ADP7102ACPZ-3.0-R7 [ADI]

20 V, 300 mA, Low Noise, CMOS LDO; 20 V 300毫安,低噪声, CMOS LDO
ADP7102ACPZ-3.0-R7
型号: ADP7102ACPZ-3.0-R7
厂家: ADI    ADI
描述:

20 V, 300 mA, Low Noise, CMOS LDO
20 V 300毫安,低噪声, CMOS LDO

文件: 总28页 (文件大小:744K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
20 V, 300 mA, Low Noise, CMOS LDO  
Data Sheet  
ADP7102  
FEATURES  
TYPICAL APPLICATION CIRCUITS  
Input voltage range: 3.3 V to 20 V  
Maximum output current: 300 mA  
VOUT = 5V  
VIN  
VOUT  
VIN = 8V  
+
+
CIN  
1µF  
COUT  
1µF  
SENSE  
Low noise: 15 µV rms for fixed output versions  
PSRR performance of 60 dB at 10 kHz, VOUT = 3.3 V  
Reverse current protection  
Low dropout voltage: 200 mV at 300 mA load  
Initial accuracy: 0.8%  
RPG  
100k  
R1  
100kΩ  
ON  
EN/  
UVLO  
OFF  
R2  
100kΩ  
PG  
PG  
GND  
Accuracy over line, load, and temperature: −2%, +1%  
Low quiescent current (VIN = 5 V), IGND = 750 μA with 300 mA  
load  
Low shutdown current: 40 µA at VIN = 12 V  
Stable with small 1 µF ceramic output capacitor  
7 fixed output voltage options: 1.5 V, 1.8 V, 2.5 V, 3 V, 3.3 V,  
5 V, and 9 V  
Adjustable output from 1.22 V to VIN – VDO  
Foldback current limit and thermal overload protection  
User programmable precision UVLO/enable  
Power good indicator  
Figure 1. ADP7102 with Fixed Output Voltage, 5 V  
VOUT = 5V  
COUT  
1µF  
VIN  
VOUT  
ADJ  
VIN = 8V  
+
+
CIN  
1µF  
R1  
40.2kΩ  
R2  
13kΩ  
R3  
100kΩ  
ON  
RPG  
100kΩ  
EN/  
UVLO  
OFF  
R4  
100kΩ  
PG  
PG  
GND  
Figure 2. ADP7102 with Adjustable Output Voltage, 5 V  
8-lead LFCSP and 8-lead SOIC packages  
APPLICATIONS  
Regulation to noise sensitive applications: ADC, DAC  
circuits, precision amplifiers, high frequency oscillators,  
clocks, and PLLs  
Communications and infrastructure  
Medical and healthcare  
Industrial and instrumentation  
GENERAL DESCRIPTION  
The ADP7102 is a CMOS, low dropout linear regulator that  
operates from 3.3 V to 20 V and provides up to 300 mA of  
output current. This high input voltage LDO is ideal for  
regulation of high performance analog and mixed signal  
circuits operating from 19 V to 1.22 V rails. Using an  
advanced proprietary architecture, it provides high power  
supply rejection, low noise, and achieves excellent line and  
load transient response with just a small 1 µF ceramic  
output capacitor.  
The ADP7102 output noise voltage is 15 μV rms and is inde-  
pendent of the output voltage. A digital power good output  
allows power system monitors to check the health of the output  
voltage. A user programmable precision undervoltage lockout  
function facilitates sequencing of multiple power supplies.  
The ADP7102 is available in 8-lead, 3 mm × 3 mm LFCSP  
and 8-lead SOIC packages. The LFCSP offers a very compact  
solution and also provides excellent thermal performance for  
applications requiring up to 300 mA of output current in a  
small, low-profile footprint.  
The ADP7102 is available in 7 fixed output voltage options and  
an adjustable version, which allows output voltages that range  
from 1.22 V to VIN − VDO via an external feedback divider.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADP7102  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 17  
Applications Information .............................................................. 18  
Capacitor Selection .................................................................... 18  
Programable Undervoltage Lockout (UVLO)........................... 19  
Power Good Feature .................................................................. 20  
Noise Reduction of the Adjustable ADP7102 ........................ 20  
Current Limit and Thermal Overload Protection ................. 21  
Thermal Considerations............................................................ 21  
Printed Circuit Board Layout Considerations............................ 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 26  
Applications....................................................................................... 1  
Typical Application Circuits............................................................ 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Input and Output Capacitor, Recommended Specifications.. 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Data ................................................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 7  
REVISION HISTORY  
11/11—Rev. 0 to Rev. A  
Changes to Figure 50...................................................................... 14  
10/11—Revision 0: Initial Version  
Rev. A | Page 2 of 28  
 
Data Sheet  
ADP7102  
SPECIFICATIONS  
VIN = (VOUT + 1 V) or 3.3 V (whichever is greater), EN = VIN, IOUT = 10 mA, CIN = COUT = 1 µF, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VIN  
Conditions  
Min  
Typ  
400  
450  
650  
750  
40  
Max  
Unit  
V
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
3.3  
20  
IGND  
IOUT = 100 µA, VIN = 10 V  
IOUT = 100 µA, VIN = 10 V, TJ = −40°C to +125°C  
IOUT = 10 mA, VIN = 10 V  
IOUT = 10 mA, VIN = 10 V, TJ = −40°C to +125°C  
IOUT = 150 mA, VIN = 10 V  
IOUT = 150 mA, VIN = 10 V, TJ = −40°C to +125°C  
IOUT = 300 mA, VIN = 10 V  
IOUT = 300 mA, VIN = 10 V, TJ = −40°C to +125°C  
EN = GND, VIN = 12 V  
EN = GND, VIN = 12 V, TJ = −40°C to +125°C  
EN = GND, VIN = 0 V, VOUT = 20 V  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
900  
1050  
1250  
1400  
75  
SHUTDOWN CURRENT  
IGND-SD  
INPUT REVERSE CURRENT  
IREV-INPUT  
0.3  
EN = GND, VIN = 0 V, VOUT = 20 V, TJ = −40°C to +125°C  
5
OUTPUT VOLTAGE ACCURACY  
Fixed Output Voltage Accuracy  
VOUT  
IOUT = 10 mA  
1 mA < IOUT < 300 mA, VIN = (VOUT + 1 V) to 20 V,  
TJ = −40°C to +125°C  
–0.8  
–2  
+0.8  
+1  
%
%
Adjustable Output Voltage  
Accuracy  
VADJ  
IOUT = 10 mA  
1.21  
1.22 1.23  
1.232  
V
V
1 mA < IOUT < 300 mA, VIN = (VOUT + 1 V) to 20 V,  
TJ = −40°C to +125°C  
1.196  
−0.015  
LINE REGULATION  
LOAD REGULATION 1  
∆VOUT/∆VIN VIN = (VOUT + 1 V) to 20 V, TJ = −40°C to +125°C  
∆VOUT/∆IOUT IOUT = 1 mA to 300 mA  
+0.015 %/V  
%/A  
0.2  
IOUT = 1 mA to 300 mA, TJ = −40°C to +125°C  
1.0  
%/A  
nA  
ADJ INPUT BIAS CURRENT  
SENSE INPUT BIAS CURRENT  
DROPOUT VOLTAGE2  
ADJI-BIAS  
1 mA < IOUT < 300 mA, VIN = (VOUT + 1 V) to 20 V,  
ADJ connected to VOUT  
1 mA < IOUT < 300 mA, VIN = (VOUT + 1 V) to 20 V,  
SENSE connected to VOUT, VOUT = 1.5 V  
10  
1
SENSEI-BIAS  
VDROPOUT  
μA  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 150 mA  
IOUT = 150 mA, TJ = −40°C to +125°C  
IOUT = 300 mA  
IOUT = 300 mA, TJ = −40°C to +125°C  
VOUT = 5 V  
20  
mV  
mV  
mV  
mV  
mV  
mV  
µs  
40  
100  
200  
175  
325  
750  
START-UP TIME3  
tSTART-UP  
ILIMIT  
800  
575  
CURRENT-LIMIT THRESHOLD4  
PG OUTPUT LOGIC LEVEL  
PG Output Logic High  
PG Output Logic Low  
450  
1.0  
mA  
PGHIGH  
PGLOW  
IOH < 1 µA  
IOL < 2 mA  
V
V
0.4  
PG OUTPUT THRESHOLD  
Output Voltage Falling  
Output Voltage Rising  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
PGFALL  
PGRISE  
−9.2  
−6.5  
%
%
TSSD  
TJ rising  
150  
15  
°C  
°C  
TSSD-HYS  
Rev. A | Page 3 of 28  
 
ADP7102  
Data Sheet  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
PROGRAMMABLE EN/UVLO  
UVLO Threshold rising  
UVLO Threshold falling  
UVLORISE  
UVLOFALL  
3.3 V ≤ VIN ≤ 20 V, TJ = −40°C to +125°C  
3.3 V ≤ VIN ≤ 20 V, TJ = −40°C to +125°C, 10 kΩ  
in series with enable pin  
1.18  
1.23 1.28  
1.13  
V
V
UVLO Hysteresis Current  
Enable Pulldown Current  
INPUT VOLTAGE  
UVLOHYS  
IEN-IN  
VEN > 1.25 V, TJ = −40°C to +125°C  
EN = VIN  
7.5  
9.8  
500  
12  
µA  
nA  
Start Threshold  
Shutdown Threshold  
Hysteresis  
VSTART  
VSHUTDOWN  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
3.2  
V
V
mV  
2.45  
250  
15  
15  
15  
15  
18  
OUTPUT NOISE  
OUTNOISE  
10 Hz to 100 kHz, VIN = 5.5 V, VOUT = 1.8 V  
10 Hz to 100 kHz, VIN = 6.3 V, VOUT = 3.3 V  
10 Hz to 100 kHz, VIN = 8 V, VOUT = 5 V  
10 Hz to 100 kHz, VIN = 12 V, VOUT = 9 V  
10 Hz to 100 kHz, VIN = 5.5 V, VOUT = 1.5 V,  
adjustable mode  
µV rms  
µV rms  
µV rms  
µV rms  
µV rms  
10 Hz to 100 kHz, VIN = 12 V, VOUT = 5 V,  
adjustable mode  
10 Hz to 100 kHz, VIN = 18 V, VOUT = 15 V,  
adjustable mode  
30  
65  
µV rms  
µV rms  
POWER SUPPLY REJECTION RATIO PSRR  
100 kHz, VIN = 4.3 V, VOUT = 3.3 V  
100 kHz, VIN = 6 V, VOUT = 5 V  
10 kHz, VIN = 4.3 V, VOUT = 3.3 V  
10 kHz, VIN = 6 V, VOUT = 5 V  
100 kHz, VIN = 3.3 V, VOUT = 1.8 V, adjustable mode  
100 kHz, VIN = 6 V, VOUT = 5 V, adjustable mode  
100 kHz, VIN = 16 V, VOUT = 15 V, adjustable mode  
10 kHz, VIN = 3.3 V, VOUT = 1.8 V, adjustable mode  
10 kHz, VIN = 6 V, VOUT = 5 V, adjustable mode  
10 kHz, VIN = 16 V, VOUT = 15 V, adjustable mode  
50  
50  
60  
60  
50  
60  
60  
60  
80  
80  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
1 Based on an end-point calculation using 1 mA and 300 mA loads. See Figure 6 for typical load regulation performance for loads less than 1 mA.  
2 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output  
voltages above 3.0 V.  
3 Start-up time is defined as the time between the rising edge of EN to VOUT being at 90% of its nominal value.  
4 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 5.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 5.0 V, or 4.5 V.  
INPUT AND OUTPUT CAPACITOR, RECOMMENDED SPECIFICATIONS  
Table 2.  
Parameter  
Minimum Input and Output Capacitance1  
Capacitor ESR  
Symbol  
CMIN  
RESR  
Conditions  
Min  
0.7  
0.001  
Typ  
Max  
Unit  
µF  
Ω
TA = −40°C to +125°C  
TA = −40°C to +125°C  
0.2  
1 The minimum input and output capacitance should be greater than 0.7 μF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended;  
Y5V and Z5U capacitors are not recommended for use with any LDO.  
Rev. A | Page 4 of 28  
 
 
Data Sheet  
ADP7102  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
board design is required. The value of θJA may vary, depending  
on PCB material, layout, and environmental conditions. The  
specified values of θJA are based on a 4-layer, 4 in. × 3 in. circuit  
board. See JESD51-7 and JESD51-9 for detailed information on  
the board construction. For additional information, see the  
AN-617 Application Note, MicroCSP™ Wafer Level Chip Scale  
Package, available at www.analog.com.  
Parameter  
Rating  
VIN to GND  
VOUT to GND  
EN/UVLO to GND  
–0.3 V to +22 V  
–0.3 V to +20 V  
–0.3 V to VIN  
PG to GND  
–0.3 V to VIN  
SENSE/ADJ to GND  
–0.3 V to VOUT  
–65°C to +150°C  
–40°C to +125°C  
–40°C to +85°C  
JEDEC J-STD-020  
ΨJB is the junction-to-board thermal characterization parameter  
Storage Temperature Range  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
Soldering Conditions  
with units of °C/W. The package’s ΨJB is based on modeling and  
calculation using a 4-layer board. The JESD51-12, Guidelines  
for Reporting and Using Electronic Package Thermal  
Information, states that thermal characterization parameters are  
not the same as thermal resistances. ΨJB measures the  
component power flowing through multiple thermal paths  
rather than a single path as in thermal resistance, θJB. Therefore,  
Stresses above those listed under absolute maximum ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Ψ
JB thermal paths include convection from the top of the  
package as well as radiation from the package, factors that make  
JB more useful in real-world applications. Maximum junction  
Ψ
temperature (TJ) is calculated from the board temperature (TB)  
and power dissipation (PD) using the formula  
THERMAL DATA  
TJ = TB + (PD × ΨJB)  
Absolute maximum ratings apply individually only, not in  
combination. The ADP7102 can be damaged when the junction  
temperature limit is exceeded. Monitoring ambient temperature  
does not guarantee that TJ is within the specified temperature  
limits. In applications with high power dissipation and poor  
thermal resistance, the maximum ambient temperature may  
have to be derated.  
See JESD51-8 and JESD51-12 for more detailed information  
about ΨJB.  
Thermal Resistance  
θJA and ΨJB are specified for the worst-case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
θ
JC is a parameter for surface-mount packages with top  
mounted heatsinks. θJC is presented here for reference only.  
In applications with moderate power dissipation and low PCB  
thermal resistance, the maximum ambient temperature can  
exceed the maximum limit as long as the junction temperature  
is within specification limits. The junction temperature (TJ) of  
the device is dependent on the ambient temperature (TA), the  
power dissipation of the device (PD), and the junction-to-  
ambient thermal resistance of the package (θJA).  
Table 4. Thermal Resistance  
Package Type  
8-Lead LFCSP  
8-Lead SOIC  
ΨJB  
Unit  
°C/W  
°C/W  
θJA  
θJC  
40.1  
48.5  
27.1  
58.4  
17.2  
31.3  
Maximum junction temperature (TJ) is calculated from the  
ambient temperature (TA) and power dissipation (PD) using the  
formula  
ESD CAUTION  
TJ = TA + (PD × θJA)  
Junction-to-ambient thermal resistance (θJA) of the package is  
based on modeling and calculation using a 4-layer board. The  
junction-to-ambient thermal resistance is highly dependent on  
the application and board layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
Rev. A | Page 5 of 28  
 
 
 
ADP7102  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
VOUT 1  
SENSE/ADJ 2  
GND 3  
8 VIN  
VOUT  
SENSE/ADJ  
GND  
1
2
3
4
8
7
6
5
VIN  
ADP7102  
7 PG  
ADP7102  
PG  
TOP VIEW  
TOP VIEW  
6 GND  
5 EN/UVLO  
GND  
(Not to Scale)  
(Not to Scale)  
NC  
EN/UVLO  
NC 4  
NOTES  
NOTES  
1. NC = NO CONNECT. DO NOT CONNECT TO  
THIS PIN.  
1. NC = NO CONNECT. DO NOT CONNECT TO  
THIS PIN.  
2. IT IS HIGHLY RECOMMENDED THAT THE  
EXPOSED PAD ON THE BOTTOM OF THE  
PACKAGE BE CONNECTED TO THE GROUND  
PLANE ON THE BOARD.  
2. IT IS HIGHLY RECOMMENDED THAT THE  
EXPOSED PAD ON THE BOTTOM OF THE  
PACKAGE BE CONNECTED TO THE GROUND  
PLANE ON THE BOARD.  
Figure 3. LFCSP Package  
Figure 4. Narrow Body SOIC Package  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
VOUT  
SENSE/ADJ  
Regulated Output Voltage. Bypass VOUT to GND with a 1 µF or greater capacitor.  
Sense (SENSE). Measures the actual output voltage at the load and feeds it to the error amplifier.  
Connect SENSE as close as possible to the load to minimize the effect of IR drop between the  
regulator output and the load. This function applies to fixed voltages only.  
Adjust Input (ADJ). An external resistor divider sets the output voltage. This function applies to  
adjustable voltages only.  
3
4
5
GND  
NC  
EN/UVLO  
Ground.  
Do Not Connect to this Pin.  
Enable Input (EN). Drive EN high to turn on the regulator; drive EN low to turn off the regulator.  
For automatic startup, connect EN to VIN.  
Programmable Undervoltage Lockout (UVLO). When the programmable UVLO function is used,  
the upper and lower thresholds are determined by the programming resistors.  
6
7
GND  
PG  
Ground.  
Power Good. This open-drain output requires an external pull-up resistor to VIN or VOUT. If the  
part is in shutdown, current limit, thermal shutdown, or falls below 90% of the nominal output  
voltage, PG immediately transitions low. If the power good function is not used, the pin may be  
left open or connected to ground.  
8
VIN  
Regulator Input Supply. Bypass VIN to GND with a 1 µF or greater capacitor.  
EPAD  
Exposed Pad. Exposed paddle on the bottom of the package. The EPAD enhances thermal  
performance and is electrically connected to GND inside the package. It is highly recommended  
that the EPAD be connected to the ground plane on the board.  
Rev. A | Page 6 of 28  
 
Data Sheet  
ADP7102  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = 5 V, VOUT = 3.3 V, IOUT = 1 mA, CIN = COUT = 1 µF, TA = 25°C, unless otherwise noted.  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
3.35  
3.33  
3.31  
3.29  
3.27  
3.25  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
–40°C  
–5°C  
25°C  
°C  
85°C  
125°C  
–40°C  
–5°C  
25°C  
°C  
85°C  
125°C  
T
(
)
T
(
)
J
J
Figure 5. Output Voltage vs. Junction Temperature  
Figure 8. Ground Current vs. Junction Temperature  
3.35  
3.33  
3.31  
3.29  
3.27  
3.25  
700  
600  
500  
400  
300  
200  
100  
0
0.1  
1
10  
(mA)  
100  
1000  
0.1  
1
10  
(mA)  
100  
1000  
I
I
LOAD  
LOAD  
Figure 6. Output Voltage vs. Load Current  
Figure 9. Ground Current vs. Load Current  
3.35  
3.33  
3.31  
3.29  
3.27  
3.25  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
4
6
8
10  
12  
(V)  
14  
16  
18  
20  
4
6
8
10  
12  
(V)  
14  
16  
18  
20  
V
V
IN  
IN  
Figure 10. Ground Current vs. Input Voltage  
Figure 7. Output Voltage vs. Input Voltage  
Rev. A | Page 7 of 28  
 
 
ADP7102  
Data Sheet  
1400  
1200  
1000  
800  
600  
400  
200  
0
160  
3.3V  
4.0V  
6.0V  
8.0V  
12.0V  
20.0V  
140  
120  
100  
80  
60  
40  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 300mA  
20  
0
–50  
3.10  
3.20  
3.30  
3.40  
(V)  
3.50  
3.60  
3.70  
–25  
0
25  
50  
75  
100  
125  
V
TEMPERATURE (°C)  
IN  
Figure 11. Shutdown Current vs. Temperature at Various Input Voltages  
Figure 14. Ground Current vs. Input Voltage (in Dropout)  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
200  
V
A
= 3.3V  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
OUT  
T
= 25°C  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
1
10  
100  
1000  
–40°C  
–5°C  
25°C  
°C  
85°C  
125°C  
I
(mA)  
T
(
)
LOAD  
J
Figure 12. Dropout Voltage vs. Load Current  
Figure 15. Output Voltage vs. Junction Temperature, VOUT = 5 V  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
0.1  
1
10  
(mA)  
100  
1000  
3.10  
3.20  
3.30  
3.40  
(V)  
3.50  
3.60  
3.70  
I
LOAD  
V
IN  
Figure 13. Output Voltage vs. Input Voltage (in Dropout)  
Figure 16. Output Voltage vs. Load Current, VOUT = 5 V  
Rev. A | Page 8 of 28  
Data Sheet  
ADP7102  
5.05  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
LOAD = 100µA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
LOAD = 1mA  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
6
8
10  
12  
14  
16  
18  
20  
6
8
10  
12  
14  
16  
18  
20  
V
(V)  
IN  
V
(V)  
IN  
Figure 17. Output Voltage vs. Input Voltage, VOUT = 5 V  
Figure 20. Ground Current vs. Input Voltage, VOUT = 5 V  
180  
160  
140  
120  
100  
80  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
V
= 5V  
= 25°C  
OUT  
T
A
60  
40  
20  
0
1
10  
100  
1000  
–40°C  
–5°C  
25°C  
°C  
85°C  
125°C  
I
(mA)  
LOAD  
T
(
)
J
Figure 18. Ground Current vs. Junction Temperature, VOUT = 5 V  
Figure 21. Dropout Voltage vs. Load Current, VOUT = 5 V  
700  
600  
500  
400  
300  
200  
100  
0
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
4.70  
4.65  
LOAD = 5mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 300mA  
0.1  
1
10  
(mA)  
100  
1000  
4.8  
4.9  
5.0  
5.1  
(V)  
5.2  
5.3  
5.4  
I
V
LOAD  
IN  
Figure 22. Output Voltage vs. Input Voltage (in Dropout), VOUT = 5 V  
Figure 19. Ground Current vs. Load Current, VOUT = 5 V  
Rev. A | Page 9 of 28  
ADP7102  
Data Sheet  
1.85  
1.83  
1.81  
1.79  
1.77  
1.75  
2500  
2000  
1500  
1000  
500  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
LOAD = 5mA  
0
LOAD = 10mA  
LOAD = 100mA  
LOAD = 200mA  
LOAD = 300mA  
–500  
2
4
6
8
10  
12  
(V)  
14  
16  
18  
20  
4.80  
4.90  
5.00  
5.10  
(V)  
5.20  
5.30  
5.40  
V
IN  
V
IN  
Figure 23. Ground Current vs. Input Voltage (in Dropout), VOUT = 5 V  
Figure 26. Output Voltage vs. Input Voltage, VOUT = 1.8 V  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1.85  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
1.83  
1.81  
1.79  
1.77  
1.75  
LOAD = 300mA  
–40°C  
–5°C  
25°C  
(°C)  
85°C  
125°C  
–40°C  
–5°C  
25°C  
°C  
85°C  
125°C  
T
J
T
(
)
J
Figure 24. Output Voltage vs. Junction Temperature, VOUT = 1.8 V  
Figure 27. Ground Current vs. Junction Temperature, VOUT = 1.8 V  
700  
600  
500  
400  
300  
200  
100  
0
1.85  
1.83  
1.81  
1.79  
1.77  
1.75  
0.1  
1
10  
(mA)  
100  
1000  
0.1  
1
10  
(mA)  
100  
1000  
I
I
LOAD  
LOAD  
Figure 25. Output Voltage vs. Load Current, VOUT = 1.8 V  
Figure 28. Ground Current vs. Load Current, VOUT = 1.8 V  
Rev. A | Page 10 of 28  
Data Sheet  
ADP7102  
5.08  
5.07  
5.06  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
1200  
LOAD = 100µA  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
1000  
800  
600  
400  
200  
0
6
8
10  
12  
14  
16  
18  
20  
2
4
6
8
10  
12  
(V)  
14  
16  
18  
20  
V
(V)  
IN  
V
IN  
Figure 29. Ground Current vs. Input Voltage, VOUT = 1.8 V  
Figure 32. Output Voltage vs. Input Voltage, VOUT = 5 V, Adjustable  
5.08  
5.07  
5.06  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
LOAD = 100µA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
2.0  
3.3V  
4V  
5V  
6V  
8V  
10V  
12V  
15V  
18V  
20V  
1.5  
1.0  
0.5  
0
–40°C  
–5°C  
25°C  
°C  
85°C  
125°C  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
T
(
)
J
TEMPERATURE (°C)  
Figure 33. Reverse Input Current vs. Temperature, VIN = 0 V, Different  
Voltages on VOUT  
Figure 30. Output Voltage vs. Junction Temperature, VOUT = 5 V, Adjustable  
5.08  
5.07  
5.06  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
0
LOAD = 300mA  
LOAD = 100mA  
–10  
LOAD = 10mA  
LOAD = 1mA  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0.1  
1
10  
(mA)  
100  
1000  
10  
100  
1k  
10k  
100k  
1M  
10M  
I
LOAD  
FREQUENCY (Hz)  
Figure 34. Power Supply Rejection Ratio vs. Frequency, VOUT = 1.8 V,  
IN = 3.3 V  
Figure 31. Output Voltage vs. Load Current, VOUT = 5 V, Adjustable  
V
Rev. A | Page 11 of 28  
ADP7102  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
LOAD = 1mA  
LOAD = 300mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
LOAD = 100mA  
LOAD = 10mA  
LOAD = 1mA  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 35. Power Supply Rejection Ratio vs. Frequency, VOUT = 3.3 V,  
Figure 38. Power Supply Rejection Ratio vs. Frequency, VOUT = 5 V, VIN = 6.5 V  
VIN = 4.8 V  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
LOAD = 300mA  
LOAD = 100mA  
LOAD = 10mA  
LOAD = 1mA  
LOAD = 1mA  
LOAD = 10mA  
–10  
LOAD = 100mA  
LOAD = 300mA  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 36. Power Supply Rejection Ratio vs. Frequency, VOUT = 3.3 V,  
Figure 39. Power Supply Rejection Ratio vs. Frequency, VOUT = 5 V, VIN = 6 V  
VIN = 4.3 V  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
LOAD = 1mA  
LOAD = 300mA  
LOAD = 100mA  
LOAD = 10mA  
LOAD = 1mA  
LOAD = 10mA  
–10  
LOAD = 100mA  
LOAD = 300mA  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 40. Power Supply Rejection Ratio vs. Frequency, VOUT = 5 V, VIN = 5.5 V  
Figure 37. Power Supply Rejection Ratio vs. Frequency, VOUT = 3.3 V,  
IN = 3.8 V  
V
Rev. A | Page 12 of 28  
Data Sheet  
ADP7102  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
LOAD = 1mA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 41. Power Supply Rejection Ratio vs. Frequency, VOUT = 5 V, VIN = 5.3 V  
Figure 44. Power Supply Rejection Ratio vs. Frequency, VOUT = 5 V, VIN = 6 V,  
Adjustable with Noise Reduction Circuit  
0
0
LOAD = 1mA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 10mA  
–10  
–10  
LOAD = 100mA  
LOAD = 100mA  
LOAD = 300mA  
–20  
LOAD = 300mA  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
10  
100  
1k  
10k  
100k  
1M  
10M  
HEADROOM VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 42. Power Supply Rejection Ratio vs. Frequency, VOUT = 5 V, VIN = 5.2 V  
Figure 45. Power Supply Rejection Ratio vs. Headroom Voltage, 100 Hz,  
VOUT = 5 V  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
LOAD = 1mA  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
–10  
LOAD = 100mA  
LOAD = 300mA  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
FREQUENCY (Hz)  
HEADROOM VOLTAGE  
Figure 43. Power Supply Rejection Ratio vs. Frequency, VOUT = 5 V, VIN = 6 V,  
Adjustable  
Figure 46. Power Supply Rejection Ratio vs. Headroom Voltage, 1 kHz,  
OUT = 5 V  
V
Rev. A | Page 13 of 28  
ADP7102  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
10  
3.3V  
LOAD = 1mA  
5V  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
5V ADJ  
5V ADJ NR  
1
0.1  
0.01  
–100  
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
10  
100  
1k  
10k  
100k  
HEADROOM VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 47. Power Supply Rejection Ratio vs. Headroom Voltage, 10 kHz,  
Figure 50. Output Noise Spectral Density, ILOAD = 10 mA, COUT = 1 μF  
VOUT = 5 V  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
LOAD = 1mA  
LOAD = 10mA  
LOAD = 100mA  
LOAD = 300mA  
LOAD CURRENT  
1
OUTPUT VOLTAGE  
2
B
CH1 200mA B CH2 50mV  
M 20µs  
A CH1  
76mA  
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
W
W
T 10.4%  
HEADROOM VOLTAGE (V)  
Figure 48. Power Supply Rejection Ratio vs. Headroom Voltage, 100 kHz,  
OUT = 5 V  
Figure 51. Load Transient Response, CIN, COUT = 1 μF, ILOAD = 1 mA to 300 mA,  
OUT = 1.8 V, VIN = 5 V  
V
V
30  
25  
20  
15  
10  
5
LOAD CURRENT  
1
OUTPUT VOLTAGE  
2
3.3V  
1.8V  
5V  
ADJ  
ADJ  
5V  
5V  
NR  
B  
0
B
W
CH1 200mA  
CH2 50mV  
M 20µs  
A CH1  
168mA  
W
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
T
10.2%  
LOAD CURRENT (A)  
Figure 49. Output Noise vs. Load Current and Output Voltage,  
COUT = 1 μF  
Figure 52. Load Transient Response, CIN, COUT = 1 μF, ILOAD = 1 mA to 300 mA,  
OUT = 3.3 V, VIN = 5 V  
V
Rev. A | Page 14 of 28  
Data Sheet  
ADP7102  
LOAD CURRENT  
INPUT VOLTAGE  
1
OUTPUT VOLTAGE  
2
1
OUTPUT VOLTAGE  
2
B
B
B
B  
W
W
CH1 1V  
CH2 10mV  
M 4µs  
A CH4  
1.56V  
CH1 200mA  
CH2 50mV  
M 20µs  
W
A CH1  
216mA  
W
T 9.8%  
T
10.2%  
Figure 55. Line Transient Response, CIN, COUT = 1 μF, ILOAD = 300 mA,  
OUT = 3.3 V  
Figure 53. Load Transient Response, CIN, COUT = 1 μF, ILOAD = 1 mA to 300 mA,  
OUT = 5 V, VIN = 7 V  
V
V
INPUT VOLTAGE  
INPUT VOLTAGE  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
2
1
2
1
B
B
B
B
CH1 1V  
CH2 10mV  
M 4µs  
T 9.8%  
A CH4  
1.56V  
CH1 1V  
CH2 10mV  
M 4µs  
W
A CH4  
1.56V  
W
W
W
T
9.8%  
Figure 54. Line Transient Response, CIN, COUT = 1 μF, ILOAD = 300 mA,  
OUT = 1.8 V  
Figure 56. Line Transient Response, CIN, COUT = 1 μF, ILOAD = 300 mA, VOUT = 5 V  
V
Rev. A | Page 15 of 28  
ADP7102  
Data Sheet  
INPUT VOLTAGE  
INPUT VOLTAGE  
OUTPUT VOLTAGE  
2
1
OUTPUT VOLTAGE  
2
1
B
B
CH1 1V  
CH2 10mV  
M 4µs  
T 9.8%  
A CH4  
1.56V  
B
B
W
W
CH1 1V  
CH2 10mV  
M 4µs  
T 9.8%  
A CH4  
1.56V  
W
W
Figure 57. Line Transient Response, CIN, COUT = 1 μF, ILOAD = 1 mA, VOUT = 1.8 V  
Figure 59. Line Transient Response, CIN, COUT = 1 μF, ILOAD = 1 mA, VOUT = 5 V  
INPUT VOLTAGE  
OUTPUT VOLTAGE  
2
1
B
B
CH1 1V  
CH2 10mV  
M 4µs  
T 9.8%  
A CH4  
1.56V  
W
W
Figure 58. Line Transient Response, CIN, COUT = 1 μF, ILOAD = 1 mA, VOUT = 3.3 V  
Rev. A | Page 16 of 28  
Data Sheet  
ADP7102  
THEORY OF OPERATION  
The ADP7102 is a low quiescent current, low-dropout linear  
regulator that operates from 3.3 V to 20 V and provides up to  
300 mA of output current. Drawing a low 750 μA of quiescent  
current (typical) at full load makes the ADP7102 ideal for  
battery-operated portable equipment. Typical shutdown  
current consumption is 40 μA at room temperature.  
is higher than the reference voltage, the gate of the PMOS  
device is pulled higher, allowing less current to pass and  
decreasing the output voltage.  
The ADP7102 is available in 7 fixed output voltage options,  
ranging from 1.8 V to 9 V and in an adjustable version with  
an output voltage that can be set to between 1.22 V and 19 V  
by an external voltage divider. The output voltage can be set  
according to the following equation:  
Optimized for use with small 1 µF ceramic capacitors, the  
ADP7102 provides excellent transient performance.  
V
OUT = 1.22 V(1 + R1/R2)  
VIN  
VOUT  
VREG  
10µA  
VOUT = 5V  
VIN  
VOUT  
VIN = 8V  
SHORT-CIRCUIT,  
THERMAL  
GND  
+
R1  
+
PGOOD  
R1  
PG  
CIN  
1µF  
COUT  
1µF  
40.2kΩ  
PROTECT  
ADJ  
SENSE  
R3  
100kΩ  
SHUTDOWN  
ON  
R2  
RPG  
100kΩ  
EN/  
UVLO  
R2  
13kΩ  
OFF  
EN/  
UVLO  
R4  
100kΩ  
PG  
PG  
GND  
1.22V  
REFERENCE  
Figure 62. Typical Adjustable Output Voltage Application Schematic  
Figure 60. Fixed Output Voltage Internal Block Diagram  
The value of R2 should be less than 200 kΩ to minimize  
errors in the output voltage caused by the ADJ pin input  
current. For example, when R1 and R2 each equal 200 kΩ,  
the output voltage is 2.44 V. The output voltage error  
introduced by the ADJ pin input current is 2 mV or 0.08%,  
assuming a typical ADJ pin input current of 10 nA at 25°C.  
VIN  
VOUT  
VREG  
10µA  
SHORT-CIRCUIT,  
THERMAL  
GND  
PGOOD  
PG  
PROTECT  
SHUTDOWN  
The ADP7102 uses the EN/UVLO pin to enable and disable  
the VOUT pin under normal operating conditions. When  
EN/UVLO is high, VOUT turns on, when EN is low, VOUT  
turns off. For automatic startup, EN/UVLO can be tied to VIN.  
EN/  
UVLO  
SENSE  
1.22V  
REFERENCE  
The ADP7102 incorporates reverse current protections  
circuitry that prevents current flow backwards through the  
pass element when the output voltage is greater than the input  
voltage. A comparator senses the difference between the input  
and output voltages. When the difference between the input  
voltage and output voltage exceeds 55 mV, the body of the PFET  
is switched to VOUT and turned off or opened. In other words,  
the gate is connected to VOUT.  
Figure 61. Adjustable Output Voltage Internal Block Diagram  
Internally, the ADP7102 consists of a reference, an error  
amplifier, a feedback voltage divider, and a PMOS pass  
transistor. Output current is delivered via the PMOS pass  
device, which is controlled by the error amplifier. The error  
amplifier compares the reference voltage with the feedback  
voltage from the output and amplifies the difference. If the  
feedback voltage is lower than the reference voltage, the gate  
of the PMOS device is pulled lower, allowing more current to  
pass and increasing the output voltage. If the feedback voltage  
Rev. A | Page 17 of 28  
 
ADP7102  
Data Sheet  
APPLICATIONS INFORMATION  
Figure 64 depicts the capacitance vs. voltage bias characteristic  
of an 0402, 1 µF, 10 V, X5R capacitor. The voltage stability of a  
capacitor is strongly influenced by the capacitor size and voltage  
rating. In general, a capacitor in a larger package or higher voltage  
rating exhibits better stability. The temperature variation of the  
X5R dielectric is ~ 15% over the −40°C to +85°C temperature  
range and is not a function of package or voltage rating.  
1.2  
CAPACITOR SELECTION  
Output Capacitor  
The ADP7102 is designed for operation with small, space-  
saving ceramic capacitors but functions with most commonly  
used capacitors as long as care is taken with regard to the  
effective series resistance (ESR) value. The ESR of the out-  
put capacitor affects the stability of the LDO control loop. A  
minimum of 1 µF capacitance with an ESR of 0.2 Ω or less is  
recommended to ensure the stability of the ADP7102. Transient  
response to changes in load current is also affected by output  
capacitance. Using a larger value of output capacitance improves  
the transient response of the ADP7102 to large changes in load  
current. Figure 63 shows the transient responses for an output  
capacitance value of 1 µF.  
1.0  
0.8  
0.6  
0.4  
0.2  
0
LOAD CURRENT  
1
0
2
4
6
8
10  
VOLTAGE (V)  
Figure 64. Capacitance vs. Voltage Characteristic  
OUTPUT VOLTAGE  
2
Use Equation 1 to determine the worst-case capacitance  
accounting for capacitor variation over temperature,  
component tolerance, and voltage.  
C
EFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
where:  
BIAS is the effective capacitance at the operating voltage.  
(1)  
B
CH1 200mA B CH2 50mV  
M 20µs  
T 10.4%  
A CH1  
76mA  
W
W
C
Figure 63. Output Transient Response, VOUT = 1.8 V, COUT = 1 µF  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
Input Bypass Capacitor  
Connecting a 1 µF capacitor from VIN to GND reduces  
the circuit sensitivity to printed circuit board (PCB) layout,  
especially when long input traces or high source impedance  
are encountered. If greater than 1 µF of output capacitance is  
required, the input capacitor should be increased to match it.  
In this example, the worst-case temperature coefficient  
(TEMPCO) over −40°C to +85°C is assumed to be 15% for  
an X5R dielectric. The tolerance of the capacitor (TOL) is  
assumed to be 10%, and CBIAS is 0.94 μF at 1.8 V, as shown  
in Figure 64.  
Input and Output Capacitor Properties  
Substituting these values in Equation 1 yields  
Any good quality ceramic capacitors can be used with the  
ADP7102, as long as they meet the minimum capacitance and  
maximum ESR requirements. Ceramic capacitors are manufac-  
tured with a variety of dielectrics, each with different behavior  
over temperature and applied voltage. Capacitors must have a  
dielectric adequate to ensure the minimum capacitance over  
the necessary temperature range and dc bias conditions. X5R  
or X7R dielectrics with a voltage rating of 6.3 V to 50 V are  
recommended. Y5V and Z5U dielectrics are not recommended,  
due to their poor temperature and dc bias characteristics.  
C
EFF = 0.94 μF × (1 − 0.15) × (1 − 0.1) = 0.719 μF  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over temper-  
ature and tolerance at the chosen output voltage.  
To guarantee the performance of the ADP7102, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
Rev. A | Page 18 of 28  
 
 
 
 
Data Sheet  
ADP7102  
PROGRAMABLE UNDERVOLTAGE LOCKOUT (UVLO)  
VOUT = 5V  
VIN  
VOUT  
VIN = 8V  
ON  
+
+
CIN  
1µF  
COUT  
1µF  
The ADP7102 uses the EN/UVLO pin to enable and disable  
the VOUT pin under normal operating conditions. As shown  
in Figure 65, when a rising voltage on EN crosses the upper  
threshold, VOUT turns on. When a falling voltage on EN/  
UVLO crosses the lower threshold, VOUT turns off. The  
hysteresis of the EN/UVLO threshold is determined by  
the Thevenin equivalent resistance in series with the EN/  
UVLO pin.  
SENSE  
RPG  
100kΩ  
R1  
100kΩ  
EN/  
UVLO  
OFF  
R2  
100kΩ  
PG  
PG  
GND  
Figure 66. Typical EN Pin Voltage Divider  
Figure 65 shows the typical hysteresis of the EN/UVLO pin.  
This prevents on/off oscillations that can occur due to noise  
on the EN pin as it passes through the threshold points.  
2.0  
1.8  
1.6  
1.4  
1.2  
The ADP7102 uses an internal soft-start to limit the inrush  
current when the output is enabled. The start-up time for the  
3.3 V option is approximately 580 μs from the time the EN  
active threshold is crossed to when the output reaches 90%  
of its final value. As shown in Figure 67, the start-up time is  
dependent on the output voltage setting.  
V
V
, EN RISE  
, EN FALL  
OUT  
1.0  
0.8  
0.6  
0.4  
0.2  
0
OUT  
6
5V  
5
1.00  
1.25  
1.50  
1.75  
2.00  
2.25  
2.50  
2.75  
3.00  
4
Figure 65. Typical VOUT Response to EN Pin Operation  
3.3V  
The upper and lower thresholds are user programmable and  
can be set using two resistors. When the EN/UVLO pin voltage  
is below 1.22 V, the LDO is disabled. When the EN/UVLO pin  
voltage transitions above 1.22 V, the LDO is enabled and 10 µA  
hysteresis current is sourced out of the pin raising the voltage,  
thus providing threshold hysteresis. Typically, two external  
resistors program the minimum operational voltage for the LDO.  
The resistance values, R1 and R2 can be determined from:  
3
ENABLE  
2
1
0
0
500  
1000  
1500  
2000  
TIME (µs)  
R1 = VHYS/10 μA  
R2 = 1.22 V × R1/(VIN − 1.22 V)  
where:  
Figure 67. Typical Start-Up Behavior  
VIN is the desired turn-on voltage.  
VHYS is the desired EN/UVLO hysteresis level.  
Hysteresis can also be achieved by connecting a resistor in series  
with EN/UVLO pin. For the example shown in Figure 66, the  
enable threshold is 2.44 V with a hysteresis of 1 V.  
Rev. A | Page 19 of 28  
 
 
 
 
ADP7102  
Data Sheet  
POWER GOOD FEATURE  
NOISE REDUCTION OF THE ADJUSTABLE  
ADP7102  
The ADP7102 provides a power good pin (PG) to indicate  
the status of the output. This open-drain output requires an  
external pull-up resistor to VIN. If the part is in shutdown  
mode, current-limit mode, or thermal shutdown, or if it falls  
below 90% of the nominal output voltage, the power-good pin  
(PG) immediately transitions low. During soft-start, the rising  
threshold of the power-good signal is 93.5% of the nominal  
output voltage.  
The ultralow output noise of the fixed output ADP7102 is  
achieved by keeping the LDO error amplifier in unity gain  
and setting the reference voltage equal to the output voltage.  
This architecture does not work for an adjustable output  
voltage LDO. The adjustable output ADP7102 uses the more  
conventional architecture where the reference voltage is fixed  
and the error amplifier gain is a function of the output voltage.  
The disadvantage of the conventional LDO architecture is that  
the output voltage noise is proportional to the output voltage.  
The open-drain output is held low when the ADP7102 has  
sufficient input voltage to turn on the internal PG transistor.  
The PG transistor is terminated via a pull-up resistor to VOUT  
or VIN.  
The adjustable LDO circuit may be modified slightly to  
reduce the output voltage noise to levels close to that of the  
fixed output ADP7102. The circuit shown in Figure 70 adds  
two additional components to the output voltage setting resistor  
divider. CNR and RNR are added in parallel with RFB1 to reduce  
the ac gain of the error amplifier. RNR is chosen to be equal to  
Power-good accuracy is 93.5% of the nominal regulator output  
voltage when this voltage is rising, with a 90% trip point when  
this voltage is falling. Regulator input voltage brownouts or  
glitches trigger power no good signals if VOUT falls below 90%.  
RFB2; this limits the ac gain of the error amplifier to approxi-  
A normal power-down causes the power good signal to go low  
when VOUT drops below 90%.  
mately 6 dB. The actual gain is the parallel combination of RNR  
and RFB1, divided by RFB2. This ensures that the error amplifier  
always operates at greater than unity gain.  
Figure 68 and Figure 69 show the typical power good rising and  
falling threshold over temperature.  
C
NR is chosen by setting the reactance of CNR equal to RFB1  
6
RNR at a frequency between 50 Hz and 100 Hz. This sets the  
PG –40°C  
PG –5°C  
PG +25°C  
frequency where the ac gain of the error amplifier is 3 dB  
down from its dc gain.  
5
4
3
2
1
0
PG +85°C  
PG +125°C  
VOUT = 5V  
COUT  
1µF  
VIN  
VOUT  
VIN = 8V  
R
+
+
CIN  
1µF  
FB1  
+
C
NR  
40.2k  
100nF  
ADJ  
R
13kΩ  
NR  
ON  
100kΩ  
100kΩ  
R
13kΩ  
EN/  
UVLO  
100kΩ  
OFF  
FB2  
PG  
PG  
GND  
Figure 70. Noise Reduction Modification to Adjustable LDO  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
The noise of the LDO is approximately the noise of the fixed  
output LDO (typically 15 µV rms) times the square root of the  
parallel combination of RNR and RFB1 divided by RFB2. Based on  
the component values shown in Figure 70, the ADP7102 has the  
following characteristics:  
V
(V)  
OUT  
Figure 68. Typical Power Good Threshold vs. Temperature, VOUT Rising  
6
PG –40°C  
PG –5°C  
PG +25°C  
PG +85°C  
5
4
3
2
1
0
PG +125°C  
DC gain of 4.09 (12.2 dB)  
3 dB roll off frequency of 59 Hz  
High frequency ac gain of 1.82 (5.19 dB)  
Noise reduction factor of 1.35 (2.59 dB)  
RMS noise of the adjustable LDO without noise reduction  
of 27.8 µV rms  
RMS noise of the adjustable LDO with noise reduc-  
tion (assuming 15 µV rms for fixed voltage option) of  
20.25 µV rms  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
V
(V)  
OUT  
Figure 69. Typical Power Good Threshold vs. Temperature, VOUT Falling  
Rev. A | Page 20 of 28  
 
 
 
 
 
Data Sheet  
ADP7102  
To guarantee reliable operation, the junction temperature  
CURRENT LIMIT AND THERMAL OVERLOAD  
PROTECTION  
of the ADP7102 must not exceed 125°C. To ensure that the  
junction temperature stays below this maximum value, the  
user must be aware of the parameters that contribute to  
junction temperature changes. These parameters include  
ambient temperature, power dissipation in the power device,  
and thermal resistances between the junction and ambient air  
JA). The θJA number is dependent on the package assembly  
compounds that are used and the amount of copper used to  
solder the package GND pins to the PCB.  
The ADP7102 is protected against damage due to excessive  
power dissipation by current and thermal overload protection  
circuits. The ADP7102 is designed to current limit when the  
output load reaches 400 mA (typical). When the output load  
exceeds 400 mA, the output voltage is reduced to maintain a  
constant current limit.  
Thermal overload protection is included, which limits the  
junction temperature to a maximum of 150°C (typical). Under  
extreme conditions (that is, high ambient temperature and/or  
high power dissipation) when the junction temperature starts to  
rise above 150°C, the output is turned off, reducing the output  
current to zero. When the junction temperature drops below  
135°C, the output is turned on again, and output current is  
restored to its operating value.  
Table 6 shows typical θJA values of the 8-lead SOIC and 8-lead  
LFCSP packages for various PCB copper sizes. Table 7 shows  
the typical ΨJB values of the 8-lead SOIC and 8-lead LFCSP.  
Table 6. Typical θJA Values  
θ
JA (°C/W)  
SOIC  
167.8  
111  
Copper Size (mm2)  
251  
100  
500  
LFCSP  
165.1  
125.8  
68.1  
Consider the case where a hard short from VOUT to ground  
occurs. At first, the ADP7102 current limits, so that only 400 mA is  
conducted into the short. If self heating of the junction is great  
enough to cause its temperature to rise above 150°C, thermal  
shutdown activates, turning off the output and reducing the  
output current to zero. As the junction temperature cools and  
drops below 135°C, the output turns on and conducts 400 mA  
into the short, again causing the junction temperature to rise  
above 150°C. This thermal oscillation between 135°C and  
150°C causes a current oscillation between 400 mA and 0 mA  
that continues as long as the short remains at the output.  
65.9  
1000  
6400  
56.4  
42.1  
56.1  
45.8  
1 Device soldered to minimum size pin traces.  
Table 7. Typical ΨJB Values  
Model  
LFCSP  
SOIC  
ΨJB (°C/W)  
15.1  
31.3  
Current and thermal limit protections are intended to protect  
the device against accidental overload conditions. For reliable  
operation, device power dissipation must be externally limited  
so the junction temperature does not exceed 125°C.  
The junction temperature of the ADP7102 is calculated from  
the following equation:  
TJ = TA + (PD × θJA)  
(2)  
(3)  
where:  
THERMAL CONSIDERATIONS  
TA is the ambient temperature.  
PD is the power dissipation in the die, given by  
In applications with low input-to-output voltage differential,  
the ADP7102 does not dissipate much heat. However, in  
applications with high ambient temperature and/or high  
input voltage, the heat dissipated in the package may become  
large enough that it causes the junction temperature of the  
die to exceed the maximum junction temperature of 125°C.  
PD = [(VIN VOUT) × ILOAD] + (VIN × IGND  
where:  
)
I
LOAD is the load current.  
IGND is the ground current.  
VIN and VOUT are input and output voltages, respectively.  
When the junction temperature exceeds 150°C, the converter  
enters thermal shutdown. It recovers only after the junction  
temperature has decreased below 135°C to prevent any permanent  
damage. Therefore, thermal analysis for the chosen application  
is very important to guarantee reliable performance over all  
conditions. The junction temperature of the die is the sum of  
the ambient temperature of the environment and the tempera-  
ture rise of the package due to the power dissipation, as shown  
in Equation 2.  
Power dissipation due to ground current is quite small and  
can be ignored. Therefore, the junction temperature equation  
simplifies to the following:  
TJ = TA + {[(VIN VOUT) × ILOAD] × θJA}  
(4)  
As shown in Equation 4, for a given ambient temperature,  
input-to-output voltage differential, and continuous load  
current, there exists a minimum copper size requirement for  
the PCB to ensure that the junction temperature does not rise  
above 125°C. Figure 71 to Figure 78 show junction temperature  
calculations for different ambient temperatures, power dissipa-  
tion, and areas of PCB copper.  
Rev. A | Page 21 of 28  
 
 
 
 
ADP7102  
Data Sheet  
145  
135  
125  
115  
105  
95  
145  
135  
125  
115  
105  
95  
85  
85  
75  
75  
65  
65  
55  
55  
2
2
45  
6400mm  
6400mm  
45  
2
2
500mm  
500mm  
2
2
35  
25mm  
25mm  
35  
T
MAX  
T
MAX  
J
J
25  
25  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TOTAL POWER DISSIPATION (W)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  
TOTAL POWER DISSIPATION (W)  
Figure 71. LFCSP, TA = 25°C  
Figure 74. SOIC, TA = 25°C  
140  
130  
120  
110  
100  
90  
140  
130  
120  
100  
110  
90  
80  
80  
70  
70  
2
2
6400mm  
6400mm  
2
2
500mm  
500mm  
60  
60  
2
2
25mm  
J
25mm  
J
T
MAX  
T
MAX  
50  
50  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
TOTAL POWER DISSIPATION (W)  
TOTAL POWER DISSIPATION (W)  
Figure 75. SOIC, TA = 50°C  
Figure 72. LFCSP, TA = 50°C  
145  
135  
125  
115  
105  
95  
145  
135  
125  
115  
105  
95  
85  
85  
2
2
6400mm  
6400mm  
2
2
75  
500mm  
500mm  
75  
2
2
25mm  
J
25mm  
J
T
MAX  
T
MAX  
65  
65  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
TOTAL POWER DISSIPATION (W)  
TOTAL POWER DISSIPATION (W)  
Figure 73. LFCSP, TA = 85°C  
Figure 76. SOIC, TA = 85°C  
Rev. A | Page 22 of 28  
Data Sheet  
ADP7102  
140  
120  
100  
80  
In the case where the board temperature is known, use the  
thermal characterization parameter, ΨJB, to estimate the  
junction temperature rise (see Figure 77 and Figure 78).  
Maximum junction temperature (TJ) is calculated from  
the board temperature (TB) and power dissipation (PD)  
using the following formula:  
60  
TJ = TB + (PD × ΨJB)  
(5)  
The typical value of ΨJB is 15.1°C/W for the 8-lead LFCSP  
40  
package and 31.3°C/W for the 8-lead SOIC package.  
TB = 25°C  
TB = 50°C  
TB = 65°C  
TB = 85°C  
20  
140  
T
MAX  
J
0
120  
100  
80  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
TOTAL POWER DISSIPATION (W)  
Figure 78. SOIC  
60  
40  
TB = 25°C  
TB = 50°C  
20  
TB = 65°C  
TB = 85°C  
T
MAX  
J
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
TOTAL POWER DISSIPATION (W)  
Figure 77. LFCSP  
Rev. A | Page 23 of 28  
 
 
 
ADP7102  
Data Sheet  
PRINTED CIRCUIT BOARD LAYOUT CONSIDERATIONS  
Heat dissipation from the package can be improved by  
increasing the amount of copper attached to the pins of the  
ADP7102. However, as listed in Table 6, a point of diminishing  
returns is eventually reached, beyond which an increase in the  
copper size does not yield significant heat dissipation benefits.  
Place the input capacitor as close as possible to the VIN and  
GND pins. Place the output capacitor as close as possible to the  
VOUT and GND pins. Use of 0805 or 0603 size capacitors and  
resistors achieves the smallest possible footprint solution on  
boards where area is limited.  
Figure 80. Example SOIC PCB Layout  
Figure 79. Example LFCSP PCB Layout  
Rev. A | Page 24 of 28  
 
Data Sheet  
ADP7102  
OUTLINE DIMENSIONS  
2.48  
2.38  
2.23  
3.00  
BSC SQ  
5
8
EXPOSED  
PAD  
1.74  
1.64  
1.49  
0.50  
0.40  
0.30  
4
1
INDEX  
AREA  
PIN 1  
INDICATOR  
(R 0.2)  
TOP VIEW  
BOTTOM VIEW  
0.80 MAX  
0.55 NOM  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.18  
0.20 REF  
0.50 BSC  
COMPLIANT TO JEDEC STANDARDS MO-229-WEED-4  
Figure 81. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-5)  
Dimensions shown in millimeters  
5.00  
4.90  
4.80  
3.098  
0.356  
5
6.20  
6.00  
5.80  
8
4.00  
3.90  
3.80  
2.41  
0.457  
4
1
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
BOTTOM VIEW  
45°  
1.27 BSC  
3.81 REF  
TOP VIEW  
SECTION OF THIS DATA SHEET.  
1.65  
1.25  
1.75  
1.35  
0.50  
0.25  
0.25  
0.17  
0.10 MAX  
0.05 NOM  
SEATING  
PLANE  
8°  
0°  
0.51  
0.31  
1.04 REF  
COPLANARITY  
0.10  
1.27  
0.40  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
Figure 82. 8-Lead Standard Small Outline Package, with Exposed Pad [SOIC_N_EP]  
Narrow Body  
(RD-8-2)  
Dimensions shown in millimeters  
Rev. A | Page 25 of 28  
 
ADP7102  
Data Sheet  
ORDERING GUIDE  
Temperature  
Range  
Output  
Package  
Description  
Package  
Option  
Model1  
Voltage (V)2, 3  
Branding  
LHO  
LJV  
LJW  
LJZ  
LKO  
LK1  
LK2  
ADP7102ACPZ-R7  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Adjustable  
1.5  
1.8  
2.5  
3.0  
3.3  
5
9
LFCSP_WD  
LFCSP_WD  
LFCSP_WD  
LFCSP_WD  
LFCSP_WD  
LFCSP_WD  
LFCSP_WD  
LFCSP_WD  
SOIC_N_EP  
SOIC_N_EP  
SOIC_N_EP  
SOIC_N_EP  
SOIC_N_EP  
SOIC_N_EP  
SOIC_N_EP  
SOIC_N_EP  
CP-8-5  
CP-8-5  
CP-8-5  
CP-8-5  
CP-8-5  
CP-8-5  
CP-8-5  
CP-8-5  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
RD-8-2  
ADP7102ACPZ-1.5-R7  
ADP7102ACPZ-1.8-R7  
ADP7102ACPZ-2.5-R7  
ADP7102ACPZ-3.0-R7  
ADP7102ACPZ-3.3-R7  
ADP7102ACPZ-5.0-R7  
ADP7102ACPZ-9.0-R7  
ADP7102ARDZ-R7  
ADP7102ARDZ-1.5-R7  
ADP7102ARDZ-1.8-R7  
ADP7102ARDZ-2.5-R7  
ADP7102ARDZ-3.0-R7  
ADP7102ARDZ-3.3-R7  
ADP7102ARDZ-5.0-R7  
ADP7102ARDZ-9.0-R7  
ADP7102CP-EVALZ  
ADP7102RD-EVALZ  
ADP7102CPZ-REDYKIT  
ADP7102RDZ-REDYKIT  
LLC  
Adjustable  
1.5  
1.8  
2.5  
3.0  
3.3  
5
9
3.3  
3.3  
LFCSP Evaluation Board  
SOIC Evaluation Board  
LFCSP REDYKIT  
SOIC REDYKIT  
1 Z = RoHS Compliant Part.  
2 For additional voltage options, contact a local Analog Devices, Inc., sales or distribution representative.  
3 The ADP7102CP-EVALZ and ADP7102RD-EVALZ evaluation boards are preconfigured with a 3.3 V ADP7102.  
Rev. A | Page 26 of 28  
 
 
Data Sheet  
NOTES  
ADP7102  
Rev. A | Page 27 of 28  
ADP7102  
NOTES  
Data Sheet  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09506-0-11/11(A)  
Rev. A | Page 28 of 28  

相关型号:

ADP7102ACPZ-3.3-R7

20 V, 300 mA, Low Noise, CMOS LDO
ADI

ADP7102ACPZ-5.0-R7

20 V, 300 mA, Low Noise, CMOS LDO
ADI

ADP7102ACPZ-9.0-R7

20 V, 300 mA, Low Noise, CMOS LDO
ADI

ADP7102ACPZ-R7

20 V, 300 mA, Low Noise, CMOS LDO
ADI

ADP7102ARDZ-1.5-R7

20 V, 300 mA, Low Noise, CMOS LDO
ADI

ADP7102ARDZ-1.8-R7

20 V, 300 mA, Low Noise, CMOS LDO
ADI

ADP7102ARDZ-2.5-R7

20 V, 300 mA, Low Noise, CMOS LDO
ADI

ADP7102ARDZ-3.0-R7

20 V, 300 mA, Low Noise, CMOS LDO
ADI

ADP7102ARDZ-3.3-R7

20 V, 300 mA, Low Noise, CMOS LDO
ADI

ADP7102ARDZ-5.0-R7

20 V, 300 mA, Low Noise, CMOS LDO
ADI

ADP7102ARDZ-9.0-R7

20 V, 300 mA, Low Noise, CMOS LDO
ADI

ADP7102ARDZ-R7

20 V, 300 mA, Low Noise, CMOS LDO
ADI