ADP1870-1.0-EVALZ [ADI]

Synchronous Buck Controller with Constant On-Time and Valley Current Mode; 同步降压控制器具有恒定导通时间和谷值电流模式
ADP1870-1.0-EVALZ
型号: ADP1870-1.0-EVALZ
厂家: ADI    ADI
描述:

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
同步降压控制器具有恒定导通时间和谷值电流模式

控制器
文件: 总44页 (文件大小:1932K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Synchronous Buck Controller with  
Constant On-Time and Valley Current Mode  
ADP1870/ADP1871  
FEATURES  
TYPICAL APPLICATIONS CIRCUIT  
V
= 2.95V TO 20V  
IN  
Power input voltage range: 2.95 V to 20 V  
On-board bias regulator  
Minimum output voltage: 0.6 V  
0.6 V reference voltage with 1.0% accuracy  
Supports all N-channel MOSFET power stages  
Available in 300 kHz, 600 kHz, and 1.0 MHz options  
No current-sense resistor required  
Power saving mode (PSM) for light loads (ADP1871 only)  
Resistor-programmable current-sense gain  
Thermal overload protection  
VIN  
C
C
ADP1870/  
ADP1871  
COMP/EN BST  
C
IN  
C
C2  
R
C
R
TOP  
V
OUT  
C
Q1  
BST  
L
V
FB  
DRVH  
SW  
OUT  
R
BOT  
C
GND  
OUT  
Q2  
C
VREG2  
VREG  
DRVL  
PGND  
R
RES  
LOAD  
C
VREG  
Short-circuit protection  
Figure 1.  
Precision enable input  
Integrated bootstrap diode for high-side drive  
Starts into a precharged load  
Small, 10-lead MSOP package  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
V
= 5V (PSM)  
IN  
APPLICATIONS  
Telecom and networking systems  
Mid to high end servers  
Set-top boxes  
V
= 16.5V  
IN  
V
= 13V  
IN  
DSP core power supplies  
V
= 13V (PSM)  
IN  
T
V
= 25°C  
A
= 1.8V  
OUT  
= 300kHz  
f
SW  
V
= 16.5V (PSM)  
IN  
GENERAL DESCRIPTION  
WÜRTH INDUCTOR:  
744325120, L = 1.2µH, DCR = 1.8m  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
The ADP1870/ADP1871 are versatile current-mode, synchronous  
step-down controllers that provide superior transient response,  
optimal stability, and current-limit protection by using a constant  
on-time, pseudo-fixed frequency with a programmable current-  
limit, current-control scheme. In addition, these devices offer  
optimum performance at low duty cycles by utilizing valley  
current-mode control architecture. This allows the ADP1870/  
ADP1871 to drive all N-channel power stages to regulate output  
voltages as low as 0.6 V.  
10  
100  
1k  
10k  
100k  
LOAD CURRENT (mA)  
Figure 2. Efficiency vs. Load Current (VOUT = 1.8 V, 300 kHz)  
In addition, an internally fixed soft start period is included to limit  
input in-rush current from the input supply during startup and  
to provide reverse current protection during soft start for a pre-  
charged output. The low-side current-sense, current-gain scheme  
and integration of a boost diode, along with the PSM/forced pulse-  
width modulation (PWM) option, reduce the external part count  
and improve efficiency.  
The ADP1871 is the power saving mode (PSM) version of the  
device and is capable of pulse skipping to maintain output  
regulation while achieving improved system efficiency at light  
loads (see the Power Saving Mode (PSM) Version (ADP1871)  
section for more information).  
The ADP1870/ADP1871 operate over the −40°C to +125°C  
junction temperature range and are available in a 10-lead MSOP  
package.  
Available in three frequency options (300 kHz, 600 kHz, and  
1.0 MHz, plus the PSM option), the ADP1870/ADP1871 are well  
suited for a wide range of applications that require a single-input  
power supply range from 2.95 V to 20 V. Low voltage biasing is  
supplied via a 5 V internal LDO.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
ADP1870/ADP1871  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Power Saving Mode (PSM) Version (ADP1871) ................... 22  
Timer Operation ........................................................................ 22  
Pseudo-Fixed Frequency........................................................... 23  
Applications Information.............................................................. 24  
Feedback Resistor Divider ........................................................ 24  
Inductor Selection...................................................................... 24  
Output Ripple Voltage (ΔVRR) .................................................. 24  
Output Capacitor Selection....................................................... 24  
Compensation Network ............................................................ 25  
Efficiency Considerations ......................................................... 26  
Input Capacitor Selection.......................................................... 27  
Thermal Considerations............................................................ 28  
Design Example.......................................................................... 29  
External Component Recommendations.................................... 31  
Layout Considerations................................................................... 33  
IC Section (Left Side of Evaluation Board)............................. 37  
Power Section ............................................................................. 37  
Differential Sensing.................................................................... 38  
Typical Applications Circuits........................................................ 39  
15 A, 300 kHz High Current Application Circuit.................. 39  
5.5 V Input, 600 kHz Application Circuit............................... 39  
300 kHz High Current Application Circuit............................ 40  
Outline Dimensions....................................................................... 41  
Ordering Guide .......................................................................... 41  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Applications Circuit............................................................ 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Boundary Condition.................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
ADP1870/ADP1871 Block Diagram............................................ 18  
Theory of Operation ...................................................................... 19  
Startup.......................................................................................... 19  
Soft Start ...................................................................................... 19  
Precision Enable Circuitry ........................................................ 19  
Undervoltage Lockout ............................................................... 19  
On-Board Low Dropout Regulator.......................................... 19  
Thermal Shutdown..................................................................... 20  
Programming Resistor (RES) Detect Circuit.......................... 20  
Valley Current-Limit Setting .................................................... 20  
Hiccup Mode During Short Circuit......................................... 21  
Synchronous Rectifier................................................................ 22  
REVISION HISTORY  
3/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 44  
 
ADP1870/ADP1871  
SPECIFICATIONS  
All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC). VREG = 5 V,  
VBST − VSW = VREG − VRECT_DROP (see Figure 40 to Figure 42). VIN = 12 V. The specifications are valid for TJ = −40°C to +125°C,  
unless otherwise specified.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
POWER SUPPLY CHARACTERISTICS  
High Input Voltage Range  
VIN  
CIN = 22 μF to PGND (at Pin 1)  
ADP1870ARMZ-0.3/ADP1871ARMZ-0.3 (300 kHz)  
ADP1870ARMZ-0.6/ADP1871ARMZ-0.6 (600 kHz)  
ADP1870ARMZ-1.0/ADP1871ARMZ-1.0 (1.0 MHz)  
2.95  
2.95  
3.25  
12  
12  
12  
20  
20  
20  
V
V
V
Quiescent Current  
Shutdown Current  
IQ_REG + IQ_BST VFB = 1.5 V, no switching  
1.1  
190  
mA  
ꢀA  
IREG,SD  
IBST,SD  
+
COMP/EN < 285 mV  
280  
Undervoltage Lockout  
UVLO Hysteresis  
UVLO  
Rising VIN (see Figure 35 for temperature variation)  
Falling VIN from operational state  
2.65  
190  
V
mV  
INTERNAL REGULATOR  
CHARACTERISTICS  
VREG Operational Output Voltage  
VREG  
CVREG = 1 μF to PGND, 0.22 μF to GND, VIN = 2.95 V to 20 V  
ADP1870ARMZ-0.3/ADP1871ARMZ-0.3 (300 kHz)  
ADP1870ARMZ-0.6/ADP1871ARMZ-0.6 (600 kHz)  
ADP1870ARMZ-1.0/ADP1871ARMZ-1.0 (1.0 MHz)  
VIN = 7 V, 100 mA  
2.75  
2.75  
3.05  
4.8  
5
5
5
5.5  
5.5  
5.5  
V
V
V
V
VREG Output in Regulation  
Load Regulation  
4.981 5.16  
VIN = 12 V, 100 mA  
0 mA to 100 mA, VIN = 7 V  
4.8  
4.982 5.16  
V
32  
33  
2.5  
2.0  
300  
229  
mV  
mV  
mV  
mV  
mV  
mA  
0 mA to 100 mA, VIN = 20 V  
Line Regulation  
VIN = 7 V to 20 V, 20 mA  
VIN = 7 V to 20 V, 100 mA  
VIN to VREG Dropout Voltage  
Short VREG to PGND  
SOFT START  
100 mA out of VREG, VIN ≤ 5 V  
VIN = 20 V  
415  
320  
Soft Start Period  
See Figure 58  
3.0  
ms  
ERROR AMPLIFER  
FB Regulation Voltage  
VFB  
TJ = +25°C  
TJ = −40°C to +85°C  
TJ = −40°C to +125°C  
600  
600  
600  
496  
1
mV  
mV  
605.8 mV  
596  
594.2  
320  
604  
Transconductance  
FB Input Leakage Current  
CURRENT-SENSE AMPLIFIER GAIN  
Programming Resistor (RES)  
Value from DRVL to PGND  
Gm  
IFB, Leak  
670  
50  
μS  
nA  
VFB = 0.6 V, COMP/EN = released  
RES = 47 kΩ 1%  
2.7  
3
3.3  
V/V  
RES = 22 kΩ 1%  
RES = none  
RES = 100 kΩ 1%  
5.5  
11  
22  
6
12  
24  
6.5  
13  
26  
V/V  
V/V  
V/V  
SWITCHING FREQUENCY  
Typical values measured at 50% time points with 0 nF  
at DRVH and DRVL; maximum values are guaranteed  
by bench evaluation1  
ADP1870ARMZ-0.3/  
300  
kHz  
ADP1871ARMZ-0.3 (300 kHz)  
On-Time  
Minimum On-Time  
Minimum Off-Time  
VIN = 5 V, VOUT = 2 V, TJ = 25°C  
VIN = 20 V  
84% duty cycle (maximum)  
1120  
1200 1280 ns  
146  
340  
190  
400  
ns  
ns  
Rev. 0 | Page 3 of 44  
 
ADP1870/ADP1871  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
ADP1870ARMZ-0.6/  
600  
kHz  
ADP1871ARMZ-0.6 (600 kHz)  
On-Time  
Minimum On-Time  
Minimum Off-Time  
VIN = 5 V, VOUT = 2 V, TJ = 25°C  
VIN = 20 V, VOUT = 0.8 V  
65% duty cycle (maximum)  
500  
540  
82  
340  
1.0  
580  
110  
400  
ns  
ns  
ns  
MHz  
ADP1870ARMZ-1.0/  
ADP1871ARMZ-1.0 (1.0 MHz)  
On-Time  
VIN = 5 V, VOUT = 2 V, TJ = 25°C  
VIN = 20 V  
45% duty cycle (maximum)  
285  
312  
60  
340  
340  
85  
400  
ns  
ns  
ns  
Minimum On-Time  
Minimum Off-Time  
OUTPUT DRIVER CHARACTERISTICS  
High-Side Driver  
Output Source Resistance  
Output Sink Resistance  
Rise Time2  
ISOURCE = 1.5 A, 100 ns, positive pulse (0 V to 5 V)  
ISINK = 1.5 A, 100 ns, negative pulse (5 V to 0 V)  
VBST − VSW = 4.4 V, CIN = 4.3 nF (see Figure 60)  
VBST − VSW = 4.4 V, CIN = 4.3 nF (see Figure 61)  
2.25  
0.7  
25  
3
1
Ω
Ω
ns  
ns  
tr,DRVH  
tf,DRVH  
Fall Time2  
11  
Low-Side Driver  
Output Source Resistance  
Output Sink Resistance  
Rise Time2  
ISOURCE = 1.5 A, 100 ns, positive pulse (0 V to 5 V)  
ISINK = 1.5 A, 100 ns, negative pulse (5 V to 0 V)  
VREG = 5.0 V, CIN = 4.3 nF (see Figure 61)  
1.6  
0.7  
18  
2.2  
1
Ω
Ω
ns  
ns  
tr,DRVL  
tf,DRVL  
Fall Time2  
VREG = 5.0 V, CIN = 4.3 nF (see Figure 60)  
16  
Propagation Delays  
DRVL Fall to DRVH Rise2  
DRVH Fall to DRVL Rise2  
SW Leakage Current  
Integrated Rectifier  
Channel Impedance  
PRECISION ENABLE THRESHOLD  
Logic High Level  
ttpdhDRVH  
ttpdhDRVL  
ISWLEAK  
VBST − VSW = 4.4 V (see Figure 60)  
VBST − VSW = 4.4 V (see Figure 61)  
VBST = 25 V, VSW = 20 V, VREG = 5 V  
15.4  
18  
ns  
ns  
μA  
110  
330  
ISINK = 10 mA  
22  
Ω
VIN = 2.9 V to 20 V, VREG = 2.75 V to 5.5 V  
VIN = 2.9 V to 20 V, VREG = 2.75 V to 5.5 V  
245  
285  
37  
mV  
mV  
Enable Hysteresis  
COMP VOLTAGE  
COMP Clamp Low Voltage  
VCOMP(low)  
From disabled state, release COMP/EN pin to enable 0.47  
device (2.75 V ≤ VREG ≤ 5.5 V)  
V
COMP Clamp High Voltage  
COMP Zero Current Threshold  
THERMAL SHUTDOWN  
VCOMP(high)  
VCOMP_ZCT  
TTMSD  
(2.75 V ≤ VREG ≤ 5.5 V)  
(2.75 V ≤ VREG ≤ 5.5 V)  
2.55  
V
V
1.07  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
Hiccup Current Limit Timing  
Rising temperature  
155  
15  
6
°C  
°C  
ms  
1 The maximum specified values are with the closed loop measured at 10% to 90% time points (see Figure 60 and Figure 61), CGATE = 4.3 nF, and the upper- and lower-side  
MOSFETs being Infineon BSC042N03MSG.  
2 Not automatic test equipment (ATE) tested.  
Rev. 0 | Page 4 of 44  
ADP1870/ADP1871  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
THERMAL RESISTANCE  
Rating  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
VREG to PGND, GND  
VIN to PGND  
FB, COMP/EN to GND  
DRVL to PGND  
SW to PGND  
−0.3 V to +6 V  
−0.3 V to +28 V  
−0.3 V to (VREG + 0.3 V)  
−0.3 V to (VREG + 0.3 V)  
−2.0 V to +28 V  
−0.6 V to (VREG + 0.3 V)  
−0.3 V to 28 V  
Table 3. Thermal Resistance  
1
Package Type  
θJA (10-Lead MSOP)  
2-Layer Board  
θJA  
Unit  
BST to SW  
BST to PGND  
213.1  
171.7  
°C/W  
°C/W  
4- Layer Board  
DRVH to SW  
−0.3 V to VREG  
1 θJA is specified for the worst-case conditions; that is, θJA is specified for the  
device soldered in a circuit board for surface-mount packages.  
PGND to GND  
θJA (10-Lead MSOP)  
2-Layer Board  
4-Layer Board  
Operating Junction Temperature  
Range  
±0.3 V  
213.1°C/W  
171.7°C/W  
−40°C to +125°C  
BOUNDARY CONDITION  
In determining the values given in Table 2 and Table 3, natural  
convection was used to transfer heat to a 4-layer evaluation board.  
Storage Temperature Range  
Soldering Conditions  
Maximum Soldering Lead  
Temperature (10 sec)  
−65°C to +150°C  
JEDEC J-STD-020  
300°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Absolute maximum ratings apply individually only, not in  
combination. Unless otherwise specified, all other voltages are  
referenced to PGND.  
Rev. 0 | Page 5 of 44  
 
 
 
ADP1870/ADP1871  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VIN  
COMP/EN  
FB  
1
2
3
4
5
10 BST  
ADP1870/  
ADP1871  
TOP VIEW  
(Not to Scale)  
9
8
7
6
SW  
DRVH  
PGND  
DRVL  
GND  
VREG  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
VIN  
COMP/EN  
FB  
High Input Voltage. Connect VIN to the drain of the upper-side MOSFET.  
Output of the Internal Error Amplifier/IC Enable. When this pin functions as EN, applying 0 V to this pin disables the IC.  
Noninverting Input of the Internal Error Amplifier. This is the node where the feedback resistor is connected.  
Analog Ground Reference Pin of the IC. All sensitive analog components should be connected to this ground  
plane (see the Layout Considerations section).  
GND  
5
6
VREG  
DRVL  
Internal Regulator Supply Bias Voltage for the ADP1870/ADP1871 Controller (Includes the Output Gate Drivers).  
A bypass capacitor of 1 μF directly from this pin to PGND and a 0.1 μF across VREG and GND are recommended.  
Drive Output for the External Lower-Side, N-Channel MOSFET. This pin also serves as the current-sense gain  
setting pin (see Figure 69).  
7
8
9
PGND  
DRVH  
SW  
Power GND. Ground for the lower-side gate driver and lower-side, N-channel MOSFET.  
Drive Output for the External Upper-Side, N-Channel MOSFET.  
Switch Node Connection.  
10  
BST  
Bootstrap for the Upper-Side MOSFET Gate Drive Circuitry. An internal boot rectifier (diode) is connected  
between VREG and BST. A capacitor from BST to SW is required. An external Schottky diode can also be  
connected between VREG and BST for increased gate drive capability.  
Rev. 0 | Page 6 of 44  
 
ADP1870/ADP1871  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
95  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
90  
V
= 13V  
IN  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 13V (PSM)  
IN  
V
= 13V (PSM)  
IN  
V
= 16.5V  
IN  
V
= 16.5V  
IN  
V
= 13V  
IN  
T
V
= 25°C  
T = 25°C  
A
V
= 16.5V (PSM)  
A
IN  
= 0.8V  
V
= 0.8V  
OUT  
= 300kHz  
OUT  
= 600kHz  
V
= 16.5V  
IN  
(PSM)  
f
f
SW  
SW  
WÜRTH INDUCTOR:  
744325072, L = 0.72µH, DCR = 1.3m  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
WÜRTH INDUCTOR:  
744355147, L = 0.47µH, DCR = 0.67mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
0
0
10  
100  
1k  
10k  
100k  
100k  
100k  
10  
100  
1k  
10k  
100k  
100k  
100k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 4. Efficiency—300 kHz, VOUT = 0.8 V  
Figure 7. Efficiency—600 kHz, VOUT = 0.8 V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 5V (PSM)  
IN  
V
IN  
= 13V  
V
= 13V (PSM)  
IN  
V
= 16.5V  
IN  
V
= 13V (PSM)  
IN  
V
= 13V  
IN  
V
= 16.5V  
IN  
V
= 16.5V (PSM)  
IN  
V
= 16.5V (PSM)  
IN  
T
V
= 25°C  
T
A
V
= 25°C  
A
= 1.8V  
= 1.8V  
OUT  
= 300kHz  
OUT  
= 600kHz  
f
f
SW  
SW  
WÜRTH INDUCTOR:  
744325120, L = 1.2µH, DCR = 1.8mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
WÜRTH INDUCTOR:  
744325072, L = 0.72µH, DCR = 1.3mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
0
10  
0
10  
100  
1k  
10k  
100  
1k  
10k  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 5. Efficiency—300 kHz, VOUT = 1.8 V  
Figure 8. Efficiency—600 kHz, VOUT = 1.8 V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 16.5V (PSM)  
= 13V (PSM)  
V
= 13V (PSM)  
IN  
IN  
V
= 16.5V (PSM)  
IN  
V
IN  
V
= 13V  
IN  
V
= 16.5V  
IN  
V
= 16.5V  
IN  
V
= 20V (PSM)  
IN  
V
= 20V  
IN  
T
= 25°C  
T
A
V
= 25°C  
A
V
= 7V  
= 5V  
OUT  
= 300kHz  
OUT  
= 600kHz  
f
f
SW  
SW  
WÜRTH INDUCTOR:  
7443551200, L = 2.0µH, DCR = 2.6mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
WÜRTH INDUCTOR:  
744318180, L = 1.4µH, DCR = 3.2mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
0
10  
0
10  
100  
1k  
LOAD CURRENT (mA)  
10k  
100  
1k  
10k  
LOAD CURRENT (mA)  
Figure 6. Efficiency—300 kHz, VOUT = 7 V  
Figure 9. Efficiency—600 kHz, VOUT = 5 V  
Rev. 0 | Page 7 of 44  
 
ADP1870/ADP1871  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.807  
0.806  
0.805  
0.804  
0.803  
0.802  
0.801  
0.800  
0.799  
0.798  
0.797  
0.796  
0.795  
0.794  
0.793  
0.792  
V
= 13V  
IN  
V
= 13V (PSM)  
IN  
V
= 16.5V  
IN  
T
V
= 25°C  
A
= 0.8V  
OUT  
= 1.0MHz  
V
= 16.5V (PSM)  
IN  
f
SW  
WÜRTH INDUCTOR:  
744303012, L = 0.12µH, DCR = 0.33mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
V
= 13V  
V
= 16.5V  
IN  
IN  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
0
10  
100  
1k  
10k  
100k  
0
2000  
4000  
6000  
8000  
10,000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 10. Efficiency—1.0 MHz, VOUT = 0.8 V  
Figure 13. Output Voltage Accuracy—300 kHz, VOUT = 0.8 V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
1.821  
V
= 13V  
IN  
1.816  
1.811  
1.806  
1.801  
1.796  
1.791  
1.786  
V
= 13V (PSM)  
IN  
V
= 16.5V  
IN  
V
= 16.5V (PSM)  
IN  
T
V
f
= 25°C  
A
= 1.8V  
OUT  
= 1.0MHz  
SW  
V
= 5.5V  
+125°C  
+25°C  
–40°C  
V
= 13V  
+125°C  
+25°C  
–40°C  
V
= 16.5V  
IN  
WÜRTH INDUCTOR:  
744303022, L = 0.22µH, DCR = 0.33mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
IN  
IN  
+125°C  
+25°C  
–40°C  
0
10  
0
1500 3000 4500 6000 7500 9000 10,500 12,000 13,500 15,000  
LOAD CURRENT (mA)  
100  
1k  
10k  
100k  
LOAD CURRENT (mA)  
Figure 11. Efficiency—1.0 MHz, VOUT = 1.8 V  
Figure 14. Output Voltage Accuracy—300 kHz, VOUT = 1.8 V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
7.100  
7.095  
7.090  
7.085  
7.080  
7.075  
7.070  
7.065  
7.060  
7.055  
7.050  
7.045  
7.040  
7.035  
7.030  
7.025  
7.020  
7.015  
7.010  
7.005  
7.000  
V
= 13V (PSM)  
IN  
V
= 13V  
IN  
V
= 16.5V (PSM)  
IN  
V
= 16.5V  
IN  
T
V
= 25°C  
A
= 5V  
OUT  
= 1.0MHz  
f
SW  
WÜRTH INDUCTOR:  
744355090, L = 0.9µH, DCR = 1.6mΩ  
INFINEON FETs:  
BSC042N03MS G (UPPER/LOWER)  
+125°C  
+25°C  
–40°C  
V
V
= 13V  
= 16.5V  
IN  
IN  
0
10  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000  
LOAD CURRENT (mA)  
100  
1k  
LOAD CURRENT (mA)  
10k  
100k  
Figure 12. Efficiency—1.0 MHz, VOUT = 5 V  
Figure 15. Output Voltage Accuracy—300 kHz, VOUT = 7 V  
Rev. 0 | Page 8 of 44  
ADP1870/ADP1871  
0.808  
0.806  
0.804  
0.802  
0.800  
0.798  
0.796  
0.794  
0.792  
0.807  
0.805  
0.803  
0.801  
0.799  
0.797  
0.795  
0.793  
0.791  
0.789  
0.787  
V
= 13V  
+125°C  
+25°C  
–40°C  
V
= 16.5V  
IN  
IN  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
V
V
= 13V  
= 16.5V  
IN  
IN  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000  
LOAD CURRENT (mA)  
0
2000  
4000  
6000  
8000  
10,000  
LOAD CURRENT (mA)  
Figure 16. Output Voltage Accuracy—600 kHz, VOUT = 0.8 V  
Figure 19. Output Voltage Accuracy—1.0 MHz, VOUT = 0.8 V  
1.818  
1.820  
1.816  
1.814  
1.812  
1.810  
1.808  
1.806  
1.804  
1.802  
1.800  
1.798  
1.796  
1.794  
1.792  
1.790  
1.788  
1.786  
1.784  
1.782  
1.780  
1.778  
1.776  
1.774  
1.772  
1.770  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
V
= 13V  
+125°C  
+25°C  
–40°C  
V
= 16.5V  
+125°C  
+25°C  
–40°C  
V
= 13V  
V
= 16.5V  
IN  
IN  
IN  
IN  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
0
1500  
3000  
4500  
6000  
7500  
9000 10,500 12,000  
00  
1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 17. Output Voltage Accuracy—600 kHz, VOUT = 1.8 V  
Figure 20. Output Voltage Accuracy—1.0 MHz, VOUT = 1.8 V  
5.030  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
4.94  
4.93  
5.025  
5.020  
5.015  
5.010  
5.005  
5.000  
4.995  
4.990  
4.985  
4.980  
4.975  
4.970  
V
= 13V  
V
= 16.5V  
IN  
IN  
4.92  
4.91  
4.90  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
V
V
V
= 13V  
= 16.5V  
= 20V  
IN  
IN  
IN  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000  
LOAD CURRENT (mA)  
0
800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800 9600  
LOAD CURRENT (mA)  
Figure 18. Output Voltage Accuracy—600 kHz, VOUT = 5 V  
Figure 21. Output Voltage Accuracy—1.0 MHz, VOUT =5 V  
Rev. 0 | Page 9 of 44  
ADP1870/ADP1871  
601.0  
900  
880  
860  
840  
820  
800  
780  
760  
740  
720  
700  
+125°C  
+25°C  
–40°C  
600.5  
V
= 5V, V = 30V  
IN  
REG  
600.0  
599.5  
599.0  
598.5  
598.0  
597.5  
597.0  
V
= 5V, V = 13V  
IN  
REG  
–40.0  
–7.5  
25.0  
57.5  
90.0  
122.5  
13.0  
13.5  
14.0  
14.5  
15.0  
(V)  
15.5  
16.0  
16.5  
TEMPERATURE (°C)  
V
IN  
Figure 22. Feedback Voltage vs. Temperature  
Figure 25. Switching Frequency vs. High Input Voltage, 1.0 MHz,  
VIN Range = 13 V to 16.5 V  
280  
325  
315  
305  
295  
285  
275  
265  
255  
V
V
V
= 13V  
= 20V  
= 16.5V  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
NO LOAD  
IN  
IN  
IN  
265  
250  
235  
220  
205  
190  
0
2000  
4000  
6000  
8000  
10,000  
10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2  
LOAD CURRENT (mA)  
V
(V)  
IN  
Figure 23. Switching Frequency vs. High Input Voltage, 300 kHz, 10% of 12 V  
Figure 26. Frequency vs. Load Current, 300 kHz, VOUT = 0.8 V  
650  
330  
320  
310  
300  
290  
280  
270  
260  
250  
240  
+125°C  
+25°C  
–40°C  
NO LOAD  
V
V
V
= 20V  
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
IN  
IN  
IN  
600  
550  
500  
450  
400  
13.0 13.4 13.8 14.2 14.6 15.0 15.4 15.8 16.2  
0
1500 3000 4500 6000 7500 9000 10,500 12,000 13,500 15,00  
LOAD CURRENT (mA)  
V
(V)  
IN  
Figure 24. Switching Frequency vs. High Input Voltage, 600 kHz, VOUT = 1.8 V,  
VIN Range = 13 V to 16.5 V  
Figure 27. Frequency vs. Load Current, 300 kHz, VOUT = 1.8 V  
Rev. 0 | Page 10 of 44  
 
ADP1870/ADP1871  
338  
334  
330  
326  
322  
318  
314  
310  
306  
302  
298  
740  
733  
726  
719  
712  
705  
698  
691  
684  
677  
670  
663  
656  
649  
642  
635  
628  
621  
V
V
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
V
V
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
IN  
IN  
IN  
IN  
0
800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800 9600  
LOAD CURRENT (mA)  
0
800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800  
LOAD CURRENT (mA)  
Figure 31. Frequency vs. Load Current, 600 kHz, VOUT = 5 V  
Figure 28. Frequency vs. Load Current, 300 kHz, VOUT = 7 V  
850  
775  
700  
625  
550  
475  
400  
+125°C  
+25°C  
–40°C  
540  
510  
480  
450  
420  
390  
360  
330  
300  
V
V
= 13V  
= 16.5V  
IN  
IN  
V
V
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
IN  
IN  
0
1200 2400 3600 4800 6000 7200 8400 9600 10,800 12,000  
LOAD CURRENT (mA)  
0
2000  
4000  
6000  
8000  
10,000  
12,000  
LOAD CURRENT (mA)  
Figure 29. Frequency vs. Load Current, 600 kHz, VOUT = 0.8 V  
Figure 32. Frequency vs. Load Current, VOUT = 1.0 MHz, 0.8 V  
675  
655  
635  
615  
595  
575  
555  
535  
515  
495  
1225  
1150  
1075  
1000  
925  
V
V
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
V
V
= 13V  
= 16.5V  
IN  
IN  
IN  
IN  
850  
775  
700  
+125°C  
+25°C  
–40°C  
625  
550  
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000  
LOAD CURRENT (mA)  
0
1200 2400 3600 4800 6000 7200 8400 9600 10,800 12,000  
LOAD CURRENT (mA)  
Figure 30. Frequency vs. Load Current, 600 kHz, VOUT = 1.8 V  
Figure 33. Frequency vs. Load Current, 1.0 MHz, VOUT = 1.8 V  
Rev. 0 | Page 11 of 44  
ADP1870/ADP1871  
1450  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
+125°C  
+25°C  
–40°C  
V
V
= 13V  
= 16.5V  
+125°C  
+25°C  
–40°C  
IN  
IN  
1400  
1350  
1300  
1250  
1200  
1150  
1100  
1050  
1000  
0
800 1600 2400 3200 4000 4800 5600 6400 7200 8000  
LOAD CURRENT (mA)  
5.5  
6.7  
7.9  
9.1  
10.3 11.5 12.7 13.9 15.1 16.3  
(V)  
V
IN  
Figure 34. Frequency vs. Load Current, 1.0 MHz, VOUT = 5 V  
Figure 37. Maximum Duty Cycle vs. High Voltage Input (VIN  
)
2.658  
680  
630  
580  
530  
480  
430  
380  
330  
280  
230  
180  
V
V
V
= 2.7V  
= 3.6V  
= 5.5V  
REG  
REG  
REG  
2.657  
2.656  
2.655  
2.654  
2.653  
2.652  
2.651  
2.650  
2.649  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 38. Minimum Off-Time vs. Temperature  
Figure 35. UVLO vs. Temperature  
680  
630  
580  
530  
480  
430  
380  
330  
280  
230  
180  
95  
90  
85  
80  
75  
70  
65  
60  
55  
+125°C  
+25°C  
–40°C  
+125°C  
+25°C  
–40°C  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
300  
400  
500  
600  
700  
800  
900  
1000  
FREQUENCY (kHz)  
REG  
Figure 36. Maximum Duty Cycle vs. Frequency  
Figure 39. Minimum Off-Time vs. VREG (Low Input Voltage)  
Rev. 0 | Page 12 of 44  
 
 
ADP1870/ADP1871  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
80  
72  
64  
56  
48  
40  
32  
24  
16  
8
V
V
V
= 2.7V  
= 3.6V  
= 5.5V  
+125°C  
+25°C  
–40°C  
300kHz  
1MHz  
+125°C  
+25°C  
–40°C  
REG  
REG  
REG  
300  
400  
500  
600  
700  
800  
900  
1000  
2.7  
3.1  
3.5  
3.9  
V
4.3  
(V)  
4.7  
5.1  
5.5  
FREQUENCY (kHz)  
REG  
Figure 40. Internal Rectifier Drop vs. Frequency  
Figure 43. Lower-Side MOSFET Body Diode Conduction Time vs. VREG  
1280  
1200  
1120  
1040  
960  
880  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
V
V
V
= 5.5V  
= 13V  
= 16.5V  
1MHz  
T
= 25°C  
IN  
IN  
IN  
A
300kHz  
OUTPUT VOLTAGE  
1
INDUCTOR CURRENT  
2
SW NODE  
3
LOW SIDE  
4
B
CH1 50mV  
CH3 10V  
CH2 5A M400ns  
T 35.8%  
A CH2  
3.90A  
W
2.7  
3.1  
3.5  
3.9  
V
4.3  
4.7  
5.1  
5.5  
B
CH4 5V  
W
(V)  
REG  
Figure 41. Internal Boost Rectifier Drop vs. VREG (Low Input Voltage)  
Over VIN Variation  
Figure 44. Power Saving Mode (PSM) Operational Waveform, 100 mA  
720  
300kHz  
1MHz  
+125°C  
+25°C  
–40°C  
OUTPUT VOLTAGE  
640  
560  
480  
400  
320  
240  
160  
80  
1
INDUCTOR CURRENT  
2
SW NODE  
3
LOW SIDE  
4
B
CH1 50mV  
CH3 10V  
CH2 5A M4.0µs  
T 35.8%  
A CH2  
3.90A  
W
2.7  
3.1  
3.5  
3.9  
V
4.3  
4.7  
5.1  
5.5  
B
CH4 5V  
W
(V)  
REG  
Figure 42. Internal Boost Rectifier Drop vs. VREG  
Figure 45. PSM Waveform at Light Load, 500 mA  
Rev. 0 | Page 13 of 44  
 
 
ADP1870/ADP1871  
OUTPUT VOLTAGE  
2
4
OUTPUT VOLTAGE  
INDUCTOR CURRENT  
12A NEGATIVE STEP  
SW NODE  
1
3
1
3
SW NODE  
LOW SIDE  
4
B
CH1 5A  
CH3 10V  
M400ns  
T 30.6%  
A CH3  
2.20V  
CH1 10A CH2 200mV  
CH3 20V CH4 5V  
M20µs  
T 48.2%  
A CH1  
3.40A  
W
B
CH4 100mV  
W
Figure 49. Negative Step During Heavy Load Transient Behavior—PSM Enabled,  
12 A (See Figure 93 Application Circuit)  
Figure 46. CCM Operation at Heavy Load, 12 A  
(See Figure 93 for Application Circuit)  
OUTPUT VOLTAGE  
2
4
OUTPUT VOLTAGE  
12A STEP  
12A STEP  
1
2
LOW SIDE  
1
3
SW NODE  
SW NODE  
LOW SIDE  
A CH1 3.40A  
4
3
B
CH1 10A  
CH3 20V  
CH2 200mV  
CH4 5V  
M2ms  
T 75.6%  
CH1 10A  
CH3 20V  
CH2 5V  
CH4 200mV  
M2ms  
T 15.6%  
A CH1  
6.20A  
W
B
W
Figure 47. Load Transient Step—PSM Enabled, 12 A  
(See Figure 93 Application Circuit)  
Figure 50. Load Transient Step—Forced PWM at Light Load, 12 A  
(See Figure 93 Application Circuit)  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
4
2
12A POSITIVE STEP  
12A POSITIVE STEP  
SW NODE  
1
2
3
LOW SIDE  
1
3
SW NODE  
LOW SIDE  
4
B
CH1 10A CH2 200mV  
CH3 20V CH4 5V  
M20µs  
T 30.6%  
A CH1  
3.40A  
CH1 10A CH2 5V  
M20µs  
T 43.8%  
A CH1  
6.20A  
W
B
CH3 20V  
CH4 200mV  
W
Figure 48. Positive Step During Heavy Load Transient Behavior—PSM Enabled,  
12 A, VOUT = 1.8 V (See Figure 93 Application Circuit)  
Figure 51. Positive Step During Heavy Load Transient Behavior—Forced PWM  
at Light Load, 12 A, VOUT = 1.8 V (See Figure 93 Application Circuit)  
Rev. 0 | Page 14 of 44  
ADP1870/ADP1871  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
2
1
INDUCTOR CURRENT  
12A NEGATIVE STEP  
2
4
1
SW NODE  
LOW SIDE  
3
4
SW NODE  
B
LOW  
SIDE  
3
B
CH1 10A CH2 200mV  
M10µs  
A CH1  
5.60A  
CH1 2V  
CH2 5A  
CH4 5V  
M2ms  
T 32.8%  
A CH1  
720mV  
W
W
CH3 20V  
CH4 5V  
T 23.8%  
CH3 10V  
Figure 52. Negative Step During Heavy Load Transient Behavior—Forced PWM  
at Light Load, 12 A (See Figure 93 Application Circuit)  
Figure 55. Start-Up Behavior at Heavy Load, 12 A, 300 kHz  
(See Figure 93 Application Circuit)  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
1
1
INDUCTOR CURRENT  
2
INDUCTOR CURRENT  
LOW SIDE  
LOW SIDE  
2
4
4
SW NODE  
SW NODE  
3
3
B
B
CH1 2V  
CH3 10V  
CH2 5A  
CH4 5V  
M4ms  
T 49.4%  
A CH1  
920mV  
CH1 2V  
CH3 10V  
CH2 5A  
CH4 5V  
M4ms  
T 41.6%  
A CH1  
720mV  
W
W
Figure 53. Output Short-Circuit Behavior Leading to Hiccup Mode  
Figure 56. Power-Down Waveform During Heavy Load  
1
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
1
2
INDUCTOR CURRENT  
INDUCTOR CURRENT  
2
SW NODE  
SW NODE  
3
3
4
LOW SIDE  
LOW SIDE  
4
B
B
CH1 5V  
CH3 10V  
CH2 10A  
CH4 5V  
M10µs  
T 36.2%  
A CH2  
8.20A  
CH1 50mV  
CH2 5A  
CH4 5V  
M2µs  
T 35.8%  
A CH2  
3.90A  
W
W
B
CH3 10V  
W
Figure 57. Output Voltage Ripple Waveform During PSM Operation  
at Light Load, 2 A  
Figure 54. Magnified Waveform During Hiccup Mode  
Rev. 0 | Page 15 of 44  
ADP1870/ADP1871  
18ns (  
t
)
,DRVL  
LOW SIDE  
r
OUTPUT VOLTAGE  
1
4
HIGH SIDE  
24ns (  
t
)
pdh,DRVL  
LOW SIDE  
4
HS MINUS  
SW  
11ns (t ,DRVH  
f
)
SW NODE  
3
SW NODE  
3
M
INDUCTOR CURRENT  
2
T
= 25°C  
A
B
CH1 1V  
CH3 10V  
CH2 5A  
CH4 2V  
M1ms  
T 63.2%  
A CH1  
1.56V  
CH2 5V  
CH4 2V  
M20ns  
T 39.2%  
A CH2  
4.20V  
W
B
CH3 5V  
MATH 2V 20ns  
W
Figure 58. Soft Start and RES Detect Waveform  
Figure 61. Upper-Side Driver Falling and Lower-Side Rising Edge Waveforms  
(CIN = 4.3 nF (Upper-/Lower-Side MOSFET),  
Q
TOTAL = 27 nC (VGS = 4.4 V (Q1), VGS = 5 V (Q3))  
V
V
V
= 5.5V  
= 3.6V  
= 2.7V  
REG  
REG  
REG  
T
= 25°C  
A
570  
550  
530  
510  
490  
470  
450  
430  
LOW SIDE  
4
HIGH SIDE  
SW NODE  
3
M
HS MINUS  
SW  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
CH2 5V  
CH4 2V  
M40ns  
T 29.0%  
A CH2  
4.20V  
CH3 5V  
MATH 2V 40ns  
TEMPERATURE (°C)  
Figure 59. Output Drivers and SW Node Waveforms  
Figure 62. Transconductance (Gm) vs. Temperature  
680  
630  
580  
530  
480  
430  
380  
330  
T
= 25°C  
+125°C  
+25°C  
–40°C  
A
LOW SIDE  
16ns (t ,DRVL)  
f
4
22ns (  
t
)
pdhDRVH  
HIGH SIDE  
25ns (  
t
)
,DRVH  
r
SW NODE  
3
HS MINUS  
SW  
M
CH2 5V  
CH4 2V  
M40ns  
T 29.0%  
A CH2  
4.20V  
2.7  
3.0  
3.3  
3.6  
3.9  
V
4.2  
(V)  
4.5  
4.8  
5.1  
5.4  
CH3 5V  
MATH 2V 40ns  
REG  
Figure 63. Transconductance (Gm) vs. VREG  
Figure 60. Upper-Side Driver Rising and Lower-Side Falling Edge Waveforms  
(CIN = 4.3 nF (Upper-/Lower-Side MOSFET),  
QTOTAL = 27 nC (VGS = 4.4 V (Q1), VGS = 5 V (Q3))  
Rev. 0 | Page 16 of 44  
 
 
ADP1870/ADP1871  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
+125°C  
+25°C  
–40°C  
2.7  
3.1  
3.5  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
V
REG  
Figure 64. Quiescent Current vs. VREG  
Rev. 0 | Page 17 of 44  
ADP1870/ADP1871  
ADP1870/ADP1871 BLOCK DIAGRAM  
VREG  
ADP1870/ADP1871  
tON TIMER  
VIN  
C
PRECISION  
ENABLE BLOCK  
TO ENABLE  
ALL BLOCKS  
I
LDO  
SW  
INFORMATION  
R (TRIMMED)  
VREG  
tON = 2RC(V  
/V  
)
OUT IN  
REF  
SW FILTER  
VREG  
BST  
BIAS BLOCK  
AND REFERENCE  
STATE  
MACHINE  
REF_ZERO  
TON  
I
SS  
DRVH  
SW  
BG_REF  
SS  
COMP  
PSM  
300k  
8kꢀ  
BG_REF  
BG_REF  
LEVEL  
SHIFT  
HS  
LS  
HI  
C
SS  
SS_REF  
COMP/  
EN  
SW  
LO  
INL_HICC  
ERROR  
AMP  
FB  
VREG  
BG_REF  
BG_REF  
DRVL  
PGND  
0.6V  
PWM  
I
REV  
COMP  
CS  
AMP  
LOWER  
COMP  
CLAMP  
RES DETECT AND  
GAIN SET  
REF_ZERO  
ADC  
CS GAIN SET  
0.4V  
GND  
Figure 65. ADP1870/ADP1871 Block Diagram  
Rev. 0 | Page 18 of 44  
 
ADP1870/ADP1871  
THEORY OF OPERATION  
ADP1870/ADP1871, reducing the supply current of the devices  
to approximately 140 μA. For more information, see Figure 67.  
The ADP1870/ADP1871 are versatile current-mode, synchronous  
step-down controllers that provide superior transient response,  
optimal stability, and current limit protection by using a constant  
on-time, pseudo-fixed frequency with a programmable current-  
sense gain, current-control scheme. In addition, these devices offer  
optimum performance at low duty cycles by utilizing valley  
current-mode control architecture. This allows the ADP1870/  
ADP1871 to drive all N-channel power stages to regulate output  
voltages as low as 0.6 V.  
ADP1870/ADP1871  
FB  
VREG  
SS  
ERROR  
AMPLIFIER  
0.6V  
COMP/EN  
STARTUP  
C
C
PRECISION  
ENABLE  
C
C2  
R
C
The ADP1870/ADP1871 have an internal regulator (VREG) for  
biasing and supplying power for the integrated MOSFET drivers.  
A bypass capacitor should be located directly across the VREG  
(Pin 5) and PGND (Pin 7) pins. Included in the power-up sequence  
is the biasing of the current-sense amplifier, the current-sense  
gain circuit (see the Programming Resistor (RES) Detect Circuit  
section), the soft start circuit, and the error amplifier.  
TO ENABLE  
ALL BLOCKS  
285mV  
Figure 66. Release COMP/EN Pin to Enable the ADP1870/ADP1871  
COMP/EN  
The current-sense blocks provide valley current information  
(see the Programming Resistor (RES) Detect Circuit section)  
and are a variable of the compensation equation for loop stability  
(see the Compensation Network section). The valley current  
information is extracted by forcing 0.4 V across the DRVL output  
and PGND pin, which generates a current depending on the  
resistor across DRVL and PGND in a process performed by the  
RES detect circuit. The current through the resistor is used to set  
the current-sense amplifier gain. This process takes approximately  
800 μs, after which the drive signal pulses appear at the DRVL  
and DRVH pins synchronously and the output voltage begins to  
rise in a controlled manner through the soft start sequence.  
>2.4V  
2.4V  
HICCUP MODE INITIALIZED  
MAXIMUM CURRENT (UPPER CLAMP)  
1.0V  
ZERO CURRENT  
USABLE RANGE ONLY AFTER SOFT START  
PERIOD IF CONTUNUOUS CONDUCTION  
MODE OF OPERATION IS SELECTED.  
500mV  
LOWER CLAMP  
285mV  
0V  
PRECISION ENABLE THRESHOLD  
35mV HYSTERESIS  
The rise time of the output voltage is determined by the soft  
start and error amplifier blocks (see the Soft Start section). At  
the beginning of a soft start, the error amplifier charges the  
external compensation capacitor, causing the COMP/EN pin to  
rise above the enable threshold of 285 mV, thus enabling the  
ADP1870/ADP1871.  
Figure 67. COMP/EN Voltage Range  
UNDERVOLTAGE LOCKOUT  
The undervoltage lockout (UVLO) feature prevents the part from  
operating both the upper- and lower-side MOSFETs at extremely  
low or undefined input voltage (VIN) ranges. Operation at an  
undefined bias voltage may result in the incorrect propagation  
of signals to the high-side power switches. This, in turn, results  
in invalid output behavior that can cause damage to the output  
devices, ultimately destroying the device tied at the output. The  
UVLO level has been set at 2.65 V (nominal).  
SOFT START  
The ADP1870/ADP1871 have digital soft start circuitry, which  
involves a counter that initiates an incremental increase in current,  
by 1 μA, via a current source on every cycle through a fixed internal  
capacitor. The output tracks the ramping voltage by producing  
PWM output pulses to the upper-side MOSFET. The purpose is to  
limit the in-rush current from the high voltage input supply (VIN)  
to the output (VOUT).  
ON-BOARD LOW DROPOUT REGULATOR  
The ADP1870 uses an on-board LDO to bias the internal digital  
and analog circuitry. With proper bypass capacitors connected  
to the VREG pin (output of internal LDO), this pin also provides  
power for the internal MOSFET drivers. It is recommended to  
float VREG if VIN is utilized for greater than 5.5 V operation.  
The minimum voltage where bias is guaranteed to operate is  
2.75 V at VREG.  
PRECISION ENABLE CIRCUITRY  
The ADP1870/ADP1871 employ precision enable circuitry. The  
enable threshold is 285 mV typical with 35 mV of hysteresis.  
The devices are enabled when the COMP/EN pin is released,  
allowing the error amplifier output to rise above the enable  
threshold (see Figure 66). Grounding this pin disables the  
For applications where VIN is decoupled from VREG, the  
minimum voltage at VIN must be 2.9 V. It is recommended that  
Rev. 0 | Page 19 of 44  
 
 
 
 
 
ADP1870/ADP1871  
VIN and VREG be tied together if the VIN pin is subjected to a  
2.75 V rail.  
SW  
CS  
AMP  
PGND  
Table 5. Power Input and LDO Output Configurations  
ADC  
VIN  
VREG  
Comments  
CS GAIN SET  
DRVL  
0.4V  
>5.5 V  
<5.5 V  
Float  
Must use the LDO  
Connect to VIN  
LDO drop voltage is not  
realized (that is, if VIN =  
2.75 V, then VREG = 2.75  
V)  
RES  
<5.5 V  
Float  
Float  
LDO drop is realized  
Ranges above  
and below 5.5  
V
LDO drop is realized,  
minimum VIN recom-  
mendation is 2.95 V  
Figure 69. RES Detect Circuit for Current-Sense Gain Programming  
Table 6. Current-Sense Gain Programming  
Resistor  
ACS  
47 kΩ  
22 kΩ  
Open  
100 kΩ  
3 V/V  
6 V/V  
12 V/V  
24 V/V  
THERMAL SHUTDOWN  
The thermal shutdown is a self-protection feature to prevent the  
IC from damage due to a very high operating junction temperature.  
If the junction temperature of the device exceeds 155°C, the part  
enters the thermal shutdown state. In this state, the device shuts off  
both the upper- and lower-side MOSFETs and disables the entire  
controller immediately, thus reducing the power consumption of  
the IC. The part resumes operation after the junction temperature  
of the part cools to less than 140°C.  
VALLEY CURRENT-LIMIT SETTING  
The architecture of the ADP1870/ADP1871 is based on valley  
current-mode control. The current limit is determined by three  
components: the RON of the lower-side MOSFET, the error ampli-  
fier output voltage swing (COMP), and the current-sense gain.  
The COMP range is internally fixed at 1.4 V. The current-sense  
gain is programmable via an external resistor at the DRVL pin (see  
the Programming Resistor (RES) Detect Circuit section). The  
PROGRAMMING RESISTOR (RES) DETECT CIRCUIT  
Upon startup, one of the first blocks to become active is the RES  
detect circuit. This block powers up before soft start begins. It  
forces a 0.4 V reference value at the DRVL output (see Figure 68)  
and is programmed to identify four possible resistor values: 47 kΩ,  
22 kΩ, open, and 100 kΩ.  
RON of the lower-side MOSFET can vary over temperature and  
usually has a positive TC (meaning that it increases with tempera-  
ture); therefore, it is recommended to program the current-sense  
gain resistor based on the rated RON of the MOSFET at 125°C.  
The RES detect circuit digitizes the value of the resistor at the  
DRVL pin (Pin 6). An internal ADC outputs a 2-bit digital code  
that is used to program four separate gain configurations in the  
current-sense amplifier (see Figure 69). Each configuration corre-  
sponds to a current-sense gain (ACS) of 3 V/V, 6 V/V, 12 V/V,  
24 V/V, respectively (see Table 6 and Table 7). This variable is used  
for the valley current-limit setting, which sets up the appropriate  
current-sense gain for a given application and sets the compensation  
necessary to achieve loop stability (see the Valley Current-Limit  
Setting and Compensation Network sections).  
Because the ADP1870/ADP1871 are based on valley current  
control, the relationship between ICLIM and ILOAD is as follows:  
KI  
2
ICLIM = ILOAD × 1 −  
where:  
KI is the ratio between the inductor ripple current and the  
desired average load current (see Figure 70).  
ICLIM is the desired valley current limit.  
ILOAD is the current load.  
ADP1870/  
ADP1871  
Q1  
Establishing KI helps to determine the inductor value (see the  
Inductor Selection section), but in most cases KI = 0.33.  
DRVH  
SW  
Q2  
DRVL  
I
LOAD  
3
RIPPLE CURRENT =  
R
RES  
CS GAIN  
PROGRAMMING  
LOAD CURRENT  
Figure 68. Programming Resistor Location  
VALLEY CURRENT LIMIT  
Figure 70. Valley Current Limit to Average Current Relation  
Rev. 0 | Page 20 of 44  
 
 
 
 
 
 
 
ADP1870/ADP1871  
When the desired valley current limit (ICLIM) has been determined,  
the current-sense gain can be calculated as follows:  
The valley current limit is programmed as outlined in Table 7  
and Figure 71. The inductor chosen must be rated to handle the  
peak current, which is equal to the valley current from Table 7  
plus the peak-to-peak inductor ripple current (see the Inductor  
Selection section). In addition, the peak current value must be  
used to compute the worst-case power dissipation in the  
MOSFETs (see Figure 72).  
1.4 V  
ICLIM  
=
A
CS ×RON  
where:  
ON is the channel impedance of the lower-side MOSFET.  
R
49A  
ACS is the current-sense gain multiplier (see Table 6 and Table 7).  
MAXIMUM DC LOAD  
CURRENT  
Although the ADP1870/ADP1871 have only four discrete current-  
sense gain settings for a given RON variable, Table 7 and Figure 71  
outline several available options for the valley current setpoint  
based on various RON values.  
39.5A  
ΔI = 65%  
OF 37A  
INDUCTOR  
CURRENT  
COMP  
OUTPUT  
37A  
35A  
ΔI = 45%  
OF 32.25A  
32.25A  
Table 7. Valley Current Limit Program1  
ΔI = 33%  
OF 30A  
30A  
Valley Current Level  
2.4V  
47 kΩ  
22 kΩ  
Open  
100 kΩ  
ACS = 24 V/V  
38.9  
29.2  
23.3  
19.5  
16.7  
13  
11.7  
10.6  
5.83  
7.5  
3.25  
RON  
(mΩ) ACS = 3 V/V  
ACS = 6 V/V  
ACS = 12 V/V  
VALLEY CURRENT-LIMIT  
THRESHOLD (SET FOR 25A)  
1.5  
2
2.5  
3
3.5  
4.5  
5
5.5  
10  
COMP  
OUTPUT  
SWING  
39.0  
33.4  
26.0  
23.4  
21.25  
11.7  
7.75  
6.5  
0A  
1V  
Figure 72. Valley Current-Limit Threshold in Relation to Inductor Ripple Current  
23.3  
15.5  
13.0  
HICCUP MODE DURING SHORT CIRCUIT  
15  
18  
31.0  
26.0  
A current-limit violation occurs when the current across the  
source and drain of the lower-side MOSFET exceeds the  
current-limit setpoint. When 32 current-limit violations are  
detected, the controller enters idle mode and turns off the  
MOSFETs for 6 ms, allowing the converter to cool down. Then,  
the controller reestablishes soft start and begins to cause the  
output to ramp up again (see Figure 73). While the output  
ramps up, COMP is monitored to determine if the violation is  
still present. If it is still present, the idle event occurs again,  
followed by the full-chip power-down sequence. This cycle  
continues until the violation no longer exists. If the violation  
disappears, the converter is allowed to switch normally,  
maintaining regulation.  
1 Refer to Figure 71 for more information and a graphical representation.  
39  
37  
35  
RES = 47k  
= 3V/V  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
A
CS  
RES = 22kꢀ  
= 6V/V  
A
RES = NO RES  
= 12V/V  
CS  
A
CS  
RES = 100kꢀ  
A
= 24V/V  
7
CS  
5
3
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
(m)  
R
ON  
Figure 71. Valley Current-Limit Value vs. RON of the Lower-Side MOSFET  
for Each Programming Resistor (RES)  
REPEATED CURRENT-LIMIT  
VIOLATION DETECTED  
HS  
A PREDETERMINED NUMBER SOFT START IS  
OF PULSES IS COUNTED TO REINITIALIZED TO  
ALLOW THE CONVERTER MONITOR IF THE  
CLIM  
TO COOL DOWN  
VIOLATION  
STILL EXISTS  
ZERO  
CURRENT  
Figure 73. Idle Mode Entry Sequence Due to Current-Limit Violation  
Rev. 0 | Page 21 of 44  
 
 
 
 
 
 
ADP1870/ADP1871  
As soon as the forward current through the lower-side  
MOSFET decreases to a level where  
SYNCHRONOUS RECTIFIER  
The ADP1870/ADP1871 employ an internal lower-side MOSFET  
driver to drive the external upper- and lower-side MOSFETs.  
The synchronous rectifier not only improves overall conduction  
efficiency, but also ensures proper charging to the bootstrap  
capacitor located at the upper-side driver input. This is beneficial  
during startup to provide sufficient drive signal to the external  
upper-side MOSFET and to attain fast turn-on response, which is  
essential for minimizing switching losses. The integrated upper-  
and lower-side MOSFET drivers operate in complementary  
fashion with built-in anticross conduction circuitry to prevent  
unwanted shoot-through current that may potentially damage the  
MOSFETs or reduce efficiency as a result of excessive power loss.  
10 mV = IQ2 × RON(Q2)  
the zero-cross comparator (or IREV comparator) emits a signal to  
turn off the lower-side MOSFET. From this point, the slope of the  
inductor current ramping down becomes steeper (see Figure 76)  
as the body diode of the lower-side MOSFET begins to conduct  
current and continues conducting current until the remaining  
energy stored in the inductor has been depleted.  
ANOTHER tON EDGE IS  
TRIGGERED WHEN V  
OUT  
FALLS BELOW REGULATION  
SW  
tON  
POWER SAVING MODE (PSM) VERSION (ADP1871)  
The power saving mode version of the ADP1870 is the ADP1871.  
The ADP1871 operates in the discontinuous conduction mode  
(DCM) and pulse skips at light load to mid load currents. It  
outputs pulses as necessary to maintain output regulation. Unlike  
the continuous conduction mode (CCM), DCM operation  
prevents negative current, thus allowing improved system  
efficiency at light loads. Current in the reverse direction through  
this pathway, however, results in power dissipation and therefore  
a decrease in efficiency.  
HS AND LS  
IN IDLE MODE  
LS  
ZERO-CROSS COMPARATOR  
DETECTS 10mV OFFSET AND  
TURNS OFF LS  
I
LOAD  
0A  
10mV = R  
× I  
LOAD  
ON  
HS  
Figure 76. 10 mV Offset to Ensure Prevention of Negative Inductor Current  
tON  
The system remains in idle mode until the output voltage drops  
below regulation. A PWM pulse is then produced, turning on the  
upper-side MOSFET to maintain system regulation. The  
ADP1871 does not have an internal clock, so it switches purely  
as a hysteretic controller as described in this section.  
HS AND LS ARE OFF  
OR IN IDLE MODE  
LS  
tOFF  
TIMER OPERATION  
The ADP1870/ADP1871 employ a constant on-time architecture,  
which provides a variety of benefits, including improved load  
and line transient response when compared with a constant  
(fixed) frequency current-mode control loop of comparable  
loop design. The constant on-time timer, or tON timer, senses  
the high input voltage (VIN) and the output voltage (VOUT) using  
SW waveform information to produce an adjustable one-shot  
PWM pulse that varies the on-time of the upper-side MOSFET in  
response to dynamic changes in input voltage, output voltage, and  
load current conditions to maintain regulation. It then generates  
an on-time (tON) pulse that is inversely proportional to VIN.  
AS THE INDUCTOR  
CURRENT APPROACHES  
ZERO CURRENT, THE STATE  
I
LOAD  
MACHINE TURNS OFF THE  
LOWER-SIDE MOSFET.  
0A  
Figure 74. Discontinuous Mode of Operation (DCM)  
To minimize the chance of negative inductor current buildup,  
an on-board zero-cross comparator turns off all upper- and  
lower-side switching activities when the inductor current  
approaches the zero current line, causing the system to enter  
idle mode, where the upper- and lower-side MOSFETs are  
turned off. To ensure idle mode entry, a 10 mV offset, connected  
in series at the SW node, is implemented (see Figure 75).  
ZERO-CROSS  
VOUT  
tON = K ×  
VIN  
where:  
SW  
COMPARATOR  
K is a constant that is trimmed using an RC timer product for  
the 300 kHz, 600 kHz, and 1.0 MHz frequency options.  
I
Q2  
10mV  
Q2  
LS  
Figure 75. Zero-Cross Comparator with 10 mV of Offset  
Rev. 0 | Page 22 of 44  
 
 
 
 
ADP1870/ADP1871  
V
IN  
VREG  
To illustrate this feature more clearly, this section describes  
one such load transient event—a positive load step—in detail.  
During load transient events, the high-side driver output pulse  
width stays relatively consistent from cycle to cycle; however,  
the off-time (DRVL on-time) dynamically adjusts according to  
the instantaneous changes in the external conditions mentioned.  
tON  
C
I
SW  
INFORMATION  
When a positive load step occurs, the error amplifier (out of phase  
of the output, VOUT) produces new voltage information at its output  
(COMP). In addition, the current-sense amplifier senses new  
inductor current information during this positive load transient  
event. The error amplifiers output voltage reaction is compared  
with the new inductor current information that sets the start of  
the next switching cycle. Because current information is produced  
from valley current sensing, it is sensed at the down ramp of the  
inductor current, whereas the voltage loop information is sensed  
through the counter action upswing of the error amplifiers  
output (COMP).  
R (TRIMMED)  
Figure 77. Constant On-Time Time  
The constant on-time (tON) is not strictly “constant” because it  
varies with VIN and VOUT. However, this variation occurs in such  
a way as to keep the switching frequency virtually independent  
of VIN and VOUT  
.
The tON timer uses a feedforward technique, applied to the constant  
on-time control loop, making it a pseudo-fixed frequency to a first  
order. Second-order effects, such as dc losses in the external power  
MOSFETs (see the Efficiency Consideration section), cause some  
variation in frequency vs. load current and line voltage. These  
effects are shown in Figure 23 to Figure 34. The variations in  
frequency are much reduced compared with the variations  
generated when the feedforward technique is not utilized.  
The result is a convergence of these two signals (see Figure 78),  
which allows an instantaneous increase in switching frequency  
during the positive load transient event. In summary, a positive  
load step causes VOUT to transient down, which causes COMP to  
transient up and therefore shortens the off-time. This resulting  
increase in frequency during a positive load transient helps to  
quickly bring VOUT back up in value and within the regulation  
window.  
The feedforward technique establishes the following relationship:  
1
fSW  
=
K
where fSW is the controller switching frequency (300 kHz,  
600 kHz, and 1.0 MHz).  
Similarly, a negative load step causes the off-time to lengthen in  
response to VOUT rising. This effectively increases the inductor  
demagnetizing phase, helping to bring VOUT within regulation.  
In this case, the switching frequency decreases, or experiences a  
foldback, to help facilitate output voltage recovery.  
The tON timer senses VIN and VOUT to minimize frequency  
variation as previously explained. This provides a pseudo-fixed  
frequency as explained in the Pseudo-Fixed Frequency section.  
To allow headroom for VIN and VOUT sensing, adhere to the  
following equations:  
Because the ADP1870/ADP1871 has the ability to respond rapidly  
to sudden changes in load demand, the recovery period in which  
the output voltage settles back to its original steady state operating  
point is much quicker than it would be for a fixed-frequency  
equivalent. Therefore, using a pseudo-fixed frequency results in  
significantly better load transient performance than using a  
fixed frequency.  
V
REG VIN/8 + 1.5  
VREG ≥ VOUT/4  
For typical applications where VREG is 5 V, these equations are  
not relevant; however, for lower VREG inputs, care may be  
required.  
PSEUDO-FIXED FREQUENCY  
The ADP1870/ADP1871 employ a constant on-time control  
scheme. During steady state operation, the switching frequency  
stays relatively constant, or pseudo-fixed. This is due to the one-  
shot tON timer that produces a high-side PWM pulse with a  
“fixed” duration, given that external conditions such as input  
voltage, output voltage, and load current are also at steady state.  
During load transients, the frequency momentarily changes for  
the duration of the transient event so that the output comes  
back within regulation more quickly than if the frequency were  
fixed or if it were to remain unchanged. After the transient  
event is complete, the frequency returns to a pseudo-fixed  
frequency value to a first order.  
LOAD CURRENT  
DEMAND  
CS AMP  
OUTPUT  
ERROR AMP  
OUTPUT  
VALLEY  
TRIP POINTS  
PWM OUTPUT  
fSW  
>fSW  
Figure 78. Load Transient Response Operation  
Rev. 0 | Page 23 of 44  
 
 
 
ADP1870/ADP1871  
APPLICATIONS INFORMATION  
Table 8. Recommended Inductors  
FEEDBACK RESISTOR DIVIDER  
L
DCR  
ISAT  
Dimensions  
(mm)  
Model  
The required resistor divider network can be determined for a  
given VOUT value because the internal band gap reference (VREF  
is fixed at 0.6 V. Selecting values for RT and RB determines the  
minimum output load current of the converter. Therefore, for a  
given value of RB, the RT value can be determined through the  
following expression:  
(μH) (mΩ) (A)  
Manufacturer  
Würth Elek.  
Würth Elek.  
Würth Elek.  
Würth Elek.  
Würth Elek.  
Würth Elek.  
Würth Elek.  
Würth Elek.  
Würth Elek.  
AIC Technology  
Number  
)
0.12  
0.22  
0.47  
0.72  
0.9  
0.33  
0.33  
0.67  
1.3  
55  
30  
50  
35  
28  
25  
20  
24  
22  
10.2 × 7  
744303012  
744303022  
744355147  
744325072  
744355090  
744325120  
7443552100  
744318180  
7443551200  
CEP125U-R80  
10.2 × 7  
13.2 × 12.8  
10.5 × 10.2  
13 × 12.8  
10.5 × 10.2  
10.5 × 10.2  
14 × 12.8  
13.2 × 12.8  
1.6  
1.2  
1.8  
(VOUT 0.6 V)  
RT = RB ×  
1.0  
3.3  
0.6 V  
1.4  
3.2  
2.0  
2.6  
INDUCTOR SELECTION  
0.8  
2.5  
16.5 12.5 × 12.5  
The inductor value is inversely proportional to the inductor  
ripple current. The peak-to-peak ripple current is given by  
OUTPUT RIPPLE VOLTAGE (ΔVRR)  
ILOAD  
3
The output ripple voltage is the ac component of the dc output  
voltage during steady state. For a ripple error of 1.0%, the  
output capacitor value needed to achieve this tolerance can be  
determined using the following equation. (Note that an  
accuracy of 1.0% is possible only during steady state conditions,  
not during load transients.)  
ΔIL = K I × ILOAD  
where KI is typically 0.33.  
The equation for the inductor value is given by  
(VIN VOUT  
ΔIL × fSW  
)
VOUT  
VIN  
L =  
×
ΔVRR = (0.01)×VOUT  
where:  
VIN is the high voltage input.  
OUT is the desired output voltage.  
SW is the controller switching frequency (300 kHz, 600 kHz, and  
OUTPUT CAPACITOR SELECTION  
The primary objective of the output capacitor is to facilitate the  
reduction of the output voltage ripple; however, the output  
capacitor also assists in the output voltage recovery during load  
transient events. For a given load current step, the output  
voltage ripple generated during this step event is inversely  
proportional to the value chosen for the output capacitor. The  
speed at which the output voltage settles during this recovery  
period depends on where the crossover frequency (loop  
bandwidth) is set. This crossover frequency is determined by  
the output capacitor, the equivalent series resistance (ESR) of  
the capacitor, and the compensation network.  
V
f
1.0 MHz).  
When selecting the inductor, choose an inductor saturation  
rating that is above the peak current level, and then calculate  
the inductor current ripple (see the Valley Current-Limit  
Setting section and Figure 79).  
52  
50  
ΔI = 50%  
ΔI = 40%  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
To calculate the small-signal voltage ripple (output ripple  
voltage) at the steady state operating point, use the following  
equation:  
ΔI = 33%  
1
COUT = ΔIL ×  
8× fSW  
×
[
ΔVRIPPLE (ΔIL ×ESR)  
]
where ESR is the equivalent series resistance of the output  
capacitors.  
To calculate the output load step, use the following equation:  
6
8
10 12 14 16 18 20 22 24 26 28 30  
VALLEY CURRENT LIMIT (A)  
ΔILOAD  
COUT = 2 ×  
Figure 79. Peak Inductor Current vs. Valley Current Limit for 33%, 40%, and  
50% of Inductor Ripple Current  
fSW ×(ΔVDROOP (ΔILOAD × ESR))  
where ΔVDROOP is the amount that VOUT is allowed to deviate for  
a given positive load current step (ΔILOAD).  
Rev. 0 | Page 24 of 44  
 
 
 
 
ADP1870/ADP1871  
Ceramic capacitors are known to have low ESR. However, the  
trade-off of using X5R technology is that up to 80% of its capaci-  
tance might be lost due to derating as the voltage applied across  
the capacitor is increased (see Figure 80). Although X7R series  
capacitors can also be used, the available selection is limited to  
only up to 22 μF.  
Error Amplifier Output Impedance (ZCOMP  
)
Assuming that CC2 is significantly smaller than CCOMP, CC2 can  
be omitted from the output impedance equation of the error  
amplifier. The transfer function simplifies to  
R
COMP ( fCROSS + fZERO )  
ZCOMP  
=
fCROSS  
20  
10  
and  
X7R (50V)  
0
1
12  
fCROSS  
=
× fSW  
–10  
–20  
–30  
–40  
where fZERO, the zero frequency, is set to be 1/4th of the crossover  
frequency for the ADP1870.  
–50  
Error Amplifier Gain (GM)  
The error amplifier gain (transconductance) is  
GM = 500 μA/V  
X5R (25V)  
–60  
–70  
X5R (16V)  
–80  
10µF TDK 25V, X7R, 1210 C3225X7R1E106M  
22µF MURATA 25V, X7R, 1210 GRM32ER71E226KE15L  
47µF MURATA 16V, X5R, 1210 GRM32ER61C476KE15L  
–90  
Current-Sense Loop Gain (GCS)  
The current-sense loop gain is  
1
–100  
0
5
10  
15  
20  
25  
30  
DC VOLTAGE (V  
)
DC  
GCS  
=
(A/V)  
Figure 80. Capacitance vs. DC Voltage Characteristics for Ceramic Capacitors  
A
CS ×RON  
Electrolytic capacitors satisfy the bulk capacitance requirements  
for most high current applications. Because the ESR of electrolytic  
capacitors is much higher than that of ceramic capacitors, when  
using electrolytic capacitors, several MLCCs should be mounted  
in parallel to reduce the overall series resistance.  
where:  
ACS (V/V) is programmable for 3 V/V, 6 V/V, 12 V/V, and 24 V/V  
(see the Programming Resistor (RES) Detect Circuit and Valley  
Current-Limit Setting sections).  
RON is the channel impedance of the lower-side MOSFET.  
COMPENSATION NETWORK  
Crossover Frequency  
Due to their current-mode architecture, the ADP1870/ADP1871  
require Type II compensation. To determine the component  
values needed for compensation (resistance and capacitance  
values), it is necessary to examine the converters overall loop  
gain (H) at the unity gain frequency (fSW/10) when H = 1 V/V:  
The crossover frequency is the frequency at which the overall  
loop (system) gain is 0 dB (H = 1 V/V). For current-mode  
converters, such as the ADP1870, it is recommended that the  
user set the crossover frequency between 1/10th and 1/15th of the  
switching frequency.  
VOUT  
1
H =1 V/V = GM ×GCS  
×
× ZCOMP × ZFILT  
fCROSS  
=
fSW  
VREF  
12  
The relationship between CCOMP and fZERO (zero frequency) is as  
follows:  
Examining each variable at high frequency enables the unity-  
gain transfer function to be simplified to provide expressions  
for the RCOMP and CCOMP component values.  
1
)
f ZERO  
=
2π× RCOMP ×CCOMP  
Output Filter Impedance (ZFILT  
)
The zero frequency is set to 1/4th of the crossover frequency.  
Combining all of the above parameters results in  
Examining the filters transfer function at high frequencies  
simplifies to  
1
ZFILTER  
=
fCROSS  
2πfCROSSCOUT VOUT  
RCOMP  
=
=
×
×
sCOUT  
at the crossover frequency (s = 2πfCROSS).  
fCROSS + fZERO  
GM GCS  
VREF  
1
CCOMP  
2×π×RCOMP × fZERO  
Rev. 0 | Page 25 of 44  
 
 
 
ADP1870/ADP1871  
800  
720  
640  
560  
480  
400  
320  
240  
160  
80  
EFFICIENCY CONSIDERATIONS  
V
V
V
= 2.7V  
= 3.6V  
= 5.5V  
REG  
REG  
REG  
One of the important criteria to consider in constructing a dc-to-dc  
converter is efficiency. By definition, efficiency is the ratio of the  
output power to the input power. For high power applications at  
load currents up to 20 A, the following are important MOSFET  
parameters that aid in the selection process:  
VGS (TH): the MOSFET support voltage applied between the  
gate and the source  
RDS (ON): the MOSFET on resistance during channel  
conduction  
+125°C  
+25°C  
–40°C  
QG: the total gate charge  
CN1: the input capacitance of the upper-side switch  
CN2: the input capacitance of the lower-side switch  
300  
400  
500  
600  
700  
800  
900  
1000  
SWITCHING FREQUENCY (kHz)  
Figure 81. Internal Rectifier Voltage Drop vs. Switching Frequency  
The following are the losses experienced through the external  
component during normal switching operation:  
Switching Loss  
The SW node transitions due to the switching activities of the  
upper- and lower-side MOSFETs. This causes removal and  
replenishing of charge to and from the gate oxide layer of the  
MOSFET, as well as to and from the parasitic capacitance  
associated with the gate oxide edge overlap and the drain and  
source terminals. The current that enters and exits these charge  
paths presents additional loss during these transition times. This  
loss can be approximately quantified by using the following  
equation, which represents the time in which charge enters and  
exits these capacitive regions:  
Channel conduction loss (both of the MOSFETs)  
MOSFET driver loss  
MOSFET switching loss  
Body diode conduction loss (lower-side MOSFET)  
Inductor loss (copper and core loss)  
Channel Conduction Loss  
During normal operation, the bulk of the loss in efficiency is due  
to the power dissipated through MOSFET channel conduction.  
Power loss through the upper-side MOSFET is directly pro-  
portional to the duty cycle (D) for each switching period, and  
the power loss through the lower-side MOSFET is directly  
proportional to 1 − D for each switching period. The selection  
of MOSFETs is governed by the amount of maximum dc load  
current that the converter is expected to deliver. In particular,  
the selection of the lower-side MOSFET is dictated by the  
maximum load current because a typical high current application  
employs duty cycles of less than 50%. Therefore, the lower-side  
MOSFET is in the on state for most of the switching period.  
tSW-TRANS = RGATE × CTOTAL  
where:  
CTOTAL is the CGD + CGS of the external MOSFET.  
RGATE is the gate input resistance of the external MOSFET.  
The ratio of this time constant to the period of one switching cycle  
is the multiplying factor to be used in the following expression:  
tSW-TRANS  
PSW(LOSS)  
=
× ILOAD ×VIN ×2  
tSW  
× IL2OAD  
or  
PN1,N2(CL)  
=
[
D × RN1(ON)  
+
(1D  
)
× RN2(ON)  
]
PSW(LOSS) = fSW ×RGATE ×CTOTAL × ILOAD ×VIN ×2  
MOSFET Driver Loss  
Other dissipative elements are the MOSFET drivers. The con-  
tributing factors are the dc current flowing through the driver  
during operation and the QGATE parameter of the external MOSFETs.  
PDR(LOSS )  
VREG  
=
[
VDR  
×
(
fSW CupperFETVDR + IBIAS  
)
]
+
[
×
(
fSW ClowerFETVREG + IBIAS  
)]  
where:  
CupperFET is the input gate capacitance of the upper-side MOSFET.  
ClowerFET is the input gate capacitance of the lower-side MOSFET.  
IBIAS is the dc current flowing into the upper- and lower-side drivers.  
VDR is the driver bias voltage (that is, the low input voltage  
(VREG) minus the rectifier drop (see Figure 81)).  
VREG is the bias voltage.  
fSW is the controller switching frequency (300 kHz, 600 kHz, and  
1.0 MHz)  
Rev. 0 | Page 26 of 44  
 
 
 
 
ADP1870/ADP1871  
Diode Conduction Loss  
application to achieve minimal loss and negligible electromagnetic  
interference (EMI).  
The ADP1870/ADP1871 employ anticross conduction circuitry  
that prevents the upper- and lower-side MOSFETs from conducting  
current simultaneously. This overlap control is beneficial, avoiding  
large current flow that may lead to irreparable damage to the  
external components of the power stage. However, this blanking  
period comes with the trade-off of a diode conduction loss  
occurring immediately after the MOSFETs change states and  
continuing well into idle mode. The amount of loss through the  
body diode of the lower-side MOSFET during the antioverlap  
state is given by the following expression:  
PDCR(LOSS) = DCR× IL2OAD  
+ Core Loss  
INPUT CAPACITOR SELECTION  
The goal in selecting an input capacitor is to reduce or minimize  
input voltage ripple and to reduce the high frequency source  
impedance, which is essential for achieving predictable loop  
stability and transient performance.  
The problem with using bulk capacitors, other than their  
physical geometries, is their large equivalent series resistance  
(ESR) and large equivalent series inductance (ESL). Aluminum  
electrolytic capacitors have such high ESR that they cause  
undesired input voltage ripple magnitudes and are generally not  
effective at high switching frequencies.  
tBODY(LOSS)  
PBODY(LOSS)  
=
× ILOAD ×VF ×2  
tSW  
where:  
tBODY(LOSS) is the body conduction time (refer to Figure 82 for  
dead time periods).  
If bulk capacitors are to be used, it is recommended that muli-  
layered ceramic capacitors (MLCC) be used in parallel due to  
their low ESR values. This dramatically reduces the input voltage  
ripple amplitude as long as the MLCCs are mounted directly  
across the drain of the upper-side MOSFET and the source  
terminal of the lower-side MOSFET (see the Layout Considerations  
section). Improper placement and mounting of these MLCCs  
may cancel their effectiveness due to stray inductance and an  
increase in trace impedance.  
tSW is the period per switching cycle.  
VF is the forward drop of the body diode during conduction.  
(Refer to the selected external MOSFET data sheet for more  
information about the VF parameter.)  
80  
+125°C  
+25°C  
–40°C  
1MHz  
300kHz  
72  
64  
56  
48  
40  
32  
24  
16  
8
VOUT  
×
(
VIN VOUT  
)
ICIN,rms = ILOAD,max  
×
VOUT  
The maximum input voltage ripple and maximum input capacitor  
rms current occur at the end of the duration of 1 − D while the  
upper-side MOSFET is in the off state. The input capacitor rms  
current reaches its maximum at Time D. When calculating the  
maximum input voltage ripple, account for the ESR of the input  
capacitor as follows:  
2.7  
3.4  
4.1  
4.8  
5.5  
V
(V)  
REG  
VRIPPLE,max = VRIPP + (ILOAD,max × ESR)  
Figure 82. Body Diode Conduction Time vs. Low Voltage Input (VREG  
)
where:  
Inductor Loss  
VRIPP is usually 1% of the minimum voltage input.  
ILOAD,max is the maximum load current.  
ESR is the equivalent series resistance rating of the input capacitor.  
During normal conduction mode, further power loss is caused  
by the conduction of current through the inductor windings,  
which have dc resistance (DCR). Typically, larger sized inductors  
have smaller DCR values.  
Inserting VRIPPLE,max into the charge balance equation to calculate  
the minimum input capacitor requirement gives  
The inductor core loss is a result of the eddy currents generated  
within the core material. These eddy currents are induced by the  
changing flux, which is produced by the current flowing through  
the windings. The amount of inductor core loss depends on the  
core material, the flux swing, the frequency, and the core volume.  
Ferrite inductors have the lowest core losses, whereas powdered  
iron inductors have higher core losses. It is recommended that  
shielded ferrite core material type inductors be used with the  
ADP1870/ADP1871 for a high current, dc-to-dc switching  
ILOAD,max  
D(1D)  
fSW  
CIN,min  
=
×
VRIPPLE,max  
or  
ILOAD,max  
4 fSWVRIPPLE,max  
CIN,min  
=
where D = 50%.  
Rev. 0 | Page 27 of 44  
 
 
ADP1870/ADP1871  
The maximum junction temperature allowed for the ADP1870/  
ADP1871 ICs is 125°C. This means that the sum of the ambient  
temperature (TA) and the rise in package temperature (TR),  
which is caused by the thermal impedance of the package and  
the internal power dissipation, should not exceed 125°C, as  
dictated by the following expression:  
THERMAL CONSIDERATIONS  
The ADP1870/ADP1871 are used for dc-to-dc, step down, high  
current applications that have an on-board controller, an on-board  
LDO, and on-board MOSFET drivers. Because applications may  
require up to 20 A of load current delivery and be subjected to  
high ambient temperature surroundings, the selection of external  
upper- and lower-side MOSFETs must be associated with careful  
thermal consideration to not exceed the maximum allowable  
junction temperature of 125°C. To avoid permanent or irreparable  
damage if the junction temperature reaches or exceeds 155°C, the  
part enters thermal shutdown, turning off both external MOSFETs,  
and does not reenable until the junction temperature cools to  
140°C (see the On-Board Low Dropout Regulator section).  
TJ = TR × TA  
where:  
(1)  
TA is the ambient temperature.  
TJ is the maximum junction temperature.  
TR is the rise in package temperature due to the power  
dissipated from within.  
The rise in package temperature is directly proportional to its  
thermal impedance characteristics. The following equation  
represents this proportionality relationship:  
In addition, it is important to consider the thermal impedance  
of the package. Because the ADP1870/ADP1871 employ an on-  
board LDO, the ac current (fxCxV) consumed by the internal  
drivers to drive the external MOSFETs adds another element of  
power dissipation across the internal LDO. Equation 3 shows the  
power dissipation calculations for the integrated drivers and for  
the internal LDO.  
TR = θJA × PDR(LOSS)  
(2)  
where:  
θJA is the thermal resistance of the package from the junction to  
the outside surface of the die, where it meets the surrounding air.  
PDR(LOSS) is the overall power dissipated by the IC.  
Table 9 lists the thermal impedance for the ADP1870/ADP1871,  
which are available in a 10-lead MSOP.  
The bulk of the power dissipated is due to the gate capacitance  
of the external MOSFETs and current running through the on-  
board LDO. The power loss equations for the MOSFET drivers  
and internal low dropout regulator (see the MOSFET Driver  
Loss section in the Efficiency Consideration section) are:  
Table 9. Thermal Impedance for 10-lead MSOP  
Parameter  
Thermal Impedance  
10-Lead MSOP θJA  
2-Layer Board  
4-Layer Board  
213.1°C/W  
171.7°C/W  
PDR(LOSS) = [VDR × (fSWCupperFETVDR + IBIAS)] +  
[VREG × (fSWClowerFET VREG + IBIAS)]  
(3)  
Figure 83 specifies the maximum allowable ambient temperature  
that can surround the ADP1870/ADP1871 IC for a specified  
high input voltage (VIN). Figure 83 illustrates the temperature  
derating conditions for each available switching frequency for  
low, typical, and high output setpoints for the 10-lead MSOP  
package. All temperature derating criteria are based on a  
maximum IC junction temperature of 125°C.  
where:  
CupperFET is the input gate capacitance of the upper-side MOSFET.  
ClowerFET is the input gate capacitance of the lower-side MOSFET.  
IBIAS is the dc current (2 mA) flowing into the upper- and lower-  
side drivers.  
VDR is the driver bias voltage (the low input voltage (VREG  
minus the rectifier drop (see Figure 81)).  
VREG is the LDO output/bias voltage.  
)
150  
600kHz  
300kHz  
1MHz  
V
V
V
= 0.8V  
OUT  
OUT  
OUT  
140  
130  
120  
110  
100  
90  
= 1.8V  
= HIGH SETPOINT  
(4)  
PDISS (LDO) = PDR(LOSS ) + (VIN VREG )× ( fSW ×Ctotal ×VREG + IBIAS  
)
where:  
PDISS(LDO) is the power dissipated through the pass device in the  
LDO block across VIN and VREG.  
80  
70  
Ctotal is the CGD + CGS of the external MOSFET.  
VREG is the LDO output voltage and bias voltage.  
VIN is the high voltage input.  
60  
50  
40  
IBIAS is the dc input bias current.  
PDR(LOSS) is the MOSFET driver loss.  
30  
20  
10  
0
5.5  
7.0  
8.5 10.0 11.5 13.0 14.5 16.0 17.5 19.0  
(V)  
V
IN  
Figure 83. Ambient Temperature vs. VIN for 10-Lead MSOP (171°C/W),  
4-Layer EVB, CIN = 4.3 nF (Upper-/Lower-Side MOSFET)  
Rev. 0 | Page 28 of 44  
 
 
 
ADP1870/ADP1871  
For example, if the external MOSFET characteristics are θJA  
(10-lead MSOP) = 171.2°C/W, fSW = 300 kHz, IBIAS = 2 mA,  
Inductor  
Determine inductor ripple current amplitude as follows:  
CupperFET = 3.3 nF, ClowerFET = 3.3 nF, VDR = 4.62 V, and VREG = 5.0 V,  
ILOAD  
3
then the power loss is  
ΔIL ≈  
= 5 A  
PDR (LOSS )  
VREG  
=
(
[
VDR  
×
(
f SW C upperFET VDR + I BIAS  
)
]
so calculating for the inductor value  
+
[
×
f SW C lowerFET VREG + I BIAS  
)]  
= (4.62 × (300 ×10 3 × 3.3 ×10 9 × 4.62 + 0.002 ))  
(VIN,MAX VOUT  
ΔIL × fSW  
)
VOUT  
VIN,MAX  
L =  
×
+ (5.0 × (300 ×10 3 × 3.3 ×10 9 × 5.0 + 0.002 ))  
= 57.12 mW  
(13.2 V 1.8 V) 1.8 V  
×
=
5 V×300×103 13.2 V  
PDISS(LDO) = (VIN VREG )×( fSW ×Ctotal ×VREG + IBIAS  
)
= (13 V 5 V)×(300×103 ×3.3×109 ×5+0.002)  
= 1.03 μH  
= 55.6 mW  
The inductor peak current is approximately  
15 A + (5 A × 0.5) = 17.5 A  
PDISS(TOTAL) = PDISS(LDO) + PDR(LOSS)  
= 77.13 mW + 55.6 mW  
= 132.73 mW  
Therefore, an appropriate inductor selection is 1.0 μH with  
DCR = 3.3 mꢀ (Würth Elektronik 7443552100) from Table 8  
with peak current handling of 20 A.  
The rise in package temperature (for 10-lead MSOP) is  
PDCR(LOSS) = DCR×IL2  
TR = θJA ×PDR(LOSS)  
=171.2°C ×132.05 mW  
= 22.7°C  
= 0.003 × (15 A)2 = 675 mW  
Current Limit Programming  
The valley current is approximately  
15 A − (5 A × 0.5) = 12.5 A  
Assuming a maximum ambient temperature environment of 85°C,  
TJ = TR ×TA = 22.7°C +85°C =107.72°C  
Assuming a lower-side MOSFET RON of 4.5 mꢀ and 13 A as  
the valley current limit from Table 7 and Figure 71 indicates, a  
programming resistor (RES) of 100 kꢀ corresponds to an ACS  
of 24 V/V.  
which is below the maximum junction temperature of 125°C.  
DESIGN EXAMPLE  
The ADP1870/ADP1871 are easy to use, requiring only a few  
design criteria. For example, the example outlined in this section  
uses only four design criteria: VOUT = 1.8 V, ILOAD = 15 A (pulsing),  
VIN = 12 V (typical), and fSW = 300 kHz.  
Choose a programmable resistor of RRES = 100 kΩ for a current-  
sense gain of 24 V/V.  
Output Capacitor  
Input Capacitor  
Assume that a load step of 15 A occurs at the output and no more  
than 5% is allowed for the output to deviate from the steady state  
operating point. In this case, the ADP1870s advantage is that  
because the frequency is pseudo-fixed, the converter is able to  
respond quickly because of the immediate, though temporary,  
increase in switching frequency.  
The maximum input voltage ripple is usually 1% of the  
minimum input voltage (11.8 V × 0.01 = 120 mV).  
V
V
RIPP = 120 mV  
MAX,RIPPLE = VRIPP − (ILOAD,MAX × ESR)  
= 120 mV − (15 A × 0.001) = 45 mV  
ILOAD,MAX  
15 A  
4 fSWVMAX,RIPPLE 4×300×103 ×105 mV  
ΔVDROOP = 0.05 × 1.8 V = 90 mV  
CIN,min  
=
=
Assuming that the overall ESR of the output capacitor ranges  
from 5 mꢀ to 10 mꢀ,  
= 120 μF  
ΔILOAD  
SW ×(ΔVDROOP )  
Choose five 22 μF ceramic capacitors. The overall ESR of five  
22 μF ceramic capacitors is less than 1 mꢀ.  
COUT = 2×  
f
15 A  
I
RMS = ILOAD/2 = 7.5 A  
CIN = (IRMS)2 × ESR = (7.5 A)2 × 1 mꢀ = 56.25 mW  
= 2×  
300×103 ×(90 mV)  
P
= 1.11 mF  
Therefore, an appropriate inductor selection is five 270 μF  
polymer capacitors with a combined ESR of 3.5 mꢀ.  
Rev. 0 | Page 29 of 44  
 
ADP1870/ADP1871  
Assuming an overshoot of 45 mV, determine if the output  
capacitor that was calculated previously is adequate:  
1
CCOMP  
=
2πRCOMP fZERO  
(L×I 2  
)
1
LOAD  
=
COUT  
=
2×3.14 ×100×103 ×6.25×103  
2
(
(VOUT − ΔVOVSHT )2 −  
1×106 ×(15 A)2  
(1.8 45 mV)2 (1.8)2  
(
VOUT  
)
)
= 250 pF  
=
Loss Calculations  
Duty cycle = 1.8/12 V = 0.15  
RON (N2) = 5.4 mꢀ  
= 1.4 mF  
Choose five 270 μF polymer capacitors.  
The rms current through the output capacitor is  
t
BODY(LOSS) = 20 ns (body conduction time)  
VF = 0.84 V (MOSFET forward voltage)  
(VIN,MAX VOUT  
L× fSW  
)
VOUT  
VIN,MAX  
1
2
1
3
IRMS  
=
×
×
CIN = 3.3 nF (MOSFET gate input capacitance)  
QN1,N2 = 17 nC (total MOSFET gate charge)  
RGATE = 1.5 ꢀ (MOSFET gate input resistance)  
(13.2 V 1.8 V) 1.8 V  
×
1
2
1
=
×
=1.49 A  
1F×300×103 13.2 V  
3
PN1,N2(CL)  
=
[
D×RN1(ON)  
+
(
1D  
)
×RN2(ON)  
]
×IL2OAD  
The power loss dissipated through the ESR of the output  
capacitor is  
= (0.15 × 0.0054 + 0.85 × 0.0054) × (15 A)2  
= 1.215 W  
P
COUT = (IRMS)2 × ESR = (1.5 A)2 × 1.4 mꢀ = 3.15 mW  
tBODY(LOSS)  
Feedback Resistor Network Setup  
PBODY(LOSS)  
=
×ILOAD ×VF ×2  
tSW  
It is recommended to use RB = 15 kꢀ. Calculate RT as follows:  
= 20 ns × 300 × 103 × 15 A × 0.84 × 2  
= 151.2 mW  
(1.8 V 0.6 V)  
RT =15 kꢀ×  
= 30 kꢀ  
0.6 V  
Compensation Network  
P
SW(LOSS) = fSW × RGATE × CTOTAL × ILOAD × VIN × 2  
= 300 × 103 × 1.5 Ω × 3.3 × 10−9 × 15 A × 12 × 2  
= 534.6 mW  
To calculate RCOMP, CCOMP, and CPAR, the transconductance  
parameter and the current-sense gain variable are required. The  
transconductance parameter (GM) is 500 μA/V, and the current-  
sense loop gain is  
PDR (LOSS )  
=
(
[
VDR  
×
(
f SW C upperFET VDR + I BIAS  
)
]
+
[VREG  
×
f SW C lowerFET VREG + I BIAS  
)]  
= (4.62 × (300 ×10 3 × 3.3 ×10 9 × 4.62 + 0.002 ))  
+ (5.0 × (300 ×10 3 × 3.3 ×10 9 × 5.0 + 0.002 ))  
1
1
GCS  
=
=
= 8.33 A/V  
= 57.12 mW  
ACS RON 24×0.005  
PDISS(LDO) = (VIN VREG )×( fSW ×Ctotal ×VREG + IBIAS  
= (13 V 5 V)×(300×103 ×3.3×109 ×5+0.002)  
= 55.6 mW  
)
where ACS and RON are taken from setting up the current limit  
(see the Programming Resistor (RES) Detect Circuit and Valley  
Current-Limit Setting sections).  
The crossover frequency is 1/12th of the switching frequency:  
P
COUT = (IRMS)2 × ESR = (1.5 A)2 × 1.4 mꢀ = 3.15 mW  
300 kHz/12 = 25 kHz  
= 0.003 × (15 A)2 = 675 mW  
PDCR(LOSS) = DCR× IL2OAD  
The zero frequency is 1/4th of the crossover frequency:  
25 kHz/4 = 6.25 kHz  
P
CIN = (IRMS)2 × ESR = (7.5 A)2 × 1 mꢀ = 56.25 mW  
P
LOSS = PN1,N2 + PBODY(LOSS) + PSW + PDCR + PDR + PDISS(LDO)  
fCROSS  
fCROSS + fZERO  
2πfCROSSCOUT VOUT  
+ PCOUT + PCIN  
RCOMP  
=
×
×
GMGCS  
VREF  
= 1.215 W + 151.2 mW + 534.6 mW + 57.12 mW + 55.6  
+ 3.15 mW + 675 mW + 56.25 mW  
= 2.655 W  
25×103  
2 × 3.141× 25×103 ×1.11×103 1.8  
=
×
×
25×103 + 6.25×103  
500 ×106 × 8.3  
0.6  
= 100 kꢀ  
Rev. 0 | Page 30 of 44  
ADP1870/ADP1871  
EXTERNAL COMPONENT RECOMMENDATIONS  
The configurations listed in Table 10 are with fCROSS = 1/12 × fSW, fZERO = ¼ × fCROSS, RRES = 100 kꢀ, RBOT = 15 kꢀ, RON = 5.4 mΩ  
(BSC042N03MS G), VREG = 5 V (float), and a maximum load current of 14 A.  
The ADP1871 models listed in Table 10 are the PSM versions of the device.  
Table 10. External Component Values  
Marking Code  
VOUT VIN  
CIN  
(μF)  
COUT  
(μF)  
L1  
(μH)  
RC  
(kΩ)  
CCOMP  
(pF)  
CPAR  
(pF)  
RTOP  
(kΩ)  
SAP Model  
ADP1870 ADP1871 (V)  
(V)  
13  
13  
13  
13  
13  
13  
13  
ADP1870ARMZ-0.3-R7/  
ADP1871ARMZ-0.3-R7  
LDW  
LDW  
LDW  
LDW  
LDW  
LDW  
LDW  
LDW  
LDW  
LDW  
LDW  
LDW  
LDW  
LDX  
LDX  
LDX  
LDX  
LDX  
LDX  
LDX  
LDX  
LDX  
LDX  
LDX  
LDX  
LDX  
LDX  
LDX  
LDY  
LDY  
LDY  
LDY  
LDY  
LDY  
LDY  
LDY  
LDY  
LDY  
LDY  
LDY  
LDY  
LDG  
LDG  
LDG  
LDG  
LDG  
LDG  
LDG  
LDG  
LDG  
LDG  
LDG  
LDG  
LDG  
LDM  
LDM  
LDM  
LDM  
LDM  
LDM  
LDM  
LDM  
LDM  
LDM  
LDM  
LDM  
LDM  
LDM  
LDM  
LDN  
LDN  
LDN  
LDN  
LDN  
LDN  
LDN  
LDN  
LDN  
LDN  
LDN  
LDN  
LDN  
0.8  
1.2  
1.8  
2.5  
3.3  
5
5 × 222  
5 × 222  
4 × 222  
4 × 222  
5 × 222  
4 × 222  
4 × 222  
5 × 5603  
4 × 5603  
4 × 2704  
3 × 2704  
2 × 3305  
3305  
0.72  
1.0  
1.0  
1.53  
2.0  
3.27  
47  
47  
47  
47  
47  
34  
34  
47  
47  
47  
47  
34  
34  
47  
47  
47  
47  
47  
47  
47  
47  
34  
47  
47  
47  
47  
34  
34  
47  
47  
47  
47  
47  
47  
47  
47  
34  
47  
47  
47  
47  
740  
740  
571  
571  
571  
800  
800  
740  
592  
592  
592  
829  
829  
339  
326  
271  
271  
407  
307  
307  
307  
430  
362  
326  
326  
296  
415  
380  
223  
223  
163  
163  
233  
210  
210  
210  
268  
326  
261  
233  
217  
74  
74  
57  
57  
57  
80  
80  
74  
59  
59  
59  
83  
83  
34  
33  
27  
27  
41  
31  
31  
31  
43  
36  
33  
33  
30  
41  
38  
22  
22  
16  
16  
23  
21  
21  
21  
27  
33  
26  
23  
22  
5.0  
15.0  
30.0  
47.5  
67.5  
110.0  
160.0  
15.0  
30.0  
47.5  
67.5  
110.0  
160.0  
5.0  
15.0  
30.0  
47.5  
15.0  
30.0  
47.5  
67.5  
110.0  
15.0  
30.0  
47.5  
67.5  
110.0  
160.0  
5.0  
15.0  
30.0  
47.5  
15.0  
30.0  
47.5  
67.5  
110.0  
15.0  
30.0  
47.5  
67.5  
7
222 + ( 4 × 476) 3.44  
1.2  
1.8  
2.5  
3.3  
5
16.5 4 × 222  
16.5 3 × 222  
16.5 3 × 222  
16.5 3 × 222  
16.5 3 × 222  
16.5 3 × 222  
4 × 5603  
4 × 2704  
4 × 2704  
2 × 3305  
2 × 1507  
222 + 4 × 476  
4 × 5603  
4 × 2704  
3 × 2704  
3 × 1808  
5 × 2704  
3 × 3305  
3 × 2704  
2 × 2704  
1507  
4 × 2704  
2 × 3305  
3 × 2704  
3305  
4 × 476  
3 × 476  
4 × 2704  
2 × 3305  
3 × 1808  
2704  
1.0  
1.0  
1.67  
2.00  
3.84  
4.44  
0.22  
0.47  
0.47  
0.47  
0.47  
0.47  
0.90  
1.00  
1.76  
0.47  
0.72  
0.90  
1.0  
7
ADP1870ARMZ-0.6-R7/  
ADP1871ARMZ-0.6-R7  
0.8  
1.2  
1.8  
2.5  
1.2  
1.8  
2.5  
3.3  
5
1.2  
1.8  
2.5  
3.3  
5
5.5  
5.5  
5.5  
5.5  
13  
13  
13  
13  
13  
5 × 222  
5 × 222  
5 × 222  
5 × 222  
3 × 222  
5 × 109  
5 × 109  
5 × 109  
5 × 109  
16.5 3 × 109  
16.5 4 × 109  
16.5 4 × 109  
16.5 4 × 109  
16.5 4 × 109  
16.5 4 × 109  
2.0  
2.0  
7
ADP1870ARMZ-1.0-R7/  
ADP1871ARMZ-1.0-R7  
0.8  
1.2  
1.8  
2.5  
1.2  
1.8  
2.5  
3.3  
5
1.2  
1.8  
2.5  
3.3  
5.5  
5.5  
5.5  
5.5  
13  
13  
13  
13  
13  
5 × 222  
5 × 222  
3 × 222  
3 × 222  
3 × 109  
4 × 109  
4 × 109  
5 × 109  
4 × 109  
0.22  
0.22  
0.22  
0.22  
0.22  
0.47  
0.47  
0.72  
1.0  
0.47  
0.47  
0.72  
0.72  
3 × 3305  
3 × 2704  
2704  
2704  
3 × 476  
4 × 2704  
3 × 2704  
3 × 1808  
2704  
16.5 3 × 109  
16.5 3 × 109  
16.5 4 × 109  
16.5 4 × 109  
Rev. 0 | Page 31 of 44  
 
 
ADP1870/ADP1871  
Marking Code  
VOUT VIN  
ADP1870 ADP1871 (V) (V)  
CIN  
(μF)  
16.5 3 × 109  
16.5 3 × 109  
COUT  
(μF)  
L1  
(μH)  
RC  
(kΩ)  
CCOMP  
(pF)  
CPAR  
(pF)  
RTOP  
(kΩ)  
SAP Model  
LDY  
LDY  
LDN  
LDN  
5
7
3 × 476  
1.0  
1.0  
34  
34  
268  
228  
27  
23  
110.0  
160.0  
222 + 476  
1 See the Inductor Selection section and Table 11.  
2 22 μF Murata 25 V, X7R, 1210 GRM32ER71E226KE15L (3.2 mm × 2.5 mm × 2.5 mm).  
3 560 μF Panasonic (SP-series) 2 V, 7 mΩ, 3.7 A EEFUE0D561LR (4.3 mm × 7.3 mm × 4.2 mm).  
4 270 μF Panasonic (SP-series) 4 V, 7 mΩ, 3.7 A EEFUE0G271LR (4.3 mm × 7.3 mm × 4.2 mm).  
5 330 μF Panasonic (SP-series) 4 V, 12 mΩ, 3.3 A EEFUE0G331R (4.3 mm × 7.3 mm × 4.2 mm).  
6 47 μF Murata 16 V, X5R, 1210 GRM32ER61C476KE15L (3.2 mm × 2.5 mm × 2.5 mm).  
7 150 μF Panasonic (SP-series) 6.3 V, 10 mΩ, 3.5 A EEFUE0J151XR (4.3 mm × 7.3 mm × 4.2 mm).  
8 180 μF Panasonic (SP-series) 4 V, 10 mΩ, 3.5 A EEFUE0G181XR (4.3 mm × 7.3 mm × 4.2 mm).  
9 10 μF TDK 25 V, X7R, 1210 C3225X7R1E106M.  
Table 11. Recommended Inductors  
L (μH)  
0.12  
0.22  
0.47  
0.72  
0.9  
1.2  
1.0  
1.4  
2.0  
DCR (mΩ)  
0.33  
0.33  
0.67  
1.3  
1.6  
1.8  
3.3  
3.2  
ISAT (A)  
Dimension (mm)  
10.2 × 7  
10.2 × 7  
13.2 × 12.8  
10.5 × 10.2  
13 × 12.8  
10.5 × 10.2  
10.5 × 10.2  
14 × 12.8  
Manufacturer  
Model Number  
744303012  
744303022  
744355147  
744325072  
744355090  
744325120  
7443552100  
744318180  
7443551200  
CEP125U-R80  
55  
30  
50  
35  
28  
25  
20  
24  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
AIC Technology  
2.6  
2.5  
22  
16.5  
13.2 × 10.8  
12.5 × 12.5  
0.8  
Table 12. Recommended MOSFETs  
RON  
(mΩ)  
ID  
(A)  
VDS  
(V)  
CIN  
QTOTAL  
VGS = 4.5 V  
(nF) (nC)  
Package  
Manufacturer  
Model Number  
Upper-Side MOSFET  
(Q1/Q2)  
5.4  
47  
30  
3.2  
1.6  
20  
PG-TDSON8  
Infineon  
BSC042N03MS G  
10.2  
6.0  
9
53  
19  
14  
47  
30  
30  
30  
30  
10  
35  
25  
20  
PG-TDSON8  
SO-8  
SO-8  
Infineon  
Vishay  
International Rectifier  
Infineon  
BSC080N03MS G  
Si4842DY  
IRF7811  
2.4  
3.2  
Lower-Side MOSFET  
(Q3/Q4)  
5.4  
PG-TDSON8  
BSC042N03MS G  
10.2  
6.0  
82  
19  
30  
30  
1.6  
10  
35  
PG-TDSON8  
SO-8  
Infineon  
Vishay  
BSC080N03MS G  
Si4842DY  
Rev. 0 | Page 32 of 44  
ADP1870/ADP1871  
LAYOUT CONSIDERATIONS  
Figure 84 shows the schematic of a typical ADP1870/ADP1871  
used for a high current application. Blue traces denote high current  
pathways. VIN, PGND, and VOUT traces should be wide and  
possibly replicated, descending down into the multiple layers.  
Vias should populate, mainly around the positive and negative  
terminals of the input and output capacitors, alongside the source  
of Q1/Q2, the drain of Q3/Q4, and the inductor.  
The performance of a dc-to-dc converter depends highly on  
how the voltage and current paths are configured on the printed  
circuit board (PCB). Optimizing the placement of sensitive  
analog and power components is essential to minimize output  
ripple, maintain tight regulation specifications, and reduce  
PWM jitter and electromagnetic interference.  
HIGH VOLTAGE INPUT  
= 12V  
V
IN  
JP3  
C28  
10µF  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C
571pF  
R
47k  
C
ADP1870/  
ADP1871  
22µF  
22µF  
22µF  
22µF  
22µF  
N/A  
N/A  
C12  
100nF  
C
57pF  
F
C
1
2
3
10  
9
Q1  
Q3  
Q2  
VIN  
BST  
COMP/EN  
FB  
SW  
1.0µH  
V
= 1.8V, 15A  
OUT  
R1 30kꢀ  
V
8
DRVH  
OUT  
+
+
+
+
C20  
270µF  
C21  
270µF  
C22  
270µF  
C23  
R6  
2ꢀ  
R2  
15kꢀ  
R4  
0ꢀ  
270µF  
Q4  
4
5
7
6
GND  
PGND  
DRVL  
C13  
1.5nF  
VREG  
+
+
+
+
C2  
0.1µF  
C1  
1µF  
C24  
N/A  
C25  
N/A  
C26  
N/A  
C27  
N/A  
C14 TO C19  
N/A  
R5  
100kꢀ  
MURATA: (HIGH VOLTAGE INPUT CAPACITORS)  
22µF, 25V, X7R, 1210 GRM32ER71E226KE15L  
PANASONIC: (OUTPUT CAPACITORS)  
270µF, SP-SERIES, 4V, 7mEEFUE0G271LR  
INFINEON MOSFETs:  
BSC042N03MS G (LOWER SIDE)  
BSC080N03MS G (UPPER SIDE)  
WÜRTH INDUCTORS:  
1µH, 3.3m, 20A 7443552100  
Figure 84. ADP1870 High Current Evaluation Board Schematic (Blue Traces Indicate High Current Paths)  
Rev. 0 | Page 33 of 44  
 
 
 
ADP1870/ADP1871  
SENSITIVE ANALOG  
COMPONENTS  
LOCATED FAR  
FROM THE NOISY  
POWER SECTION.  
SEPARATE ANALOG GROUND  
PLANE FOR THE ANALOG  
COMPONENTS (THAT IS,  
COMPENSATION AND  
FEEDBACK RESISTORS).  
OUTPUT CAPACITORS  
ARE MOUNTED ON THE  
RIGHTMOST AREA OF  
THE EVB, WRAPPING  
BACK AROUND TO THE  
MAIN POWER GROUND  
PLANE, WHERE IT MEETS  
WITH THE NEGATIVE  
TERMINALS OF THE  
BYPASS POWER CAPACITOR (C1)  
FOR VREG BIAS DECOUPLING  
AND HIGH FREQUENCY  
CAPACITOR (C2) AS CLOSE AS  
POSSIBLE TO THE IC.  
INPUT CAPACITORS  
INPUT CAPACITORS  
ARE MOUNTED CLOSE  
TO DRAIN OF Q1/Q2  
AND SOURCE OF Q3/Q4.  
Figure 85. Overall Layout of the ADP1870 High Current Evaluation Board  
Rev. 0 | Page 34 of 44  
 
ADP1870/ADP1871  
Figure 86. Layer 2 of Evaluation Board  
Rev. 0 | Page 35 of 44  
ADP1870/ADP1871  
TOP RESISTOR  
FEEDBACK TAP  
V
SENSE TAP LINE  
OUT  
EXTENDING BACK TO THE  
TOP RESISTOR IN THE  
FEEDBACK DIVIDER  
NETWORK (SEE FIGURE 86  
TO FIGURE 88). THIS  
OVERLAPS WITH PGND  
SENSE TAP LINE EXTENDING  
BACK TO THE ANALOG  
PLANE (SEE FIGURE 88,  
LAYER 4 FOR PGND TAP).  
Figure 87. Layer 3 of Evaluation Board  
Rev. 0 | Page 36 of 44  
 
ADP1870/ADP1871  
BOTTOM RESISTOR  
TAP TO THE ANALOG  
GROUND PLANE  
PGND SENSE TAP FROM  
NEGATIVE TERMINALS OF  
OUTPUT BULK CAPACITORS.  
THIS TRACK PLACEMENT  
SHOULD BE DIRECTLY  
BELOW THE V  
SENSE  
LINE FROM FIGURE 84.  
OUT  
Figure 88. Layer 4 (Bottom Layer) of Evaluation Board  
(yellow arrow) is maintained as Q1/Q2 turns off and Q3/Q4  
turns on. When Q3/Q4 turns on, the current direction continues to  
be maintained (red arrow) as it circles from the bulk capacitors  
power ground terminal to the output capacitors, through the  
Q3/Q4. Arranging the power planes in this manner minimizes  
the area in which changes in flux occur if the current through  
Q1/Q2 stops abruptly. Sudden changes in flux, usually at source  
terminals of Q1/Q2 and drain terminal of Q3/Q4, cause large  
dV/dt’s at the SW node.  
IC SECTION (LEFT SIDE OF EVALUATION BOARD)  
A dedicated plane for the analog ground plane (GND) should  
be separate from the main power ground plane (PGND). With  
the shortest path possible, connect the analog ground plane to  
the GND pin (Pin 4). This plane should be on only the top layer  
of the evaluation board. To avoid crosstalk interference, there  
should not be any other voltage or current pathway directly  
below this plane on Layer 2, Layer 3, or Layer 4. Connect the  
negative terminals of all sensitive analog components to the  
analog ground plane. Examples of such sensitive analog com-  
ponents include the resistor dividers bottom resistor, the high  
frequency bypass capacitor for biasing (0.1 μF), and the  
compensation network.  
The SW node is near the top of the evaluation board. The SW  
node should use the least amount of area possible and be away  
from any sensitive analog circuitry and components because  
this is where most sudden changes in flux density occur. When  
possible, replicate this pad onto Layer 2 and Layer 3 for thermal  
relief and eliminate any other voltage and current pathways directly  
beneath the SW node plane. Populate the SW node plane with  
vias, mainly around the exposed pad of the inductor terminal  
and around the perimeter of the source of Q1/Q2 and the drain  
of Q3/Q4. The output voltage power plane (VOUT) is at the right-  
most end of the evaluation board. This plane should be replicated,  
descending down to multiple layers with vias surrounding the  
inductor terminal and the positive terminals of the output bulk  
capacitors. Ensure that the negative terminals of the output  
capacitors are placed close to the main power ground (PGND),  
as previously mentioned. All of these points form a tight circle  
Mount a 1 μF bypass capacitor directly across the VREG pin  
(Pin 5) and the PGND pin (Pin 7). In addition, a 0.1 μF should  
be tied across the VREG pin (Pin 5) and the GND pin (Pin 4).  
POWER SECTION  
As shown in Figure 85, an appropriate configuration to localize  
large current transfer from the high voltage input (VIN) to the  
output (VOUT) and then back to the power ground is to put the  
VIN plane on the left, the output plane on the right, and the main  
power ground plane in between the two. Current transfers from  
the input capacitors to the output capacitors, through Q1/Q2,  
during the on state (see Figure 89). The direction of this current  
Rev. 0 | Page 37 of 44  
 
 
ADP1870/ADP1871  
(component geometry permitting) that minimizes the area of  
flux change as the event switches between D and 1 − D.  
SW  
VOUT  
LAYER 1: SENSE LINE FOR SW  
(DRAIN OF LOWER MOSFET)  
LAYER 1: SENSE LINE FOR PGND  
(SOURCE OF LOWER MOSFET)  
Figure 90. Drain/Source Tracking Tapping of the Lower-Side MOSFET for CS  
Amp Differential Sensing (Yellow Sense Line on Layer 2)  
Differential sensing should also be applied between the  
outermost output capacitor to the feedback resistor divider (see  
Figure 87 and Figure 88). Connect the positive terminal of the  
output capacitor to the top resistor (RT). Connect the negative  
terminal of the output capacitor to the negative terminal of the  
bottom resistor, which connects to the analog ground plane as  
well. Both of these track lines, as previously mentioned, should  
be narrow and away from any other active device or voltage/  
current path.  
VIN  
PGND  
Figure 89. Primary Current Pathways During the On State of the Upper-Side  
MOSFET (Left Arrow) and the On State of the Lower-Side MOSFET (Right Arrow)  
DIFFERENTIAL SENSING  
Because the ADP1870/ADP1871 operate in valley current-  
mode control, a differential voltage reading is taken across the  
drain and source of the lower-side MOSFET. The drain of the  
lower-side MOSFET should be connected as close as possible to  
the SW pin (Pin 9) of the IC. Likewise, the source should be  
connected as close as possible to the PGND pin (Pin 7) of the  
IC. When possible, both of these track lines should be narrow  
and away from any other active device or voltage/current path.  
Rev. 0 | Page 38 of 44  
 
 
ADP1870/ADP1871  
TYPICAL APPLICATIONS CIRCUITS  
15 A, 300 kHz HIGH CURRENT APPLICATION CIRCUIT  
HIGH VOLTAGE INPUT  
= 12V  
V
IN  
JP3  
C28  
10µF  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C
571pF  
R
47kꢀ  
C
ADP1870/  
ADP1871  
22µF  
22µF  
22µF  
22µF  
22µF  
N/A  
N/A  
C12  
100nF  
C
57pF  
F
C
1
2
3
10  
9
Q1  
Q3  
Q2  
VIN  
BST  
COMP/EN  
FB  
SW  
1.0µH  
V
= 1.8V, 15A  
OUT  
R1 30kꢀ  
V
8
DRVH  
OUT  
+
+
+
+
C20  
270µF  
C21  
270µF  
C22  
270µF  
C23  
R6  
2ꢀ  
R2  
15kꢀ  
R4  
0ꢀ  
270µF  
Q4  
4
5
7
6
GND  
PGND  
DRVL  
C13  
1.5nF  
VREG  
+
+
+
+
C2  
0.1µF  
C1  
1µF  
C24  
N/A  
C25  
N/A  
C26  
N/A  
C27  
N/A  
C14 TO C19  
N/A  
R5  
100kꢀ  
MURATA: (HIGH VOLTAGE INPUT CAPACITORS)  
22µF, 25V, X7R, 1210 GRM32ER71E226KE15L  
PANASONIC: (OUTPUT CAPACITORS)  
270µF, SP-SERIES, 4V, 7mEEFUE0G271LR  
INFINEON MOSFETs:  
BSC042N03MS G (LOWER SIDE)  
BSC080N03MS G (UPPER SIDE)  
WÜRTH INDUCTORS:  
1µH, 3.3m, 20A 7443552100  
Figure 91. Application Circuit for 12 V Input, 1.8 V Output, 15 A, 300 kHz (Q2/Q4 No Connect)  
5.5 V INPUT, 600 kHz APPLICATION CIRCUIT  
HIGH VOLTAGE INPUT  
= 5.5V  
V
IN  
JP3  
C28  
10µF  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C
571pF  
R
47kꢀ  
C
ADP1870/  
ADP1871  
22µF  
22µF  
22µF  
22µF  
22µF  
N/A  
N/A  
C12  
100nF  
C
57pF  
F
C
1
2
3
Q1  
Q3  
Q2  
VIN  
BST 10  
9
8
COMP/EN  
FB  
SW  
0.47µH  
V
= 2.5V, 15A  
OUT  
R1 30kꢀ  
V
DRVH  
OUT  
+
+
+
+
C20  
180µF  
C21  
180µF  
C22  
180µF  
C23  
N/A  
R6  
2ꢀ  
R2  
15kꢀ  
R4  
0ꢀ  
Q4  
4
5
GND  
PGND  
DRVL  
7
6
C13  
1.5nF  
VREG  
+
+
+
+
C2  
0.1µF  
C1  
1µF  
C24  
N/A  
C25  
N/A  
C26  
N/A  
C27  
N/A  
C14 TO C19  
N/A  
R5  
100kꢀ  
MURATA: (HIGH VOLTAGE INPUT CAPACITORS)  
22µF, 25V, X7R, 1210 GRM32ER71E226KE15L  
PANASONIC: (OUTPUT CAPACITORS)  
180µF, SP-SERIES, 4V, 10mEEFUE0G181XR  
INFINEON MOSFETs:  
BSC042N03MS G (LOWER SIDE)  
BSC080N03MS G (UPPER SIDE)  
WÜRTH INDUCTORS:  
0.47µH, 0.8m, 50A 744355147  
Figure 92. Application Circuit for 5.5 V Input, 2.5 V Output, 15 A, 600 kHz (Q2/Q4 No Connect)  
Rev. 0 | Page 39 of 44  
 
ADP1870/ADP1871  
300 kHz HIGH CURRENT APPLICATION CIRCUIT  
HIGH VOLTAGE INPUT  
= 13V  
V
IN  
JP3  
C28  
10µF  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C
528pF  
R
43kꢀ  
C
ADP1870/  
ADP1871  
22µF  
22µF  
22µF  
N/A  
N/A  
N/A  
270µF  
C12  
100nF  
C
53pF  
F
C
1
2
3
10  
9
Q1  
Q3  
Q2  
VIN  
BST  
COMP/EN  
FB  
SW  
1.4µH  
V
= 1.8V, 12A  
OUT  
R1 30kꢀ  
V
DRVH  
8
OUT  
+
+
+
+
C20  
270µF  
C21  
270µF  
C22  
270µF  
C23  
R6  
2ꢀ  
R2  
15kꢀ  
R4  
0ꢀ  
270µF  
Q4  
4
5
7
6
GND  
PGND  
DRVL  
C13  
1.5nF  
VREG  
+
+
+
+
C2  
0.1µF  
C1  
1µF  
C24  
N/A  
C25  
N/A  
C26  
N/A  
C27  
N/A  
C14 TO C19  
N/A  
R5  
100kꢀ  
MURATA: (HIGH VOLTAGE INPUT CAPACITORS)  
22µF, 25V, X7R, 1210 GRM32ER71E226KE15L  
SANYO OSCON:  
270µF, 16SVPC270M, 14mꢀ  
PANASONIC: (OUTPUT CAPACITORS)  
270µF, SP-SERIES, 4V, 7mEEFUE0G271LR  
INFINEON MOSFETs:  
BSC042N03MS G (LOWER SIDE)  
BSC080N03MS G (UPPER SIDE)  
WÜRTH INDUCTORS:  
0.72µH, 1.65m, 35A 744325072  
Figure 93. Application Circuit for 13 V Input, 1.8 V Output, 12 A, 300 kHz (Q2/Q4 No Connect)  
Rev. 0 | Page 40 of 44  
 
 
ADP1870/ADP1871  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 94. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
RM-10  
RM-10  
RM-10  
RM-10  
Branding  
LDW  
LDX  
LDY  
LDG  
ADP1870ARMZ-0.3-R7  
ADP1870ARMZ-0.6-R7  
ADP1870ARMZ-1.0-R7  
ADP1871ARMZ-0.3-R7  
ADP1871ARMZ-0.6-R7  
ADP1871ARMZ-1.0-R7  
ADP1870-0.3-EVALZ  
ADP1870-0.6-EVALZ  
ADP1870-1.0-EVALZ  
ADP1871-0.3-EVALZ  
ADP1871-0.6-EVALZ  
ADP1871-1.0-EVALZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
10-Lead Mini Small Outline Package [MSOP]  
10-Lead Mini Small Outline Package [MSOP]  
10-Lead Mini Small Outline Package [MSOP]  
10-Lead Mini Small Outline Package [MSOP]  
10-Lead Mini Small Outline Package [MSOP]  
10-Lead Mini Small Outline Package [MSOP]  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
RM-10  
RM-10  
LDM  
LDN  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 41 of 44  
 
ADP1870/ADP1871  
NOTES  
Rev. 0 | Page 42 of 44  
ADP1870/ADP1871  
NOTES  
Rev. 0 | Page 43 of 44  
ADP1870/ADP1871  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08730-0-3/10(0)  
Rev. 0 | Page 44 of 44  

相关型号:

ADP1870ACPZ-0.3-R7

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1870ACPZ-0.6-R7

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1870ACPZ-1.0-R7

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1870ARMZ-0.3-R7

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1870ARMZ-0.6-R7

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1870ARMZ-1.0-R7

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1871

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1871-0.3-EVALZ

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1871-0.6-EVALZ

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1871-1.0-EVALZ

Synchronous Buck Controller with Constant On-Time and Valley Current Mode
ADI

ADP1871ACPZ-0.3-R7

Synchronous Buck Controller with Constant On-Time, Valley Current Mode, and Power Save Mode
ADI

ADP1871ACPZ-0.6-R7

Synchronous Buck Controller with Constant On-Time, Valley Current Mode, and Power Save Mode
ADI