 mA into the short, again  
causing the junction temperature to rise above 150°C. This  
thermal oscillation between 135°C and 150°C results in a current  
oscillation between 750 mA and 0 mA that continues as long  
as the short remains at the output.  
TJ = TA + (PD × θJA)  
(2)  
(3)  
where:  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
where:  
)
I
LOAD is the load current.  
IGND is the ground current.  
VIN and VOUT are input and output voltages, respectively.  
Current and thermal limit protections are intended to protect the  
device from damage due to accidental overload conditions. For  
reliable operation, the device power dissipation must be externally  
limited so that the junction temperature does not exceed 125°C.  
The power dissipation due to ground current is quite small and  
can be ignored. Therefore, the junction temperature equation  
can be simplified as follows:  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(4)  
THERMAL CONSIDERATIONS  
As shown in Equation 4, for a given ambient temperature, input-  
to-output voltage differential, and continuous load current, there  
exists a minimum copper size requirement for the PCB to ensure  
that the junction temperature does not rise above 125°C. Figure 36  
through Figure 41 show junction temperature calculations for  
different ambient temperatures, load currents, VIN to VOUT  
differentials, and areas of PCB copper.  
To guarantee reliable operation, the junction temperature of the  
ADP124/ADP125 must not exceed 125°C. To ensure that the  
junction temperature is less than this maximum value, the user  
needs to be aware of the parameters that contribute to junction  
temperature changes. These parameters include ambient tem-  
perature, power dissipation in the power device, and thermal  
resistances between the junction and ambient air (θJA). The value  
of θJA is dependent on the package assembly compounds used  
and the amount of copper to which the GND pins of the package  
are soldered on the PCB. Table 6 shows typical θJA values of the  
8-lead MSOP package for various PCB copper sizes. Table 7  
shows typical ΨJB values of the 8-lead MSOP and 8-lead 3 mm ×  
3 mm LFCSP package.  
In cases where the board temperature is known, the thermal  
characterization parameter, ΨJB, can be used to estimate the jun-  
ction temperature rise. The maximum junction temperature (TJ) is  
calculated from the board temperature (TB) and power dissipation  
(PD) using the formula  
TJ = TB + (PD × ΨJB)  
(5)  
Rev. C | Page 14 of 20  
 
 
 
 
Data Sheet  
ADP124/ADP125  
JUNCTION TEMPERATURE CALCULATIONS  
140  
130  
120  
110  
100  
90  
145  
135  
125  
115  
105  
95  
85  
75  
80  
65  
2
2
55  
6400 mm  
6400 mm  
70  
2
2
500 mm  
500 mm  
45  
2
2
25 mm  
25 mm  
60  
35  
25  
T
MAX  
T
MAX  
J
J
50  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
TOTAL POWER DISSIPATION (W)  
TOTAL POWER DISSIPATION (W)  
Figure 36. Junction Temperature vs. Power Dissipation and copper area,  
MSOP, TA = 25°C  
Figure 39. Junction Temperature vs. Power Dissipation and copper area,  
LFCSP, TA = 50°C  
140  
120  
100  
80  
145  
135  
125  
115  
105  
95  
85  
60  
75  
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
MAX  
65  
B
B
B
B
40  
20  
0
2
55  
45  
35  
25  
6400 mm  
2
500 mm  
2
25 mm  
T
J
T
MAX  
J
0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50  
TOTAL POWER DISSIPATION (W)  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
TOTAL POWER DISSIPATION (W)  
Figure 40. Junction Temperature vs. Power Dissipation, MSOP package  
at various Board Temperatures  
Figure 37. Junction Temperature vs. Power Dissipation and copper area,  
LFCSP, TA = 25°C  
140  
120  
100  
80  
140  
130  
120  
110  
100  
90  
60  
T
T
T
T
= 25°C  
= 50°C  
= 65°C  
= 85°C  
MAX  
80  
B
B
B
B
40  
20  
0
2
6400 mm  
70  
2
500 mm  
2
25 mm  
MAX  
60  
50  
T
J
T
J
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
TOTAL POWER DISSIPATION (W)  
TOTAL POWER DISSIPATION (W)  
Figure 38. Junction Temperature vs. Power Dissipation and copper area,  
MSOP, TA = 50°C  
Figure 41. Junction Temperature vs. Power Dissipation, LFCSP package  
at various Board Temperatures  
Rev. C | Page 15 of 20  
 
 
 
ADP124/ADP125  
Data Sheet  
PRINTED CIRCUIT BOARD LAYOUT  
CONSIDERATIONS  
Heat dissipation from the package can be improved by increasing  
the amount of copper attached to the pins of the ADP124/ADP125.  
However, as shown in Table 6, a point of diminishing returns  
eventually is reached, beyond which an increase in the copper  
size does not yield significant heat dissipation benefits.  
The input capacitor should be placed as close as possible to the  
VIN and GND pins, and the output capacitor should be placed  
as close as possible to the VOUT and GND pins. Use of 0402 or  
0603 size capacitors and resistors achieves the smallest possible  
footprint solution on boards where the area is limited.  
Figure 43. Example ADP125 MSOP PCB Layout  
Figure 42. Example ADP124 MSOP PCB Layout  
Figure 44. Example ADP124/ADP125 LFCSP PCB Layout  
Rev. C | Page 16 of 20  
 
Data Sheet  
ADP124/ADP125  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
2.26  
2.16  
2.06  
8
1
5
4
5.05  
4.90  
4.75  
3.10  
3.00  
2.90  
1.83  
1.73  
1.63  
TOP  
VIEW  
EXPOSED  
PAD  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
BOTTOM VIEW  
0.525 BSC  
1.10 MAX  
0.65 BSC  
SECTION OF THIS DATA SHEET.  
0.94  
0.86  
0.78  
0.23  
0.18  
0.13  
0.70  
0.55  
0.40  
0.15  
0.10  
0.05  
SEATING  
PLANE  
8°  
0°  
0.40  
0.33  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA-T  
Figure 45. 8-Lead Mini Small Outline Package with Exposed Pad [MINI_SO_EP]  
(RH-8-1)  
Dimensions shown in millimeters  
1.70  
1.60  
1.50  
2.00  
BSC SQ  
8
5
1.10  
1.00  
0.90  
0.30  
0.25  
0.20  
PIN 1 INDEX  
AREA  
4
1
0.20 MIN  
PIN 1  
INDICATOR  
(R 0.10)  
TOP VIEW  
BOTTOM VIEW  
(WITH EXPOSED PAD)  
0.60  
0.55  
0.50  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.05  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
0.20 REF  
SECTION OF THIS DATA SHEET.  
0.50  
BSC  
0.30  
0.25  
0.18  
Figure 46. 8-Lead Lead Frame Chip Scale Package [LFCSP_UD]  
2 mm × 2 mm Body, Ultra Thin, Dual Lead  
(CP-8-8)  
Dimensions shown in millimeters  
Rev. C | Page 17 of 20  
 
ADP124/ADP125  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range (TJ) Output Voltage (V)2  
Package Description  
8-Lead MINI_SO_EP  
8-Lead MINI_SO_EP  
8-Lead MINI_SO_EP  
8-Lead MINI_SO_EP  
8-Lead MINI_SO_EP  
8-Lead MINI_SO_EP  
8-Lead MINI_SO_EP  
8-Lead MINI_SO_EP  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
Package Option  
Branding  
37  
3T  
3U  
3Z  
40  
41  
49  
4F  
LHH  
LHJ  
LM2  
LHK  
LHL  
LHM  
38  
ADP124ARHZ-1.8-R7  
ADP124ARHZ-2.5-R7  
ADP124ARHZ-2.7-R7  
ADP124ARHZ-2.8-R7  
ADP124ARHZ-2.85-R7  
ADP124ARHZ-2.9-R7  
ADP124ARHZ-3.0-R7  
ADP124ARHZ-3.3-R7  
ADP124ACPZ-1.8-R7  
ADP124ACPZ-2.8-R7  
ADP124ACPZ-2.9-R7  
ADP124ACPZ-3.0-R7  
ADP124ACPZ-3.3-R7  
ADP125ACPZ-R7  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
1.8  
2.5  
2.7  
2.8  
2.85  
2.9  
3.0  
3.3  
1.8  
2.8  
2.9  
3.0  
3.3  
RH-8-1  
RH-8-1  
RH-8-1  
RH-8-1  
RH-8-1  
RH-8-1  
RH-8-1  
RH-8-1  
CP-8-8  
CP-8-8  
CP-8-8  
CP-8-8  
CP-8-8  
CP-8-8  
RH-8-1  
RH-8-1  
0.8 to 5.0 (Adjustable) 8-Lead LFCSP_UD  
0.8 to 5.0 (Adjustable) 8-Lead MINI_SO_EP  
0.8 to 5.0 (Adjustable) 8-Lead MINI_SO_EP  
ADP125ARHZ-R7  
ADP125ARHZ  
38  
ADP124-3.3-EVALZ  
ADP125-EVALZ  
ADP124CP-3.3-EVALZ  
ADP125CP-EVALZ  
ADP124RHZ-REDYKIT  
ADP124CPZ-REDYKIT  
3.3  
Adjustable  
3.3  
MSOP Evaluation Board  
MSOP Evaluation Board  
LFCSP Evaluation Board  
LFCSP Evaluation Board  
REDYKIT  
Adjustable  
REDYKIT  
1 Z = RoHS Compliant Part.  
2 Up to 31 fixed-output voltage options from 1.75 V to 3.3 V are available. For additional voltage options, contact a local Analog Devices, Inc., sales or distribution  
representative.  
Rev. C | Page 18 of 20  
 
 
Data Sheet  
NOTES  
ADP124/ADP125  
Rev. C | Page 19 of 20  
ADP124/ADP125  
NOTES  
Data Sheet  
©2009–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08476-0-6/12(C)  
Rev. C | Page 20 of 20  

相关型号:

ADP124CPZ-REDYKIT

5.5 V Input, 500 mA, Low Quiescent Current, CMOS Linear Regulators
ADI

ADP124RHZ-REDYKIT

5.5 V Input, 500 mA, Low Quiescent Current, CMOS Linear Regulators
ADI

ADP125

5.5 V Input, 500 mA, Low Quiescent Current, CMOS Linear Regulators
ADI

ADP125-EVALZ

5.5 V Input, 500 mA, Low Quiescent Current, CMOS Linear Regulators
ADI

ADP1251

Strain Guage Sensor, Gage, 0Psi Min, 28.44Psi Max, 0-100mV, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP12513

Strain Guage Sensor, Gage, 0Psi Min, 28.44Psi Max, 0-100mV, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP1252

Strain Guage Sensor, Gage, 0Psi Min, 28.44Psi Max, 0-100mV, Rectangular, Through Hole Mount, DIP-6
PANASONIC

ADP125ACPZ-R7

5.5 V Input, 500 mA, Low Quiescent Current, CMOS Linear Regulators
ADI

ADP125ARHZ

5.5 V Input, 500 mA, Low Quiescent Current, CMOS Linear Regulators
ADI

ADP125ARHZ-R7

5.5 V Input, 500 mA, Low Quiescent Current, CMOS Linear Regulators
ADI

ADP125CP-EVALZ

5.5 V Input, 500 mA, Low Quiescent Current, CMOS Linear Regulators
ADI

ADP1261

Strain Guage Sensor, Gage, 0Psi Min, 49.77Psi Max, 0-100mV, Rectangular, Through Hole Mount, DIP-6
PANASONIC